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Abstract

Intrinsic noise in objective function and derivatives evaluations may cause premature
termination of optimization algorithms. Evaluation complexity bounds taking this situa-
tion into account are presented in the framework of a deterministic trust-region method.
The results show that the presence of intrinsic noise may dominate these bounds, in con-
trast with what is known for methods in which the inexactness in function and derivatives’
evaluations is fully controllable. Moreover, the new analysis provides estimates of the op-
timality level achievable, should noise cause early termination. It finally sheds some light
on the impact of inexact computer arithmetic on evaluation complexity.

Keywords: noise, evaluation complexity, trust-region methods, inexact functions and
derivatives.

1 Introduction

This paper attempts to answer a simple question: how does noise in function values and
derivatives affect evaluation complexity of smooth optimization? While analysis has been
produced to indicate how high accuracy can be reached by optimization algorithms even in
the presence of inexact but deterministic(1) function and derivatives’ values (see [8, 16, 28,
3, 29, 21, 14]), these approaches crucially rely on the assumption that the inexactness is
controllable, in that it can be made arbitrarily small if required so by the algorithm. But
what happens in practical applications where significant noise is intrinsic and can’t be assumed
away? How is the evaluation complexity of the optimization algorithm altered?

To limit the scope of this analysis, we focus here on trust-region methods for unconstrained
problems, a well known class of algorithms (see [16] for an in-depth coverage and [30] for a
more recent survey), whose complexity was first investigated in [20]. We choose to base our
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present developements on the existing analysis of [14], where the evaluation complexity of
trust-region methods with explicit dynamic accuracy is presented. It is shown in this paper
that, under standard Lipschitz continuity assumptions, a variant of the classical trust-region
algorithm using derivatives of degree one to q and allowing the control of inexactness in
objective function and derivatives’ values will find a q-th order ε- approximate minimizer of
the objective function in O(ε−(q+1)) evaluations of f and its derivatives.

Our purpose in this paper is to extend these results to the case where such favourable
assumptions of the noise can no longer be made, in that evaluation of f or its derivatives
may simply fail if the requested accuracy is too high. In that case, the desired ε optimality
may not be reachable, and our minimization algorithm may be forced to terminate before
approximate convergence can be declared. The question then arises to establish not only
an upper bound on the number of evaluations for this event to occur, but also bounds, if
possible, on the level of optimality achieved at termination. However, since noisy problems
often occur in a context where even moderate accuracy is expensive to obtain, we wish our
algorithms to preserve the ability of the methods described in [14, 5] to dynamically adjust
accuracy requests in the limits imposed by noise.

Contributions. We will present a trust-region method allowing dynamic accuracy control
whenever possible given the level of noise, and show that termination of this algorithm will

occur in at most O
(

min[ϑ−1
f , ϑ−1

d ε−(q+1), ε−(q+1)]
)

evaluations, where ϑf and ϑd are the

absolute noise levels in f and its derivatives, respectively, ε is the (ideally) sought optimality
threshold and q ≥ 1 is the sought optimality order. In addition, we will derive upper bounds
on the value of optimality measures at termination that depend on ϑf . To the best of our
knowledge, these results are the first of their kind. Finally, a brief discussion will illustrate
our results in the case where intrinsic noise is caused by computer arithmetic and round-off
errors.
Because our development heavily hinges on [14], repeating some material from this source is
necessary to keep our argument understandable. We have however done our best to limit this
repetition as much as possible, pushing some of it in an appendix when possible.

Even if the analysis presented below does not depend in any way on the choice of the
optimality order q, the authors are well aware that, while requests for optimality of orders
q ∈ {1, 2} lead to practical, implementable algorithms, this may no longer be the case for
q > 2, at least for now. For high orders, the methods discussed in the paper therefore
constitute an “idealized” setting (in which complicated subproblems can be approximately
solved without affecting the evaluation complexity) and thus indicate the limits of achievable
results.

Outline. A first section briefly recalls the context and the notion of high-order approximate
minimizers. Section 3 then presents a “noise-aware” inexact trust-region algorithm and its
evaluation complexity. Brief conclusions and perspectives are finally presented in Section 4.

Basic notations. Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm for
vectors and matrices. For a general symmetric tensor S of order p, we define

‖S‖ def
= max
‖v‖=1

|S[v]p| = max
‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]|

the induced Euclidean norm. We also denote by ∇jxf(x) the j-th order derivative tensor of
f evaluated at x and note that such a tensor is always symmetric for any j ≥ 2. ∇0

xf(x) is a
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synonym for f(x). bαc denotes the largest integer not exceeding α. For symmetric matrices,
λmin[M ] is the leftmost eigenvalue of M .

2 High-Order Taylor Decrements and High-Order Optimality

Throughout this paper, we consider the unconstrained problem given by

min
x∈Rn

f(x), (2.1)

where we assume that the values of the objective function f and its derivatives are computed
inexactly and are subject to noise. Inexact quantities will be denoted by an overbar, so that

f(s) is an inexact value of f(x) and ∇jxf(x) an inexact value of ∇jxf(x). We will also assume
that

AS.1: the objective function f is q times continuously differentiable in Rn, for some q ≥ 1;

AS.2: the first q derivative tensors of f are globally Lipschitz continuous, that is, for each
j ∈ {1, . . . , q} there exist a constant Lf,j ≥ 0 such that, for all x, y in Rn,

‖∇jxf(x)−∇jxf(y)‖ ≤ Lf,j‖x− y‖;

AS.3: the objective function f is bounded below by flow on Rn.

In what follows, we consider algorithms that are able to exploit all available derivatives of f .
As in many minimization methods, we would like to build a model of the objective function
f using the truncated Taylor expansions (now of degree j for j ∈ {1, . . . , q}) given by

Tf,j(x, s)
def
= f(x) +

j∑
`=1

∇`xf(x)[s]`, (2.2)

where ∇`xf(x) is a `-th order symmetric tensor and ∇`xf(x)[s]` is this tensor applied to `
copies of the vector s. More specifically, we will be interested, at a given iterate xk, in finding
a step s ∈ Rn which makes the Taylor decrements

∆Tf,j(xk, s)
def
= f(xk)− Tf,j(xk, s) = Tf,j(xk, 0)− Tf,j(xk, s)

large (note that ∆Tf,j(x, s) is independent of f(x)). When this is possible, we anticipate from
the approximating properties of the Taylor expansion that some significant decrease is also
possible in f . Conversely, if ∆Tf,j(x, s) cannot be made large in a neighbourhood of x, we
must be close to an approximate minimizer. More formally, we define, for some optimality
radius δ ∈ (0, 1], the measure

φδf,j(x) = max
‖d‖≤δ

∆Tf,j(x, d), (2.3)

that is the maximal decrease in Tf,j(x, d) achievable in a ball of radius δ centered at x. We
then define x to be a q-th order (ε, δ)-approximate minimizer (for some accuracy requests
ε ∈ (0, 1]q) if and only if

φδf,j(x) ≤ εj
δj

j!
for j ∈ {1, . . . , q}, (2.4)
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(a vector d solving the optimization problem defining φδf,j(x) in (2.3) is called an optimality
displacement). In other words, a q-th order (ε, δ)-approximate minimizer is a point from
which no significant decrease of the Taylor expansions of degree one to q can be obtained in
a ball of optimality radius δ. This notion is coherent with standard optimality measures for
low orders(2) and has the advantage of being well-defined and continuous in x for every order.

