
Global and local information in structured derivative free

optimization with BFO

M. Porcelli
∗
and Ph. L. Toint

†

12 December 2019

Abstract

A structured version of derivative-free random pattern search optimization al-
gorithms is introduced which is able to exploit coordinate partially separable struc-
ture (typically associated with sparsity) often present in unconstrained and bound-
constrained optimization problems. This technique improves performance by orders
of magnitude and makes it possible to solve large problems that otherwise are to-
tally intractable by other derivative-free methods. A library of interpolation-based
modelling tools is also described, which can be associated to the structured or un-
structured versions of the initial BFO pattern search algorithm. The use of the
library further enhances performance, especially when associated with structure.
The significant gains in performance associated with these two techniques are il-
lustrated using a new freely-available release of BFO which incorporates them. A
interesting conclusion of the results presented is that providing global structural
information on a problem can result in significantly less evaluations of the objective
function than attempting to building local Taylor-like models.

Keywords: derivative-free optimization, direct-search methods, structured problems,
interpolation models.

Mathematics Subject Classification: 65K05, 90C56, 90C90.

1 Introduction

Derivative-free methods have enjoyed a continued popularity and attention from the very
early days of numerical optimization [6, 45, 28, 35] to nowadays [3, 15, 30]. As their name
indicates, such methods are aimed at solving nonlinear optimization problems without
using derivatives of the objective function, which can be either too costly to compute, or
simply unavailable (as is often the case in simulation-based applications). The methods

∗Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato,5, 40126, Bologna,
Italy. Email: margherita.porcelli@unibo.it

†Namur Center for Complex Systems (NAXYS), University of Namur, 61, rue de Bruxelles, B-5000
Namur, Belgium. Email: philippe.toint@unamur.be

1

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 2

fall into two broad classes: model-based techniques and pattern-search algorithms. In
the first class, a explicit local model of the objective function is built, which then used
for finding an better approximation of the sought minimizer. Early proposals in this
direction focused on unconstrained problems and include [53, 38, 39, 40, 41, 17], and
were later analyzed and/or extended to the constrained case (see [7, 13, 14, 11, 16, 42,
27, 48, 46, 44] among many others). The second class, also initially for unconstrained
problems [6, 45, 28, 35, 21, 1, 2], was later analyzed in [18, 19, 20, 51, 52, 22, 29, 26],
and also extended to more general contexts (see [4, 32, 43, 31, 36] for example).

Most of the contributions on derivative-free methods focus on small-scale unstruc-
tured problems. Indeed, building large-scale multivariate models is very expensive as it
requires a number of data points (and costly function evaluations) which quickly grows
with dimension: for the widely used quadratic polynomial models, this number grows
like the square of the problem’s size. As a consequence, model-based approaches are in
general unrealistic for moderate or large-scale applications. Similarly, the cost of the
sampling strategies at the heart of pattern-search techniques also explodes with problem
dimension and in practice restrict the application of these algorithms to optimization in
very few variables (a few tens).

The situation fortunately improves if, instead of pure black-box optimization, one
now considers the “gray box” case where one is allowed to exploit some underlying
problem structure (while still avoiding the use of any derivative). Known sparsity in the
objective function’s Hessian was considered in [9, 10] for methods based on quadratic
models, where it was shown that the growth in function evaluations with size is, for a
large class of sparse problems, essentially linear rather than quadratic. However, knowl-
edge of the Hessian sparsity pattern is rarely directly obtained in practice without the
knowledge of derivatives. What is much more common is that optimization is performed
on an application involving interconnected and possibly overlapping subsystems. While
the detailed analytic expression (or any derivative) of the subsystems’ models are often
unavailable, it is not unusual for their connectivity pattern to be known. Such problems
then often fall in the class of coordinate partially separable (or CPS) problems, where
one attempts to solve

min
x∈IR

f(x) =

q
∑

i=1

fi(xi) (1.1)

where each fi : IR
ni → IR is a possibly nonsmooth (or even non continuous) function

depending on a subset xi of the vector of variables x, where ni, the size of each xi,
is typically much smaller than the dimension of x. In practice it is indeed common
to see values of ni of the order of ten or less, even for problems involving thousands of
variables or more. Knowing the subsystems’ connectivity pattern then typically amounts
to knowing the xi and being able to evaluate the “element functions” fi individually.
While we have introduced the concept for the unconstrained formulation (1.1), this is
by no means restrictive, as constraints may be added without affecting the structure. In
the rest of this paper, we will assume that the problem’s variables are subject to simple
bounds, that is

ℓ ≤ x ≤ u, (1.2)

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 3

where ℓ and u are vectors in IRn such that ℓ ≤ u, all inequalities being understood
componentwise.

Optimizing coordinate partially separable problems(1) with model-based algorithms
was considered in [11], where it was shown that the requirements in terms of function
evaluations now depend on the maximum value of the ni, which is often independent
of the true problem size. The use of the same problem structure was also initiated in
[43], where a first pattern-search algorithm was described which could solve problems of
a respectable size.

The purpose of the present paper is to build on these contributions and propose (in
Section 2) a new derivative-free algorithm which is able to exploit the problem struc-
ture at pattern-search level (known as a “poll step”) as well as a library of partially
separable multivariate polynomials to be combined with the structured poll step in a
user-controlled “search step” (in Section 3). These features are included in a new ver-
sion of the BFO package [36], which is then used to numerically illustrate the impact
of these features on numerical performance (in Section 4). In particular, it is shown

that the use of the global structural CPS information is often more efficient that that

of local approximations of the objective’s Taylor expansion. It also shown that a com-

bined approach may also be advantageous. Some conclusions and perspectives are finally
presented in Section 5.

Notation

The j-th component of a vector x is denoted by [x]i, while [x]I denotes the subvector
defined by considering the components of x indexed by the index set I.

2 Exploiting coordinate partial separability in the poll step

While our discussion is based on BFO (the Brute Force Optimizer), a random pattern
search algorithm proposed by the authors in [36], the concepts discussed here extend to
other methods of the same type. Since the full description of BFO is somewhat involved
and many of its features irrelevant for our present discussion, we avoid restating it in
detail in the interest of clarity, brevity and generality, and refer the reader to [36] for an
in-depth description. For our present purposes, it is enough to describe it as a general
pattern-search method consisting of a succession of iterations, each containing a search
step (discussed in Section 3), a poll step, in which new (hopefully better) functions
values are generated by taking steps along randomly generated orthogonal sets of search
directions, and an update of the stepsizes as the iterations proceed (see Algorithm 2.1).

(1)Coordinate partially separable problems are a subclass of the more general partially separable prob-
lems, where the objective function takes the form f(x) =

∑q

i=1 fi(Uix), where the Ui are low-rank
matrices.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 4

Algorithm 2.1: An simplified outline of the BFO algorithm

Starting from a current iterate x and until stepsizes fall under a prescribed accuracy
level,
search step: ask the user to provide a new (potentially improved) approximate

minimizer of f , typically using problem specific modelling techniques;

poll step: for j = 1, . . . , n or until “sufficient decrease” in f is obtained

• define a step of the form αjdj where αj is the current stepsize and dj is

a randomly generated “polling direction” orthonormal to {di}j−1
i=1 ,

• evaluate f(x+ αjdj) and, if necessary, f(x− αjdj),

If sufficient decrease is obtained, replace x by x ± αjdj , depending on which
step gave decrease;

stepsize update: if sufficient decrease is obtained, increase the stepsizes {αj}nj=1

or keep them unchanged; decrease them if no decrease was obtained.

