
Adaptive Regularization for Nonconvex Optimization Using

Inexact Function Values and Randomly Perturbed Derivatives

S. Bellaviaa, G. Guriolib, B. Morinic, Ph. L. Tointd

aDipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy. Member of the INdAM
Research Group GNCS. Email: stefania.bellavia@unifi.it

bDipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Italy.
Member of the INdAM Research Group GNCS. Email: gianmarco.gurioli@unifi.it

cDipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy. Member of the INdAM
Research Group GNCS. Email: benedetta.morini@unifi.it

d Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000
Namur, Belgium. Email: philippe.toint@unamur.be

Abstract

A regularization algorithm allowing random noise in derivatives and inexact function val-
ues is proposed for computing approximate local critical points of any order for smooth
unconstrained optimization problems. For an objective function with Lipschitz continuous
p-th derivative and given an arbitrary optimality order q ≤ p, it is shown that this al-

gorithm will, in expectation, compute such a point in at most O
((

minj∈{1,...,q} εj
)− p+1

p−q+1

)
inexact evaluations of f and its derivatives whenever q ∈ {1, 2}, where εj is the tolerance

for jth order accuracy. This bound becomes at most O
((

minj∈{1,...,q} εj
)− q(p+1)

p

)
inexact

evaluations if q > 2 and all derivatives are Lipschitz continuous. Moreover these bounds are
sharp in the order of the accuracy tolerances. An extension to “inexpensively constrained”’
problems is also outlined.

Keywords: evaluation complexity, regularization methods, inexact functions and
derivatives, stochastic analysis.

1. Introduction

We consider the evaluation complexity of an adaptive regularization algorithm for com-
puting approximate local minimizers of arbitrary order for the unconstrained minimization
problem of the form

min
x∈IRn

f(x), (1.1)

where the objective function f is sufficiently smooth and the values of its j-th derivatives
∇j
xf are subject to random noise and can only be computed inexactly. Inexact values of the

objective function are also allowed, but their inaccuracy is assumed to be deterministically
controllable.

Preprint submitted to Elsevier April 6, 2021

Motivation and context. Without further comments, this statement of the paper’s
purpose may be difficult to interpret, and we start by clarifying the notion of “evaluation
complexity”. Since the computational cost of nonlinear optimization algorithms for the
local solution of (1.1) is typically dominated by that of evaluating f(x) and its derivatives,
and since these evaluations are fully independent of the algorithms (and unknown to the
algorithm designers), classical concepts of total computational complexity are difficult to
apply to such algorithms, except for the simplest cases1. This difficulty is at the origin of the
now standard concept of “evaluation complexity” (sometimes called “oracle complexity”)
where the cost of running an algorithm is approximated by the total cost of evaluating
the objective function and its relevant derivatives (the oracle), which is then measured
by counting the total number of such evaluations. This concept has a long history in the
optimization research community, and has generated a vast literature covering many kinds
of algorithms and problems types (see [28, 35, 36, 29, 30, 13, 14, 9, 21] and the reference
therein for a limited sample of this vibrant research area). Of course, like the classical
notion of complexity, this approach only applies when a class of problems is well identified
and when the algorithm’s termination rules are clear. In our case, these rules need to
reflect the notion of approximate local solution of problem (1.1), and will be detailed in
due course (in Section 2).

The class of problems of interest here (as summarized above) is the approximate local
minimization of smooth functions whose values (and that of its derivatives) can only be
computed inexactly. Before providing more technical detail on exactly what this means,
it is useful to briefly review the existing contributions in this domain2. Indeed, solving
optimization problems involving inexact evaluations is not a new topic and has already
been investigated in two different frameworks. The first is that of (deterministic) explicit
dynamic accuracy, where it is assumed that the accuracy of f and its derivatives can be
controlled by the algorithm (see [20, Section 10.6], [26], [25] or [4] for example). In this
context, accuracy requirement are proposed that guarantee convergence to approximate
local solutions, and evaluation complexity of the resulting algorithms can be analyzed [4],
indicating a very modest degradation of the worst-case performance compared with the case
where evaluations are exact [16, 17]. A drawback of this approach is that nothing is said for
the case where the requested accuracy requirement cannot be met or, as is often the case,
cannot even be measured. This problem does not occur in the second framework, in which
the inexactness in the function (and possible derivatives) values can be seen as caused by

1For example, consider the typical optimization problem in deep learning applications, where the cost
of the objective function depends on the size, depth and structure of the neural network used, all things
that are not known by the algorithm. Or optimization of large inverse problems like weather forecasting,
where evaluating the objective function depends on solving a complicated multidimensional time-dependent
partial-differential equation, whose dimension, domain shape, horizon, level of discretization and nonlin-
earity are also unknown and may vary from application of the algorithm to the next.

2We focus here on algorithms whose definition only involves quantities that are known to the user. In
particular, we explictly avoid requiring the knowledge of the problem Lipschitz constants for the definition
of the algorithm.

2

some random noise, in which case the algorithm/user is not able to specify an accuracy
level and poor derivative approximations might result. The available analysis for this case
differ by the assumptions made on the distribution of this noise. In [32], the authors
consider the unbiased case and estimate the evaluation complexity a linesearch method for
finding approximate first-order critical points. Here, we assume that derivatives values can
be approximated within a prescribed accuracy with a fixed, sufficiently high probability,
conditioned to the past. A similar context is considered in [8], where the objective function
values are inexact but computed with accuracy guaranteed with probability one, and in
[32], where the authors consider the unbiased case. A trust-region method (see [20] for a full
coverage of such methods) is also proposed in [19], where it is proved to converge almost-
surely to first-order critical points. Using similar assumptions, the approach of [18] includes
the use of random first-order models and directions within line search method as well as
probabilistic second-order models in Adaptive Cubic Regularization (ARC) algorithms. In
both cases, the authors employ exact function evaluations. A general theory for global
convergence rate analysis is also provided. More recently, [11] proposed an evaluation
complexity analysis for a trust-region method (covering convergence to second-order points)
using elegant properties of sub-martingales, and making no assumption on bias. A recent
overview of this active research area is proposed in [22].

Contributions. As suggested above, this paper deliberately considers the well-established
concept of evaluation complexity, measuring the number of calls to user-supplied proce-
dures for computing approximate function and derivatives values, irrespective of internal
computations within the algorithm itself. Of course, the authors are fully aware that total
computational complexity (as opposed to evaluation complexity) is a different question.
Fortunately, the difference is well-understood when searching for first- or second-order ap-
proximate local minimizers, in that moderately costly methods are available for handling
the algorithm’s internal calculations (see [12, 15, 33]). In other situations, the results
presented here give an admittedly idealized but hopefully interesting estimation.

Having set the scene and clarified our objective, we now make the contributions of this
paper more precise.

• We consider finding approximate local solution of problem (1.1) assuming that the
objective function values can be computed within a prescribed accuracy, while at the
same time allowing randomly inexact evaluations of its derivatives, thereby using a
mix of the two frameworks described above. This work thus extends the analysis
provided in [3, 4, 37] for adaptive regularization algorithms.

Our assumptions on the type of inaccuracy allowed for the objective function comple-
ments that of [2, 18], allowing for more inexactness, but in a deterministic context.
This is a realistic request in applications such as those where the objective function
value is approximated by using smoothing operators and the derivatives are approx-
imated by randomized finite differences [8, 7, 27, 31].

• As in [4, 16, 17], we propose a regularization algorithm which is based on polynomial
models of arbitrary degree. This obviously allows us to seek for first- and second-

3

order critical points, as is standard, but we may also seek critical points of arbitrary
order (we define what we mean by that in Section 2). In this respect we improve
upon the algorithms with stochastic models such as [18, 2, 5, 11, 22].

• We establish sharp worst-case bounds (in expectation) on the evaluation complexity
of computing these (possibly high-order) approximate critical points, depending on
the order and on the degree of the polynomial model used. Remarkably, these bounds
correspond in order to the best known bounds for regularization algorithms using
exact evaluations.

These results are obtained by a novel combination of the probabilistic framework of [18],
the approximation results of [4] and the proof techniques of [17].

Outline. The paper is organized as follows. Section 2 discusses optimality measures for
arbitrary order and introduces the regularization algorithm and the associated probabilistic
assumptions. Its evaluation complexity is then studied in Section 3. We finally present
some conclusions and perspectives in Section 5.

Notations. Unless otherwise specified, ‖·‖ denotes the standard Euclidean norm for both
vectors and matrices. For a general symmetric tensor S of order p, we define

‖S‖ def
= max
‖v‖=1

|S[v]p| = max
‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]| (1.2)

the induced Euclidean norm (see [38, Theorem 2.1] for a proof of the second equality). We
denote by ∇`

xf(x) the `-th order derivative of f evaluated at x, noting that such a tensor
is always symmetric for any ` ≥ 2. The notation ∇`

xf(x)[s]` denotes this `-th derivative
tensor applied to ` copies of the vector s. All inexact quantities are indicated by an overbar.
For a symmetric matrices M , λmin(M) is the smallest eigenvalue of M . We will also use
the function

χj(t)
def
=

j∑
`=1

t`

`!
(t ≥ 0), (1.3)

where j ≥ 1. We use the notation E[X] to indicate the expected value of a random variable
X. In addition, given a random event A, Pr(A) denotes the probability of A, while 1A
refers to the indicator of the random event A occurring. The notation Ac indicates that
event A does not occur.

2. A regularization algorithm with inexact evaluations

2.1. The problem class

We first make our framework more formal by detailing our assumptions on problem
(1.1).

