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Abstract

We describe how variable precision floating point arithmetic can be
used in the iterative solver GMRES. We show how the precision of the in-
ner products carried out in the algorithm can be reduced as the iterations
proceed, without affecting the convergence rate or final accuracy achieved
by the iterates. Our analysis explicitly takes into account the resulting
loss of orthogonality in the Arnoldi vectors. We also show how inexact
matrix-vector products can be incorporated into this setting.
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1 Introduction

As highlighted in a recent SIAM News article [11], there is growing interest in the
use of variable precision floating point arithmetic in numerical algorithms. In this
paper, we describe how variable precision arithmetic can be exploited in the iterative
solver GMRES. We show that the precision of some floating point operations carried
out in the algorithm can be reduced as the iterations proceed, without affecting the
convergence rate or final accuracy achieved by the iterates.

There is already a literature on the use of inexact matrix-vector products in GM-
RES and other Krylov subspace methods; see, e.g., [19, 6, 3, 7, 8] and the references
therein. This work is not a simple extension of such results. To illustrate, when per-
forming inexact matrix-vector products in GMRES, one obtains an inexact Arnoldi
relation

AVk + Ek = Vk+1Hk, V T
k Vk = I. (1)
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On the other hand, if only inexact inner products are performed, the Arnoldi relation
continues to hold exactly, but the orthogonality of the Arnoldi vectors is lost:

AVk = Vk+1Hk, V T
k Vk = I − Fk. (2)

Thus, to understand the convergence behaviour and maximum attainable accuracy
of GMRES implemented in variable precision arithmetic, it is absolutely necessary
to understand the resulting loss of orthogonality in the Arnoldi vectors. We adapt
techniques used in the rounding-error analysis of the Modified Gram-Schmidt (MGS)
algorithm (see [1, 2] or [12] for a more recent survey) and of the MGS-GMRES algo-
rithm (see [5, 9, 14]). We also introduce some new analysis techniques. For example,
we show that (2) is equivalent to an exact Arnoldi relation in a non-standard inner
product, and we analyze the convergence of GMRES with variable precision arithmetic
in terms of exact GMRES in this inner product. For more results relating to GMRES
in non-standard inner products, see, e.g., [10, 18] and the references therein.

We focus on inexact inner products and matrix-vector products (as opposed to the
other saxpy operations involved in the algorithm) because these are the two most time-
consuming operations in parallel computations. The rest of the paper is organized as
follows. We start with a brief discussion of GMRES in non-standard inner products
in Section 2. Next, in Section 3, we analyze GMRES with inexact inner products. We
then show how inexact matrix-vector products can be incorporated into this setting
in Section 4. Some numerical illustrations are presented in Section 5.

2 GMRES in weighted inner products

Shown below is the Arnoldi algorithm, with ⟨y, z⟩ = yT z denoting the standard Eu-
clidean inner product.

Algorithm 1 Arnoldi algorithm

Require: A ∈ Rn×n, b ∈ Rn

1: β =
√
⟨b, b⟩

2: v1 = b/β
3: for j = 1, 2, . . . do
4: wj = Avj
5: for i = 1, . . . , j do
6: hij = ⟨vi, wj⟩
7: wj = wj − hijvi
8: end for
9: hj+1,j =

√
⟨wj , wj⟩

10: vj+1 = wj/hj+1,j

11: end for

After k steps of the algorithm are performed in exact arithmetic, the output is
Vk+1 = [v1, . . . , vk+1] ∈ Rn×(k+1) and upper-Hessenberg Hk ∈ R(k+1)×k such that

v1 =
b

β
, AVk = Vk+1Hk, V T

k Vk = Ik.
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The columns of Vk form an orthonormal basis for the Krylov subspace Kk(A, b). In
GMRES, we restrict xk to this subspace: xk = Vkyk, where yk ∈ Rk is the solution of

min
y

∥b−AVky∥2 = min
y

∥Vk+1(βe1 −Hky)∥2 = min
y

∥βe1 −Hky∥2.