For simplicity of exposition, we also assume, as indicated by (1.1), that all variables
are continuous(2) and that the polling directions are given by the canonical coordinate
vectors {ei}ni=1. As was observed in [43], if a step along ej is made, it is clear from
(1.1) that only a subset of the element functions fi will be affected and thereby need
recomputation: only the fi such that [x]j appears in xi are concerned. Moreover, if
variable k does not occur in any of the fi involving variable j, a step of the form
αjej+αkek (αj and αk are stepsizes) can be computed involving completely disjoint sets
of element functions: those involving variable j and those involving variable k. Crucially,
the cost of this combined step is potentially much less costly than an unstructured step
along direction ej where the complete f would be evaluated.

Exploiting these observations in a systematic way is the key to the new structured
poll step. More specifically, let Xi (i = 1, . . . , q) be the subset of {1, . . . , n} defined by
the components of x which appear in xi, that is xi = [x]Xi

. Then, following ideas in [43],
this structure is first pre-processed as follows.

1. The structure is first inverted in that sets {Ej}nj=1 are built such that

i ∈ Ej if and only if j ∈ Xi.

The sets Ej contains the indeces of all element functions fi involving variable j.

2. Using lexicographic sorting, sets of variables {Ik}pk=1 corresponding to identical

(2)We deliberately ignore in this paper the substantial complications arising from the use of integer or
categorical variables, although these variable types are supported by BFO.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 5

lists of elements Ej are constructed, that is

j1 ∈ Ik and j2 ∈ Ik if and only if Ej1 = Ej2
def
= Yk.

The elements in each Yk are thus indistinguishable as far as their dependence of
the problem’s variables is concerned.

3. Independent collections {Ch}mh=1 of Ik are then constructed by applying a greedy
algorithm, independence being understood as the property that

Ik1 ⊆ Ch and Ik2 ⊆ Ch if and only if Yk1 ∩ Yk2 = ∅.

As in [43], it can be verified that, for each h ∈ {1, . . . ,m},

Vh
def
=

⋃

k|Ik⊆Ch
Ik ⊆ {1, . . . , n}

and also that
Mh

def
=

⋃

k|Ik⊆Ch
Yk ⊆ {1, . . . , q}. (2.1)

Thus steps in variables belonging to different sets Ik in Ch can be computed indepen-
dently (and in parallel). Moreover, this process only involves a subset Mh of the set of
all element functions.

Once the {Ch}mh=1 and {Mh}mh=1 are known, we may define the subspaces

Sk
def
= span {ej | j ∈ Ik} ,

the “inactive” index sets for the h-th collection as

Nh = {1, . . . , n} \ Vh for h ∈ {1, . . . ,m},

and xSk
the projection of of the current iterate x onto Sk. The new structured poll step

is then given by Algorithm 2.2.

As is standard in a poll step, a objective function decrease may not be obtained with
the current choice of stepsizes, in which case x+Sk

= xSk
and fYk

(xSk
) = fYk

(x+Sk
) (see

Step 2 of Algorithm 2.1).
Once again we stress the fact that using the successive collections {Ch}mh=1 is not

mandatory (even if it clarifies the overall evaluation cost) and that poll-steps can be
performed on the subspaces {Sk} using the restricted functions {fYk

} completely inde-
pendently and in parallel.

Compared with the method described in [43], the algorithm described above is both
simpler and more efficient, as it performs complete poll steps using random orthogonal
directions in each of the subspaces Sk (instead of only retaining the best increment for

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 6

Algorithm 2.2: Structured poll step

For h = 1, . . . ,m,
• for each k such that Ik ⊆ Ch perform a standard poll step (using random
orthogonal directions in Sk) starting from xSk

on the restricted function

fYk
=

∑

i∈Yk

fi,

producing a potentially improved x+Sk
and decrease fYk

(xSk
)− fYk

(x+Sk
) ≥ 0;

• define a new iterate x+ by

[x+]Ik = x+Sk
if Ik ⊆ Ch

and
[x+]Nh

= [x]Nh
otherwise,

and the corresponding objective function decrease by

f(x+)− f(x) =
∑

k|Ik⊆Ch

[

fYk
(xSk

)− fYk
(x+Sk

)
]

.

• If sufficient objective function has been obtained, terminate the poll step.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 7

steps along a fixed positive basis). Moreover, the mechanism used by BFO to adapt
the stepsizes (see [36]) is more elaborate than the somewhat adhoc technique described
in [43, Section 2.3]. It was also observed in practice that the stepsize reduction can be
slightly faster than in the standard unstructured case. This faster reduction is translated
in the algorithm by a stepsize shrinking factor which is raised to the power ι ≥ 1. In
the BFO implementation of the new poll step, ι is an algorithmic parameter which, like
all such parameters [36], can be (and has been) trained for improved performance (see
Section 4).

We now discuss the cost of applying the structured poll step of Algorithm 2.2 com-
pared with that of using Step 2 of Algorithm 2.1. Consider an unsuccessful poll step
first, that is a poll step during which sufficient decrease is not obtained. (Note that such
steps must occur as the stepsizes have to become sufficiently small for the algorithm
to terminate.) Because of (2.1), we see that, for a given h, the cost of evaluating the
element function fi for i ∈ Mh once cannot exceed that of evaluating f , which we denote
by cf . As forward and backward moves are considered for every polling direction (at
an unsuccessful poll step), the total evaluation cost of the unsuccessful structured poll
step is at most than 2mcf . By comparison, the cost of an unsuccessful unstructured poll
step is equal to 2ncf . Since it is very often the case that m ≪ n, the evaluation cost

of the structured step is typically only a small fraction of that of the unstructured one.
Because the poll step is terminated as soon as sufficient decrease is obtained, the cost of
successful structured and unstructured poll steps is slightly more difficult to compare.
As discussed in [26], the expected number of polling directions considered in a single
successful (unstructured) poll step is small (typically 2 or 3). Two variants are however
possible for the structured step. In principle, it can be terminated as soon as sufficient
decrease is obtained on a given subspace Sk. In the BFO implementation discussed in
Section 4, the loop on the subspaces associated to a collection Ch is always completed
before sufficient decrease triggers poll-step termination. This choice appears to be effi-
cient and allows for parallel execution of the subspace-restricted poll steps for different
subspaces. Its evaluation complexity therefore depends on the number of subspace col-
lections Ch examined (which is at most m). If this number is also a very small integer (as
is often the case), the evaluation cost of the structured poll step is very similar to that
of the unstructured one. However, the objective function decrease obtained is typically

much larger, as it corresponds to a number of unstructured successful poll steps given
by the total number of subspaces Sk considered in the calculation. Of course, further
gains may be obtained in the structured case if the parallelism between the subspaces
Sk is exploited.