Unfortunately, the exact values of f(x) and ∇`xf(x) may be unavailable, and we then face
several difficulties. The first is that we can’t consider the optimality measure (2.3) anymore,
but could replace it by the inexact variant

φ
δ
f,j(x) = max

‖d‖≤δ
∆T f,j(x, d). (2.5)

where

∆T f,j(x, d)
def
= T f,j(x, 0)− T f,j(x, d) with T f,j(xk, s)

def
= f(xk) +

j∑
`=1

∇`xf(xk)[s]
`.

However, computing the exact global maximum in this definition may also be too expensive,
and we follow [16, Theorem 6.3.5] and [14] in choosing to use the approximate version given
by ∆T f,j(x, d), where

ς φ
δ
f,j(x) ≤ ∆T f,j(x, d), (2.6)

for some displacement d such that ‖d‖ ≤ δ and some constant ς ∈ (0, 1]. Note that (2.6) does

not assume the knowledge of the global maximizer or φ
δ
f,j(x), but merely that we can ensure

(2.6) (see [17, 18, 27] for research in this direction). Note also that, by definition,

∆T f,j(x, d) ≤ ςα implies φ
δ
f,j(x) ≤ α. (2.7)

The second difficulty occurs when computing a step sk which is supposed to make the
exact Taylor decrement ∆Tf,j(xk, sk) large, since we now have to resort to making the inexact
decrement

∆T f,j(x, sk)
def
= T f,j(xk, 0)− T f,j(xk, sk)

large. It is therefore necessary to ensure, somehow, that the error on this decrement does not
dominate its value. The theory developed in this paper depends on making the relative error
on ∆T f,j(xk, sk) (for a chosen step sk) smaller than one, which is to require that

|∆T f,j(xk, sk)−∆Tf,j(xk, sk)| ≤ ω∆T f,j(xk, sk) (2.8)

for some constant ω ∈ (0, 1) to be specified later. It is clearly not obvious at this point how to
enforce this relative error bound. For now, we simply assume that it can be done in a finite
number of evaluations of {∇`xf(x)}j`=1 which are inexact approximations of {∇`xf(x)}j`=1. The
third difficulty arises when assessing the performance of the computed step: is the predicted
decrease in objective function predicted by the (inexact) decrement significant in view of the
(absolute) noise level in computing f(xk) and f(xk + s)? If not, the obtained decrease is
dominated by noise in f and thus unreliable. To avoid this, our algorithms will attempt to
require that

|f(xk)− f(xk)| ≤ ω∆T f,j(xk, sk) and |f(xk + sk)− f(xk + sk)| ≤ ω∆T f,j(xk, sk), (2.9)

(2)It is easy to verify that, irrespective of δ, (2.4) holds for j = 1 if and only if ‖∇1
xf(x)‖ ≤ ε1 and that, if

‖∇1
xf(x)‖ = 0, λmin[∇2

xf(x)] ≥ −ε2 if and only if φδf,2(x) ≤ ε2.
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where ω is the parameter occuring in (2.8). The fourth, and for our present purpose, most
significant difficulty is that achieving (2.8) or (2.9) may require an accuracy of f and its
derivatives which is not feasible for noisy problems, and we will have to prematurely terminate
the algorithm. In what follows, we make the assumption that this situation may occur (and
thus does occur in the worst case) if, for some xk of interest and j ∈ {1, . . . , q},

|f(xk)− f(xk)| ≤ ϑf or ‖∇`xf(xk)−∇`xf(xk)‖ ≤ ϑd for some ` ∈ {1, . . . , j}. (2.10)

for some non-negative absolute noise levels ϑf and ϑd. The rest of our analysis will therefore
focus on analyzing trust-region algorithms which ensure that (2.8) and (2.9) hold as long as
(2.10) fail.

Like many trust-region methods, our proposed algorithms will consist of an initialization
followed by a loop, performed until termination, in which one successively

1. evaluates the function’s derivatives and checks for termination,

2. computes a step sk which approximately minimizes an (inexact) Taylor model T f,j(xk, s)
while remaining the inequality ‖sk‖ ≤ ∆k, where ∆k is the current trust-region radius,

3. evaluates the objective function at the new potential iterate and accepts or refuses the
step,

4. updates the trust-region radius ∆k.

The discussion above suggests that, at the very least, specialized versions of the first three
steps will be necessary.

3 A Trust-Region Algorithm with Explicit Dynamic Accuracy
and Noise

Because our analysis is based on (2.8) and (2.9), we have to discuss how these conditions can
be achieved. For this purpose, we will use the “Explicit Dynamic Accuracy” (EDA) framework
already used in [16, 4, 21], in which absolute accuracies on the function and derivatives values
may be specified by the algorithm by imposing the bounds

|f(x)− f(x)| ≤ ζf (3.1)

and
‖∇`xf(x)−∇`xf(x)‖ ≤ ζd for ` ∈ {1, . . . , j} (3.2)

before the actual computation of f(x) and ∇`xf(x) takes place(3). Such a framework is appli-
cable for instance to multiprecision computations [23, 22] or to problems where the desired
values are computed by an iterative process whose accuracy can be monitored. In our trust-
region algorithm, the thresholds ζf and ζd will be adaptively updated in the course of the
iterations, but it is already clear that requesting ζd < ϑd will be impossible when (2.10) holds.

(3)We could obviously use values of ζd and ϑd depending on the degree `, but we prefer the above formulation
to simplify notations.
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3.1 Checking the accuracy of the model decrease

However, before this happens, the algorithm will need to verify that the model decrease
relative accuracy bound (2.8) holds when the “derivative-by-derivative” absolute errors ζd are
known. As it turns out, this request has to be relaxed somewhat whenever the right-hand
side ω∆T f,j(xk, sk) is small, as can be expected near a minimizers, and we have to replace
the relative accuracy bound (2.8) by an absolute error bound in that case. The management
of these crucial details is the object of the CHECK algorithm on this page. To describe this
algorithm in a general context, we suppose that we have a r-th degree Taylor series Tr(x, v)
of a given function about x in the direction v, along with an approximation T r(x, v) and
its decrement ∆T r(x, v). Additionally, we suppose that a bound δ ≥ ‖v‖ is given, and that
required relative and absolute accuracies ω and ξ > 0 are on hand. Moreover, we assume
that the current upper bound ζd,iζ on absolute accuracies of the derivatives of T r(x, v) with
respect to v at v = 0 are provided. Because it will always be the case when we need it, we will
assume for simplicity that ∆T r(x, v) ≥ 0. Finally, the relative accuracy constant ω ∈ (0, 1)
will be fixed in our trust-region algorithm, and we assume that it is given when needed in
CHECK. The constants γζ , ϑf and ϑd of (2.10) are also assumed to be known.