4

AS.1 The function f is p times continuously differentiable in IRn. Moreover, its j-th order
derivative tensor is Lipschitz continuous for j ∈ {1, . . . , p} in the sense that there
exist constants Lf,` ≥ 0 such that, for all ` ∈ {1, . . . , p} and all x, y ∈ IRn,

‖∇`
xf(x)−∇`

xf(y)‖ ≤ Lf,j‖x− y‖. (2.1)

AS.2 f is bounded below in IRn, that is there exists a constant flow such that f(x) ≥ flow

for all x ∈ IRn.

Because of AS.1, the `-th derivative of f exists for ` ∈ {1, . . . , p} and is a symmetric tensor
of dimension `, which we denote by

∇`
xf(x)

def
=

(
∂`f

∂xi1 . . . ∂xi`

)
ij∈{1,...,n},j∈{1,...,`}

(x).

Moreover, the p-th degree Taylor series of f at a point x and evaluated for a step s is
well-defined and can be written as

Tf,p(x, s)
def
= f(x) +

p∑
`=1

1

`!
∇`
xf(x)[s]`, (2.2)

where ∇`
xf(x)[s]` denotes the scalar obtained by applying the `-dimensional tensor ∇`

xf(x)
to ` copies of the vector s. Because we will reuse this notation later, note that the first
subscript in Tf,p(x, s) is the function whose Taylor expansion is being considered, while the
second is the degree of the expansion. The argument x is the point at which derivatives
of f are computed and s is a step from x so that Tf,p(x, s) approximates the value of f at
the point x+ s. We will also make frequent use of the Taylor decrement defined as

∆Tf,p(x, s) = Tf,p(x, 0)− Tf,p(x, s) = −
p∑
`=1

1

`!
∇`
xf(x)[s]` (2.3)

We will also rely on the following well-known but important consequence of AS.1.

Lemma 2.1. Suppose that AS.1 holds. Then, for all x, s ∈ IRn,

f(x+ s) ≤ Tf,p(x, s) +
Lf,p

(p+ 1)!
‖s‖p+1 (2.4)

and

‖∇`
xf(x+ s)−∇`

sTf,p(x, s)‖ ≤
Lf,p

(p− `+ 1)!
‖s‖p−`+1 for all ` ∈ {1, . . . , p}. (2.5)

Proof. See [16, Lemma 2.1]. 2

5

2.2. Optimality measures

We now turn to the important question of defining what we mean by (approximate)
critical points of arbitrary order but first address the motivation for considering this issue.
In the standard exact case, it has long been known that using Newton’s method (i.e. a
model of degree two) practically outperforms the steepest descent method (which only
uses a model of degree one), even for computing first-order approximate critical points.
More recently, it was shown in [10] that using a model of degree p > 2 (if possible)
results in further improvements in evaluation complexity. However, if an algorithm uses
a model of degree p > 2, why should it be constrained to seek only for first- or second-
order approximate critical points? As it turns out, this question raises a number of issues,
the first being to define what is meant by an approximate critical point of general order
q ≤ p. In the rest of this paper, we use the concept of approximate minimizers discussed
in [17]. Specifically, given “accuracy requests” ε = (ε1, . . . , εq) and “optimality radii”
δ = (δ1, . . . , δq) with

εj ∈ (0, 1] and δj ∈ (0, 1] for j ∈ {1, . . . , q},

we say that x is a q-th order (ε, δ)-approximate minimizer (or (ε, δ)-approximate critical
point) for problem (1.1) if

φ
δj
f,j(x) ≤ εj

δjj
j!

for j ∈ {1, . . . , q}, (2.6)

where
φ
δj
f,j(x)

def
= f(x)− min

‖d‖≤δj
Tf,j(x, d) = max

‖d‖≤δj
∆Tf,j(x, d), (2.7)

where, as is standard, the min and max are considered global. Note that φδf,j(x) is nothing
but the largest decrease obtainable on the j-th degree Taylor expansion of f in a neigh-
bourhood of size δj. As such, it is always well-defined for functions satisfying AS.1 and is
always non-negative. Also note that, because of the Cauchy-Schwarz inequality,

φδ1f,1(x) = max
‖d‖≤δ1

(−∇1
xf(x)[d]) = ‖∇1

xf(x)‖ δ1, (2.8)

and we immediately see that (2.6), when specialized to first-order, is identical to the
classical condition asking that ‖∇1

xf(x)‖ ≤ ε1. Similarly, it is easy to verify that, when
∇1
xf(x) = 0, the second-order version of (2.6) gives that

φδ2f,2(x) = max
‖d‖≤δ2

(− 1
2
∇2
xf(x)[d]2) = 1

2
max

[
0,−λ1[∇2

xf(x)]
]
δ2

2

where λ1[∇2
xf(x)] is the leftmost eigenvalue of the Hessian ∇2

xf(x), so we obtain that (2.6)
is the same as the classical condition that the absolute value of this eigenvalue is less than
ε2 in this case. For example, the origin is both an (ε1, 1)-approximate first-order and an
(ε2, 1)-approximate second-order minimizer of function 1

6
x3 for any ε1, ε1 ∈ (0, 1], but is not

6

an (ε3, δ3)-approximate first-order one for any ε3, δ3 ∈ (0, 1]. We refer the reader to [17] for
a more extensive discussion.

The condition (2.6) has clear advantages over the more usual definitions for first- and
second-order approximate critical points: it is well defined for all orders and it is a con-
tinuous3 function of x. Moreover, its evaluation is straightforward for j = 1 (see (2.8))
and easy for q = 2 (it then reduces to the standard trust-region subproblem whose cost is
comparable to that of computing the Hessian’s leftmost eignevalue, see [20, Chapter 7]).
However, its evaluation may actually be extremely costly for j > 2. From a formal point of
view, this does not affect the evaluation complexity of an algorithm using it because it does
not involve any new evaluation of f and its derivatives. We also note that we could con-
sider an approximate version of (2.6), where we would require that, for each j ∈ {1, . . . , q},
there exists a dj such that ‖dj‖ ≤ δj and

νφ
δj
f,j(x) ≤ ∆Tf,j(x, dk) ≤ εj

δjj
j!
, (2.9)

where ν is a constant in (0, 1]. Note that (2.9) does not assume the knowledge of the
global minimizer or φδf,j(x), but merely that we can ensure the second part of (2.9) (see
[23, 24, 34] for research in this direction). Note also that, by definition,

∆Tf,j(x, dj) ≤ νεj
δjj
j!

implies φδf,j(x) ≤ εj
δjj
j!

and this approximate and potentially less costly variant of (2.6) could thus replace it at
the price of multiplying every εj by the constant ν. We will however ignore this possibility
in our analysis, keeping (2.6) for simplicity of exposition.

2.3. The regularization algorithm

We are now in a position to describe our adaptive regularization algorithm IARqp whose
purpose is to compute a q-th order (ε, δ)-approximate minimizer of f in problem (1.1).
The vector of accuracies ε is given, together with a model degree p ≥ q, corresponding
to the maximum order of available derivatives. If values of the objective function f and
its derivatives of orders ranging from one to p were known exactly, a typical adaptive
regularization method could be outlined as follows. At iteration k, a local model of the
objective function’s variation would first be defined by regularizing the Taylor series of
degree p at the current iterate xk, namely

mk(s) = −∆Tf,p(xk, s) +
σk

(p+ 1)!
‖s‖p+1, (2.10)

3Difficulties with the standard definition already start with order three because the nullspace of ∇2
xf(x)

is not a continuous function of x.

7

where σk is a regularization parameter to be specified later. A step sk would next be
computed by approximately minimizing mk(s) in the sense that mk(sk) ≤ mk(0) = 0 and

φ
δk,j
mk,j

(sk) ≤ θεj
δjk,j
j!
, (2.11)

for some θ ∈ (0, 1
2
) and δk ∈ (0, 1]q. In this condition,

φ
δk,j
mk,j

(sk) = max
‖d‖≤δk,j

∆Tmk,j(sk, d)

is the j-th order optimality measure (2.7) for the model (2.10) computed at sk, in which,
for j ∈ {1, . . . , q},

Tmk,j(sk, d) = mk(sk) +

j∑
`=1

1

`!
∇`
sTf,p(xk, sk)[d]` +

σk
(p+ 1)!

j∑
`=1

1

`!
∇`
s‖sk‖p+1[d]` (2.12)

for d ∈ IRn and thus

∆Tmk,j(sk, d) = −
j∑
`=1

1

`!
∇`
sTf,p(xk, sk)[d]` − σk

(p+ 1)!

j∑
`=1

1

`!
∇`
s‖sk‖p+1[d]`

(note the reuse of the notations introduced in (2.2) and (2.3), but for the function mk(s)
instead of f(x)). The values of f(xk+sk) and {∇`

xf(xk+sk)}p`=q+1 would then be computed
and the trial point xk + sk would then be accepted as the next iterate, provided the ratio

ρk =
f(xk)− f(xk + sk)

∆Tf,p(xk, sk)
,

is sufficiently positive. The regularization parameter σk would then be adapted/updated
before a new iteration is started, providing the “adaptive regularization” suggested by the
name of the method. (See [16] for the complete description of such an algorithm using exact
function and derivatives values.) The IARqp algorithm follows the same lines, except that
the values of f(xk), f(xk + sk) and ∆Tf,p(xk, sk) are not known exactly, the inexactness in
the latter resulting from the inexactness of the derivatives {∇`

xf(xk)}p`=1 . Instead, inexact
values f(xk), f(xk + sk) and ∆T f,p(xk, sk) are now computed and used to (re)-define the
model

mk(s) = −∆T f,p(xk, s) +
σk

(p+ 1)!
‖s‖p+1. (2.13)

In particular, setting

0 < ω < min

[
1− η

3
,
η

2

]
, (2.14)

the approximations f(xk) and f(xk + sk) are required to satisfy the accuracy conditions∣∣f(xk)− f(xk)
∣∣ ≤ ω∆T f,p(xk, sk), (2.15)∣∣f(xk + sk)− f(xk + sk)
∣∣ ≤ ω∆T f,p(xk, sk). (2.16)

8

In what follows, we will consistently denote inexact values by an overbar.
The model (2.13) is then approximately minimized by the feasible step sk in the sense

that the trial point xk + sk satisfies

mk(sk) ≤ mk(0) = 0 (2.17)

and

φ
δk,j
mk,j

(sk) = max
‖d‖≤δk,j

∆Tmk,j(sk, d) ≤ θεj
δjk,j
j!
, (2.18)

for j ∈ {1, . . . , q} and some θ ∈ (0, 1
2
) and δk ∈ (0, 1]q. The values f(xk), f(xk + sk)

and ∆T f,p(xk, sk) are also used to compute the ratio ρk, the value of which decides of the
acceptance of the trial point. The IARqp algorithm is detailed as Algorithm 2.1 on this
page.

