
A note on solving nonlinear optimization problems

in variable precision

S. Gratton ∗, and Ph. L. Toint †

5 XII 2018

Abstract

This short note considers an efficient variant of the trust-region algorithm with dy-
namic accuracy proposed Carter (1993) and Conn, Gould and Toint (2000) as a tool for
very high-performance computing, an area where it is critical to allow multi-precision com-
putations for keeping the energy dissipation under control. Numerical experiments are
presented indicating that the use of the considered method can bring substantial savings
in objective function’s and gradient’s evaluation “energy costs” by efficiently exploiting
multi-precision computations.

Keywords: nonlinear optimization, inexact evaluations, multi-precision arithmetic, high-per-

formance computing.

1 Motivation and objectives

Two recent evolutions in the field of scientific computing motivate the present note. The
first is the growing importance of deep-learning methods for artificial intelligence, and the
second is the acknowledgement by computer architects that new high-performance machines
must be able to run the basic tools of deep learning very efficiently. Because the ubiquitous
mathematical problem in deep learning is nonlinear nonconvex optimization, it is therefore
of interest to consider how to solve this problem in ways that are as efficient as possible
on new very powerful computers. As it turns out, one of the crucial aspects in designing
such machines and the algorithms that they use is mastering energy dissipation. Given that
this dissipation is approximately proportional to chip surface and that chip surface itself
approximately proportional to the square of the number of binary digits involved in the
calculation [19, 32, 23, 27], being able to solve nonlinear optimization problems with as few
digits as possible (while not loosing on final accuracy) is clearly of interest.

This short note’s sole purpose is to show that this is possible and that algorithms exist
which achieve this goal and whose robustness significantly exceed simple minded approaches.
The focus is on unconstrained nonconvex optimization, the most frequent case in deep learn-
ing applications. Since the cost of solving such problems is typically dominated by that of
evaluating the objective function (and derivatives if possible), our aim is therefore to propose

∗Université de Toulouse, INP, IRIT, Toulouse, France. Email: serge.gratton@enseeiht.fr
†NAXYS, University of Namur, Namur, Belgium. Email: philippe.toint@unamur.be. Partially supported

by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02.

1

Gratton, Toint: Optimization in variable precision 2

optimization methods which are able to exploit/specify varying levels of preexisting arith-
metic precision for these evaluations. Because of this feature, optimization in this context
differs from other better-studied frameworks where the degree of accuracy may be chosen in a
more continuous way, such as adaptive techniques for optimization with noisy functions (see
[18, 9, 10]) or with functions whose values and that of its derivatives are estimated by some
(possibly dynamic) sampling process (see [35, 12, 3, 13, 6, 5], for instance). We propose here
a suitable adaptation of the dynamic-accuracy trust-region framework proposed by Carter in
[10] and by Conn, Gould and Toint in Section 10.6 of [16] to the context of multi-precision
computations. Our proposal complements that of [25], where inexactness is also used for
energy saving purposes, and where its exploitation is restricted to the inner linear algebra
work of the solution algorithm, while still assuming exact values of the nonlinear function
involved(1). Note that the framework of inexact computation has already been discussed in
othe contexts [1, 30, 24, 25].

The paper is organized as follows. Section 2 presents the algorithmic framework using
variable accuracy. Section 3 reports encouraging numerical results suggesting the potential
of the approach, while conclusions and perspectives for further research are discussed in
Section 4.

2 Nonconvex optimization with dynamic accuracy

We start by briefly recalling the context of the dynamic-accuracy trust-region technique of
[16]. Consider the unconstrained minimization problem

min
x∈IRn

f(x) (2.1)

where f is a sufficiently smooth function from IRn into IR, and where the value of the objective
can be approximated with a prespecified level of accuracy. This is to say, given x ∈ IRn and
a an accuracy levels ω > 0, the function f(x, ω) such that

|f(x, ω)− f(x, 0)| ≤ ωf and f(x, 0) = f(x) (2.2)

The crucial difference with a more standard approach for optimization with noisy function is
that the required accuracy level ωf may be specified by the minimization algorithm itself within

a prespecified set, with the understanding that the more accurate the requirement specified
by ωf , the higher the “cost” of evaluating f .

