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Abstract

A generalization of the Bernstein matrix concentration inequality to random tensors
of general order is proposed. This generalization is based on the use of Einstein products
between tensors, from which a strong link can be established between matrices and tensors,
in turn allowing exploitation of existing results for the former.
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1 Introduction

The theory of random matrices has a rich history starting with Hurwitz (see [10]) and Wishart
[22] in the first half of the 20th century. While it has developped on its own right within
probability theory, it has also found applications in many diverse domains of computational
statistics, ranging from matrix approximation [11] to compressed sensing [8], graph theory
[2], sparsification [1] or subsampling of data [21]. Important tools in several of these fields
are matrix concentration theorems that give results on expectation, norm distribution and
probability of deviation from the expectation. We refer the interested reader to the excellent
book by Tropp [20] for further elaboration and an extensive bibliography.

The purpose of this short paper is to extend one of the proeminent matrix concentration
results, the Bernstein inequality, to the case of tensors of general order. This extension was
originally motivated by the desire to extend the use of the Bernstein inequality in subsampling
estimation of gradients and Hessians of additive multivariate real functions [3, 4, 19, 6, 13,
23, 24] to derivatives of higher degree, thereby providing estimation tools for general Taylor’s
expansions of such functions. It is however clear that applications of the new tensor result
has wider potential, including, for instance, randomized tensor sparsification (such as in video
streaming) or randomized tensor products for fast computations.
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Our approaches hinges on Einstein products of tensors and associated “matricization”
transformations: these recast tensors in the form of large matrices to which known results of
matrix concentration inequalities [20] may then be applied.

The paper is organized as follows. Section 2 introduces the Einstein products and states
some of its properties that are central to our development. We then state the Bernstein
concentration inequality for Einstein-symmetric tensor of even order in Section 3. The more
general inequality for Einstein-symmetric tensors of arbitrary order is derived in Section 4 and
an “intrinsic dimension” version of this inequality presented in Section 5. Some conclusions
and perspectives are finally presented in Section 6.

2 Tensors and the Einstein Product

We start by defining the Einstein tensor product for high-order tensors, first introduced by
Lord Kelvin in 1856 [12] and named after Albert Einstein for his work in [9].

Definition 1 (Einstein Product, [9]) Let A be a tensor in IRI1×···×Im×K1×···×Km and B
be a tensor in IRK1×···×Km×J1×···×Jp . The Einstein product of A and B, denoted by A✷B, is
defined by

(A✷B)i1...imj1...jp
=
∑

k1...km

ai1...imk1...kmbk1...kmj1...jp , for all i1, . . . , im, j1, . . . , jp, (2.1)

In this definition, each lowercase index varies from 1 to its uppercase equivalent: for instance
i2 varies from 1 to I2, k3 from 1 to K3 and j1 from 1 to J1.

The Einstein product can be regarded as a higher order generalization of the standard
matrix multiplication in which m = p = 1. Such a contraction product has been widely used
in the areas of continuum mechanics [15] and relativity theory [9]. Notice that in Tm,d, the
space of real tensors of order m and dimension d, that is the set of multiarrays A = (ai1,...,im)
where ij varies from 1 to d for j = 1, . . . ,m, the Einstein product satisfies the closure property

A,B ∈ T2m,d =⇒ A✷B ∈ T2m,d.

This nice property allows us to follow [5] and define several new concepts based on the Einstein
product for tensors.

Definition 2 Let A = (ai1...imj1...jm) ∈ T2m,n.

(i) Transpose: The transpose of A, denotes by A⊤, is defined by the relations

(

A⊤
)

i1...imj1...jm
= (A)j1...jmi1...im

for all i1, . . . , im, j1, . . . , jm.

(ii) Einstein-Symmetric Tensor: A is called Einstein-symmetric, or ✷-symmetric, if
A⊤ = A. The set of all ✷-symmetric tensors in T2m,d is a subspace and is denoted by
S2m,d.

(iii) Diagonal Tensor: An ✷-symmetric tensor A is said to be diagonal if ai1...imj1...jm = 0

whenever
∏

k

δikjk = 0, where δij is the Kronecker delta.
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(iii) Identity Tensor: The Einstein-identity tensor, denoted by I ✷ , is a diagonal ✷-
symmetric tensor with ai1...imi1...im = 1 for all i1, . . . , im.

(iv) Orthogonal Tensor: A is called Einstein-orthogonal, or ✷-orthogonal, if A
⊤
✷A =

I ✷ .