Algorithm 3.1: The CHECK algorithm

accuracy = CHECK

(
δ,∆T r(x, v), ζd,iζ , ξ

)
.

If
∆T r(x, v) > 0 and ζd,iζ

r∑
`=1

δ`

`!
≤ ω∆T r(x, v), (3.3)

set accuracy to relative.

Otherwise, if
ζd,iζ

r∑
`=1

δ`

`!
≤ ω ξ δ

r

r!
, (3.4)

set accuracy to absolute.

Otherwise, if
γζζd,iζ > ϑd, (3.5)

set
ζd,iζ+1 = γζζd,iζ (3.6)

and accuracy to insufficient.

Otherwise, set accuracy to terminal.

Note that the integer iζ counts the number of times the accuracy threshold has been reduced
by a factor γζ . The outcome of the CHECK algorithm can then characterized as follows.
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Lemma 3.1 Let ω ∈ (0, 1) and δ, ξ and ζd,iζ be positive. Suppose that ∆T r(x, v) ≥ 0

and (3.2) hold. Then the call accuracy = CHECK

(
δ,∆T r(x, v), ζd,iζ , ξ

)
ensures that

(i) accuracy is either absolute or relative whenever

ζd,iζ

r∑
`=1

δi

i!
≤ ωξ δ

r

r!
;

(ii) if accuracy is absolute,

max
[
∆T r(x, v),

∣∣∆T r(x,w)−∆Tr(x,w)
∣∣ ] ≤ ξ δr

r!

for all w with ‖w‖ ≤ δ;
(iii) if accuracy is relative, ∆T r(x, v) > 0 and∣∣∆T r(x,w)−∆Tr(x,w)

∣∣ ≤ ω∆T r(x, v), for all w with ‖w‖ ≤ δ .

Moreover, the outcome accuracy = insufficient indicates that new values of the
required approximate derivatives should be computed with the updated accuracy thresh-
olds, while accuracy = terminal indicates that the minimization algorithm has reached
the noise level and should be terminated.

Proof. We note that the CHECK algorithm is identical to the VERIFY algorithm of [14]
(itself inspired by [4]) whenever accuracy is either absolute or relative. Lemma 2.1 in
that reference therefore ensures the conclusions (i) to (iii). If accuracy = insufficient,
then (3.5) ensures that the accuracy threshold update (3.6) has been performed safely
((2.10) remains violated), while accuracy = terminal indicates that this was not the
case, suggesting termination. 2

Note that case (ii) is the case where relative accuracy would be excessively requiring and
absolute accuracy is preferred.

3.2 Testing for termination

We now start constructing our new algorithm (which we call the TRqEDAN algorithm because
it uses the EDA framework and handles Noise) step by step, following the outline given at

the end of Section 2. Consider Step 1 first. Since we have to rely on ∇`xf(xk) rather than
∇`xf(xk), it is clear that our optimality measure (2.3) and test (2.4) should be modified to
use the inexact values. Ideally, we could mimic [14] and terminate because of (2.7) as soon as

∆T f,j(xk, dk,j) ≤
(

ςεj
1 + ω

)
δjk
j!

for j ∈ {1, . . . , q}, (3.7)

and where ω ∈ (0, 1) is the (still unspecified) relative accuracy parameter of (2.8),

ςφ
δk
f,j(xk) ≤ ∆T f,j(xk, dk,j)



Bellavia, Gurioli, Morini, Toint: Noise and Complexity for Trust-Region methods 8

and δk is the optimality radius at iteration k (which we leave again unspecified at this stage).
However, we now have to take into account the fact that noise in the values of the derivatives
may prevent a meaningful computation of ∆T f,j(xk, dk,j). We therefore have to modify the
technique proposed in [14, Algorithm 2.2]. Assuming that the optimality radius δk is given,
we thus consider Algorithm 3.2 for computing the j-th approximate optimality measure which
is needed in (3.7) to test for termination in the first step of the TRqEDAN algorithm.

Algorithm 3.2: Computing ∆T f,j(xk, dk,j)

The iterate xk, the index j ∈ {1, . . . , q} and the radius δk ∈ (0, 1] are given, as well as
constants γζ ∈ (0, 1) and ς ∈ (0, 1]. The counter iζ , the relative accuracy ω ∈ (0, 1) and
the absolute accuracy bound ζd,iζ are also given.

Step 1.1: If they are not yet available, compute {∇ixf(xk)}ji=1 satisfying (3.2) for ζd =
ζd,iζ .

Step 1.2: Find dk,j with ‖dk,j‖ ≤ δk such that ςφ
δk
f,j(xk) ≤ ∆T f,j(xk, dk,j) and compute

accuracyj = CHECK

(
δk,∆T f,j(xk, dk,j), ζd,iζ ,

1
2
ςεj

)
. (3.8)

Step 1.3: If accuracyj is absolute or relative, return ∆T f,j(xk, dk,j).

Step 1.4: If accuracyj is insufficient, return to Step 1.1 (with the tightened accu-
racy threshold ζd,iζ+1). Else (i.e. if accuracyj is terminal), terminate the TRqEDAN

algorithm with x̃ = xk, status = in-noise-phi, order= j and delta= radius

= δk.

Note that, when termination occurs, this algorithm (and other algorithms we will meet later)
sets the four flags status, order, delta and radius, which will allow the user to determine
the reason of termination once it occured and, as we will see in Theorem 3.12 below, derive
some useful properties of the point x̃ returned.

Because Algorithm 3.2 and [14, Algorithm 2.2] only differ in Step 1.4, we may then follow
the reasoning of [14, Lemma 2.2] and obtain the following result.
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Lemma 3.2 If Algorithm 3.2 terminates within Step 1.3 when accuracyj is absolute,
then

φδkf,j(xk) ≤ εj
δjk
j!
. (3.9)

Otherwise, if it terminates with accuracyj being relative, then

(1− ω)∆T f,j(xk, dk,j) ≤ φδkf,j(xk) ≤
(

1 + ω

ς

)
∆T f,j(xk, dk,j) (3.10)

Moreover, termination with one of these two outcomes must occur if

ζd,iζ ≤
ω

4
ς εj

δj−1
k

j!
. (3.11)

Of course, termination may occur before (3.11) occurs (for instance because of (2.10) in the
call to CHECK in Step 1.2), but the bound (3.11) shows that, if this doesn’t happen, the
accuracy threshold ζd,iζ can not be reduced infinitely often by the factor γζ and thus the loop
between Steps 1.4 and 1.1 is finite. Note that the rightmost inequality in (3.10) and (3.7)
together also imply (3.9) for order j, justifying our choice of the scaling by (1 + ω) in the
former.