We first verify that the algorithm is well-defined.

Lemma 2.2. A step sk satisfying (2.17) and (2.18) for j ∈ {1, . . . , q} and some δk ∈
(0, 1]q always exists.

Proof. The proof is a direct extension of that of [17, Lemma 4.4] using inexact models.
It is given in appendix for completeness. 2

Some comments on this algorithm are useful at this stage.

1. It is important to observe that the algorithm is fully implementable with existing
computational technology in the very frequent cases where q = 1 or q = 2. Indeed the

value of φ
δk,1
mk,1

can easily be obtained analytically. When q = 2, the same comment

obviously applies for φ
δk,1
mk,1

, while the value φ
δk,2
mk,2

can be computed by a standard
trust-region solver (whose cost is comparable to that of the more usual calculation
of the most negative eigenvalue), again making the algorithm practical. We refer the
interested reader to [6] for the presentation of numerical results in the framework of
finite sum optimization for automatic learning.

In other cases, the computation φ
δk,j
mk,j

may be extremely expensive, making our ap-
proach mostly theoretical at this stage. However, we recall that, since evaluations
of the objective function and its derivatives do not occur in this computation (once
the approximate derivatives are known), its cost has no impact on the evaluation
complexity of the IARqp algorithm.

2. We assume in what follows that, once the inexact model mk(s) is determined, then the
computation of the pair (sk, δk) (and thus of the trial point xk + sk) is deterministic.
Moreover, we assume that the mechanism which ensures (2.15)-(2.16) in Step 3 of the

9

Algorithm 2.1: The IARqp Algorithm

Step 0: Initialization. An initial point x0 ∈ IRn, an initial regularization parameter
σ0 > 0 and a sought optimality order q ∈ {1, . . . , p} are given, as well as a vector
of accuracies ε ∈ (0, 1]q. The constants θ ∈ (0, 1

2
), η ∈ (0, 1), γ > 1, α ∈ (0, 1),

0 < ω < min
[

1−η
3
, η

2

]
and σmin ∈ (0, σ0) are also given. Set k = 0.

Step 1: Model construction. Compute approximate derivatives
{∇`

xf(xk)}`∈{1,...,p} and form the model mk(s) defined in (2.13).

Step 2: Step calculation. Compute a step sk satisfying (2.17) and (2.18) for j ∈
{1, . . . , q} and some δk ∈ (0, 1]q. If ∆T f,p(xk, sk) = 0, go to Step 4.

Step 3: Function estimates computation. Compute the approximations f(xk)
and f(xk + sk) of f(xk) and f(xk + sk), respectively, such that (2.15)–(2.16) are
satisfied.

Step 4: Acceptance test. Set

ρk =

 f(xk)− f(xk + sk)

∆T f,p(xk, sk)
if ∆T f,p(xk, sk) > 0,

−∞ otherwise.
(2.19)

If ρk ≥ η (successful iteration), then define xk+1 = xk + sk; otherwise (unsuc-
cessful iteration) define xk+1 = xk.

Step 5: Regularization parameter update. Set

σk+1 =

{
max

[
σmin,

1
γσk

]
, if ρk ≥ η,

γσk, if ρk < η.
(2.20)

Increment k by one and go to Step 1.

10

algorithm is also deterministic, so that ρk and the fact that iteration k is successful
are deterministic outcomes of the realization of the inexact model.

3. Observe that, because we have chosen mk to be a model of the local variation in f
rather than a model of f itself, f(xk) is not needed (and not computed) in Steps 1
and 2 of the algorithm. This distinguishes the IARqp algorithm from the approaches
of [11, 19].

In what follows, all random quantities are denoted by capital letters, while the use of small
letters is reserved for their realization. In particular, let us denote a random model at
iteration k as Mk, while we use the notation mk for its realizations. Given xk, the source
of randomness in mk comes from the random approximation of the derivatives. Similarly,
the iterates Xk, as well as the regularization parameters Σk and the steps Sk are random
variables (except for initial values x0 and σ0 for the former two) and xk, σk and sk denote
their realizations. Moreover, δk denotes a realization of the random vector ∆k arising in
(2.18). Hence, the IARqp Algorithm generates a random process

{Xk, Sk,Mk,Σk,∆k}. (2.21)

where X0 = x0 and Σ0 = σ0 are deterministic.

2.4. The probabilistic setting

We now make our probabilistic assumptions on the IARqp algorithm explicit. For k ≥ 0,
our assumption on the past is formalized by considering AMk−1 the σ̂-algebra induced by
the random variables M0, M1,..., Mk−1, with AM−1 = σ̂(x0). In order to formalize our
probabilistic assumptions we need a few more definitions. We define, at iteration k of an
arbitrary realization,

dk,j = arg max
‖d‖≤δk,j

∆Tmk,j(sk, d) (2.22)

the argument of the maximum in the definition of φ
δk,j
mk,j

(xk), and

dk,j = arg max
‖d‖≤δk,j

∆Tmk,j(sk, d) (2.23)

that in the definition of φ
δk,j
mk,j

(sk). We also define, at the end of Step 2 of iteration k, the
events

Mk =

 M
(1)
k ∩

⋂q
j=1

(
M(2)

k,j ∩M
(3)
k,j

)
if q ∈ {1, 2}

M(1)
k ∩M

(4)
k ∩

⋂q
j=1

(
M(2)

k,j ∩M
(3)
k,j

)
otherwise,

(2.24)

with

M(1)
k =

{
|∆T f,p(Xk, Sk)−∆Tf,p(Xk, Sk)| ≤ ω∆T f,p(Xk, Sk)

}
,

M(2)
k,j =

{
|∆Tmk,j(Sk, Dk,j)−∆Tmk,j(Sk, Dk,j)| ≤ ω∆Tmk,j(Sk, Dk,j),

M(3)
k,j =

{
|∆Tmk,j(Sk, Dk,j)−∆Tmk,j(Sk, Dk,j)| ≤ ω∆Tmk,j(Sk, Dk,j),

M(4)
k =

{
max`∈{2,...,p} ‖∇`

xf(Xk)‖ ≤ Θ},

11

for some Θ > 0. Note that Θ is independent of k and does not need to be known explicitly.
Moreover, M(4)

k is not involved in the definition of Mk if q ∈ {1, 2}. In what follows, we
will say that iteration k is accurate, if 1Mk

= 1, and iteration k is inaccurate, if 1Mk
= 0.

The conditions defining Mk may seem abstract at first sight, but we now motivate
them by looking at what kind of accuracy on each derivative ∇`

xf(xk) ensures that they
hold.

Lemma 2.3. For each k ≥ 0, we have the following.

1. Let

τk
def
= max

[
‖Sk‖, max

j∈{1,...,q}
[‖Dk,j‖, ‖Dk,j‖]

]
(2.25)

and

∆T k,min
def
= min

[
∆T f,p(Xk, Sk), min

j∈{1,...,q}

[
∆Tmk,j(Sk, Dk,j),∆Tmk,j(Sk, Dk,j)

]]
.

(2.26)

Then M(1)
k , {M(2)

k,j}
q
j=1 and {M(3)

k,j}
q
j=1 occur if

‖∇`
xf(Xk)−∇`

xf(Xk)‖ ≤ ω
∆T k,min

6τ `k
for ` ∈ {1, . . . , p}. (2.27)

2. Suppose that AS.1 holds. Then M(4)
k occurs if

‖∇`
xf(Xk)−∇`

xf(Xk)‖ ≤ Θ0 for ` ∈ {2, . . . , p} (2.28)

and some constant Θ0 ≥ 0 independent of k and `.

12

Proof. Consider the first assertion. That M(1)
k occurs follows from the inequalities

|∆T f,p(Xk, Sk)−∆Tf,p(Xk, Sk)| ≤
p∑
`=1

‖Sk‖`

`!
‖∇`

xf(Xk)−∇`
xf(Xk)‖

≤
p∑
`=1

τ `k
`!
‖∇`

xf(Xk)−∇`
xf(Xk)‖

≤
p∑
`=1

ω

6`!
∆T k,min

≤
p∑
`=1

ω

6`!
∆T f,p(Xk, Sk)

≤ 1
6χp(1)ω∆T f,p(Xk, Sk)

< ω∆T f,p(Xk, Sk).

where we have used (2.25), (2.27), (2.26) and the fact that χp(1) ≤ 2. The verifica-

tion that {M(2)
k,j}

q
j=1 and {M(3)

k,j}
q
j=1 also occur uses a very similar argument, with one

additional ingredient: employing the triangle inequality, (2.13), we have that, for all
` ∈ {1, . . . , p},∥∥∥∇`

dT mk,j(Sk, 0)−∇`
dTmk,j(Sk, 0)

∥∥∥ ≤ p∑
t=`

∥∥∇t
xf(Xk)−∇t

xf(Xk)
∥∥ ‖Sk‖t−`

(t− `)!
.