(vi) EVD: If A ∈ S2m,d, then
A = U ✷D✷U⊤ (2.2)

is called an eigenvalue decomposition (EVD) of A, where U is ✷-orthogonal and D is

✷-symmetric and diagonal. Each di1...imi1...im in D is called an Einstein eigenvalue of
A, or ✷-eigenvalue. The ✷-eigenvalues of A are denoted by λ✷

i (A) (i ∈ {1, . . . , dm}).

(vii) Spectral norm and trace: The Einstein-spectral norm and trace of A ∈ S2m,d are
defined by

‖A‖✷ = max
i∈{1,...,dm}

|λ✷

i (A)| and tr✷ (A) =
∑

i∈{1,...,dm}

λ✷

i (A).

As in [5], we introduce the important bijective “matricization” transformation f that
maps each tensor A ∈ T2m,d to a matrix A ∈ R

dm×dm with Aij = ai1...imj1...jm , where

i = i1 +
m∑

k=2

(

(ik − 1)dk−1
)

and j = j1 +
m∑

k=2

(

(jk − 1)dk−1
)

. (2.3)

Note that
f(x⊗m) = f(x⊗ · · · ⊗ x

︸ ︷︷ ︸

m times

) = x • · · · • x
︸ ︷︷ ︸

m times

= x•m for x ∈ IRd, (2.4)

where ⊗ denotes the tensor external product and • the Kronecker product. Importantly for
our purposes, it is proved in [5] that

f(A✷B) = f(A) · f(B), (2.5)

where · is the standard matrix multiplication. Thus the consistency of the concepts introduced
in Definitions 2 results from standard matrix analysis.

The property (2.5) in turn implies the following useful results.

Proposition 2.1 Let A = (ai1...imj1...jm) ∈ T2m,d be an ✷-symmetric tensor with EVD given
by A = U ✷D✷U⊤. We then have that

(i) f(A⊤) = f(A)⊤, and hence f(A) = f(U) · f(D) · f(U)⊤;

(ii) All eigenvalues of f(A) are ✷-eigenvalues of A and vice-versa;

(iii) tr✷ (A) =
∑

i∈{1,...,dm}

λi(f(A));

(iv) A✷A = U ✷ (D ◦ D) ✷U⊤, where ◦ denotes the Hadamard product;
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Moreover, we may also establish a relation between the Einstein- and the standard Z-eigenvalues.
Here we simply recall that a real scalar λ is called a Z-eigenvalue of a symmetric real tensor
A ∈ T2m,d, if there exists real unit vector x ∈ R

d such that

Ax2m−1 = λx, where Ax2m−1 =

(
∑

i2...i2m

aii2...i2mxi2 · · ·xi2m

)

∈ R
d

(see [14]). As pointed out in [17], Z-eigenvalues of even-order symmetric real tensors always
exist.

Lemma 2.2 For an ✷-symmetric real tensor A ∈ T2m,d, we have that, whenever Z-eigenvalues
of A exist, λ✷

max(A) ≥ λZ
max(A).

Proof. By direct calculation, we have that

λ✷

max(A) = max
y∈Rdm\{0}

y⊤f(A)y

‖y‖22

≥ max
x∈Rd\{0}

〈f(A), (x⊗m) · (x⊗m)
⊤
〉

‖x⊗m‖22

≥ max
x∈Rd, x⊤x=1

Ax2m

≥ λZ
max(A),

where the second inequality results from the observation that x⊤x = 1 implies that ‖x⊗m‖22 =
1. Q.E.D.

3 The Bernstein Inequality for Even-Order Tensors

We now turn to random tensors, which are defined as follows. Let (Ω,F ,P) be a probability
space. A real (m, d) random tensor X is a measurable map from Ω to Tm,d. A finite sequence
{Xk} of random tensors is independent whenever

P(Xk ∈ Fk for all k) =
∏

k

P(Xk ∈ Fk)

for every collection {Fk} of Borel subsets of Tm,d. E(X ), the expectation of the random tensor
X , is, as is the case for matrices, taken elementwise.

We are now in position to achieve our first objective: the Bernstein inequality for even
order real ✷-symmetric tensors based on Einstein products.

Theorem 3.1 Consider a finite sequence {Xk} of independent random real ✷-symmetric
tensors of order 2m and dimension d. Assume that

E(Xk) = O and λ✷

max(Xk) ≤ L for each k.