While the structured poll step is extremely efficient (as will be seen in Section 4),
it still has a potential drawback. Because the random poll directions are constrained
to remain in each of the Sk, they are not random directions in the complete space IRn,
and convergence is obtained, following [26], to points where no further decrease can be
obtained in each of these subspaces. This unfortunately does not imply that no further
decrease can be obtained for f . A second pass is therefore necessary for obtaining this
desirable property. This second pass does not use structure and is therefore considerably

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 8

less efficient. However, this is mitigated by the observation that most (and sometimes all)
the decrease in objective function value is obtained in the first pass, the second pass often
only playing the role of a (possibly mildly expensive) convergence check. Moreover, if
sufficient decrease is identified during the second pass, a return is made to the structure-
using mechanism of the first in an attempt to efficiently improve the decrease obtained.
Fortunately, the overall efficiency of the structured minimization remains, in all example
we have seen, orders of magnitude better than that of the unstructured one. Moreover,
it is not unusual for applications of derivative-free algorithms that the user is above all
interested in obtaining a significant decrease in the objective function and is not so much
in extracting the last carat of decrease, let alone in checking local optimality. In this
case, the second unstructured pass may often be unnecessary, bringing the optimization
cost further down.

3 BFOSS: a BFO-callable library of structured models

The coordinate partially separable structure of (1.1) can also be exploited in the user-
controlled search step (i.e., Step 1 of Algorithm 2.1). As is common for such steps (see
[31], for instance), the idea is to provide a surrogate model of the objective function in
the neighbourhood of the current iterate xbest, which is built using information gathered
in the course of the algorithm. This model can then be minimized (typically within some
trust region) to provide an improved guess of the minimizer. We now describe a library
named BFOSS for computing such a step while exploiting structure. As in [11, 46], it
considers a surrogate model whose structure mirrors that of (1.1) in that it shares the
same coordinate partially separable definition. This is achieved by constructing separate
multivariate polynomial interpolation models for each of the fi (restricted to their free
variables). General multivariate polynomial interpolation models follow the principles of
[13, 48, 16], while their use in the context of partially separable problems is inspired by
[11, 46] and the necessary adaptations used here for handling the bound constraints are
similar to those discussed in [27]. We again focus, in what follows, on the algorithmic
aspects relevant to our context. We first describe our strategy for the unstructured case
(q = 1) and then specialize it to the partially separable case (q ≥ 1).

Let m(x) denote an interpolating polynomial of the form

m(xbest + s) = c+ gT s+
1

2
sTHs (3.1)

(for some c ∈ IR, g ∈ IRn and some symmetric n-by-n matrix H) satisfying the interpo-
lation conditions

m(yi) = f(yi), i = 1, . . . , p (3.2)

for some interpolation set Y = {yi}pi=1. In BFOSS, models are at most quadratic and at
least linear, and hence p is at most the dimension pquad = n+ 1

2n(n+ 1) of the space of
polynomials in n variables of degree at most 2 and at least the dimension plin = n+1 of
the space of polynomials in n variables of degree at most 1. In between, a model can be
constructed using pdiag = 2n + 1 points by approximating H by a diagonal matrix and

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 9

obtaining the so-called diagonal quadratic case. In fact, BFOSS also allows to choose a
minimal polynomial using 2 points only. Therefore p ∈ {2, plin, pdiag, pquad}.

Finding a quadratic model that satisfies conditions (3.2) is equivalent to solving the
linear system

Mφα = f(Y) (3.3)

with coefficient matrix Mφ of dimension p × pquad, α ∈ IRpquad and [f(Y)]i = f(yi), i =
1, . . . , p, whose solution(s) gives the representation of the model in a suitable basis(3) φ of
polynomials of degree at most 2. If the coefficient matrix Mφ is square and nonsingular,
then the model m is unique. If p < pquad the linear system is underdetermined the
resulting interpolating polynomials may not exist or may no longer be unique, and
different approaches to construct the model m(x) are possible [16]. In this case, BFOSS
build a model by taking the minimum 2-norm solution of (3.3).

As a result of the search step, a new tentative iterate x+ is then computed by
minimizing the model m in the intersection between the trust-region and the feasible
set, that is

{xbest + s : max(l − xbest,−∆) ≤ s ≤ min(u− xbest,∆)} (3.4)

where ∆ > 0 is the current trust-region radius, and f(x+) is evaluated. BFOSS allows
to choose between a bound- constrained variant of the Moré-Sorensen trust-region algo-
rithm and a projected gradient trust-region algorithm to solve (3.4) [33, 8, 50, 49]. As
standard, the trust region radius ∆ is updated on the basis of the ratio of the achieved
to predicted reduction ρ = (f(x+)− f(xbest))/(m(x+)−m(xbest)) as follows:

∆ =

min{α1∆,∆max} if ρ > η2
∆ if ρ ∈ [η1, η2]
max{ǫm, α2‖s‖} else

where α1 > 1, α2 ∈ (0, 1), ∆max > 0 and 0 < η1 < η2 < 1 are standard trust-region
parameters [12, Chapter 17], ǫm denotes the machine precision. On the first BFOSS
entry, ∆ is set equal to the current mesh size. At all the other entries, if ∆ is too small,
i.e. ∆ < ∆min with ∆min defined by the user, the radius ∆ is restarted to the current
mesh size. If ∆ is still too small after restart, BFOSS is terminated.

Finally, all the newly evaluated points (x+ and, when relevant, the new interpolation
points) are returned to the main BFO iteration with their associated function values.

It is well-know that the fact that the model m is well-defined not only depends on
the number of points in Y , but that a further geometric condition (known as poisedness)
is also required (see [16] for details).

We now describe the strategy used in BFOSS to define the interpolation set Y ,
which combines the use of models of various degrees and types and ensures the neces-
sary poisedness condition. Let p̄ be the number of points required to build the initial
interpolation model chosen by the user.

A first set Y of p̄ points is built around xbest extracting from the recorded BFO
history (past points and function values), the closest points to xbest in the 2-norm and

(3)We use the standard monomial basis.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 10

associated function values (including xbest/f(xbest)). If not enough points can be found
in the history, some random points in the trust-region are added. Then, the matrix
Mφ in (3.3) is built together with its generalized inverse M †

φ, depending on the chosen
model. In case of ’sub-basis’ model, Mφ is a square p̄× p̄ matrix, while Mφ is a (possibly)
nonsquare matrix p̄× pquad in case of a least-squares 2-norm model (‘under-ℓ2’).

The generalized inverse M †
φ is built from a truncated SVD of Mφ. In fact, the SDV

factorization of Mφ is first computed and the singular values believed “redundant” are
set equal to zero. We say that a singular value is redundant if its value is lower than
the maximum singular value scaled by a user-defined parameter kill that measure the
maximum ill-conditioning allowed (by default kill = ∞ and kill = 1012 for structured
and unstructured problems, respectively). Finally, the pseudoinverse is computed from
this regularized SVD.

In the case where some redundant singular values are detected, corresponding points
in Y are progressively removed, replaced by random points and M †

φ rebuilt. This phase
does not require the computation of additional function values.