It follows that

xk = Vkyk = Vk(H
T
k Hk)

−1HT
k (βe1) = VkH

†
k(βe1),

rk = b−Axk = Vk+1(βe1 −Hkyk) = Vk+1(I −HkH
†
k)βe1.

(3)

Any given symmetric positive definite matrix W defines a weighted inner product
⟨y, z⟩W = yTWz and associated norm ∥z∥W =

√
⟨z, z⟩W . Suppose we use this inner

product instead of the standard Euclidean inner product in the Arnoldi algorithm.
We use tildes to denote the resulting computed quantities. After k steps, the result is
Ṽk+1 = [ṽ1, . . . , ṽk+1] and upper-Hessenberg H̃k ∈ R(k+1)×k such that

ṽ1 =
b

∥b∥W
=

b

β̃
, AṼk = Ṽk+1H̃k, Ṽ T

k WṼk = Ik.

The columns of Ṽk form a W -orthonormal basis for Kk(A, b). Let x̃k = Ṽkỹk, where
ỹk ∈ Rk is the solution of

min
y

∥b−AṼky∥W = min
y

∥Ṽk+1(β̃e1 − H̃ky)∥W = min
y

∥β̃e1 − H̃ky∥2,

so that
x̃k = ṼkH̃

†
k(β̃e1), r̃k = b−Ax̃k = Ṽk+1(I − H̃kH̃

†
k)β̃e1.

We denote the above algorithm W -GMRES.
The following lemma shows that if κ2(W ) is small, the Euclidean norm of the

residual vector in W -GMRES converges at essentially the same rate as in standard
GMRES. The result is known; see e.g. [18]. We include a proof for completeness.

Lemma 1. Let xk and x̃k denote the iterates computed by standard GMRES and
W -GMRES, respectively, with corresponding residual vectors rk and r̃k. Then

1 ≤ ∥r̃k∥2
∥rk∥2

≤
√

κ2(W ). (4)

Proof. Both xk and x̃k lie in the same Krylov subspace, Kk(A, b). Because xk is chosen
to minimize the Euclidean norm of the residual in Kk(A, b), while x̃k minimizes the
W -norm of the residual in Kk(A, b),

∥rk∥2 ≤ ∥r̃k∥2, ∥r̃k∥W ≤ ∥rk∥W .

Additionally, because for any vector z

σmin(W ) ≤ zTWz

zT z
=

∥z∥2W
∥z∥22

≤ σmax(W ),

we have

∥rk∥2 ≤ ∥r̃k∥2 ≤ ∥r̃k∥W√
σmin(W )

≤ ∥rk∥W√
σmin(W )

≤
√

σmax(W )√
σmin(W )

∥rk∥2,

from which (4) follows.
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3 GMRES with inexact inner products

3.1 Recovering orthogonality

We will show that the standard GMRES algorithm implemented with inexact inner
products is equivalent to W -GMRES implemented exactly, for some well-conditioned
matrix W . To this end, we need the following theorem.

Theorem 1. Consider a given matrix Q ∈ Rn×k of rank k such that

QTQ = Ik − F. (5)

If ∥F∥2 ≤ δ for some δ ∈ (0, 1), then there exists a matrix M such that In + M is
symmetric positive definite and

QT (In +M)Q = Ik. (6)

In other words, the columns of Q are exactly orthonormal in an inner product defined
by In +M . Furthermore,

κ2(In +M) ≤ 1 + δ

1− δ
. (7)

Proof. Note from (5) that the singular values of Q satisfy(
σi(Q)

)2
= σi(Q

TQ) = σi(Ik − F ), i = 1, . . . , k.

Therefore, √
1− ∥F∥2 ≤ σi(Q) ≤

√
1 + ∥F∥2, i = 1, . . . , k. (8)

Equation (6) is equivalent to the linear matrix equation

QTMQ = Ik −QTQ.

It is straightforward to verify that one matrix M satisfying this equation is

M = (Q†)T (Ik −QTQ)Q†

= Q(QTQ)−1(Ik −QTQ)(QTQ)−1QT .