Consider the random tensor Y =
∑

k

Xk and let ν(Y) be the tensor variance statistic of Y via

Einstein product, that is

ν(Y) =
∥
∥E(Y ✷ 2)

∥
∥
✷

=

∥
∥
∥
∥
∥

∑

k

E(X ✷ 2
k )

∥
∥
∥
∥
∥

✷

.
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Then

E
(
λ✷

max(Y)
)
≤
√

2ν(Y)m log d+
1

3
Lm log d. (3.1)

Furthermore, for all t ≥ 0,

P (λ✷

max(Y) ≥ t) ≤ dm · exp

(
−t2/2

ν(Y) + Lt/3

)

. (3.2)

Proof. First observe that the following equivalences between tensors and matrices hold:

E(Xk) = O ⇐⇒ E(f(Xk)) = 0, ‖Xk‖
✷ ≤ L ⇐⇒ ‖f(Xk)‖ ≤ L, λ✷

max(Y) = λmax(f(Y)).
(3.3)

Using those equivalences and applying the matrix Bernstein inequality [20, Theorem 6.6.1] to

f(Y) =
∑

k

f(Xk), we then deduce the desired result. Q.E.D.

Using Lemma 2.2, we then immediately deduce the following corollary involving Z-eigenvalues.

Corollary 3.2 Suppose that the assumptions of Theorem 3.1 hold and that Z-eigenvalues of
Y exist. Then,

E
(
λZ
max(Y)

)
≤
√

2ν(Y)m log d+
1

3
Lm log d. (3.4)

Furthermore, for all t ≥ 0,

P
(
λZ
max(Y) ≥ t

)
≤ dm · exp

(
−t2/2

ν(Y) + Lt/3

)

. (3.5)

This result reduces to the matrix Bernstein inequality for real symmetric matrices [20, The-
orem 6.6.1] when m = 1, since for any symmetric real matrix A, A is ✷-symmetric,

λZ
max(A) = λ✷

max(A) = λmax(A), ‖E(A✷ 2)‖✷ = ‖E(A2)‖

and dm = d.

4 The General Tensor Bernstein Inequality

As is the case for the matrix case, extending the condensation inequality to tensors of odd
order requires additional work. The notion of Einstein product itself must first be extended
to general tensors in TN,d.

Definition 3 (Generalized Einstein Products) Let A, B be two real tensors in TN,d,

and m =

⌈
N

2

⌉

. Two generalized Einstein products of A and B, denoted by A
−
✷ B and A✷B,

are defined by
(

A
−
✷ B

)

i1...imj1...jm
=

∑

k1,...,kN−m

ai1...imk1...kN−m
bj1...jmk1...kN−m

∈ T2m,d, (4.1)

and

(A✷B)k1...kN−mk′
1
...k′

N−m
=

∑

i1,...,im

ai1...imk1...kN−m
bi1...imk′

1
...k′

N−m
∈ T2(N−m),d, (4.2)

respectively.



Luo, Qi, Toint — Bernstein Concentration Inequalities for Tensors 6

We examine two special cases.

(i) If N = 1, the ranges between 1 and N −m = 0 in the above definition are interpreted

as empty. In this case, A and B are vectors in IRd, say a and b. Thus, a
−
✷ b = ab⊤ and

a✷ b = a⊤b, which are exactly the outer and inner products of vectors.

(ii) If N = 2m, then A and B are in T2m,d, and

A
−
✷ B = A✷B⊤, and A✷B = A⊤

✷B, (4.3)

where B⊤ is defined in Definition 2 and ✷ is the Einstein product in Definition 1, both
for even-order tensors.

We also need to generalize the bijective transformation f which unfolds an even-order tensor
to a square matrix (as introduced in Section 2) to operate on tensors of any order. This is
done as follows.

Definition 4 (Matricization) Let N ≥ 1, d ≥ 1 and m =

⌈
N

2

⌉

. Define a bijective linear

transformation f from TN,d to IRdm×dN−m

such that for any tensor A ∈ TN,d,

(
f (A)

)

ik
= ai1...imk1...kN−m

,

where

i = i1 +
m∑

l=2

(

(il − 1)dl−1
)

and k = k1 +
N−m∑

l=2

(

(kl − 1)dl−1
)

.

Note that f(A) need not be square or (obviously) symmetric. As above, we consider two
special cases.

(i) If N = 1, the range between 1 and N −m = 0 is again interpreted as empty. It results
that f is the identity transformation that maps any vector x ∈ R

d to itself.