Considering now D = Dk,j or D = Dk,j and using the above inequality, (2.25), (2.27),
(2.26) and the facts that χj(1) ≤ 2 and χp−`(1) ≤ 2, we have that

|∆Tmk,j(Sk, D)−∆Tmk,j(Sk, D)|

≤
j∑
`=1

‖D‖`

`!
‖∇`

dTmk,j(Sk, 0)−∇`
dTmk,j(Sk, 0)‖

≤
j∑
`=1

‖D‖`

`!

p∑
t=`

∥∥∇t
xf(Xk)−∇t

xf(Xk)
∥∥ ‖Sk‖t−`

(t− `)!

≤
j∑
`=1

1

`!

p∑
t=`

∥∥∇t
xf(Xk)−∇t

xf(Xk)
∥∥ τ tk

(t− `)!

≤
j∑
`=1

1

`!

p∑
t=`

1

(t− `)!
ω

∆T k,min

6

≤ 1
6ω∆T k,min

j∑
`=1

1

`!
(1 + χp−`(1))

≤ ω∆Tmk,j(Sk, D),

13

as desired. To prove the second assertion, observe that AS.1 implies that ‖∇`
xf(Xk)‖ ≤

Lf,`−1 for j ∈ {2, . . . , p}, and thus, using (2.28), that, for ` ∈ {2, . . . , p},

‖∇`
xf(Xk)‖ ≤ ‖∇`

xf(Xk)‖+ ‖∇`
xf(Xk)−∇`

xf(Xk)‖

≤ Lf,`−1 + Θ0.

This gives the desired conclusion with the choice Θ = max`∈{2,...,p} Lf,`−1 + Θ0. 2

Of course, the conditions stated in Lemma 2.3 are sufficient but by no means necessary to
ensure Mk. In particular, they make no attempt to exploit a possible favourable balance
between the errors made on derivatives at different degrees, nor do they take into account
thatM(1)

k ,M(2)
k,j andM(3)

k,j only specify conditions on model accuracy in a finite, dimension-
independent subset of directions. Despite these limitations, (2.27) and (2.28) allow the

crucial conclusion thatMk does occur if the derivatives ∇j
xf(Xk) are sufficiently accurate

compared to the model decrease. Moreover, since one would expect that, as an approximate
minimizer is approached, ‖Sk‖, ‖Dk,j‖ and ‖Dk,j‖ (and thus τk) become small, they also
show the accuracy requirement becomes looser for derivatives of higher degree.
We now formalize our assumption on the stochastic process generated by the IARqp algo-
rithm.

AS.3
For all k ≥ 0, the event Mk satisfies the condition

pM,k = Pr(Mk|AMk−1) = E[1Mk
|AMk−1] ≥ p∗ (2.29)

for some p∗ ∈ (1
2
, 1] independent of k.

AS.3 is realistic for instance in cases where derivatives are approximated by randomized
finite differences or by subsampling in the context of finite sum minimization.

We observe that, in contrast with [11, 19], the definition of Mk does not require the
model to be “linearly/quadratically” accurate everywhere in a ball around xk of radius
at least ‖sk‖, but merely that their variation is accurate enough along sk (as specified in

M(1)
k) and along dk,j and dk,j (as specified inM(2)

k,j andM(3)
k,j)4 for all j ∈ {1, . . . , q}. The

need to consider M(2)
k,j and M(3)

k,j for j ∈ {1, . . . , q} in the definition of Mk results from
our insistence that q-th order approximate optimality must include j-th order approximate
optimality for all such j. AS.3 also parallels assumptions in [11, 18, 19, 32] where accuracy
in derivatives’ values is measured using the guaranteed model decrease or proxies given by
the (p + 1)-st power of the trust-region radius or the steplength. Finally, the conditions

imposed byM(2)
k,j andM(3)

k,j are only used whenever considering the value of φ
δk,j
mk,j

(sk), that
is in Lemma 3.1, itself only called upon in Lemma 3.3 in the case where ‖Sk‖ ≤ 1. As a
consequence, they are irrelevant when long steps are taken (‖Sk‖ > 1).

4A slightly stronger assumption would be to require a sufficient relative accuracy along sk and in a
(typically small) neighbourhood of sk.

14

3. Worst-case evaluation complexity

Having set the stage and stated our assumptions, we may now consider the worst-
case evaluation complexity of the IARqp algorithm. Our aim is to derive a bound on the
expected number of iterations E(Nε) which is needed, in the worst-case, to reach an (ε, δ)-
approximate q-th-order-necessary minimizer. Specifically, Nε is the number of iterations
required until (2.6) holds for the first time, i.e.,

Nε = inf

{
k ≥ 0 | φ∆k−1,j

f,j (Xk) ≤ εj
∆j
k−1,j

j!
for j ∈ {1, . . . , q}

}
. (3.1)

Note that φ
∆k−1,j

f,j (Xk), the j-th order optimality measure at iteration k, uses the optimality
radii ∆k−1,j resulting from the step computation at iteration k− 1, as is the case in [4, 16].
Now recall that the trial point Xk−1 + Sk−1 and the vector of radii ∆k−1 are deterministic
once the inexact model at iteration k − 1 is known. Thus these variables are measurable
for AMk−1 and because of our deterministic assumptions on the accuracy of f , the event
{Xk = Xk−1 + Sk−1} (which occur when iteration k − 1 is successful) is also measurable

for AMk−1. As a consequence and since φ
∆k−1,j

f,j (Xk) uses exact derivatives of f , the event

{Nε = k} is measurable with respect to AMk−1. The definition (3.1) can thus be viewed as
that of a family of ε-dependent stopping times for the stochastic process generated by the
IARqp algorithm (see, e.g., [18, section 2.3]).

3.1. General properties of the IARqp algorithm

We first consider properties of “accurate” iterations, in the sense that Mk occurs,

and start with the relation between φ
δk,j
mk,j

(sk) and its approximation. The next lemma is
inspired by Lemma 3.2 in [4], but significantly differs in that it now requires considering
both directions dk,j and dk,j.

Lemma 3.1. Consider any realization of the algorithm and assume that Mk occurs.
Then, for j ∈ {1, . . . , q},(

1− ω
)
φ
δk,j
mk,j

(sk) ≤ φ
δk,j
mk,j

(sk) ≤
(
1 + ω

)
φ
δk,j
mk,j

(sk) (3.2)

Proof. Let j ∈ {1, . . . , q}. Consider dk,j defined in (2.22). From (2.18), we have that

∆Tmk,j(sk, dk,j) ≤ ∆Tmk,j(sk, dk,j) + |∆Tmk,j(sk, dk,j)−∆Tmk,j(sk, dk,j)|

≤
(
1 + ω

)
∆Tmk,j(sk, dk,j)

≤
(
1 + ω

)
max
‖d‖≤δk,j

∆Tmk,j(sk, d)

=
(
1 + ω

)
∆Tmk,j(sk, dk,j)

15

where we used the fact that Mk occurs to derive the second inequality and considered
dk,j defined in (2.23). Therefore

φ
δk,j
mk,j

(sk) = ∆Tmk,j(sk, dk,j) ≤
(
1 + ω

)
φ
δk,j
mk,j

(sk).

This proves the rightmost inequality of (3.2). Similarly, using our assumption thatMk

occurs, we obtain that

∆Tmk,j(sk, dk,j) ≥ ∆Tmk,j(sk, dk,j)− |∆Tmk,j(sk, dk,j)−∆Tmk,j(sk, dk,j)|

≥
(
1− ω

)
∆Tmk,j(sk, dk,j)

and hence, from (2.7) and (2.18), that(
1− ω

)
φ
δk,j
mk,j

(sk) ≤ max
‖d‖≤δk,j

∆Tmk,j(sk, d) = φ
δk,j
mk,j

(sk),

which concludes the proof of (3.2). 2

The next step is to adapt an important property of ∆k,j in the exact case to our inexact
framework.

Lemma 3.2. Suppose that AS.1 holds. Then, for any j ∈ {1, . . . , q},

1. if j ∈ {1, 2}, ∆k,j can always be chosen equal to one;

2. in the other cases, and assuming that Mk occurs, then, either ‖sk‖ > 1 or
∆k,j ≤ 1 can be chosen such that

∆k,j ≥ κδ(σk)εj, (3.3)

where κδ(σ) ∈ (0, 1) is independent of ε and decreasing when σ grows.

Proof. The proof broadly follows the developments of [17, Lemmas 4.3 and 4.4],
except that it now uses the model involving approximate derivatives and that Lf , the
upper bound of the derivatives of f at xk derived from AS.1 is now replaced by Θ, as
guaranteed by M(4)

k . The details (including the reason for the dichotomy between the
two cases in the lemma’s statement) are provided in appendix. 2

In what follows, we will assume that, whenever q > 2, the IARqp algorithm computes a pair
(sk, δk) such that, for each j ∈ {1, . . . , q}, δk,j is always within a fraction of its maximal
value, thereby ensuring (3.3). We now prove a crucial inequality relating the step length
to the accuracy requirements.

16

Lemma 3.3. Consider any realization of the algorithm. Assume thatMk occurs, that
iteration k is successful and that, for some j ∈ {1, . . . , q}, (2.6) fails for (xk+1, δk,j).
Then either ‖sk‖ > 1 or

(1− 2θ)εj
δjk,j
j!
≤ Lf,p + σk

(p− q + 1)!

j∑
`=1

δ`k,j
`!
‖sk‖p−`+1 (3.4)

Proof. [See [17, Lemma 5.3] for the composite unconstrained Lipschitz continuous
case.] Suppose that ‖sk‖ ≤ 1. Since (2.6) fails at (xk+1, δk,j), we must have that

φ
δk,j
f,j (xk+1) > εj

δjk,j
j!