OnceMφ is considered sufficiently well-conditioned, the poisedeness of the current set
Y is measured by computing the maximum absolute value of the Lagrange polynomials
in the neighbourhood. Based on this measure, some points in Y can be replaced by
some “far” points available in the BFO history but not used so far. Then, Y is possibly
further improved by performing exchanges until the improvement in poisedness becomes
moderate enough [47]. Finally, the obtained (reasonably conditioned) M †

φ matrix is used
to define the linear combination of the Lagrange polynomials which interpolates function
values at the interpolation points.

The adaptation of this strategy to the partially separable case is straightforward:
one simply applies the same technique to define interpolation models mi for each of the
element functions fi(xi)(i = 1, . . . , q), using the fact that BFO also records evaluation
history element by element. Note that each model mi has at most ni variables and
approximate fi’s around the projection of xbest onto the subspace IRni . The final trial
point x+ is then computed by minimizing the global quadratic model

m(xbest + s) =

q
∑

i=1

mi(xbest + s),

in the box (3.4).
We conclude this section by noting that the BFOSS library is distinct from BFO

itself (they come in different files), although it interacts with it. But its use or even
presence is not necessary for running the main package.

4 Numerical illustration

We first provide some numerical illustration of our claim that the structured poll step
is more efficient than the unstructured one. For this purpose, we compare the struc-

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 11

tured and unstructured version of BFO(4) on a set of variable dimension test problems
extracted from CUTEst [25] and/or already used in [43] for the most part.

For each problem, we considered dimensions ranging from around 10 to 10000, when-
ever solvable in reasonable time(5). They are partitioned in four dimension-dependent
test sets: small, smallish, medium and large. Their main characteristics are detailed in
Table 4.1, but we now give some additional information.

• The original BEALE problem from CUTEst only has two variables. The variant
BEALES used here is obtained by juxtaposing n/2 copies of the original problem,
resulting in a totally separable problem (hence the S). It is useful as it exposes how
well a method can exploit such an important structure.

• The function NZF1 is derived from that published in [43]. Its precise formulation
is detailed in Appendix C. It reduces to the version of [43] for n = 13.

• The CONTACT problem is a bound-constrained minimum surface problem involving
nonlinear surface boundaries and an obstacle from below the surface. It is also
described in Appendix B.

• The CUTEst minimum-surface problem NLMINSRF only differs from LMINSURF (also
in CUTEst) in that the surface boundary is nonlinear.

• The BROWNAL6 problem is that presented in [43] under the name ’Brown almost
linear’.

• In the original MOREBV problem, the distance from the starting point to the solution
decreases with dimension, which makes it less interesting for large problems. We
use here a version of the problem where the original starting point is multiplied by
log10(n) to compensate.

• The JNLBRNG1 is the journal bearing problems of MINPACK2 [5].

These problems are typical of a very large class of medium/large-scale applications,
where, although q obviously depends on n, bothm and maxk |Ik|, the maximal dimension
of any subspace Sk, do not.

Our experiments were conducted using a new release of BFO, which contains both
the new structure-exploiting poll step and the BFOSS library. In order to train the
parameter ι defining the faster stepsize decrease in the structured optimization pass,
we selected, for each of the above problems, the instance of third smallest dimension
(mostly n ≈ 100) and performed training to improve the resulting data profile (see [37]).
The experimental guess of ι = 1.25, was only very marginally improved(6) to 1.2550.

(4)It may be recalled that the unstructured BFO was shown in [36] to be quite competitive, in particular
when compared with NOMAD [31].

(5)Eight hours using Matlab R2017b on a Intel(R) Xeon(R) CPU E3-1245 v5 @ 3.50GHz machine with
64 GB RAM.

(6)We used the BFO default training accuracy requirement ǫt = 0.01.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 12

Problem instance’s dimensions (n) q maxk |Ek| m maxk |Ik|
small smallish medium large

ARWHEAD 10 50, 100 500, 1000 5000, 10000 n− 1 2 2 1
BDARWHD 10 50, 100 500, 1000 5000, 10000 n− 2 3 3 1
BDEXP 10 50, 100 n− 2 3 3 1
BDQRTIC 10 50, 100 500, 1000 5000, 10000 n− 4 5 5 1
BEALES 10 50, 100 500, 1000 5000, 10000 n/2 2 1 2
BROYDN3D 10 50, 100 500, 1000 5000, 10000 n− 1 3 3 1
BROWNAL6 10 50, 102 502, 1002 5002, 10002 (n− 2)/4 6 2 4
CONTACT 15 64, 144 400, 900 2500, 4900 (

√
n− 1)2 4 4 1

ENGVAL 10 50, 100 500, 1000 5000, 10000 n− 1 2 2 1
DIXMAANA 15 51, 102 501, 1002 5001, 10002 n 4 4 1
DIXMAANI 15 51, 102 501, 1002 5001, 10002 n 4 6 1
FREUROTH 10 50, 100 500, 1000 5000, 10000 n− 1 2 2 1
HELIX 11 21, 101 501, 1001 5001, 10001 (n− 1)/2 3 2 2
JNLBRNG1 24 64, 144 400, 900 2500, 4900 4(t+ 1)2 3 3 1

(n = 2(t+ 2)(t+ 1)
LMINSURF 16 64, 144 400, 900 2500, 4900 (

√
n− 1)2 4 4 1

MOREBV 12 52, 102 502, 1002 5002, 100002 n 3 3 1
NLMINSRF 16 64, 144 400, 900 2500, 4900 (

√
n− 1)2 4 4 1

NZF1 13 39, 130 650, 1300 6500, 13000 (7n/13)− 2 6 4 2
POWSING 20 52, 100 500, 1000 5000, 10000 n/4 4 1 4
ROSENBR 10 50, 100 500, 1000 5000, 10000 n/2 2 1 2
TRIDIA 10 50, 100 500, 1000 5000, 10000 n 2 2 1
WOODS 20 40, 200 400, 2000 4000, 10000 n/4 4 1 4

Table 4.1: Characteristics of the test problem instances

Note that other BFO algorithmic parameters were set to their default values. For small
problems, the reported results are an average of 30 independent runs, for smallish 10
runs for medium ones, 5 runs and a single run for the large ones. All the results discussed
in this section are reported in Table 1.3 in Appendix.

4.1 Exploiting structure in the poll step

The results obtained by running the new structure-exploiting version of BFO (with the
trained ι) are presented in Table 4.2. This table reports the number of complete function
evaluation to obtain an approximate(7) minimizer for each of the instances of Table 4.1.
For each instance, we give the number of required objective-function (full) evaluations
for structure exploiting (first) and standard (second, no structure exploitation) versions
of BFO.

It clearly results from Table 4.2 that it is possible to solve large partially-separable

problems without using derivatives at an acceptable cost in number of function evalua-

tions. Using the structure is crucial if the problem size exceeds ten or so. In fact, a
significant fraction of the problems of that size can’t be solved at all in a reasonable
number of evaluations if structure is neglected: direct derivative-free methods like BFO

(7)We used the BFO default accuracy requirement ǫ = 0.0001. We also stress that the algorithmic
parameters in BFOSS have been trained for improved performance (as all other parameters of BFO) on
the small test-set, using the data profile performance measure [37].