(ii) If N = 2m, then f coincides with the transformation f .

The all important relation (2.5) may also be generalized as follows.

Lemma 4.1 Let N ≥ 1, d ≥ 1 and m =

⌈
N

2

⌉

. Then we have that, for all A ∈ TN,d,

f
(

A
−
✷ A

)

= f (A) · f (A)⊤ and f (A✷A) = f (A)⊤ · f (A) . (4.4)

Proof. Notice that

(

A
−
✷ A

)

i1...imj1...jm
=

∑

k1,...,kN−m

ai1...imk1...kN−m
aj1...jmk1...kN−m

=
∑

k1,...,kN−m

aj1...jmk1...kN−m
ai1...imk1...kN−m

=
(

A
−
✷ A

)

j1...jmi1...im
,
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for any i1, . . . , im, j1, . . . , jm. Thus, A
−
✷ A ∈ S2m,d and hence f

(

A
−
✷ A

)

is well-defined.

Denote B = f
(

A
−
✷ A

)

and C = f (A) · f (A)⊤. From the definitions of f and f , we know

that the matrices B and C have the same size, which is dm×dm. For any i and j ∈ {1, . . . , dm},
there exist two m-tuples of indices (i1, . . . , im) and (j1, . . . , jm) that uniquely determine by i
and j via (2.3). By direct calculation, we then obtain that

Cij =
dN−m
∑

l=1

[
f(A)

]

il

[
f(A)

]

jl

=
∑

k1,...,kN−m

ai1...imk1...kN−m
aj1...jmk1...kN−m

=
(

A
−
✷ A

)

i1...imj1...jm

=
[

f
(

A
−
✷ A

)]

ij

= Bij . (4.5)

The proof for the case involving ✷ is similar. Q.E.D.

We next need to revisit the definition of the spectral norm.

Definition 5 Let N, d ≥ 1 and m =

⌈
N

2

⌉

. Suppose that A =
(
ai1...imk1...kN−m

)
∈ TN,d. The

spectral norm of A in the sense of generalized Einstein products, denoted as ‖A‖
−
✷ , is defined

by ‖A‖
−
✷ =

√

‖A
−
✷ A‖✷ .

Using Proposition 2.1 (iii) and (4.3), one verifies that ‖A‖
−
✷ = ‖A‖E whenever A ∈ T2m,d.

As for the matrix case [20], we now use a construct to build a symmetric even-order object
from (possibly) odd-order non-square parts. This is achieved by using the Hermitian dilation
defined, for any real matrix B, by

H(B) =

(
O B

B⊤ O

)

.

It is then possible to establish a link between this construct and the spectral norm just defined:
first note that

λmax(H(B)) = ‖H(B)‖ = ‖B‖. (4.6)

We may then use this identity to establish the following result.

Lemma 4.2 Let N, d ≥ 1 and m =

⌈
N

2

⌉

. Suppose A =
(
ai1...imk1...kN−m

)
∈ TN,d. We then

have that

‖A‖
−
✷ =

√

‖A✷A‖✷ = ‖f (A) ‖ = ‖H(f (A))‖ = λmax

(
H
(
f (A)

))
. (4.7)
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Proof. By direct calculation, we have

‖A‖
−
✷ =

√

‖A
−
✷ A‖✷ =

√

max
i

∣
∣
∣λ✷

i

(

A
−
✷ A

)∣
∣
∣

=

√

max
i

∣
∣
∣λi

(

f
(

A
−
✷ A

))∣
∣
∣

=

√

max
i

∣
∣
∣λi

(

f (A) · f (A)⊤
)∣
∣
∣

= ‖f (A) ‖

=
√

‖A✷A‖✷

(4.8)

where the second equality follows from Definition 2 (vii), the third one by applying Proposi-
tion 2.1 (ii), the fourth and the sixth resulting from (4.4). Now, using (4.6),

‖f (A) ‖ = ‖H(f (A))‖ = λmax

(
H
(
f (A)

))
,

completing the proof. Q.E.D.

We are now in a position to state the general tensor Bernstein inequality for random
tensors of any order.

Theorem 4.3 Consider a finite sequence {Xk} of independent random tensors in TN,d and

let m =

⌈
N

2

⌉

. Assume that, for some constant L ≥ 0,

E(Xk) = O and ‖Xk‖
−
✷ ≤ L for all k.