> 0 (3.5)

for some j ∈ {1, . . . , q}. Define d to be the argument of the minimum in the definition

of φ
δk,j
f,j (xk+1). Hence,

0 < ‖d‖ ≤ δk,j. (3.6)

Using (3.5), (2.7) and the triangle inequality, we thus obtain that

φ
δk,j
f,j (xk+1) = ∆Tf,j(xk+1, d) ≤ |∆Tf,j(xk+1, d)−∆Tmk,j(sk, d)|+ ∆Tmk,j(sk, d). (3.7)

Recalling now from [16, Lemma 2.4]) that

‖∇`
s‖sk‖p+1‖ =

(p+ 1)!

(p− `+ 1)!
‖sk‖p−`+1,

we may now use the fact that xk+1 = xk + sk since iteration k is successful, (2.5) in
Lemma 2.1, (2.12), (3.6) and the triangle inequality to obtain that

|∆Tf,j(xk+1, d)−∆Tmk,j(sk, d)| ≤
j∑
`=1

δ`k,j
`!
‖∇`

xf(xk+1)−∇`
sTf,p(xk, sk)‖

+ σk
(p+ 1)!

j∑
`=1

δ`k,j
`!
‖∇`

s‖sk‖p+1‖

≤ Lf,p + σk
(p− q + 1)!

j∑
`=1

δ`k,j
`!
‖sk‖p−`+1

(3.8)

Moreover, using (2.18), (3.2) and the fact that ω < 1 (see (2.14)), we deduce that

∆Tmk,j(sk, d) ≤ φ
δk,j
mk,j

(sk) ≤
(
1 + ω

)
φ
δk,j
mk,j

(sk) ≤ 2θεj
δjk,j
j!
. (3.9)

Substituting (3.8) and (3.9) into (3.7) and using (3.6) and (3.5), we obtain (3.4). 2

17

Lemma 3.4. Suppose that AS.1 holds and consider any realization of the algorithm.
Suppose also that Mk occurs, that iteration k is successful and that, for some j ∈
{1, . . . , q}, (2.6) fails for (xk+1, δk,j). Then

‖sk‖p+1 ≥ ψ(σk)ε
$
j (3.10)

where

$ =

p+ 1

p− q + 1 if q ∈ {1, 2} ,

q(p+ 1)
p otherwise.

(3.11)

and

ψ(σ) =

min

[
1,

(
(1− 2θ)(p− q + 1)!

q!(Lf,p + σ)

)$]
if q ∈ {1, 2} ,

min

[
1,

(
(1− 2θ)(p− q + 1)!κδ(σ)q−1

q!(Lf,p + σ)

)$]
otherwise.

(3.12)

Proof. [See [17, Lemma 5.4].] If ‖sk‖ > 1, the conclusion immediately follows.
Suppose therefore that ‖sk‖ ≤ 1 and consider j such that (3.4) holds. Recalling the
definition of χj in (1.3), (3.4) can be rewritten as

αk εj δ
j
k,j ≤ ‖sk‖

p+1χj

(
δk,j
‖sk‖

)
(3.13)

where we have set

αk =
(1− 2θ)(p− q + 1)!

q!(Lf,p + σk)
.

In particular, since χj(t) ≤ 2tj for t ≥ 1, we have that, when ‖sk‖ ≤ δk,j,

αk εj ≤ 2‖sk‖p+1

(
1

‖sk‖

)j
= 2‖sk‖p−j+1. (3.14)

Suppose first that q ∈ {1, 2}. Then, from our assumptions and Lemma 3.2, δk,j = 1
and ‖sk‖ ≤ 1 = δk,j. Thus (3.14) yields the first case of (3.11)–(3.12). Suppose now
that q > 2. Then our assumptions imply that (3.3) holds. If ‖sk‖ ≤ δk,j, we may again
deduce from (3.14) that the first case of (3.11)–(3.12) holds, which implies, because
κδ(σ) < 1 and 1/(p− j + 1) ≤ j/p, that the second case also holds. Consider therefore
the case where ‖sk‖ > δk,j. Then (3.13) and the fact that χj(t) < 2t for t ∈ [0, 1] give
that

αk εj δ
j
k,j ≤ 2‖sk‖p+1

(
δk,j
‖sk‖

)
,

18

which, with (3.3), implies the second case of (3.11)–(3.12) as requested. 2

Note that ψ(σ) is decreasing as a function of σ in both cases of (3.12). We now investigate
the decrease of the exact objective function values at successful iterations.

Lemma 3.5. Suppose that AS.1 holds and consider any realization of the algorithm.
Then

∆T f,p(xk, sk) ≥
σk

(p+ 1)!
‖sk‖p+1 ≥ σmin

(p+ 1)!
‖sk‖p+1 ≥ 0, (3.15)

where σmin is defined in Step 0 of the IARqp algorithm. Moreover, if iteration k is
successful, then

f(xk)− f(xk+1) ≥ (η − 2ω)σmin

(p+ 1)!
‖sk‖p+1> 0. (3.16)

Proof. The inequality (3.15) immediately follows from (2.13), (2.17), (2.20). Now
the fact that iteration k is successful, together with (2.14) and (2.15)–(2.16), imply that

f(xk)− f(xk+1) ≥ f(xk)− f(xk+1)− 2ω∆T f,p(xk, sk)

≥ η∆T f,p(xk, sk)−2ω∆T f,p(xk, sk),

yielding (3.16) using (3.15) and (2.14). 2

We finally conclude our analysis of “accurate” iterations by proving a standard result in the
analysis of adaptive regularization methods. A similar version of this result was presented
in [4, Lemma 4.2] for the case where both function values and models are sufficiently
accurate.

Lemma 3.6. Suppose that AS.1 holds and let β > 1 be given. Then, for any realiza-
tion of the algorithm, if iteration k is such that Mk occurs and

σk ≥ σs
def
= max

[
βσ0,

Lf,p
1− η − 3ω

]
, (3.17)

then iteration k is successful.

Proof. Suppose that (3.17) holds. Thus, using successively (2.19), the triangle
inequality, the fact that Mk occurs, (2.4), (3.15), (2.14), (2.15)–(2.16) and (3.17), we

19

deduce that

|ρk − 1| ≤ 1
∆T f,p(xk, sk)

[(
f(xk)− f(xk)

)
+
(
f(xk + sk)− f(xk + sk)

)
+
(
− f(xk + sk) + f(xk)−∆Tf,p(xk, sk)

)
+
(

∆Tf,p(xk, sk)−∆T f,p(xk, sk)
)]

≤ 1
∆T f,p(xk, sk)

[
|f(xk + sk)− Tf,p(xk, sk)|+ 3ω|∆T f,p(xk, sk)|

]
≤ 1

∆T f,p(xk, sk)

[
Lf,p

(p+ 1)!
‖sk‖p+1 + 3ω|∆T f,p(xk, sk)|

]
≤ Lf,p

σk + 3ω

≤ 1− η.

Therefore ρk ≥ η and iteration k is successful. 2

3.2. Bounding the expected number of steps with Σk ≥ σs

We now return to the general stochastic process generated by the IARqp algorithm aiming
at bounding from above the expected number of steps in the process generated by the
algorithm with Σk ≥ σs. To this purpose, for all 0 ≤ k ≤ `, given ` ∈ {0, . . . , Nε − 1}, let
us define the events

Λk = { iteration k is such that Σk < σs }, Λc
k = { iteration k is such that Σk ≥ σs }

Sk = { iteration k is successful },

and let

NΛ
def
=

Nε−1∑
k=0

1Λk , NΛc
def
=

Nε−1∑
k=0

1Λck
, (3.18)

be the number of steps, in the stochastic process induced by the IARqp algorithm, with
Σk < σs and Σk ≥ σs, before iteration Nε is reached, respectively. In what follows we
suppose that AS.1–AS.3 hold.

We may now follow the argument of [18] to derive an upper bound on E
[
NΛc

]
. In

particular, the argument unfolds as follows:

(i) we apply [18, Lemma 2.2] to deduce that, for any ` ∈ {0, . . . , Nε − 1} and for all
realizations of the IARqp algorithm, one has that

∑̀
k=0

1Λck
1Sk ≤

`+ 1

2
; (3.19)

20

(ii) as in [18], we note that both σ̂(1Λk) and σ̂(1Λck
) belong to AMk−1, as the random

variable Λk is fully determined by the first k − 1 iterations of the IARqp algorithm.
Then, setting ` = Nε− 1 we can rely on [18, Lemma 2.1] (with Wk = 1Λck

) and (2.29)
to deduce that

E

[
Nε−1∑
k=0

1Λck
1Mk

]
≥ E

[
Nε−1∑
k=0

pM,k1Λck

]
≥ p∗ E

[
Nε−1∑
k=0

1Λck

]
; (3.20)

(iii) as a consequence, given that Lemma 3.6 ensures that each iteration k where Mk

occurs and σk ≥ σs is successful, we have that

Nε−1∑
k=0

1Λck
1Mk

≤
Nε−1∑
k=0

1Λck
1Sk ≤

Nε

2
,

in which the last inequality follows from (3.19), with ` = Nε− 1. Taking expectation
in the above inequality, using (3.20) and recalling the rightmost definition in (3.18),
we obtain, as in [18, Lemma 2.3], that, for any realization,

E[NΛc] ≤
1

2p∗
E[Nε]. (3.21)

The remaining upper bound on E[NΛ] will be the focus of the next subsection.

3.3. Bounding the expected number of steps with Σk < σs

For analyzing E[NΛ], where NΛ is defined in (3.18), we now introduce the following
variables.