Notice that the above matrix M is symmetric. It can also be verified using the singular
value decomposition of Q that the eigenvalues and singular values of In +M are

λi(In +M) = σi(In +M) =

{(
σi(Q)

)−2
, i = 1, . . . , k,

1, i = k + 1, . . . , n,

which implies that the matrix In + M is positive definite. From the above and (8),
provided ∥F∥2 ≤ δ < 1,

1

1 + δ
≤ 1(

σmax(Q)
)2 ≤ σi(In +M) ≤ 1(

σmin(Q)
)2 ≤ 1

1− δ
, (9)

from which (7) follows.
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Note that κ2(In +M) remains small even for values of δ close to 1. For example,
suppose ∥Ik −QTQ∥2 = δ = 1/2, indicating an extremely severe loss of orthogonality.
Then κ2(In +M) ≤ 3, so Q still has exactly orthonormal columns in an inner product
defined by a very well-conditioned matrix.

Remark 1. Paige and his coauthors [2, 13, 17] have developed an alternative mea-
sure of loss of orthogonality. Given Q ∈ Rn×k with normalized columns, the measure
is ∥S∥2, where S = (I+U)−1U and U is the strictly upper-triangular part of QTQ. Ad-
ditionally, orthogonality can be recovered by augmentation: the matrix P =

[
S

Q(I−S)

]
has orthonormal columns. This measure was used in the groundbreaking rounding error
analysis of the MGS-GMRES algorithm [14]. In the present paper, under the condition
∥F∥2 ≤ δ < 1, we use the measure ∥F∥2 and recover orthogonality in the (I +M) in-
ner product. For future reference, Paige’s approach is likely to be the most appropriate
for analyzing the Lanczos and conjugate gradient algorithms, in which orthogonality is
quickly lost and ∥F∥2 > 1 long before convergence.

3.2 Bounding the loss of orthogonality

Suppose the inner products in the Arnoldi algorithm are computed inexactly, i.e.,
line 6 in Algorithm 1 is replaced by

hij = vTi wj + ηij , (10)

with |ηij | bounded by some tolerance. We use tildes to denote the resulting computed
quantities. It is straightforward to show that despite the inexact inner products in (10),
the relation AVk = Vk+1Hk continues to hold exactly (under the assumption that all
other operations besides the inner products are performed exactly). On the other
hand, the orthogonality of the Arnoldi vectors is lost. We have

[b, AVk] = Vk+1[βe1,Hk], V T
k+1Vk+1 = Ik+1 + Fk. (11)

The relation between each ηij and the overall loss of orthogonality Fk is very diffi-
cult to understand. To simplify the analysis we suppose that each vj is normalized
exactly. (This is not an uncommon assumption; see, e.g., [1] and [13].) Under this
simplification, we have

Fk = Ūk + ŪT
k , Ūk =

[
0k×1 Uk

01×1 01×k

]
, Uk =

v
T
1 v2 . . . vT1 vk+1

. . .
...

vTk vk+1

 , (12)

i.e., Uk ∈ Rk×k contains the strictly upper-triangular part of Fk. Define

Nk =

η11 . . . η1k
. . .

...
ηkk

 , Rk =

h21 . . . h2k

. . .
...

hk+1,k

 . (13)

Following Björck’s seminal rounding error analysis of MGS [1], it can be shown that

Nk = −[0, Uk]Hk = −UkRk. (14)
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For completeness, a proof of (14) is provided in the appendix. Note that, assuming
GMRES has not terminated by step k, i.e., hj+1,j ̸= 0 for j = 1, . . . , k, then Rk must
be invertible. Using (14), the following theorem shows how the convergence of GMRES
with inexact inner products relates to that of exact GMRES. The idea is similar to [14,
Section 5], in which the quantity ∥EkR

−1
k ∥F must be bounded, where Ek is a matrix

containing rounding errors.