Consider now the random tensor Y =
∑

k

Xk and let v(Y) be the generalized tensor variance

statistic of the sum given by

ν(Y) = max
{∥
∥
∥E

(

Y
−
✷ Y

)∥
∥
∥

✷

, ‖E (Y ✷Y)‖✷

}

= max

{
∥
∥
∥

∑

k

E

(

Xk
−
✷ Xk

)∥
∥
∥

✷

,
∥
∥
∥

∑

k

E

(

Xk ✷Xk

)∥
∥
∥

✷

}

Then

E(‖Y‖
−
✷ ) ≤

√

2ν(Y) log (dm + dN−m) +
1

3
L log

(
dm + dN−m

)
. (4.9)

Furthermore, for all t ≥ 0,

P

(

‖Y‖
−
✷ ≥ t

)

≤
(
dm + dN−m

)
· exp

(
−t2/2

ν(Y) + Lt/3

)

. (4.10)

Proof. The desired result follows from applying [20, Theorem 6.1.1] to the random matrix

f(Y) =
∑

k

f(Xk) and using the facts that

‖Xk‖
−
✷ = ‖f(Xk)‖, ‖Y‖

−
✷ = ‖f(Y)‖,
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and that

ν(Y) = max
{∥
∥
∥E

(

f(Y) · f(Y)⊤
)∥
∥
∥ ,
∥
∥
∥E

(

f(Y)⊤ · f(Y)
)∥
∥
∥

}

= max

{
∥
∥
∥E

(∑

k

f(Xk) · f(Xk)
⊤
)∥
∥
∥,
∥
∥
∥E

(∑

k

f(Xk)
⊤ · f(Xk)

)∥
∥
∥

}

. (4.11)

Q.E.D.

Observe that the dimension-dependent factor on the right-hand side of (3.2) is dm + dN−m,
which is larger than md, the factor one might naively expect as a generalization of the matrix
case, where this factor is 2d. This larger bound somewhat limits the applicability of the
results to moderate values of d and m. It is however worthwhile to note that we have merely
assumed the ✷-symmetry of the random tensors under consideration, which is weaker than
true symmetry.

5 The Tensor Bernstein Inequality in Intrinsic Dimension

The above discussion about the dimension-dependent factor of (3.2) prompts the question of
the extension of a version of the Bernstein inequality where this factor can be improved. This
is the case of “intrinsic dimension” version of this result, which we now consider.

Our approach first introduces Einstein-positive-(semi)definite tensors. The positive semi-
definiteness of real tensors has been discussed in [17] and shown to have applications such as
in biomedical imaging [18]. Recall that a real tensor A ∈ T2m,d is called positive semi-definite
(PSD) if

Ax2m =
∑

i1...imj1...jm

ai1...imj1...jmxi1 · · ·ximxj1 · · ·xjm ≥ 0, for all x ∈ R
d.

(see [14]). Moreover, it has been shown in [17] that an even-order symmetric real tensors
is PSD if and only if all Z-eigenvalues are nonnegative. Similarly, we can define such a
nonnegativity in the sense of Einstein products as follows.

Definition 6 An Einstein-symmetric tensor A ∈ T2m,d is called Einstein-positive semi-
definite (✷-PSD) (✷-positive-definite (✷-PD), respectively) if and only if all its Einstein-
eigenvalues are nonnegative (positive, respectively).

We adopt the notation A �✷ (≻✷ )O to represent that A is ✷-PSD (✷-PD), and similarly
A �✷ (≻✷ )B is A − B if ✷-PSD (✷-PD). Such an ✷-PSD (✷-PD) property is actually
stronger than the original PSD (PD) property, as stated in the following lemma.

Lemma 5.1 Suppose that A ∈ S2m,d. If A is ✷-PSD (✷-PD), then A is PSD (PD).

Proof. Because of (2.5), A is ✷-PSD if and only if f(A) is a PSD matrix. Then, for any
x ∈ R

d, it follows that

Ax2m = 〈f(A),
(
x⊗m

) (
x⊗m

)⊤
〉 =

(
x⊗m

)⊤
f(A)

(
x⊗m

)
≥ 0.

The proof for the ✷-PD case is similar. Q.E.D.
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Note that the PSD property does not, in general, imply the ✷-PSD property. The following
counterexample is taken from [16, Example 4.5].

Example 5.1 Let A ∈ S4,3 with a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = 1 and other
entries 0. It is easy to verify that Ax4 = 6x21x

2
2 ≥ 0 for any x ∈ R

3, whereas y⊤f(A)y =
2y1y5 < 0 for y = (1, 0, 0, 0,−1, 0, 0, 0, 0)⊤.