Definition 1. With reference to the process (2.21) generated by the IARqp algorithm, let us
define:

21

• Λk = {iteration k is such that Σk ≤ σs};

• NI =
Nε−1∑
k=0

1Λk
1Mc

k
: the number of inaccurate iterations with Σk ≤ σs;

• NA =
Nε−1∑
k=0

1Λk
1Mk

: the number of accurate iterations with Σk ≤ σs;

• NAS =
Nε−1∑
k=0

1Λk
1Mk

1Sk : the number of accurate successful iterations with Σk ≤ σs;

• NAU =
Nε−1∑
k=0

1Λk1Mk
1Sck : the number of accurate unsuccessful iterations with Σk < σs;

• NIS =
Nε−1∑
k=0

1Λk
1Mc

k
1Sk : the number of inaccurate successful iterations with Σk ≤ σs;

• NS =
Nε−1∑
k=0

1Λk
1Sk : the number of successful iterations with Σk ≤ σs;

• NU =
Nε−1∑
k=0

1Λk1Sck : the number of unsuccessful iterations with Σk < σs.

(3.22)

Observe that Λk is the “closure” of Λk in that the inequality in its definition is no longer
strict.

We immediately notice that an upper bound on E[NΛ] is available, once an upper bound
on E[NI] + E[NA] is known, since

E[NΛ] ≤ E

[
Nε−1∑
k=0

1Λk

]
= E

[
Nε−1∑
k=0

1Λk
1Mc

k
+

Nε−1∑
k=0

1Λk
1Mk

]
= E[NI] + E[NA]. (3.23)

Using again [18, Lemma 2.1] (with Wk = 1Λk
) to give an upper bound on E[NI], we obtain

the following result.

Lemma 3.7. [18, Lemma 2.6] LetMk be the sequence of events in (2.24) and assume
that (2.29) holds. Let NI , NA be defined as in Definition 1 in the context of the
stochastic process (2.21) generated by the IARqp algorithm. Then

E[NI] ≤
1− p∗
p∗

E[NA]. (3.24)

Turning to the upper bound for E[NA], we observe that

E[NA] = E[NAS] + E[NAU] ≤ E[NAS] + E[NU]. (3.25)

22

Hence, bounding E[NI] can be achieved by providing upper bounds on E[NAS] and E[NU].
Regarding the latter, we first note that the process induced by the IARqp algorithm ensures
that Σk is decreased by a factor γ on successful steps and increased by the same factor
on unsuccessful ones.Consequently, by virtue of [18, Lemma 2, 5], we obtain the following
bound.

Lemma 3.8. [18, Lemma 2.5] For any ` ∈ {0, ..., Nε − 1} and for all realisations of
the IARqp algorithm, we have that

∑̀
k=0

1Λk1Sck ≤
∑̀
k=0

1Λk
1Sk +

⌈
logγ

(
σs
σ0

)⌉
.

From this inequality with ` = Nε − 1, recalling Definition 1 and taking expectations, we
therefore obtain that

E[NU] ≤ E[NS] +

⌈
logγ

(
σs
σ0

)⌉
= E[NAS] + E[NIS] +

⌈
logγ

(
σs
σ0

)⌉
. (3.26)

An upper bound on E[NAS] is given by the following lemma.

Lemma 3.9. Let Assumption AS.1 and AS.2 hold. For all realizations of the IARqp

algorithm we have that

E[NAS] ≤ (f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)−$
+ 1, (3.27)

where $, ψ(σ) and σs are defined in (3.11), (3.12) and (3.17), respectively.

Proof. For all realizations of the IARqp algorithm we have that:

• if iteration k is successful, then (3.16) holds;

• if iteration k is successful and accurate (i.e., 1Sk1Mk
= 1) and (2.6) fails for

(xk+1, δk,j), then (3.10) holds;

• if iteration k is unsuccessful, the mechanism of the IARqp algorithm guarantees that
xk = xk+1 and, hence, that f(xk+1) = f(xk).

23

Therefore, for any ` ∈ {0, ..., Nε − 1},

f0 − flow ≥ f0 − f(X`+1) =
∑̀
k=0

1Sk(f(Xk)− f(Xk+1)) ≥
∑̀
k=0

1Sk
(η − 2ω)σmin

(p+ 1)!
‖Sk‖p+1

≥
`−1∑
k=0

1Sk1Mk

(η − 2ω)σmin

(p+ 1)!
‖Sk‖p+1 (3.28)

≥
`−1∑
k=0

1Sk1Mk

(η − 2ω)σmin

(p+ 1)!
ψ(Σk)

(
min

j∈{1,...,q}
εj

)$
≥

`−1∑
k=0

1Sk1Mk
1Λk

(η − 2ω)σmin

(p+ 1)!
ψ(Σk)

(
min

j∈{1,...,q}
εj

)$
≥ (η − 2ω)σmin

(p+ 1)!
ψ(σs)

(
min

j∈{1,...,q}
εj

)$(`−1∑
k=0

1Sk1Mk
1Λk

)
, (3.29)

having set f0
def
= f(X0) and where the last inequality is due to fact that ψ(σ) is a

decreasing function. We now notice that, by Definition 1,

NAS − 1 ≤
Nε−2∑
k=0

1Λk
1Mk

1Sk .

Hence, letting ` = Nε − 1 and taking expectations in (3.29), we conclude that

f0 − flow ≥ (E[NAS]− 1)
(η − 2ω)σmin

(p+ 1)!
ψ(σs)

(
min

j∈{1,...,q}
εj

)$
,

which is equivalent to (3.27). 2

While inequalities (3.27) and (3.26) provide upper bounds on E[NAS] and E[NU], as desired,
the latter still depends on E[NIS], which has to be bounded from above as well. This can
be done by following [18] once more: Definition 1, (3.24) and (3.25) directly imply that

E[NIS] ≤ E[NI] ≤
1− p∗
p∗

E[NA] ≤ 1− p∗
p∗

(E[NAS] + E[NU]) (3.30)

and hence

E[NIS] ≤ 1− p∗
2p∗ − 1

(
2E[NAS] +

⌈
logγ

(
σs
σ0

)⌉)
(3.31)

follows from (3.26) (remember that 1
2
< p∗ ≤ 1). Thus, the right-hand side in (3.24) is in

24

turn upper bounded by virtue of (3.25), (3.26), (3.31) and (3.27), giving

E[NA] ≤ E[NAS] + E[NU] ≤ 2E[NAS] + E[NIS] +

⌈
logγ

(
σs
σ0

)⌉
≤

(
1− p∗
2p∗ − 1

+ 1

)(
2E[NAS] +

⌈
logγ

(
σs
σ0

)⌉)
=

p∗
2p∗ − 1

[
2E[NAS] +

⌈
logγ

(
σs
σ0

)⌉]
≤ p∗

2p∗ − 1

[
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)−$
+

⌈
logγ

(
σs
σ0

)⌉
+ 2

]
.(3.32)

This inequality, together with (3.23) and (3.24), finally gives the desired bound on E[NΛ]:

E[NΛ] ≤ 1

p∗
E[NA] ≤ 1

2p∗ − 1

[
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)−$
+

⌈
logγ

(
σs
σ0

)⌉
+ 2

]
.

(3.33)
We can now express our final complexity result in full.

Theorem 3.10. Suppose that AS.1–AS.3 hold. Then the following conclusions also
hold.

1. If q ∈ {1, 2}, then

E[Nε] ≤ κ(p∗)

(
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)− p+1
p−q+1

+

⌈
logγ

(
σs
σ0

)⌉
+ 2

)
,

2. If q > 2, then

E[Nε] ≤ κ(p∗)

(
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)− q(p+1)
p

+

⌈
logγ

(
σs
σ0

)⌉
+ 2

)
,

with κ(p∗)
def
= 2p∗

(2p∗−1)2
and Nε, ψ(σ), σs defined as in (3.1), (3.12), (3.17), respectively.

Proof. Recalling the definitions (3.18) and the bound (3.21), we obtain that

E[Nε] = E[N c
Λ] + E[NΛ] ≤ E[Nε]

2p∗
+ E[NΛ],

25

which implies, using (3.33), that

2p∗ − 1

2p∗
E[Nε] ≤

1

2p∗ − 1

(
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)−$
+

⌈
logγ

(
σs
σ0

)⌉
+ 2

)
.

This bound and the inequality 1
2
< p∗ ≤ 1 yield the desired result. 2

Since the IARqp algorithm requires at most two function evaluations and one evaluation of
the derivatives of orders one to p per iteration, the bounds stated in the above theorem
effectively provide an upper bound on the average evaluation complexity of finding (ε, δ)-
approximate q-th order minimizers.

Theorem 3.10 generalizes the complexity bounds stated in [17, Theorem 5.5] to the case
where evaluations of f and its derivatives are inexact, under probabilistic assumptions on
the accuracies of the latter. Remarkably, the bounds of Theorem 3.10 are essentially
identical in order of the tolerance ε to those obtained in [17, Theorem 5.5], in that they
only differ by the presence of an additional term in | log(minj∈{1,...,q} εj)|. Moreover, it was
shown in [17, Theorems 6.1 and 6.4] that the evaluation complexity bounds are sharp in ε
for exact evaluations and Lipschitz continuous derivatives of f . Since the IARqp algorithm
reduces to the algorithm proposed in that reference when all values are exact, we deduce
that the lower bound on evalution complexity presented in this reference is also valid
in our case. Thus, considering that, for small εj, the term | log(minj∈{1,...,q} εj)| is much

smaller that the terms in minj∈{1,...,q} ε
−(p+1)/(p−q+1)
j or minj∈{1,...,q} ε

−q(p+1)/p
j , we conclude

that the the presence of random noise in the derivatives and of inexactness in function
values does not affect the evaluation complexity of adaptive regularization algorithms for
the local solution of problem (1.1). In addition, we also deduce that the complexity bounds
of Theorem 3.10 are essentially5 sharp in order of ε.