Theorem 2. Let x
(e)
k denote the k-th iterate of standard GMRES, performed exactly,

with residual vector r
(e)
k . Now suppose that the Arnoldi algorithm is run with inexact

inner products as in (10), so that (11)–(14) hold, and let xk and rk denote the resulting
GMRES iterate and residual vector. If

∥NkR
−1
k ∥2 ≤ δ

2
(15)

for some δ ∈ (0, 1), then

1 ≤ ∥rk∥2
∥r(e)k ∥2

≤
√

1 + δ

1− δ
. (16)

Proof. Consider the matrix Fk in (11). From (12) and (14), we have

∥Fk∥2 ≤ 2∥Uk∥2 = 2∥NkR
−1
k ∥2. (17)

Thus, if (15) holds, ∥Fk∥2 ≤ δ < 1 and we can apply Theorem 1 with Q = Vk+1.
There exists a symmetric positive definite matrix W = In +M such that

[b, AVk] = Vk+1[βe1,Hk], V T
k+1WVk+1 = Ik+1, κ2(W ) ≤ 1 + δ

1− δ
.

The Arnoldi algorithm implemented with inexact inner products has computed an
W -orthonormal basis for Kk(A, b). The iterate xk is the same as the iterate that
would have been obtained by running W -GMRES exactly. The result follows from
Lemma 1.

3.3 A strategy for bounding the ηij

The challenge in applying Theorem 2 is bounding the tolerances ηij at step j to ensure
that (15) holds for all subsequent iterations k. Theorem 3 below leads to a practical
strategy for bounding the ηij . We will use

tk = βe1 −Hkyk

to denote the residual computed in the GMRES subproblem at step k. We will use
the known fact that for j = 1, . . . , k,

|eTj yk| ≤ ∥H†
k∥2∥tj−1∥2. (18)

This follows from

eTj H
†
k

[
Hj−1 0
0 0

]
︸ ︷︷ ︸
∈R(k+1)×k

[
yj−1

0k−j+1

]
= eTj H

†
kHk

[
yj−1

0

]
= eTj

[
yj−1

0

]
= 0,
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and thus

|eTj yk| = |eTj H†
kβ1e1| =

∣∣∣∣eTj H†
k

(
β1e1 −

[
Hj−1 0
0 0

] [
yj−1

0

])∣∣∣∣
=

∣∣∣∣eTj H†
k

[
β1e1 −Hj−1yj−1

0

]∣∣∣∣ ≤ ∥H†
k∥2∥tj−1∥2.

Additionally, in order to understand how ∥Fk∥2 increases as the residual norm de-
creases, we will need the following rather technical lemma, which is essentially a special
case of [15, Theorem 4.1]. We defer its proof to the appendix.

Lemma 2. Let yk and tk be the least squares solution and residual vector of

min
y

∥βe1 −Hky∥2.

Given ϵ > 0, let Dk be any nonsingular matrix such that

∥Dk∥2 ≤ σmin(Hk)ϵ∥b∥2√
2∥tk∥2

. (19)

Then
∥tk∥2(

ϵ2∥b∥22 + 2∥Dkyk∥22
)1/2 ≤ σmin

([
ϵ−1e1, HkD

−1
k

])
≤ ∥tk∥2

ϵ∥b∥2
. (20)

Theorem 3. In the notation of Theorem 2 and Lemma 2, if for all steps j = 1, . . . , k of
GMRES all inner products are performed inexactly as in (10) with tolerances bounded
by

|ηij | ≤ ηj ≡ ϕjϵσmin(Hk)√
2

∥b∥2
∥tj−1∥2

(21)

for any ϵ ∈ (0, 1) and any positive numbers ϕj such that
∑k

j=1 ϕ
2
j ≤ 1, then at step k

either (16) holds with δ = 1/2, or

∥tk∥2
∥b∥2

≤ 6kϵ, (22)

implying that GMRES has converged to a relative residual of 6kϵ.

Proof. If (21) holds, then in (13)

|Nk| ≤


η1 η2 . . . ηk

η2 . . . ηk
. . .

...
ηk

 = EkDk,

where Ek is an upper-triangular matrix containing only ones in its upper-triangular
part, so that ∥Ek∥2 ≤ k, and Dk = diag(η1, . . . , ηk). Then in (15),

∥NkR
−1
k ∥2 ≤ ∥NkD

−1
k ∥2∥DkR

−1
k ∥2

≤ ∥Ek∥2∥DkR
−1
k ∥2 ≤ k∥(RkD

−1
k )−1∥2.