Refering now to our outline on the trust-region method at the end of Section 2, we may
now use Algorithm 3.2 to implement a complete Step 1. The idea is first to identify a suitable
optimality radius, which we choose to be

δk = min[∆k, θ] (3.12)

(for some constant θ ≤ 1), estimate the needed (inexact) derivatives and φ
δk
f,j(xk) for j ∈

{1, . . . , q} and decide on termination. The result is the STEP1 algorithm on the next page.

Before progressing any further, we state an easy but useful technical inequality.

Lemma 3.3 Consider δ ≥ 0. Then, for all j ≥ 1,

min[δ, 1] ≤
j∑
`=1

δ`

`!
< 2 max[δ, δj ]. (3.14)

Proof. The bounds (3.14) easily follow from 1 ≤
j∑
`=1

1

`!
< e− 1 < 2. 2

We now consider what can be said if the TRqEDAN algorithm terminates within STEP1.
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Algorithm 3.3: STEP1 for the TRqEDAN algorithm

Set δk according to (3.12).
For j = 1, . . . , q,

1. Evaluate ∇jxf(xk) and compute ∆T f,j(xk, dk,j) using Algorithm 3.2.

2. If termination of the TRqEDAN algorithm has not happened in Step 1.4 of Algo-
rithm 3.2 and

∆T f,j(xk, dk,j) >

(
ςεj

1 + ω

)
δjk
j!
, (3.13)

exit STEP1 with the current value of j and the optimality displacement dk,j asso-

ciated with φ
δk
f,j(xk). Otherwise consider the next j.

Terminate the TRqEDAN algorithm with x̃ = xk, status = approximate-minimizer,
order = q and delta = radius = δk.

Lemma 3.4

(i) Suppose that termination of the TRqEDAN algorithm occurs within STEP1 with
status = in-noise-phi, order = j and delta = δk. Then

φδkf,i(x̃) ≤ εi
δik
i!

for i ∈ {1, . . . , j − 1} and φδkf,j(x̃) <
4ϑd
γζω

δk. (3.15)

(ii) Suppose that termination of the TRqEDAN algorithm occurs with status =
approximate-minimizer and delta = δk. Then (2.4) holds and x̃ is a q-th or-
der (ε, δk)-approximate minimizer.

Proof. We prove case (ii) first, which can only occur if Algorithm 3.2 terminates within
Step 1.3 and (3.13) fails for every j ∈ {1, . . . , q}. We then have from Lemma 3.2 that, for
every j ∈ {1, . . . , q},

φδkf,j(xk) = φδkf,j(x̃) ≤ max

[
εj
δjk
j!
,

(
1 + ω

ς

)
∆T f,j(xk, dk,j)

]
≤ εj

δjk
j!
,

the last inequality resulting from the failure of (3.13). Thus (2.4) holds.

Consider now case (i), that is when the call CHECK in Step 1.2 of Algorithm 3.2 returns
accuracyj = terminal for some j ∈ {1, . . . , q}. Thus Algorithm 3.2 has terminated within
Step 1.3 and (3.13) has failed for every order of index smaller than j − 1. Applying the
same reasoning as for case (ii), we obtain that the first part of (3.15) holds. Now suppose
that, instead of the call (3.8) resulting in accuracyj being terminal, we had made the
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hypothetical call

accuracyj = CHECK

(
δk,∆T f,j(xk, dk,j), ζi,iζ ,

ζd,iζ j!

ωδjk

j∑
`=1

δ`k
`!

)
. (3.16)

Observe first that, since the call (3.8) returned terminal, (3.3) failed on that call, and
thus, since this is independent of the last argument of the call, it also fails for the call
(3.16). However, one easily checks that (3.4) holds as an equality for this hypothetical
call, and thus (3.16) would return accuracyj as absolute. We may then use case (ii) in
Lemma 3.1 and deduce from the triangular inequality that, for some d̃ with ‖d̃‖ ≤ δk,

φδkf,j(x̃) = ∆Tj(x̃, d̃) ≤ ∆T j(x̃, d̃) +
∣∣∣∆T j(x̃, d̃)−∆Tj(x̃, d̃)

∣∣∣ ≤ 2
ζd,iζ j!

ωδjk

(
j∑
`=1

δ`k
`!

)
δjk
j!
.

Moreover, since the call (3.8) returned terminal, we have that γζζd,iζ < ϑd, and we deduce
that

φδkf,j(x̃) < 2
ϑd
γζω

(
j∑
`=1

δ`k
`!

)
. (3.17)

The second part of (3.15) then results from this inequality and (3.14) for δ = δk ≤ θ ≤ 1.
2

We also have the following useful result.

Lemma 3.5 Suppose that, at iteration k, termination of the TRqEDAN algorithm does
not happen during execution of STEP1. Then

∆T f,j(xk, dk,j) ≥
ζd,iζ
ω

j∑
`=1

δ`k
`!
, (3.18)

where the threshold ζd,iζ refers to its value at the end of STEP1. Moreover,

φδkf,i(xk) ≤ εi
δik
i

for i ∈ {1, . . . , j − 1} and φδkf,j(xk) ≤
(

1 + ω

ς

)
φ
δk
f,j(xk). (3.19)

Proof. Suppose that the last value of accuracyj computed during the execution of
STEP1 is absolute. Then Lemma 3.2 implies that (3.9) holds. But, since ω ∈ (0, 1), this
and Lemma 3.1 (ii) contradict (3.13). As a consequence, the last value of accuracyj must
be relative, in which case (3.3) ensures (3.18). The first part of (3.19) again follows from
the reasoning of Lemma 3.4(ii) for i ∈ {1, . . . , j − 1}. Finally, the fact that accuracyj is
relative implies that (3.10) holds in Lemma 3.2, which gives the second part of (3.19).
2
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3.3 Computing a step

Given Step 1, constructing Step 2 of our TRqEDAN algorithm is relatively straightforward and
we immediately provide the details in the STEP2 algorithm on this page.

Algorithm 3.4: STEP2 for the TRqEDAN algorithm

The iterate xk, the relative accuracy ω, the requested accuracy εj ∈ (0, 1]q, the constant
γζ ∈ (0, 1) the counter iζ and the absolute accuracy threshold ζd,iζ are given. The index
j ∈ {1, . . . , q}, the optimality displacement dk,j resulting from Step 1 and the constant
θ ∈ (0, 1], are also given such that, by (3.13),

∆T f,j(xk, dk,j) >

(
ςεj

1 + ω

)
δjk
j!
. (3.20)

Step 2.1: If they are not yet available, compute {∇`xf(xk)}ji=1 satisfying (3.2) for ζd =
ζd,iζ and recompute ∆T f,j(xk, dk,j) for this accuracy threshold.