It is interesting to compare our results with those of [1]. These authors mention an
“elbow effect” for algorithms using randomly perturbed derivatives in that they state a
lower bound on evaluation complexity for second-order approximate minimizers of O(ε−3

2)
for all p ≥ 2, in contrast with our smoothly decreasing O(min[ε1, ε2]−(p+1)/(p−1)) bound.
However, their framework is very different. Firstly, they assume the a priori knowledge
of the Lipschitz constants, which makes monitoring of the function values unnecessary in
an adaptive regularization algorithm, an assumption we have explictly avoided for consis-
tency. Most importantly, their accuracy model is significantly more permissive than ours,

as it allows6 derivatives’ estimates of the form ∇j
xf(x) = (z/µ)∇j

xf(x) where z is a (0, 1)
Bernoulli random variable of parameter µ . Although unbiased and of bounded variance
under AS.1, such estimates result, for nonzero ∇j

xf(x), in an infinite relative error with
probability 1−µ. Since they consider values of µ of the order of ε22, this is clearly too loose
for AS.3 to hold. This illustrate that, unsurprisingly, the evaluation complexity bound for

5Modulo the negligible logarithmic term.
6See definitions (76) and (87) in [1].

26

algorithms using inexact information strongly depends on the specific (potentially proba-
bilistic) accuracy model considered.

We conclude this section by noting that the complexity bounds we have derived depend
on the smallest of the accuracy thresholds εj. We could therefore derive the complete theory
with a single ε for all optimality orders, marginally improving notation. We have refrained
from doing so because users of numerical optimization algorithms very rarely makes this
choice in practice, but typically uses application- and order-dependent thresholds.

4. Extension to convexly constrained problems

As it turns out, it is easy to extend the above results to the case where the problem is
convexly constrained, that is when (1.1) is replaced by

min
x∈X

f(x), (4.1)

where X is a convex subset of IRn. We have refrained from considering this problem
from the start for clarity of exposition, but we now review the (limited) changes that are
necessary to cover this more general problem.

1. We may first weaken AS.1 to require that f is p times continuously differentiable
in an open convex neighbourhood of X and that the Lipschitz conditions (2.1) only
hold in that neighbourhood.

2. We must then revise our approximate criticality measure (2.7) to reflect the con-
strained nature of (4.1). This is done by considering the Taylor decrement which
is achievable only for displacements d which preserve feasibility. We may therefore
replace φ

δj
f,j(x) in (2.7) by

φ
δj
f,j(x) = max

x+d∈X , ‖d‖≤δj
∆Tf,j(x, d)

for x ∈ X . This new definition is then used in (3.1) to obtain a new family of stopping
times.

3. We next insist that feasibility is maintained throughout the execution of the algo-
rithm, in that we require that x0 ∈ X and that sk is computed such that the trial
point xk + sk is also feasible. Moreover, our criterion for terminating the step search

must also reflect its constrained nature, which is obtained by replacing φ
δk,j
mk,j

(sk) in
(2.18) by

φ
δk,j
mk,j

(sk) = max
xk+sk+d∈X , |d‖≤δk,j

∆Tmk,j(sk, d)

for xk + sk ∈ X .

4. The theory is then unchanged for this new context, with one caveat. We note that
the proof of Lemma 3.2 for the case where q ∈ {1, 2} does depend on the fact that
Tmk,j(s

∗
k, d) is a convex function of d for j ∈ {1, 2} because of the unconstrained opti-

mality conditions. Obviously, while maintaining convexity is possible in the convexly

27

constrained case when q = 1, it may now fail for q = 2. As a consequence, this case
must be considered in the same way as for other larger values of q. This then imposes
that we have to change the condition “if q ∈ {1, 2}” or “if j ∈ {1, 2}” to “if q = 1”
or “if j = 1”, respectively, in (2.24), the first statement of Lemma 3.2, (3.11) and its
proof, and in the first statement of Theorem 3.10.

It is remarkable that no further change is necessary for deducing Theorem 3.10 for problem
(4.1). This extension to the convexly convex case is also a novel feature for algorithms
considering randomly perturbed derivatives.

5. Conclusions and perspectives

We have shown that the IARqp algorithm, a stochastic inexact adaptive regularization
algorithm using derivatives of order up to p, computes an (ε, δ)-approximate q-th order

minimizer of f in problem (1.1) in at most O(ε−
p+1
p−q+1) iterations in expectation if q is

either one or two, while it may need O(ε−
q(p+1)
p) iterations in expectation in the other

cases7. Moreover, these bounds are essentially sharp in the order of ε (see [17]). We
therefore conclude that, if the probabilities pM,k in AS.3 are suitably large, the evaluation
complexity of the IARqp algorithm is identical (in order) to that of the exact algorithm in
[17]. We finally provided an extension of these results to the convexly constrained case.

We also note that the full power of AS.1 is only required for Lemma 3.2, while Lipschitz
continuity of ∇p

xf(x) is sufficient for all subsequent derivations. Thus if suitable lower
bounds on ∆k,j can be ensured in some other way, our development remains valid (although
the precise complexity bounds will depend on the new bounds on ∆k,j). In AS.1, we have
also required (Lipschitz) continuity of f and its derivatives in IRn. This can be weakened
to requiring this property only on the “tree of iterates” ∪k≥0[xk, xk + sk], but this weaker
assumption is often impossible to verify a priori. In the same vein, it also is possible to avoid
requiring that (3.3) is always ensured by the IARqp algorithm whenever q > 2 by instead
redefiningMk to also include the satisfaction of this condition. We have preferred using an
explicit assumption because this approach better differentiates deterministic requirements
on the algorithm from stochastic assumptions more related to the problem itself.

We finally recall that [17] also derives complexity bounds for the (possibly non-smooth)
composite optimization problem. We expect that the theory presented here can be ex-
tended to also cover this case.

An analysis covering adaptive regularization algorithms where the objective function
evaluations are also subject to general random noise, parallel to that provided for trust-
region methods for low order minimizers in [11], remains, for now, an open and challenging
question.

7These simplified order bounds assume that εj = ε for j ∈ {1, . . . , q}.

28

Acknowledgment

INdAM-GNCS partially supported the first and third authors under Progetti di Ricerca 2019. The
second author was partially supported by INdAM through a GNCS grant. The last author gratefully
acknowledges the support and friendly environment provided by the Department of Industrial Engineering
at the Università degli Studi di Firenze (Italy) during his visit in the fall of 2019.

[1] Y. Arjevani, Y. Carmon, J. Duchi, D. J. Foster, and K. Sridharan. Second-order information in non-
convex stochastic optimization: Power and limitations. Proceedings of Machine Learning Research,
125:1–58, 2020.

[2] S. Bellavia and G. Gurioli. Stochastic analysis of an adaptive cubic regularisation method under
inexact gradient evaluations and dynamic hessian accuracy. arXiv:2001.10827, 2020.

[3] S. Bellavia, G. Gurioli, and B. Morini. Adaptive cubic regularization methods with dynamic inexact
Hessian information and applications to finite-sum minimization. IMA Journal of Numerical Analysis,
41(1):764–799, 2021.

[4] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization algorithms with inexact
evaluations for nonconvex optimization. SIAM Journal on Optimization, 29(4):2881–2915, 2019.

[5] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. High-order evaluation complexity of a stochastic
adaptive regularization algorithm for nonconvex optimization using inexact function evaluations and
randomly perturbed derivatives. arXiv:2005.04639, 2020.

[6] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Quadratic and cubic regularization methods
with inexact function and random derivatives for finite-sum minimization. arXiv:2104.00592, 2021.

[7] A. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. A theoretical and empirical comparison of
gradient approximations in derivative-free optimization. arXiv:1905.01332, 2020.

[8] A. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic line search
algorithm with noise. arXiv:1910.04055, 2019.

[9] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-Lipschitz and
nonconvex minimization. Mathematical Programming, Series A, 149:301–327, 2015.

[10] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint. Worst-case evaluation
complexity for unconstrained nonlinear optimization using high-order regularized models. Mathemat-
ical Programming, Series A, 163(1):359–368, 2017.

[11] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic
trust region method via supermartingales. INFORMS Journal on Optimization, 1(2):92–119, 2019.

[12] Y. Carmon and J. C. Duchi. Gradient descent efficiently finds the cubic-regularized non-convex
Newton step. SIAM Journal on Optimization, 29(3):2146–2178, 2021.

[13] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, Newton’s
and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM Journal on
Optimization, 20(6):2833–2852, 2010.

[14] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part II: worst-case function-evaluation complexity. Mathematical Programming, Se-
ries A, 130(2):295–319, 2011.

29

[15] C. Cartis, N. I. M. Gould, and Ph. L. Toint. An adaptive cubic regularization algorithm for non-
convex optimization with convex constraints and its function-evaluation complexity. IMA Journal of
Numerical Analysis, 32(4):1662–1695, 2012.

[16] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Sharp worst-case evaluation complexity bounds for
arbitrary-order nonconvex optimization with inexpensive constraints. SIAM Journal on Optimization,
30(1):513–541, 2020.

[17] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Strong evaluation complexity bounds for arbitrary-order
optimization of nonconvex nonsmooth composite functions. arXiv:2001.10802, 2020.

[18] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, Series A, 159(2):337–375, 2018.

[19] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-region method and
random models. Mathematical Programming, Series A, 169(2):447–487, 2018.

[20] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on Opti-
mization. SIAM, Philadelphia, USA, 2000.

[21] F. E. Curtis and D. P. Robinson. Regional complexity analysis of algorithms for nonconvex smooth
optimization. arXiv:1802.01062v2, 2018.

[22] F. E. Curtis and K. Scheinberg. Adaptive stochastic optimization. arXiv:2001:06699, 2020.