(23)
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Let hT
k denote the first row of Hk, so that Hk =

[
hT
k

Rk

]
. For any ϵ > 0 we have

σmin(RkD
−1
k ) = min

∥u∥2=∥v∥2=1
uTRkD

−1
k v

= min
∥u∥2=∥v∥2=1

[0, uT ]

[
ϵ−1 hT

k D
−1
k

0 RkD
−1
k

] [
0
v

]
≥ min

∥u∥2=∥v∥2=1
uT

[
ϵ−1 hT

k D
−1
k

0 RkD
−1
k

]
v

= σmin

([
ϵ−1e1, HkD

−1
k

])
.

Therefore,

∥(RkD
−1
k )−1∥2 =

1

σmin(RkD
−1
k )

≤ 1

σmin

([
ϵ−1e1,HkD

−1
k

]) .
Notice that if the ηj are chosen as in (21), Dk automatically satisfies (19). Using the
lower bound in Lemma 2, and then (18) and (21), we obtain

∥(RkD
−1
k )−1∥2 ≤

(
ϵ2∥b∥22 + 2∥Dkyk∥22

)1/2
∥tk∥2

=

(
ϵ2∥b∥22 + 2

∑k
j=1 η

2
j (e

T
j yk)

2
)1/2

∥tk∥2

≤
(
ϵ2∥b∥22 +

∑k
j=1 ϕ

2
jϵ

2∥b∥22
)1/2

∥tk∥2
=

√
2ϵ∥b∥2
∥tk∥2

.

Therefore, in (23),

∥NkR
−1
k ∥2 ≤

√
2kϵ∥b∥2
∥tk∥2

≤ 6kϵ∥b∥2
∥tk∥2

δ

2

with δ = 1/2. If (22) does not hold, then ∥NkR
−1
k ∥2 ≤ δ/2, which from Theorem 2

implies (16). Therefore, if the |ηij | are bounded by tolerances ηj chosen as in (21),
either (16) holds with δ = 1/2, or (22) holds.

Theorem 3 can be interpreted as follows. If at all steps j = 1, 2, . . . of GMRES the
inner products are computed inaccurately with tolerances ηj in (21), then convergence
at the same rate as exact GMRES is achieved until a relative residual of essentially kϵ
is reached. Notice that ηj is inversely proportional to the residual norm. This allows
the inner products to be computed more and more inaccurately as as the iterations
proceed.

If no more than Kmax iterations are to be performed, we can let ϕj = K
−1/2
max

(although more elaborate choices for ϕj could be considered; see for example [8]).
Then the factor ϕj/

√
2 in (21) can be absorbed along with the k in (22).

One important difficulty with (21) is that σmin(Hk) is required to pick ηj at the
start of step j, but Hk is not available until the final step k. A similar problem
occurs in GMRES with inexact matrix-vector products; see [19, 6] and the comments
in Section 4. In our experience, is often possible to replace σmin(Hk) in (21) by 1,
without significantly affecting the convergence of GMRES. This leads to following:

Aggressive threshhold : ηj = ϵ
∥b∥2

∥tj−1∥2
, j = 1, 2, . . . . (24)
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In exact arithmetic, σmin(Hk) is bounded below by σmin(A). If the smallest singular
value of A is known, one can estimate σmin(Hk) ≈ σmin(A) in (21), leading to the
following:

Conservative threshhold : ηj = ϵ σmin(A)
∥b∥2

∥tj−1∥2
, j = 1, 2, . . . . (25)

This prevents potential early stagnation of the residual norm, but is often unnecessarily
stringent. (It goes without saying that if the conservative threshold is less than u∥A∥2,
where u is the machine precision, then the criterion is vacuous: according to this
criterion no inexact inner products can be carried out at iteration j.) Numerical
examples are given in Section 5.

4 Incorporating inexact matrix-vector products

As mentioned in the introduction, there is already a literature on the use of inexact
matrix-vector products in GMRES. These results are obtained by assuming that the
Arnoldi vectors are orthonormal and analyzing the inexact Arnoldi relation

AVk + Ek = Vk+1Hk, V T
k Vk = I.