Step 2.2: Step computation. If ∆k ≤ θ, set sk = dk,j and exit the STEP2 algorithm
with ∆T f,j(xk, sk) = ∆T f,j(xk, dk,j). Otherwise, find sk such that ‖sk‖ ≤ ∆k and

∆T f,j(xk, sk) ≥ ∆T f,j(xk, dk,j), (3.21)

and compute

accuracys = CHECK

(
‖sk‖,∆T f,j(xk, sk), ζd,iζ ,

ςεj
4(1 + ω)

( θ

max
[
θ, ‖sk‖

])j).
(3.22)

Step 2.3: If accuracys is relative, exit the STEP2 algorithm with the step sk and the
associated ∆T f,j(xk, sk).

Step 2.4: If accuracys is insufficient, return to Step 2.1 (with the tightened ac-
curacy thresholds). Otherwise, if accuracys is terminal, terminate the TRqEDAN

algorithm with x̃ = xk, status = in-noise-s, order = j, delta = δk and radius

= ‖sk‖.

Note that setting sk = dk,j when ∆k < θ makes sense since dk,j , computed in Step 1.2,
is already a (CHECKed) approximate global maximizer of ∆T f,j(xk, s) in the ball of radius
δk = ∆k. Two features of this algorithm remain nevertheless somewhat mysterious at this
stage. The first is the complicated function of ‖sk‖ and εj occuring in the last argument of
the call to the CHECK algorithm. As it turns out, it is possible to show that the conjunction
of (3.13) and this particular call to CHECK(4) ensures that accuracys cannot be absolute.
This then also clarifies the second mysterious feature, which is why this value of accuracys
is not considered in the rest of the algorithm. This is part of the following lemma, which
was proved as Lemma 3.2 in [14] and which we can reuse since the step computation in that

(4)VERIFY in [14].



Bellavia, Gurioli, Morini, Toint: Noise and Complexity for Trust-Region methods 13

reference(5) and the STEP2 algorithm only differ in the possibility that the TRqEDAN algorithm
can terminate in the call to CHECK in Step 2.2.

Lemma 3.6 Suppose that the TRqEDAN algorithm does not terminate within the call to
CHECK in Step 2.2 of the STEP2 algorithm. Then the STEP2 algorithm terminates with
accuracys being relative and (2.8) holds. Moreover, this outcome must occur if

ζd,iζ ≤
ςωδjk

8j!(1 + ω)

εj

max[1,∆j
max]

. (3.23)

As for Lemma 3.2, the bound (3.23) ensures that the loop between Steps 2.4 and 2.1 is finite.
We conclude this paragraph by examining the optimality guarantees which may be ob-

tained, should the TRqEDAN algorithm terminate in STEP2.

Lemma 3.7 Suppose that, at iteration k, the TRqEDAN algorithm terminates within
STEP2 with status = in-noise-s, order= j and radius = ‖sk‖. Then

φ
‖sk‖
f,j (x̃) ≤ 4ϑd

γζω
max

[
‖sk‖, ‖sk‖j

]
. (3.24)

Proof. The fact that status = in-noise-s implies that termination occurs in Step 2.4,
and it must be because the call (3.22) returns accuracys equal to terminal. As in the
proof of Lemma 3.4, we consider replacing this call by the hypothetical

accuracys = CHECK

(
‖sk‖,∆T f,j(xk, sk), ζi,iζ ,

ζd,iζ j!

ω‖sk‖j
j∑
`=1

‖sk‖`

`!

)
(3.25)

and verify that this call must return accuracys equal to absolute. We also deduce from
case (ii) in Lemma 3.1, the triangular inequality and the bound γζζd,iζ < ϑd that, for some

d̃ with ‖d̃‖ ≤ ‖sk‖,

φ
‖sk‖
f,j (x̃) = ∆Tj(x̃, d̃) ≤ ∆T j(x̃, d̃) +

∣∣∣∆T j(x̃, d̃)−∆Tj(x̃, d̃)
∣∣∣ ≤ 2

ϑd
γζω

(
j∑
`=1

‖sk‖`

`!

)
,

and (3.24) follows from (3.14). 2

3.4 The complete TRqEDAN algorithm

Having constructed the first two steps of the TRqEDAN algorithm, we are now in position to
specify the algorithm in its entirety (see on page 15), making the necessary changes to handle

(5)In [14], the step computation is the combination of Step 2 in Algorithm 3.1 and Algorithm 3.2 for the case
where ∆k ≥ θ. Note that, in this case, δk = θ and thus δk may be replaced by θ in the right-hand side of
(3.20), as stated in Algorithm 3.2 of [14].
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(2.10) in Step 3 along the way.

We immediately note the condition, at the beginning of Step 3, that ∆T f,j(xk, sk) > ϑf/ω.
This guarantees that the limit in noise imposed by (2.10) will not come into play when
computing f(xk + sk) (and possibly recomputing f(xk)).

We also note that, except for that feature, our specialized STEP1 and STEP2 using the
CHECK algorithm to handle intrinsic noise on the derivatives, and the relevant initialization
of ω, the TRqEDAN algorithm is identical to that analyzed in [14](6). Again, this allows us to
reuse results in this reference as needed, the first of which relates the number of iterations of
“successful” iterations (those where the new iterate is accepted in Step 3) and “unsuccessful”
ones. If, as is standard, we define

Sk = {i ∈ {0, . . . , k} | xi+1 = xi + si} = {i ∈ {0, . . . , k} | ρi ≥ η1},

the following useful result is applicable to the TRqEDAN algorithm.

Lemma 3.8 [14, Lemma 3.1] Suppose that the TRqEDAN algorithm is used and that
∆k ≥ ∆min for some ∆min ∈ (0,∆0]. Then, if k is the index of an iteration before
termination,

k ≤ |Sk|
(

1 +
log γ3

| log γ2|

)
+

1

| log γ2|

∣∣∣∣log

(
∆min

∆0

)∣∣∣∣ . (3.29)

3.5 Evaluation complexity and optimality at termination

Readers with some background in evaluation complexity analysis will not be surprised by the
fact that the complexity of the TRqEDAN algorithm crucially depends on the decrease that can
be achieved on the exact objective function at successful iterations. This will in turn depend
on the achievable decrease in inexact values of the objective, which is itself depending on the
decrease ∆T f,j(xk, sk) on the inexact model. Fortunately, we can again call on the analysis of
[14] for help, since such decreases necessarily happen in the TRqEDAN algorithm, before early
termination due to (2.10) possibly occurs.