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 13

Problem small smallish medium large

ARWHEAD 79/962 91/11859 97/36085 146/∞ 194/∞ 389/∞ 618/∞
BDARWHD 101/2152 70/∞ 71/∞ 81/∞ 76/∞ 77/∞ 77/∞
BDEXP 1661/21122 13218/∞ 34409/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞
BDQRTIC 290/2468 301/∞ 298/∞ 393/∞ 542/∞ 1150/∞ 1480/∞
BEALES 275/∞ 275/∞ 275/∞ 275/∞ 275/∞ 300/∞ 325/∞
BROYDN3D 308/1225 199/22244 273/74758 304/∞ 370/∞ 640/∞ 675/∞
BROWNAL6 15773/6171 4325/∞ 2788/∞ 2682/∞ 2847/∞ 3059/∞ 3118/∞
CONTACT 265/268 221/30452 442/∞ 1009/∞ 1761/∞ 3589/∞ 5952/∞
DIXMAANA 185/2358 189/17357 240/55748 226/∞ 375/∞ 310/∞ 756/∞
DIXMAANI 185/17702 186/∞ 184/∞ 230/∞ 265/∞ 709/∞ 798/∞
ENGVAL 143/1567 155/30400 157/∞ 159/∞ 159/∞ 159/∞ 159/∞
FREUROTH 257/83101 181/∞ 191/∞ 185/∞ 192/∞ 233/∞ 317/∞
HELIX 131/9931 152/∞ 167/∞ 298/∞ 388/∞ 883/∞ 1070/∞
JNLBNG1 101/734 301/27567 427/∞ 944/∞ 1393/∞ 1909/∞ 1799/∞
LMINSURF 306/318 461/23692 1065/∞ 3301/∞ 8506/∞ 29961/∞ ∞/∞
MOREBV 7010/7154 60/22732 47/1923 47/9001 47/18001 47/90001 47/∞
NLMINSRF 412/415 579/29409 1082/∞ 8853/∞ 3412/∞ 31619/∞ ∞/∞
NZF1 177/1480 225/61772 625/∞ 684/∞ 667/∞ 946/∞ 2228/∞
POWSING 716/20605 824/∞ 849/∞ 988/∞ 1036/∞ 1164/∞ 1148/∞
ROSENBR 361/13241 361/∞ 384/∞ 436/∞ 461/∞ 636/∞ 736/∞
TRIDIA 440/3073 316/∞ 314/∞ 345/∞ 293/∞ 277/∞ 278/∞
WOODS 1609/∞ 1747/∞ 1924/∞ 2241/∞ 2927/∞ 4515/∞ 5002/∞

Table 4.2: The numbers of objective function evaluations required by the struc-
tured/unstructured versions of BFO for the problem instances of Table 4.1, as a function
of increasing problem size (∞ meaning that more than 100000 evaluations were needed).

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 14

0 500 1,000 1,500
10−10

10−4

102

f -evaluations

BROYDEN3D for n = 10

unstructured

structured (ps)

0 500 1,000 1,500

10−8

10−3

102

f -evaluations

BROYDEN3D for n = 50

unstructured

structured (ps)

Figure 4.1: The evolution of f as a function of the number of (complete) evaluations for
BROYDEN3D for n = 10 and n = 50

0 500 1,000 1,500
10−8

10−3

102

f -evaluations

BROYDEN3D for n = 100

unstructured

structured (ps)

0 500 1,000 1,500

10−5

100

f -evaluations

BROYDEN3D for n = 500

unstructured

structured (ps)

Figure 4.2: The evolution of f as a function of the number of (complete) evaluations for
BROYDEN3D for n = 100 and n = 500

proceed by sampling, and this technique badly suffers from the curse of dimensionality.
A comparison of the above results with those of Table 2 in [43] also shows that

the structured BFO significantly outperforms the simpler algorithm presented in that
reference.

We now illustrate our comments of Section 2 about the relative efficiency of the
two polling passes. Figures 4.1 to 4.3 show, for the BROYDEN3D problems in dimensions
ten to one thousand, the objective function decreases obtained by the new BFO using
structure (plain black line) and that obtained by the standard version of BFO which
ignores structure (plain green line). These decreases are expressed as a function of the
number of (complete) objective-function evaluations.

The rate of decrease of the structured BFO is very clearly much faster than that of
the unstructured variant. Moreover, the two passes of the structure-exploiting algorithm

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 15

0 500 1,000 1,500
10−8

10−2

104

f -evaluations

BROYDEN3D for n = 1000

unstructured

structured (ps)

Figure 4.3: The evolution of f as a function of the number of (complete) evaluations for
BROYDEN3D for n = 1000

are very noticeable, the first pass being significantly faster and yielding most of the final
decrease. We observe that the length of the second pass increases with size, which
is expected because the space to sample in the second pass increases in dimension.
However, because the first pass already made such good progress, the effort spent in
the second pass remains acceptable, at least for the problem sizes considered here. By
contrast, the performance of the standard unstructured version of BFO quickly degrades
with size: for small dimensions, one notices the staircase-like decrease which is typical
of pattern search methods. In this test problem, the first poll step is unsuccessful,
leading to a full 2n function evaluations before the stepsize is reduced. While this can
be acceptable for small n, it becomes more problematic as n grows. For larger problems,
the structured variant has already terminated before the first poll step is completed
in the unstructured method. For the instance in 10 variables, one also notices (in the
left picture of Figure 4.1) that it can be beneficial to reapply the structured poll-step
mechanism of the first pass after a sufficient decrease in the second pass.

The behaviour of the structured variants on problem BDEXP finally merits a com-
ment. This problem features a very flat objective function near the solution and, while
the objective function value is decreased quickly, the mechanism of the pattern search
method takes many iterations to declare optimality and terminate.

4.2 Exploiting structured models in the search step

We now turn to illustrating the performance which can be obtained using the BFOSS
model library described above, and also compare it with the pure (structured and un-
structured) sampling strategy of BFO alone. In the experiments reported next, we use
fully quadratic models (p = pquad), the Moré-Sorensen method for maximizing the La-
grange polynomials in the trust-region and the truncated conjugate-gradient algorithm
to solve (3.4).

In this section we use performance and data profiles [23, 34] to compare different

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 16

variants of BFO. For this purpose, we measure performance in terms of numbers of
full objective function evaluations necessary for termination that is declared when the
following condition holds

f(x0)− f(x) ≥ (1− τ)(f(x0)− f∗) (4.1)

Here x0 is the starting point for the problem, x is the solution returned by a solver, f∗
is computed for each problem as the smallest value of f obtained by any solver within
a given number µf (µf = 100000 in our tests) of function evaluations, τ ∈ [0, 1] is a
tolerance that represents the the percentage decrease from the starting value f(x0) (we
used the standard value τ = 10−4). The stopping criterion (4.1) is suggested in [34] to
generate profiles and differs from the default stopping criterion on the minimum mesh
size used in BFO by default.

In Figure 4.4 four variants Of BFO are compared on the small test. These variants
are

unstructured: the standard unstructured BFO algorithm without using the BFOSS
models,

models: the standard unstructured BFO algorithm where a full-dimensional BFOSS
search step is attempted at every iteration,

ps: the version of BFO using the coordinate partially-separable structure, but without
using the BFOSS models,

ps & models: the version of BFO using the coordinate partially-separable structure,
using BFOSS models for each element function at every iteration.