In practice, however, the computed Arnoldi vectors are very far from being orthonor-
mal, even when all computations are performed in double precision arithmetic; see for
example [5, 9, 14].

The purpose of this section is to show that the framework used in [19] and [6] to
analyze inexact matrix-vector products in GMRES is still valid when the orthogonality
of the Arnoldi vectors is lost, i.e., under the inexact Arnoldi relation

AVk + Ek = Vk+1Hk, V T
k Vk = I − Fk. (26)

This settles a question left open in [19, Section 6].
Throughout we assume that ∥Fk∥2 ≤ δ < 1. Then from Theorem 1 there exists a

symmetric positive definite matrix W = In+M ∈ Rn×n such that V T
k+1WVk+1 = Ik+1,

and with singular values bounded as in (9).

4.1 Bounding the residual gap

As in previous sections, we use xk = Vkyk to denote the computed GMRES iterate,
with rk = b−Axk for the actual residual vector and tk = β1e1 −Hkyk for the residual
vector updated in the GMRES iterations. From

∥rk∥2 ≤ ∥rk − Vk+1tk∥2 + ∥Vk+1tk∥2,

if
max { ∥rk − Vk+1tk∥2, ∥Vk+1tk∥2 } ≤ ϵ

2
∥b∥2 (27)

then
∥rk∥2 ≤ ϵ∥b∥2. (28)

From the fact that the columns of W
1/2Vk+1 are orthonormal as well as (9), we obtain

∥Vk+1tk∥2 ≤ ∥W−1/2∥2∥W 1/2Vk+1tk∥2 = ∥W∥−1/2
2 ∥tk∥2 ≤

√
1 + δ∥tk∥2.
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In GMRES, ∥tk∥2 → 0 with increasing k, which implies that ∥Vk+1tk∥2 → 0 as well.
Therefore, we focus on bounding the residual gap ∥rk−Vk+1tk∥2 in order to satisfy (27)
and (28).

Suppose the matrix-vector products in the Arnoldi algorithm are computed inex-
actly, i.e., line 4 in Algorithm 1 is replaced by

wj = (A+ Ej)vj , (29)

where ∥Ej∥2 ≤ ϵj for some given tolerance ϵj . Then in (26),

Ek =
[
E1v1, E2v2, . . . , Ekvk

]
. (30)

The following theorem bounds the residual gap at step k in terms of the tolerances δ
and ϵj , for j = 1, . . . , k.

Theorem 4. Suppose that the inexact Arnoldi relation (26) holds, where Ek is given
in (30) with ∥Ej∥2 ≤ ϵj for j = 1, . . . , k, and ∥Fk∥2 ≤ δ < 1. Then the resulting
residual gap satisfies

∥rk − Vk+1tk∥2 ≤ ∥H†
k∥2

k∑
j=1

ϵj∥tj−1∥2. (31)

Proof. From (26) and (30),

∥rk − Vk+1tk∥2 = ∥b−AVkyk − Vk+1tk∥2
= ∥b− Vk+1Hkyk + Ekyk − Vk+1tk∥2
= ∥Vk+1(β1e1 −Hkyk) + Ekyk − Vk+1tk∥2

= ∥Ekyk∥2 =

∥∥∥∥∥
k∑

j=1

Ejvje
T
j yk

∥∥∥∥∥
2

≤
k∑

j=1

ϵj |eTj yk|.

The result then follows from (18).

4.2 A strategy for picking the ϵj

Theorem 4 suggests the following strategy for picking the tolerances ϵj that bound
the level of inexactness ∥Ej∥2 in the matrix-vector products in (29). Similarly to
Theorem 3, let ϕj be any positive numbers such that

∑k
j=1 ϕj = 1. If for all steps

j = 1, . . . , k,

ϵj ≤ ϕjϵσmin(Hk)

2

∥b∥2
∥tj−1∥2

, (32)

then from (31) the residual gap in (27) satisfies

∥rk − Vk+1tk∥2 ≤ ϵ

2
∥b∥2.