(6)[14] uses degree-specific values for ζd, but the can be assumed to be identical.
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Algorithm 3.5: The TRqEDAN algorithm

Step 0: Initialisation. A criticality order q, a starting point x0 and an initial trust-
region radius ∆0 are given, as well as accuracy levels ε ∈ (0, 1)q and an initial
bound on absolute derivative accuracies κζ . The constants ω, ς, θ, η1, η2, γ1, γ2,
γ3 and ∆max are also given and satisfy

θ ∈ [ min
j∈{1,...,q}

εj , 1], ∆0 ≤ ∆max, 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3,

ς ∈ (0, 1], ω ∈
(

0,min
[
1
2
η1, 1

4
(1− η2)

])
, κζ > min

j∈{1,...,q}
εq+1
j and ϑd < κζ .

Choose ζd,0 ≤ κζ and set k = 0 and iζ = 0.

Step 1: Termination test. Apply the STEP1 algorithm (p. 10), resulting in either ter-
mination, or a model degree j and the associated displacement dk,j and decrease
∆T f,j(xk, dk,j).

Step 2: Step computation. Apply the STEP2 algorithm (p. 12) to compute a step sk
such that ∆T f,j(xk, sk) ≥ ∆T f,j(xk, dk,j).

Step 3: Accept the new iterate. If ∆T f,j(xk, sk) ≤ ϑf/ω, then terminate with x̃ =
xk, status = in-noise-f, order = j, delta = δk and radius= max[δk, ‖sk‖].
Otherwise, compute f(xk + sk) ensuring that

|f(xk + sk)− f(xk + sk)| ≤ ω∆T f,j(xk, sk); (3.26)

and ensure (by setting f(xk) = f(xk−1 + sk−1) or by recomputing f(xk)) that

|f(xk)− f(xk)| ≤ ω∆T f,j(xk, sk). (3.27)

Then compute

ρk =
f(xk)− f(xk + sk)

∆T f,j(xk, sk)
. (3.28)

If ρk ≥ η1, set xk+1 = xk + sk; otherwise set xk+1 = xk.

Step 4: Update the trust-region radius. Set

∆k+1 ∈


[γ1∆k, γ2∆k] if ρk < η1,
[γ2∆k,∆k] if ρk ∈ [η1, η2),
[∆k,min(∆max, γ3∆k)] if ρk ≥ η2,

Increment k by one and go to Step 1.
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Lemma 3.9 [14, Lemmas 3.4 and 3.6] Suppose AS.1 and AS.2 hold. At iteration k
before termination of the TRqEDAN algorithm define

φ̂f,k
def
=

j! ∆T f,j(xk, dk,j)

δjk
, (3.30)

where j is the model’s degree resulting from STEP1 at iteration k. Then,

φ̂f,k ≥
ςεmin

1 + ω
, (3.31)

with εmin = minj∈{1,...,q} εj . Moreover,

∆Tf,j(xk, sk) ≥ φ̂f,k
δjk
j!

and ∆k ≥ min

{
γ1θ, κr min

i∈{0,...,k}
φ̂f,i

}
(3.32)

where

κr
def
=

γ1(1− η2)

4 max[1, Lf ]
min

[
θ,

∆0 minj=1,...,q δ
j
0,j

2q(maxj=1,...,q ‖∇ixf(x0)‖+ κζ)

]
∈ (0, 1). (3.33)

Using these results, we may consider the all-important lower bound on the model decrease at
successful iterations.

Lemma 3.10 Suppose that ϑd > 0 and let k be the index of a successful iteration of
the TRqEDAN algorithm before termination. Then

∆T f,j(xk, sk) ≥
ϑd
ω
ςκδεmin, (3.34)

where
κδ

def
=

κr
1 + ω

. (3.35)

Proof. Observe first that, since iteration k is successful, the algorithm must have
reached the end of Step 3 at this iteration, and thus termination did not occur in Steps 1
or 2. This means in particular, in view of (3.5), that

ζd,iζ > ϑd (3.36)

for all values of the accuracy threshold ζd,iζ encountered during Steps 1 and 2 of iteration
k. Moreover Lemma 3.5 applies and (3.18) and (3.36) imply that

∆T f,j(xk, dk,j) ≥
ζd,iζ
ω

j∑
`=1

δ`k
`!
≥ ϑd

ω
δk, (3.37)
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again irrespective of the accuracy threshold ζd,iζ encountered during Steps 1 and 2.

We now distinguish two cases, depending on the ratio between ∆k and θ.
• Suppose first that ∆k ≤ θ, (or, equivalently, that δk = ∆k). Then, using (3.21) and
(3.37), we obtain that

∆T f,j(xk, sk) = ∆T f,j(xk, dk,j) ≥
ϑd
ω
δk (3.38)

Now, since δk = ∆k ≤ θ, (3.31) and the second part (3.32) in Lemma 3.9 ensure that
δk ≥ κrςεmin/(1 + ω). Substituting this latter bound in (3.38) then yields

∆T f,j(xk, sk) ≥
ϑd κr εmin

ω(1 + ω)

and (3.34) follows.
• Suppose now that ∆k > θ, (or, equivalently, that δk < ∆k). Then δk = θ. Suppose
first that ‖sk‖ ≥ δk = θ. Lemma 3.6 ensures that STEP2 terminates with accuracys being
relative and (3.3) holds for x = xk and v = sk. As a consequence, using (3.33), (3.35)
and the fact that ςεmin ≤ 1,

∆T f,j(xk, sk) ≥
ζd,iζ
ω

r∑
`=1

δ`k
`!
>
ϑd
ω

r∑
`=1

δ`k
`!
≥ ϑd

ω
θ ≥ ϑd

ω
ςκδεmin,

again implying (3.34). Suppose finally that ‖sk‖ < δk = θ. Then we deduce from (3.37)
and (3.21) that

∆T f,j(xk, sk) ≥ ∆T f,j(xk, dk,j) ≥
ϑd
ω
δk =

ϑd
ω
θ ≥ ϑd

ω
ςκδεmin

and (3.34) also holds in this last case. 2

Of course, this lemma does not allow any useful conlusion if ϑd = 0, that is in the noiseless
case. But we can call on the noiseless analysis of [14] to cover this case.

Lemma 3.11 Suppose that ϑd = 0. Then, for every k before termination,

∆Tj(xk, sk) ≥
1

q!
(ςκδ)

q+1εq+1
min , (3.39)

where κδ is defined in (3.35).