Proposition 5.2 Let A ∈ TN,d and m =

⌈
N

2

⌉

. Then A
−
✷ A ∈ T2m,d and A✷A ∈ T2(N−d),d

are both ✷-PSD and PSD.

Proof.

(A
−
✷ A)x2m = 〈f(A

−
✷ A),

(
x⊗m

) (
x⊗m

)⊤
〉

=
(
x⊗m

)⊤
f(A) · f(A)⊤

(
x⊗m

)

= ‖f(A)⊤
(
x⊗m

)
‖2

≥ 0.

The proof is similar for A✷A. Q.E.D.

Armed with these extended notions and the fundamental relation (2.5) applied to the
Einstein EVD, we finally state an intrinsic-dimension version of the Bernstein concentration
inequality for tensors.

Theorem 5.3 Consider a finite sequence {Xk} of independent random tensors in TN,d and

let m =

⌈
N

2

⌉

. Assume that, for some constant L ≥ 0,

E(Xk) = O and ‖Xk‖
−
✷ ≤ L for all k.

Consider now the random tensor Y =
∑

k

Xk and let V1 and V2 be upper bounds for the

tensor-valued variance statistics of Y introduced in Theorem 4.3, that is

V1 �
✷

E

(

Y
−
✷ Y

)

=
∑

k

E

(

Xk
−
✷ Xk

)

and V2 �
✷

E (Y ✷Y) =
∑

k

E (Xk ✷Xk) . (5.1)

Let

ν(Y) = max {‖V1‖
✷ , ‖V2‖

✷ } and dV(Y) =
1

ν(Y)

(

tr✷ (V1) + tr✷ (V2)
)

.

Then, for t ≥
√

ν(Y) + L/3,

P

(

‖Y‖
−
✷ ≥ t

)

≤ 4dV(Y) · exp

(
−t2/2

ν(Y) + Lt/3

)

. (5.2)

Proof. We first observe that, because of Proposition 5.2, E
(

Y
−
✷ Y

)

and E (Y ✷Y) are ✷-

positive-semidefinite, which make the ✷-PSD ordering in (5.1) well-defined. We also note
that dV(Y) is identical to the intrinsic dimension of the matrix

V =

(
f(V1)

T 0

0 f(V2)

)

, (5.3)



Luo, Qi, Toint — Bernstein Concentration Inequalities for Tensors 11

where the standard (matrix) intrinsic dimension of a positive-semidefinite matrix M is the
ratio tr(M)/‖M‖. The desired result then again follows from applying an existing result for

matrices (here [20, Theorem 7.3.1]) to the random matrix f(Y) =
∑

k

f(Xk). Q.E.D.

The main differerence between this theorem and Theorem 4.3 is the replacement of (4.10)
by (5.2): have to relax the range of t for which the inequality is valid but often gain in the
“dimension-dependent” factor, since dV(Y) never exceeds dm+dN−m and can be much smaller
if V in (5.3) is close to being of low rank.

6 Conclusion

We have considered the Einstein tensor products and reviewed the strong link this concept
establishes between standard matrix theory and tensor analysis. This link has allowed us to
restate the powerful Bernstein matrix concentration inequality in the case of general tensors
of arbitrary order.

Other concentration inequalities do exist for matrices (see [20] for an overview). Whether
they can be extended to tensors using a similar approach, although likely, remains open at
this stage.

It is interesting (and challenging) to examine if a better “dimension factor” (closer to md)
could be achieved by an approach where one does not merely unfold tensors to matrices and
use existing concentration results for these, but where a true analysis of the tensor case is
conducted. The main difficulty is to find an eigenvalue decomposition of (random) tensors
with a a number of “eigenvalues” smaller than dm (this is for instance not necessarily the case
of Z-eigenvalues [7]).

If one is to judge by the vast diversity of applications where matrix concentration in-
equalities have been useful, our new result potentially opens several research paths in high-
dimensional computational statistics and numerical optimization. In particular, its applica-
tion to sub-sampling methods for the estimation of derivative tensors beyong the Hessian may
now be considered, as it makes algorithms based on high-order Taylor’s expansions and mod-
els practical. The complexity of optimization methods of this type has been analyzed in [4],
but the necessary probabilistic estimation properties were so far limited to quadratic models.
The new tensor concentration inequality thus allows further developements in a framework
which is central to computational deep learning.
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