Interestingly, this result is independent of δ. Similarly to (21), the criterion for picking
ϵj at step j involves Hk that is only available at the final step k. A large number
of numerical experiments [6, 3] indicate that σmin(Hk) can often be replaced by 1.
Absorbing the factor ϕj/2 into ϵ in (32) and replacing σmin(Hk) by 1 or by σmin(A)
leads, respectively, to the same aggressive and conservative thresholds for ϵj as we
obtained for ηj in (24) and in (25). This suggests that matrix-vector products and
inner products in GMRES can be computed with the same level of inexactness. We
illustrate this with numerical examples in the next section.
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5 Numerical examples

We illustrate our results with a few numerical examples. We run GMRES with different
matrices A and right-hand sides b, and compute the inner products and matrix-vector
products inexactly as in (10) and (29). We pick ηij randomly, uniformly distributed
between −ηj and ηj , and pick Ej to be a matrix of independent standard normal
random variables, scaled to have norm ϵj . Thus we have

|ηij | ≤ ηj , ∥Ej∥2 ≤ ϵj ,

for chosen tolerances ηj and ϵj . Throughout we use the same level of inexactness for
inner products and matrix-vector products, i.e., ηj = ϵj .

In our first example, A is the 100×100 Grcar matrix of order 5. This is a highly non-
normal Toeplitz matrix. The right hand side is b = A[sin(1), . . . , sin(100)]T . Results
are shown in Figure 1. The solid green curve is the relative residual ∥b−Axk∥2/∥b∥2.
For reference, the dashed blue curve is the relative residual if GMRES is run in double
precision. The full magenta curve corresponds to the loss of orthogonality ∥Fk∥2
in (11). The black dotted curve is the chosen tolerance ηj .

In Example 1(a),

ηj = ϵj =


10−8∥A∥2, for 20 ≤ j ≤ 30,

10−4∥A∥2, for 40 ≤ j ≤ 50,

2−52∥A∥2, otherwise.

The large increase in the inexactness of the inner products at iterations 20 and 40
immediately leads to a large increase in ∥Fk∥2. This clearly illustrates the connection
between the inexactness of the inner products and the loss of orthogonality in the
Arnoldi vectors. As proven in Theorem 2, until ∥Fk∥2 ≈ 1, the residual norm is the
same as it would have been had all computations been performed in double precision.
Due to its large increases at iterations 20 and 40, ∥Fk∥2 approaches 1, and the residual
norm starts to stagnate, long before a backward stable solution is obtained.

In Example 1(b), the tolerances are chosen according to the aggressive crite-
rion (24) with ϵ = 2−52∥A∥2. With this judicious choice, ∥Fk∥2 does not reach 1,
and the residual norm does not stagnate, until a backward stable solution is obtained.

In our second example, A is the matrix 494 bus from the SuiteSparse matrix col-
lection [4]. This is a 494× 494 matrix with condition number κ2(A) ≈ 106. The right
hand side is once again b = A[sin(1), . . . , sin(100)]T .

Results are shown in Figure 2. In Example 2(a), tolerances are chosen according
to the aggressive threshhold (24) with ϵ = 2−52∥A∥2. In this more ill-conditioned
problem, the residual norm starts to stagnate before a backward stable solution is
obtained. In Example 2(b), the tolerances are chosen according to the conservative
threshhold (25) with ϵ = 2−52∥A∥2, and there is no more such stagnation. Because
of these lower tolerances, the inner products and matrix-vector products have to be
performed in double precision until about iteration 200. This example illustrates the
tradeoff between the level of inexactness and the maximum attainable accuracy. If one
requires a backward stable solution, the more ill-conditioned the matrix A is, the less
opportunity there is for performing floating-point operations inexactly in GMRES.
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Example 1(a)

0 20 40 60 80 100

10-15

10-10

10-5

100

Example 1(b)

0 20 40 60 80 100

10-15

10-10

10-5

100

Figure 1: GMRES in variable precision: Grcar matrix.