Proof. See [14, Lemma 3.7]. The proof is based on using (3.32) and (3.31) in Lemma 3.9.
2

We may finally combine Lemmas 3.4, 3.7, 3.10 and 3.11 to derive a upper-bound on the
number of evaluations required by the TRqEDAN algorithm for termination.
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Theorem 3.12 Suppose that AS.1–AS.3 hold and define εmin = minj∈{1,...,q} εj . Then

there exists positive constants κATRqEDAN, κBTRqEDAN, κCTRqEDAN, κDTRqEDAN, κETRqEDAN and

κSTRqEDAN such that the TRqEDAN algorithm needs at most

κSTRqDAN
f(x0)− flow

max[ϑf , ϑdεmin, ε
q+1
min ]

+ κDTRqDAN |log (εmin)|+ κETRqEDAN

= O
(

min
[
ϑ−1
f , (ϑdεmin)−1, ε

−(q+1)
min

]) (3.40)

evaluations of the (inexact) derivatives {∇`xf(x)}q`=1, and at most

κATRqEDAN
f(x0)− flow

max
[
ϑf , ϑdεmin, ε

q+1
min

] + κBTRqEDAN
∣∣ log(εmin)

∣∣+ κCTRqEDAN

= O
(

min
[
ϑ−1
f , (ϑdεmin)−1, ε

−(q+1)
min

]) (3.41)

evaluations of f(x) itself to terminate with flags status, order, delta, radius and a
point x̃ at which

φδf,i(x̃) ≤ εi
δi

i!
for i ∈ {1, . . . , j − 1} (3.42)

and

• φδf,i(x) ≤ εi
δi

i!
for i ∈ {j, . . . , q} (3.43)

if status = approximate-minimizer;

• φδf,j(x̃) ≤ 4ϑd
γζω

δ (3.44)

if status = in-noise-phi;

• φνf,j(x̃) ≤ 4ϑd
γζω

max
[
ν, νj

]
(3.45)

if status = in-noise-s,

where j = order, δ = delta and ν = radius. If, in addition,

sk = arg max
‖sk‖≤∆k

∆T f,j(xk, s) (3.46)

at iteration k at which termination occurs with status = in-noise-f, then

φνf,j(x̃) ≤
ϑf
ς

(1 +
1

ω
). (3.47)

Proof. We note that the various flag-dependent optimality guarantees (3.42)–(3.45)
are a simple compilation of the results of Lemmas 3.4 and 3.7. To prove (3.47), observe
that, if termination occurs in Step 3 (as indicated by status = in-noise-f), it must be
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because ∆T f,j(xk, sk) ≤ ϑf/ω. But (3.12) and (3.46) imply that

φ
δk
f,j(xk) = ∆T f,j(xk, sk) ≤

ϑf
ω

if ‖sk‖ ≤ δk,

φ
‖sk‖
f,j (xk) ≤ ∆T f,j(xk, sk) ≤

ϑf
ω

if ‖sk‖ > δk.

Moreover, the fact that Step 3 has been reached ensures that termination did not occur
in either Step 1 or Step 2. Thus (3.19) in Lemma 3.5 with the definition radius =
max[δk, ‖sk‖] gives (3.47).

We now focus on proving (3.40) and (3.41). Let k be the index of a successful iteration
before termination. Because (3.26) and (3.27) both hold at every successful iteration
before termination, we have that, for each i ∈ Sk

f(xi)− f(xi+1) ≥ [f(xi)− f(xi+1)]− 2ω∆T f,j(xi, si) ≥ (η1 − 2ω)∆T f,j(xi, si).

Combining now this inequality with Lemmas 3.10 and 3.11 we obtain that

f(xi)− f(xi+1) ≥ (η1 − 2ω) max

[
ϑd
ω
ςκδεmin,

1

q!
(ςκδ)

q+1εq+1
min

]
. (3.48)

Moreover, the mechanism of Step 3 of the TRqEDAN algorithm implies that

f(xi)− f(xi+1) >
η1 − 2ω

ω
ϑf . (3.49)

From (3.48) and (3.49), we thus deduce that

f(xi)− f(xi+1) ≥ (η1 − 2ω) max

[
ϑd
ω
ςκδεmin,

1

q!
(ςκδ)

q+1εq+1
min ,

ϑf
ω

]
def
= ∆f .

Using now the standard “telescoping sum” argument and AS.3, we obtain that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑
i∈Sk

[f(xi)− f(xi+1)] ≥ |Sk|∆f ,

so that the total number of successful iterations before termination is

|Sk| ≤
f(x0)− flow

∆f
= κSTRqEDAN

f(x0)− flow

max
[
ϑf , ϑdεmin, ε

q+1
min

] (3.50)

where

κSTRqEDAN
def
=

1

(η1 − 2ω)
max

[
1

ω
,
(ςκδ)

q+1

q!

]−1

.

Now (3.31), the second part of (3.32) and (3.35) imply that

∆k ≥ ςκδεmin, (3.51)

so that, invoking now Lemma 3.8, we deduce that the total number of iterations before
termination is bounded above by

nit
def
=

f(x0)− flow

∆f

(
1 +

log γ3

| log γ2|

)
+

1

| log γ2|

∣∣∣∣log

(
ςκδεmin

∆0

)∣∣∣∣ .
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Since each iteration of the TRqEDAN algorithm inexactly compute the objective function’s
value at most twice (in Step 3), we obtain that the total number of such evaluations before
termination is bounded above by 2nit, yielding (3.41) with

κATRqEDAN
def
=

2

η1 − 2ω
min

[
ω,

q!

(ςκδ)q+1

](
1 +

log γ3

| log γ2|

)
,

κBTRqEDAN
def
=

2

| log γ2|
and κCTRqEDAN

def
=

2

| log γ2|

∣∣∣∣log

(
ςκδ
∆0

)∣∣∣∣ .
To complete the proof, we need to elaborate on (3.50) to derive an upper bound on the
number of derivatives evaluations. While the TRqEDAN algorithm evaluates {∇`xf(xk)}j`=1

at least once in Step 1, it may need to evaluate the derivatives also when CHECK returns
insufficient, and this can happen in the loops between Steps 1.4 and 1.1 in Algo-
rithm 3.2 and between Steps 2.4 and 2.1 in the STEP2 algorithm. Thus the total number
of derivatives’ evaluations is given by |Sk| plus the total number of accuracy tightenings
(counted by iζ). The next step is therefore to establish an upper bound on this latter
number. This part of the proof is a variation on that of Theorem 3.8 in [14], now in-
volving the bounds (3.11) and (3.23) but also the additional inequality ζd,iζ ≥ ϑd which
must hold as long as termination has not occured. To summarize the argument, these
three bounds ensure a global lower bound ζd,min on ζd,iζ , while an upper bound is given
by κζ . Since each tightening proceeds by multiplying the accuracy threshold by γζ , one
then deduces that the maximum number of such tightenings is O

(
| log(ζd,min/κζ)|

)
, which

then leads to (3.40). The details are given in appendix. 2

Observe that condition (3.46) needs only to be enforced if the bound (3.47) is desired and
when termination occurs with status = in-noise-f. Should (3.47) be of interest, the
step may have to be recomputed in the course of the algorithm to ensure (3.46), when-
ever ∆T f,j(xk, sk) < ϑf/ω. Termination is then declared if this inequality still holds for the
new step, or the algorithm is continued otherwise.