This figure shows that, for small problems, the combined use of models and structure
is the best algorithmic choice, but also indicates that using structure without models
is clearly preferable to using models without structure. An interpretation of this ob-
servation is that providing global information on the problem (structure) outperforms
approximating local one (models). The situation is less clear when the size of the prob-
lems increases, as is shown in Figures 4.5 and 4.6, where one compares the performance
of the ’ps’ and ’ps & models’ variants on the smallish and medium test sets (the two
other variants fail for a large proportion of the smallish problems). Profiles on the large
test-set have not been generated since ’ps’ was the only variant that could solve the test
set in the maximum time allowed (8 hours).

In Figures 4.5 and 4.6, we see that the relative advantage obtained by the use of mod-
els for small problems progressively vanishes to disappear completely when the problem
size grows.

While comparing the number of function evaluations, as we have done above, is most
natural for derivative-free problems (the cost of an evaluation in real world applications
often dominating that of all computations internal to the algorithm), it is also interesting
to consider memory usage and internal computing effort. The pure unstructured variant
is clearly the most economical from both points of view (but at the price of being the

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 17

2 4 6 8 10
0

0.5

1

t

Performance profiles with τ = 10−4

unstructured
models
ps
ps & models

0 400 800 1,200
0

0.5

1

ν

Data profiles with τ = 10−4

unstructured
models
ps
ps & models

Figure 4.4: Performance and data profiles for unstructured/structured variants, with or
without models (small test set).

1 2 3 4 5 6
0

0.5

1

t

Performance profiles with τ = 10−4

ps
ps & models

0 100 200 300
0

0.5

1

ν

Data profiles with τ = 10−4

ps
ps & models

Figure 4.5: Performance and data profiles for structured variants, with or without models
(smallish test set).

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 18

1 2 3 4 5 6
0

0.5

1

t

Performance profiles with τ = 10−4

ps
ps & models

0 100 200 300
0

0.5

1

ν

Data profiles with τ = 10−4

ps
ps & models

Figure 4.6: Performance and data profiles for structured variants, with or without models
(medium test set).

less efficient in function evaluations). Because of the need to store the model itself,
memory usage can significantly increase for the variant using unstructured models (at
least for fully quadratic ones as discussed above). This is also the case for the structured
variants because they have to store, analyze (once) and exploit the structure, which
requires using additional pointers and lists. However, the additional memory necessary
to use models in the structured case remains typically modest, as only a collection of
small matrices needs being stored. We finally note that variants using models require
a significantly higher internal computational effort, mostly in the solution of the many
trust-region subproblems involved in managing the interpolation set and computing the
search step. This is apparent in Figure 4.6 and in Table 1.3 in Appendix A where we
report the number of function evaluations taken by all variants on all test sets using the
internal default stopping criterion. It is clear from the table that the worse reliability
of the ’ps & models’ variant is nearly entirely due to exhausting the maximum allowed
cpu-time (symbol ’†’ in the table).

5 Conclusions and perspectives

We have introduced a structured version of derivative-free random pattern search al-
gorithms which is able to exploit coordinate partially separable structure (typically as-
sociated with sparsity) present in unconstrained and bound-constrained optimization
problems. This techniques improves performance by orders of magnitude and makes it
possible to solve problems that otherwise are totally intractable by today’s derivative-free
methods.

We have also described a library of interpolation-based modelling tools which can

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 19

be associated to the structured or unstructured versions of the initial BFO pattern
search algorithm. The use of the library further enhances performance, especially when
associated with structure.

In comparing the benefits of using problem structure and building local models using
interpolation techniques, we have concluded that the former is likely to be more efficient,
in particular for larger problems.

A new release of the Matlab BFO package(8) featuring both use of structure and
modelling tools (as discussed in this paper) is freely now available online from

https://github.com/m01marpor/BFO

and the main new features are briefly sketched in Appendix D.
The selective use of structured models in conjunction with structured poll steps

remains an attractive option. However, the criteria defining the circumstances in which
interpolation models should be used, if at all, need further investigation. Many other
topics also merit research, including the design of “grayer” optimization tools which
could exploit derivatives available for part of the problem while adapting the techniques
described here for the rest.

Acknowledgements

Both authors are indebted to the University of Florence for its support while the present research was
being conducted.

References

[1] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston. Mesh adaptive direct search
algorithms for mixed variable optimization. Optimization Letters, 3(1):35–47, 2009.

[2] C. Audet and J. E. Dennis. Pattern search algorithms for mixed variable programming. SIAM
Journal on Optimization, 11(3):573–594, 2001.

[3] C. Audet and W. Hare. Derivative-free and blackbox optimization. Springer Verlag, Heidelberg,
Berlin, New York, 2017.

[4] C. Audet, S. Le Digabel, and Ch. Tribes. The mesh adaptive direct search algorithm for granular
and discrete variables. SIAM Journal on Optimization, 29(2):1164–1189, 2019.

[5] B. M. Averick and J. J. Moré. The Minpack-2 test problem collection. Technical Report ANL/MCS-
P153-0694, Mathematics and Computer Science, Argonne National Laboratory, Argonne, Illinois,
USA, 1992.

[6] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions. Journal
of the Royal Statistical Society. Series B (Methodological), 13(1):1–45, 1951.

[7] C. Cartis, J. Fiala, B. Marteau, and L. Roberts. Improving the flexibility and robustness of model-
based derivative-free optimization solvers. ACM Transactions on Mathematical Software, 45(3):32,
2019.

(8)Although this is unrelated to the subject of the present paper, we emphasize that the new BFO
release also features the important capability of handling categorical variables, as well as the new training
strategies discussed in [37], see Appendix D.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 20

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Trust-region and other regularization of linear least-
squares problems. BIT, 49(1):21–53, 2009.

[9] B. Colson and Ph. L. Toint. Exploiting band structure in unconstrained optimization without
derivatives. Optimization and Engineering, 2:349–412, 2001.

[10] B. Colson and Ph. L. Toint. A derivative-free algorithm for sparse unconstrained optimization
problems. In A. H. Siddiqi and M. Kočvara, editors, Trends in Industrial and Applied Mathematics,
pages 131–149, Dordrecht, The Netherlands, 2002. Kluwer Academic Publishers.

[11] B. Colson and Ph. L. Toint. Optimizing partially separable functions without derivatives. Opti-
mization Methods and Software, 20(4-5):493–508, 2005.

[12] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on
Optimization. SIAM, Philadelphia, USA, 2000.

[13] A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free methods for
unconstrained optimization. In A. Iserles and M. Buhmann, editors, Approximation Theory and
Optimization: Tributes to M. J. D. Powell, pages 83–108, Cambridge, England, 1997. Cambridge
University Press.

[14] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of sample sets in derivative free opti-
mization. Part I: polynomial interpolation. Technical Report 03-09, Departamento de Matemática,
Universidade de Coimbra, Portugal, 2003. Revised September 2004.

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of interpolation sets in derivative free
optimization. Mathematical Programming, Series B, 111(1-2):141–172, 2008.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, USA, 2009.