6 Conclusion

We have shown how inner products can be performed inexactly in MGS-GMRES
without affecting the convergence or final achievable accuracy of the algorithm. We
have also shown that a known framework for inexact matrix-vector products is still
valid despite the loss of orthogonality in the Arnoldi vectors. It would be interesting
to investigate the impact of scaling or preconditioning on these results. Additionally,
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Example 2(a)

0 100 200 300 400

10-15

10-10
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100

Example 2(b)

0 100 200 300 400

10-15

10-10

10-5

100

Figure 2: GMRES in variable precision: 494 bus matrix

in future work, we plan to address the question of how much computational savings
can be achieved by this approach on massively parallel computer architectures.
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Appendix

A Proof of (14)

In line 7 of Algorithm 1, in the ℓth pass of the inner loop at step j, we have

w
(ℓ)
j = w

(ℓ−1)
j − hℓjvℓ (A1)

for ℓ = 1, . . . , j and with w
(0)
j = Avj . Writing this equation for ℓ = i+1 to j, we have

w
(i+1)
j = w

(i)
j − hi+1,jvi+1,

w
(i+2)
j = w

(i+1)
j − hi+2,jvi+2,

...

w
(j)
j = w

(j−1)
j − hj,jvj .

Summing the above and cancelling identical terms that appear on the left and right
hand sides gives

w
(j)
j = w

(i)
j −

j∑
ℓ=i+1

hℓjvℓ.

Because w
(j)
j = vj+1hj+1,j , this reduces to

w
(i)
j =

j+1∑
ℓ=i+1

hℓjvℓ. (A2)

Because the inner products hij are computed inexactly as in (10), from (A1) we have

w
(i)
j = w

(i−1)
j − hijvi

= w
(i−1)
j − (vTi w

(i−1)
j + ηij)vi

= (I − viv
T
i )w

(i−1)
j − ηijvi.

Therefore,
vTi w

(i)
j = −ηij .

Multiplying (A2) on the left by −vTi gives

ηij = −
j+1∑

ℓ=i+1

hℓj(v
T
i vℓ), (A3)

which is the entry in position (i, j) of the matrix equationη11 . . . η1k
. . .

...
ηkk

 = −

v
T
1 v2 . . . vT1 vk+1

. . .
...

vTk vk+1


h21 . . . h2k

. . .
...

hk+1,k

 ,

i.e., (14).
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B Proof of Lemma 2

For any γ > 0, the smallest singular value of the matrix
[
βγe1, HkD

−1
k

]
is the scaled

total least squares (STLS) distance [16] for the estimation problem HkD
−1
k z ≈ βe1.

As shown in [15], it can be bounded by the least squares distance

min
z

∥βe1 −HkD
−1
k z∥2 = ∥βe1 −HkD

−1
k zk∥2 = ∥βe1 −Hkyk∥2 = ∥tk∥2,

where zk = Dkyk. From [15, Theorem 4.1], we have

∥tk∥2(
γ−2 + ∥Dkyk∥22/(1− τ2

k )
)1/2 ≤ σmin

([
βγe1, HkD

−1
k

])
≤ γ∥tk∥2, (B1)

provided τk < 1, where

τk ≡
σmin

([
βγe1, HkD

−1
k

])
σmin

(
HkD

−1
k

) .

We now show that if γ = (ϵ∥b∥2)−1 and Dk satisfies (19), then τk ≤ 1/
√
2. From the

upper bound in (B1) we immediately have

σmin

([
βγe1, HkD

−1
k

])
≤ γ∥tk∥2 =

∥tk∥2
ϵ∥b∥2

.

Also,

σmin

(
HkD

−1
k

)
= min

z ̸=0

∥HkD
−1
k z∥2

∥z∥2
= min

z ̸=0

∥Hkz∥2
∥Dkz∥2

≥ min
z ̸=0

∥Hkz∥2
∥Dk∥2∥z∥2

=
σmin(Hk)

∥Dk∥2
.

Therefore, if (19) holds,

τk ≤ ∥tk∥2
ϵ∥b∥2

∥Dk∥2
σmin(Hk)

≤ 1√
2
.

Substituting γ = (ϵ∥b∥2)−1 and τk ≤ 1/
√
2 into (B1) gives (20).
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[16] C. Paige and Z. Strakoš, Scaled total least squares fundamentals, Numerische
Mathematik, 91 (2002), pp. 117–146.
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