The results of Theorem 3.12 merit some comments. Firstly, and as expected, we see in
the bounds (3.40) and (3.41) that the total number of evaluations needed for the TRqEDAN

to terminate may be considerably smaller when intrinsic noise is present (ϑd > 0 and ϑf >
0) than in the noiseless situation (ϑd = ϑf = 0), in which case we recover the bound in

O(ε
−(q+1)
min ) + O(| log(εmin)|) of [14]. More interestingly, we note that, for the intrinsic noise

to be small enough to let the trust-region algoritm run its course unimpeded, we need that
ϑd = O(εqmin) and ϑf = O(εq+1

min). Since ϑd and ϑf are intrinsic to the problem, it means that
we expect the algorithm to run unimpeded (in the worst case) only if

εmin & max

[
ϑ

1
q+1

f , ϑ
1
q

d

]
. (3.52)

To give an example, suppose that we are applying the TRqEDAN algorithm to find second-
order approximate minimizers on a machine whose machine precision is 10−15. This suggest
that (in the worst case again), the algorithm could work as if noise where absent for εmin of
order 10−5 and above. Of course, this ignores that some of the deterministic bounds we have
imposed could fail and yet the algorithm could proceed without trouble.

We also note that the second term in (3.40), which accounts for the additional evaluations
due to inexact but still acceptable evaluations, now involves a term in | log(ϑd/κζ)| (the
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magnitude of the accuracy range between it initial value and noise) along with the term in
log(εmin) = log(εqmin) of [14]. This is coherent with our observation (3.52).

We finally note the difference between the impact of the absolute noise on the objective
function’s values (ϑf ) and that on the derivatives (ϑd), the former being significantly more
limitative than the latter. This is reminiscent of similar observations and assumptions in the
stochastic context [6, 2, 7].

4 Conclusions and Perspectives

We have discussed the evaluation complexity of trust-region algorithms in the presence of
intrinsic noise on function and derivatives values, possibly causing early termination of the
minimization method. We have produced an evaluation complexity bound which stresses this
dependence and relates it to the complexity bound for the noiseless, albeit inexact, case. In our
analysis, we have priviledged focus and clarity over generality. We have already mentioned
that the noise levels and accuracy thresholds could be made dependent on the degree of
the derivative considered, but other extensions are indeed possible. The first is to consider
constrained problems, where the feasible set is convex (or even “inexpensive” or “simple”, see
[4, 12, 13]). The second is to replace the Lipschitz continuity required in AS.2 by the weaker
Hölder continuity (as in [9, 10, 11, 19, 25]). The minimization of composite function (using
techniques of [12, 21, 24]) is another possibility.

Finally, considering “noise-aware” stochastic minimization algorithm is also of interest,
and will be reported on in a forthcoming report.
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Details of the proof of Theorem 3.12

We follow the argument of [14, proof of Theorem 3.8], (adapting the bounds to the new
context), and derive an upper bound on the number of derivatives’ evaluations. This requires
counting the number of additional derivative evaluations caused by successive tightening of
the accuracy threshold ζd,iζ . Observe that repeated evaluations at a given iterate xk are only
needed when the current value of this threshold is smaller than used previously at the same
iterate xk. The {ζd,iζ} are, by construction, linearly decreasing with rate γζ , Indeed, ζd,iζ is
initialised to ζd,0 ≤ κζ in Step 0 of the TRqDAN algorithm, decreased each time by a factor γζ
in (3.6) in the CHECK invoked in Step 1.2 of Algorithm 3.2, down to the value ζd,iζ which is
then passed to Step 2, and possibly decreased there further in (3.6) in the CHECK invoked in
Step 2.2 of the STEP2 algorithm again by successive multiplication by γζ . We now use (3.11)
in Lemma 3.2 and (3.23) in Lemma 3.6 to deduce that, even in the absence of noise, ζd,iζ will
not be reduced below the value

min

[
ω

4
ς εj

δj−1
k

j!
,

ω

8(1 + ω) max[1,∆j
max]

εj
δjk
j!

]
≥ ς ω

8(1 + ω) max[1,∆j
max]

εj
δjk
j!

(A.1)

at iteration k. Now define

κacc
def
=

ςω(ςκδ)
q

8(1 + ω) max[1,∆j
max]

≤ ςω

8(1 + ω) max[1,∆j
max]

(ςκδ)
j

j!

so that (3.51) implies that

κaccε
q+1
min ≤

ςω εj

8(1 + ω) max[1,∆j
max]

δjk
j!
.

We also note that conditions (3.5) and (3.6) in the CHECK algorithm impose that any reduced
value of ζd,iζ (before termination) must satisfy the bound ζd,iζ ≥ ϑd. Hence the bound (A.1)
can be strengthened to be

max
[
ϑd, κaccε

q+1
min

]
.

Thus no further reduction of the ζd,iζ , and hence no further approximation of {∇jxf(xk)}qj=1,
can possibly occur in any iteration once the largest initial absolute error ζd,0 has been reduced
by successive multiplications by γζ sufficiently to ensure that

γ
iζ
ζ ζd,0 ≤ γ

iζ
ζ κζ ≤ max[ϑd, κaccε

q+1
min ], (A.2)

the second inequality being equivalent to asking

iζ log(γζ) ≤ max [log(ϑd), (q + 1) log (εmin) + log(κacc)]− log (κζ) , (A.3)

where the right-hand side is negative because of the inequalities κacc < 1 and max[εq+1
min , ϑd] ≤

κζ (imposed in the initialization step of the TRqEDAN algorithm). We now recall that Step 1
of this algorithm is only used (and derivatives evaluated) after successful iterations. As a
consequence, we deduce that the number of evaluations of the derivatives of the objective
function that occur during the course of the TRpDAN algorithm before termination is at most

|Sk|+ iζ,max, (A.4)
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i.e., the number iterations in (3.50) plus

iζ,max
def
=

⌊
1

log(γζ)
max

{
log

(
ϑd
ζd,0

)
, (q + 1) log (εmin) + log

(
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ζd,0

)}⌋
< 1
| log(γζ)|

{∣∣∣∣log
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ζd,0

)∣∣∣∣+ (q + 1) |log (εmin)|+
∣∣∣∣log

(
κacc
ζd,0

)∣∣∣∣}+ 1,

the largest value of iζ that ensures (A.3). Adding one for the final evaluation at termination,
this leads to the desired evaluation bound (3.40) with the coefficients

κDTRqEDAN
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=

q + 1

| log γζ |
and κETRqEDAN
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=
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