[17] A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for unconstrained deriva-
tive free optimization. In G. Di Pillo and F. Gianessi, editors, Nonlinear Optimization and Appli-
cations, pages 27–47, New York, 1996. Plenum Publishing.

[18] I. D. Coope and C. J. Price. Frame-based methods for unconstrained optimization. Journal of
Optimization Theory and Applications, 107:261–274, 2000.

[19] I. D. Coope and C. J. Price. On the convergence of grid-based methods for unconstrained optimiza-
tion. SIAM Journal on Optimization, 11:859–869, 2001.

[20] I. D. Coope and C. J. Price. Positive basis in numerical optimization. Computational Optimization
and Applications, 21, 2002.

[21] J. E. Dennis and V. Torczon. Direct search methods on parallel machines. SIAM Journal on
Optimization, 1(4):448–474, 1991.

[22] E. D. Dolan, R. M. Lewis, and V. Torczon. On the local convergence of pattern search. SIAM
Journal on Optimization, 14(2):567–583, 2003.

[23] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math-
ematical Programming, 91(2):201–213, 2002.

[24] E. D. Dolan, J. J. Moré, and T. S. Munson. Optimality measures for performance profiles. SIAM
Journal on Optimization, 16(3):891–909, 2006.

[25] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Computational Optimization and
Applications, 60(3):545–557, 2015.

[26] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic descent.
SIAM Journal on Optimization, 25(3):1515–1541, 2015.

[27] S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-free
nonlinear bound-constrained optimization. Optimization Methods and Software, 21(4-5):873–894,
2011.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 21

[28] R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. Journal
of the ACM, 8:212–229, 1961.

[29] J. C. Lagarias, B. Poonen, and M. H. Wright. Convergence of the restricted NelderMead algorithm
in two dimensions. SIAM Journal on Optimization, 22:501–532, 2012.

[30] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta Numerica,
28:287–404, 2019.

[31] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Transactions on Mathematical Software, 37(4):1–44, 2011.

[32] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization. SIAM
Journal on Optimization, 10(3):917941, 2000.

[33] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific and
Statistical Computing, 4(3):553–572, 1983.

[34] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM Journal
on Optimization, 20(1):172–191, 2009.

[35] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,
7:308–313, 1965.

[36] M. Porcelli and Ph. L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlin-
ear bound-constrained optimization and equilibrium computations with continuous and discrete
variables. ACM Transactions on Mathematical Software, 44(1), 2017.

[37] M. Porcelli and Ph. L. Toint. A note on using performance and data profiles for training algorithms.
ACM Transactions on Mathematical Software, (to appear), 2019. arXiv:1711.09407.

[38] M. J. D. Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation. In S. Gomez and J. P. Hennart, editors, Advances in Optimiza-
tion and Numerical Analysis, Proceedings of the Sixth Workshop on Optimization and Numerical
Analysis, Oaxaca, Mexico, volume 275, pages 51–67, Dordrecht, The Netherlands, 1994. Kluwer
Academic Publishers.

[39] M. J. D. Powell. A direct search optimization method that models the objective by quadratic
interpolation. Presentation at the 5th Stockholm Optimization Days, Stockholm, 1994.

[40] M. J. D. Powell. Trust region methods that employ quadratic interpolation to the objective function.
Presentation at the 5th SIAM Conference on Optimization, Victoria, 1996.

[41] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 7:287–336,
1998.

[42] M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization without deriva-
tives. Technical report, Department of Applied Mathematics and Theoretical Physics, Cambridge
University, Cambridge, England, 2009.

[43] C. J. Price and Ph. L. Toint. Exploiting problem structure in pattern-search methods for uncon-
strained optimization. Optimization Methods and Software, 21(2):479–491, 2006.

[44] L. Roberts and C. Cartis. A derivative-free gauss–newton method. Mathematical Programming
Computation, 2019.

[45] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
Computer Journal, 3:175–184, 1960.

[46] Ph. R. Sampaio and Ph. L. Toint. A derivative-free trust-funnel method for equality-constrained
nonlinear optimization. Computational Optimization and Applications, 61(1):25–49, 2015.

[47] Ph. R. Sampaio and Ph. L. Toint. Numerical experience with a derivative-free trust-funnel method
for nonlinear optimization problems with general nonlinear constraints. Optimization Methods and
Software, 31(3):511–534, 2016.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 22

[48] K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algorithms for derivative-
free unconstrained optimization. SIAM Journal on Optimization, 20(6):3512–3532, 2010.

[49] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, 20(3):626–637, 1983.

[50] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S.
Duff, editor, Sparse Matrices and Their Uses, pages 57–88, London, 1981. Academic Press.

[51] V. Torczon. On the convergence of the multidirectional search algorithm. SIAM Journal on Opti-
mization, 1(1):123–145, 1991.

[52] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization,
7(1):1–25, 1997.

[53] D. Winfield. Function minimization by interpolation in a data table. Journal of the Institute of
Mathematics and its Applications, 12:339–347, 1973.

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 23

A Full results

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 24

unstructured partially separable unstructured partially separable
Pb n no mod model no mod model Pb n no mod model no mod model

10 962 365 79 148 10 1199 1227 101 153
50 11859 91 122 50 70 381

100 36085 97 214 100 71 345
ARWHEAD 500 146 659 BDARWHD 500 81 691

1000 194 1015 1000 76 869
5000 389 5000 77

10000 618 10000 77
10 21122 222 1661 375 10 2468 883 290 345
50 ∞ 13218 828 50 ∞ 301 1189

100 34408 156 100 298 457
BDEXP 500 ∞ 137 BDQRTIC 500 393 373

1000 132 1000 542 503
5000 1150

10000 1480
10 ∞ ∞ 275 70 10 1225 456 308 96
50 275 85 50 22244 199 118

100 275 123 100 74758 273 151
BEALES 500 275 203 BROYDN3D 500 304 215

1000 275 234 1000 370 303
5000 300 5000 640

10000 325 10000 675
10 6171 1224 15773 567 16 268 126 265 107
50 ∞ 4325 816 64 30452 221 248

100 2788 1798 144 442 494
BROWNAL6 500 2682 † CONTACT 400 1009 1295

1000 2847 † 900 1761 †

5000 3059 2500 3589
10000 3118 4900 ∞ 5952

15 2358 558 185 113 15 17702 1405 185 152
51 17357 189 101 51 ∞ 186 195

102 55748 240 96 102 184 284
DIXMAANA 501 226 313 DIXMAANI 501 230 1231

1002 375 869 1002 265 1487
5001 310 5001 709

10002 756 10002 798
10 1567 629 143 83 10 83101 4570 257 2297
50 30400 155 94 50 ∞ 181 2183

100 ∞ 157 129 100 191 2712
ENGVAL 500 159 158 FREUROTH 500 185 †

1000 159 218 1000 192 †

5000 159 5000 233
10000 159 10000 317

11 9931 2094 131 101 24 734 65 101 19
51 ∞ 152 113 84 27567 301 779

101 167 108 180 ∞ 427 37
HELIX 501 298 122 JNLBRNG1 544 944 86

1001 388 152 1012 1393 92
5001 883 1984 1909

10001 1070 5304 1799
16 318 117 306 76 12 7154 391 7010 117
64 23692 461 243 52 22732 60 242