[23] E. de Klerk and M. Laurent. Worst-case examples for Lasserre’s measure-based hierarchy for poly-
nomial optimization on the hypercube. Mathematics of Operations Research, 45(1):86–98, 2019.

[24] E. de Klerk and M. Laurent. Convergence analysis of a Lasserre hierarchy of upper bounds for
polynomial minimization on the sphere. Mathematical Programming, (to appear), 2020.

[25] S. Gratton, E. Simon, and Ph. L. Toint. An algorithm for the minimization of nonsmooth noncon-
vex functions using inexact evaluations and its worst-case complexity. Mathematical Programming,
Series A, (to appear), 2021.

[26] D. P. Kouri, M. Heinkenscloss, D. Rizdal, and B. G. van Bloemen-Waanders. Inexact objective
function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.
SIAM Journal on Scientific Computing, 36(6):A3011–A3029, 2014.

[27] A Maggiary, A. Wachter, I. Dolinskaya, and J. Staumz. A derivative-free trust-region algorithm for
the optimization of functions smmothed via Gaussian convolution using adaptive multiple importance
sampling. SIAM Journal on Optimization, 18(2):1478–1507, 2018.

[28] A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. J.
Wiley and Sons, Chichester, England, 1983.

[29] Yu. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2004.

[30] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, Series A, 108(1):177–205, 2006.

[31] Yu. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527–566, 2017.

30

[32] C. Paquette and K. Scheinberg. A stochastic line search method with convergence rate analysis.
SIAM Journal on Optimization, 30(1):349–376, 2020.

[33] C. W. Royer, M. ONeill, and S. J. Wright. A Newton-CG algorithm with complexity guarantees for
smooth unconstrained optimization. Mathematical Programming, Series A, 180:451–488, 2020.

[34] L. Slot and M. Laurent. Improved convergence analysis of Lasserres measure-based upper bounds for
polynomial minimization on compact sets. Mathematical Programming, (to appear), 2020.

[35] S. A. Vavasis. Nonlinear Optimization: Complexity Issues. International Series of Monographs on
Computer Science. Oxford University Press, Oxford, England, 1992.

[36] S. A. Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimization, 3(1):60–
80, 1993.

[37] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex optimization
under inexact Hessian information. Mathematical Programming, Series A, 184((1-2)):35–70, 2020.

[38] X. Zhang, C. Ling, and L. Qi. The best rank-1 approximation of a symmetric tensor and related
spherical optimization problems. SIAM Journal on Matrix Analysis, 33(3):806–821, 2012.

Appendix

Proof of Lemma 2.2
Let s∗k be a global minimizer of mk(s). By Taylor’s theorem, we have that, for all d,

0 ≤ mk(s∗k + d)−mk(s∗k) =

p∑
`=1

1

`!
∇`sT f,p(xk, s∗k)[d]`

+ σk
(p+ 1)!

[
p∑
`=1

1

`!
∇`s
(
‖s∗k‖p+1

)
[d]` +

1

(p+ 1)!
∇p+1
s

(
‖s∗k + τd‖p+1

)
[d]p+1

] (A.1)

for some τ ∈ (0, 1). We may now use the expression of ∇`s
(
‖s∗k‖p+1

)
given by [16, Lemma 2.4] in (A.1)

and deduce that, for any j ∈ {1, . . . , q} and all d,

−
j∑
`=1

1

`!
∇`sT f,p(xk, s∗k)[d]` − σk

(p+ 1)!

j∑
`=1

∇`s‖s∗k‖p+1[d]`

≤
p∑

`=j+1

1

`!
∇`sT f,p(xk, s∗k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

1

`!
∇`s‖s∗k‖p+1[d]` + ‖d‖p+1

]
.

(A.2)

It is now possible to choose δk,j ∈ (0, 1] such that, for every d with ‖d‖ ≤ δk,j ,

p∑
`=j+1

1

`!
∇`sT f,p(xk, s∗k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

1

`!
∇`s‖s∗k‖p+1[d]` + ‖d‖p+1

]

≤ 1
2θεj

δjk,j
j!
.

(A.3)

We therefore obtain that if δk,j is small enough to ensure (A.3), then (A.2) implies that

−
j∑
`=1

1

`!
∇`sT f,p(xk, s∗k)[d]` − σk

(p+ 1)!

j∑
`=1

∇`s‖s∗k‖p+1[d]` ≤ 1

2
θεj

δjk,j
j!
. (A.4)

31

and therefore that, for all j ∈ {1, . . . , q},

max
‖d‖≤δk,j

∆Tmk,j(s
∗
k, d) ≤ 1

2
θεj

δjk,j
j!
.

Thus the pair (s∗k, δk) is acceptable for Step 2 of the algorithm. If we assume now that xk + s∗k is not an
isolated feasible point, the above inequality and continuity of T f,p(xk, s) and its derivatives with respect
to s then ensure the existence of a feasible neighbourhood N ∗k of s∗k in which

max
‖d‖≤δk,j

∆Tmk,j(s, d) ≤ θεj
δjk,j
j!
. (A.5)

for all s ∈ N ∗k . We may then choose any sk in N ∗k such that, in addition to satisfying (A.5) and being

such that xk + sk is feasible, (2.17) also holds. Thus the definition of φ
δk,j

mk,j
(sk) in (2.18) gives that

φ
δk,j

mk,j
(sk) ≤ θεj

δjk,j
j!

(A.6)

and every such (sk, δk) is also acceptable for Step 2 of the algorithm.

Proof of Lemma 3.2
Let s∗k be a global minimizer of mk(s). We first consider the case where q ∈ {1, 2}. Then it is easy

to verify that, for each j ∈ {1, . . . , q}, the optimization problem involved in the definition of φ
δk,j

mk,j
(s∗k) (in

(2.18)) is convex and therefore that δk,j can be chosen arbitrarily in (0, 1]. The first case of Lemma 3.2 then

follows from the continuity of φ
δk,j

mk,j
(s) with respect to s. Unfortunately, the crucial convexity property is

lost for q > 2
Unfortunately, the crucial convexity property is lost for q > 2 and, in order to prove the second case,

we now pursue the reasoning of the proof of Lemma 2.2. We start by supposing that ‖s∗k‖ > 1. We may
then reduce the neighbourhood of s∗k in which sk can be chosen enough to guarantee that ‖sk‖ ≥ 1, which
then gives the desired result because of (A.5). Suppose therefore that ‖s∗k‖ ≤ 1. The triangle inequality
then implies that

‖∇`sT f,p(xk, s∗k)‖ ≤
p∑
i=`

1

(i− `)!
‖∇ixf(xk)‖ ‖s∗k‖i−`,

for ` ∈ {q + 1, . . . , p}, and thus, using, AS.1 and [16, Lemma 2.4], we deduce that

p∑
`=j+1

1

`!
∇`sT f,p(xk, s∗k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

∇`s‖s∗k‖p+1[d]`

]

≤
p∑

`=j+1

‖d‖`

`!

[
p∑
i=`

‖s∗k‖i−`

(i− `)!
‖∇ixf(xk)‖+

σk‖s∗k‖p−`+1

(p− `+ 1)!

]
.

We now call upon the fact that, since q ≥ 3 and Mk occurs by assumption, M(4)
k also occurs. Thus

p∑
`=j+1

1

`!
∇`sT f,p(xk, s∗k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

∇`s‖s∗k‖p+1[d]`

]

≤
p∑

`=j+1

‖d‖`

`!

[
Θ

p∑
i=`

‖s∗k‖i−`

(i− `)!
+
σk‖s∗k‖p−`+1

(p− `+ 1)!

]
.

32

We therefore obtain from (A.3) that any pair (s∗k, δs,j) satisfies (A.4) for ‖d‖ ≤ δs,j if

p∑
`=j+1

δ`s,j
`!

[
Θ

p∑
i=`

1

(i− `)!
‖s∗k‖i−` +

σk‖s∗k‖p−`+1

(p− `+ 1)!

]
+ σk

δp+1
s,j

(p+ 1)!
≤ 1

2
θεj

δjs,j
j!
. (A.7)

which, because ‖s∗k‖ ≤ 1, is in turn ensured by the inequality

p∑
`=j+1

δ`s,j
`!

[
Θ

p∑
i=`

1

(i− `)!
+ σk

]
+ σk

δp+1
s,j

(p+ 1)!
≤ 1

2
θεj

δjs,j
j!
. (A.8)

Observe now that, since δs,j ∈ [0, 1], δ`s,j ≤ δ
j+1
s,j for ` ∈ {j + 1, . . . , p}. Moreover, we have that,

p∑
i=`

1

(i− `)!
≤ e < 3, (` ∈ {j + 1, . . . , p+ 1}),

p+1∑
`=j+1

1

`!
≤ e− 1 < 2

and therefore (A.8) is guaranteed by the condition

j!(6Θ + 2σk) δs,j ≤
1

2
θεj , (A.9)

which means that the pair (s∗k, δs) satisfies (A.4) for all j ∈ {1, . . . , q} whenever,

δs,j ≤
1

2
δmin,k

def
=

θεj
2q!(6Θ + 2σk)

.

As in the proof of Lemma 2.2, we may invoke continuity of the derivatives of mk(s) with respect to s
to deduce that there exists a neighbourhood N ∗k of s∗k such that (A.5) holds for every s ∈ N ∗k and every
δk,j ≤ δmin,k. Choosing now sk to ensure (2.17) in addition to (A.5), we obtain that the pair (sk, δk,j)
satisfies both (2.17) and

φ
δk,j

mk,j
(sk) ≤ θεj

δjk,j
j!
.

The desired conclusion then follows with

κδ(σ) =
νθ

q!(6Θ + 2σ)

for any constant ν ∈ (0, 1). Moreover, κδ(σ) is clearly a decreasing function of σ.

33