144 ∞ 1065 516 102 1923 47 263
LMINSURF 400 3301 1580 MOREBV 502 9001 47 55

900 8506 † 1002 18001 47 56
2500 29961 5002 90001 47
4900 ∞ 10002 ∞ 47

16 415 94 412 76 13 1480 1397 177 297
64 29409 579 358 39 61772 225 347

144 ∞ 1082 623 130 ∞ 625 523
NLMINSRF 400 8853 1824 NZF1 650 684 1476

900 3412 † 1300 667 2185
2500 31619 6500 946
4900 ∞ 13000 2228

20 20605 2110 716 776 10 13241 12229 361 299
52 ∞ 824 81 50 ∞ 361 534

100 849 84 100 384 729
POWSING 500 988 94 ROSENBR 500 436 1531

1000 1036 98 1000 461 2334
5000 1164 5000 636

10000 1148 10000 736
10 3073 139 440 17 20 ∞ 32414 1609 1538
50 ∞ 316 20 40 1747 1985

100 314 23 200 1924 4210
TRIDIA 500 345 30 WOODS 500 2241 †

1000 293 33 1000 2927 †

5000 277 5000 4515
10000 278 10000 5002

Table 1.3: The numbers of objective function evaluations required by the struc-
tured/unstructured versions of BFO with and without interpolation model for the prob-
lem instances of Table 4.1 (∞ meaning that more than 100000 evaluations were needed,
† meaning that cpu time exceed the maximum time allowed (8h))).

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 25

B Details for problem CONTACT

The problem CONTACT is a bilinear finite-element discretization of a membrane contact
problem defined on the unit square of IR2. This square is discretized in q = (

√
n − 1)2

element squares and the surface of the membrane “above” this element square is given
by

1

q

√

1 + (xSW − xNE)2 + (xSO − xNW)2,

where xSW , xNE , xSO and xNW give the height of the membrane at the four corners of
the element square. The membrane is fixed on the boundaries of the unit square to the
value of the function

b(x, y) = 1 + 8x+ 4y + 3 sin(2πx) sin(2πy). (2.1)

In addition, the membrane has to lie above a square flat obstacle of height 10 positioned
at [0.4, 0.6]2. The starting point is the projection of the vector given by the values of
(2.1) at each element square’s corner onto the feasible domain.

C Details for problem NZF1

The NZF1 problem is a variable dimension version of the eponymous nonlinear least-
squares problem defined in [43] as an example illustrating the concept of partially sepa-
rable functions. If n = 13ℓ, it is defined by

f(x1, . . . , xn) =
ℓ

∑

i=1

[

(

3xi − 60 + 1
10
(xi+1 − xi+2)

2
)2

+

x2i+1 + x2i+2 + x2i+3(1 + xi+3)
2 + xi+6 +

xi+5

(1 + x2i+4 + sin
(xi+4

1000

)

2

+
(

xi+6 + xi+7 − x2i+8 + xi+10

)2

+
(

log(1 + x2i+10) + xi+11 − 5xi+12 + 20
)2

+
(

xi+4 + xi+5 + xi+5 ∗ xi+9 + 10xi+9 − 50
)2

]

+

ℓ−1
∑

i=1

(xi+6 − xi+19)
2.

The starting point is the vector of all ones.

D BFO 2.0 and its new features

Release 2.0 of the Matlab BFO package is a major upgrade from Release 1 and includes
several important new problem-oriented possibilities. Beyond the BFOSS library of

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 26

model-based search steps described in Section 3 and the exploitation of CPS structure
described in Section 2, BFO 2.0 also supports the following new problem features.

Categorical variables. In addition to standard continuous and discrete variables, BFO
now supports the use of categorical variables. Categorical variables are uncon-
strained non-numeric variables whose possible ’states’ are defined by strings (such
as ’blue’). These states are not implicitly ordered, as would be the case for inte-
ger or continuous variables. As a consequence, the notion of neighbourhood of a
categorical variable is entirely application-dependent, and has to be supplied, in
one form of two possible forms, by the user. Moreover, the ’vector of variables’
is no longer a standard numerical vector when categorical variables are present,
but is itself a vector state defined by a value cell array of size n (the problem’s
dimension), whose i-th component is either a number when variable i is not cate-
gorical, or a string defining the current state of the i-th (categorical) variable. For
example, such a 4-dimensional vector state can be given by the value cell array

{{ ’blue’, 3.1416, ’green’, 2 }}.

Variable i is declared to be categorical by specifying xtype(i) = ’s’. If a problem
contains at least one categorical variable, it is called a categorical problem and op-
timization is carried on vector states (instead of vectors of numerical variables). As
a consequence, the starting point and the returned best minimizing point are vec-
tor states, and the objective function’s value is computed at vector states (meaning
that the argument of the function f is a vector state).

The user must specify the application-dependent neighbours (also called categorical
neighbourhoods) of each given vector state with respect to its categorical variables.
This can be done in two mutually exclusive ways.

1. The first is to specify static neighbourhoods. This is done by specifying, for
each categorical variable, the complete list of its possible states. The neigh-
bourhood of a given vector state vs wrt to categorical variable j (the hinge
variable) then consists of all vector states that differ from vs only in the state
of the j-th variable, which takes all possible values different from vs(j). In
this case, all variables of the problem retain their (initial) types and lower
and upper bounds.

2. The second is to specify dynamical neighbourhoods. This more flexible tech-
nique is used by specifying a user-supplied function whose purpose is to com-
pute the neighbours of the vector state vs ’on the fly’, when needed by BFO.
At variance with the static neighbouhood case, the variable number and types,
as well as lower and upper bounds of the neighbouring vector states (collec-
tively called the ’context’) may be redefined within a framework defined by a
few simple rules.

In effect, this amounts to specifying the neighbouring nodes in a (possibly
directed) graph whose nodes are identified by the list, types, bounds and

pt3- draft version (marghe - 12 December 2019) - definitely not for circulation 27

values of the variables. As a consequence, the user-supplied definition of the
neighbour(s) of one such node may need to take the values of all variables
into account. Of course, for the problem to make sense, it is still required
that the objective function can be computed for the new neighbouring vector
states and that its value is meaningfully comparable to that at vs.

The very substantial flexibility allowed by this mechanism of course comes at the
price of the user’s full responsability for overall coherence.

Performance- and dataprofile training strategies. Because BFO is a trainable pack-
age (meaning that its internal algorithmic constants can be trained/optimized by
the user to optimize its performance on a specific problem class), it needs to define
training strategies which allow to decide if a particular option is better than an-
other. Release 1 of BFO included the natural “average” training criterion (quality
is measured by the average number of function evaluations on the class) and a
robust variant of the same idea (see [36] for details). Release 2.0 now includes two
new training strategies (introduced in [37]):

Performance profiling. When this training option is selected, the performance
of two algorithmic variants (i.e. versions of BFO differing by the value of
their internal algorithmic parameters) are compared using the well-known
performance profile methodology [23, 24].

Data profiling. This option is similar to performance profiling, but uses data
profiles [34] instead of performance profiles to compare two variants.

These new options correspond more closely to the manner in which derivative-free
packages are compared in the optimization literature.