We propose to use a trust-region method, that is an iterative algorithm where, at iteration
k, a first-order model m(xk, s) is approximately minimized on s in a ball (the trust region)
centered at the current iterate xk and of radius ∆k (the trust-region radius), yielding a trial
point. The value of the reduction in the objective function achieved at the trial point is
then compared to that predicted by the model. If the agreement is deemed sufficient, the
trial point is accepted as the next iterate xk+1 and the radius kept the same or increased.
Otherwise the trial point is rejected and the radius reduced. This basic framework, whose
excellent convergence properties and outstanding numerical performance are well-known, was
modified in Section 10.6 of [16] to handle the situation when only f is known, rather than f .
It has already been adapted to other contexts (see [2] for instance).

(1)The solution of nonlinear systems of equations is considered rather than unconstrained optimization.

Gratton, Toint: Optimization in variable precision 3

However, the method has the serious drawback of requiring exact gradient values, even
if function value may be computed inexactly. We may then call on Section 8.4 of [16] which
indicates that convergence of trust-region methods to first-order critical points may be ensured
with inexact gradients. If we now define the approximate gradient at x as the function g(x, ωg)
such that

‖g(x, ωg)− g(x, 0)‖ ≤ ωg‖g(x, ωg)‖ and g(x, 0) = ∇1
xf(x), (2.3)

this convergence is ensured provided, througout the iterations,

ωg ≤ 1
2
(1− η2)

def
= κg, (2.4)

that is if the relative error on the gradient remains suitably small. Note that this relative
error need not tend to zero, but that the absolute error will when convergence occurs (see
[16, Theorem 8.4.1, p. 281]). Also note that the concept of a relative gradient error is quite
natural if one assumes that g(x, ωg) is computed using an arithmetic with a limited number
of significant digits.

We now propose a variant of this scheme, which we state as Algorithm 2.1 on the following
page.

This algorithm differs from that presented in [16, p. 402] on two accounts. First, it
incorporates inexact gradients, as we discussed above. Second, it does not require that the
step sk is recomputed whenever a more accurate objective function’s value fk = f(xk, ω

+
f,k) is

required in Step 2. This last feature makes the algorithm more efficient. Moreover, it does not
affect the sequence of iterates since the value of the model decrease predicted by the step is
independent of the objective function value. As a consequence, the convergence to first-order
points studied in Section 10.6.1 of [16] (under the assumption that the approximate Hessians
Hk remain bounded) still applies. In what follows, we choose to contruct this approximation
using a limited-memory symmetric rank-one (SR1) quasi-Newton update(2) based on gradient
differences [29, Section 8.2].

As it turns out, this variant of [16] is quite close to the method proposed by Carter in [10],
the main difference being that the latter uses fixed tolerances in slighly different ranges(3).

We immediately note that, at termination,

‖∇1
xf(xk)‖ ≤ ‖g(xk, ωg,k)‖+ ‖g(xk, ωg,k)− g(x, 0)‖ ≤ (1 + ωg,k)‖g(xk, ωg,k)‖ ≤ ǫ. (2.12)

where we have used the triangle inequality, (2.3) and (2.4). As a consequence, the TR1DA
algorithm terminates at a true ǫ-approximate first-order-necessary minimizer. Moreover, [16,
Theorem 8.4.5] and the development of p. 404-405 in the same reference indicate that the
decrease in objective function value at successful iterations is bounded below by a multiple of
ǫ2. As a consequence, we may immediately deduce from now standard arguments (see [21] for
the first derivation), that the maximum number of iterations needed by Algorithm TR1DA to
find such an ǫ-approximate first-order-necessary minimizer is O(ǫ−2). Moreover, this bound
was proved sharp in most cases in [11], even when exact and bounded second derivatives are
used.

(2)Numerical experiments not reported here suggest that our default choice of remembering 15 secant pairs
gives good performance, although keeping a smaller number of pairs is still acceptable.

(3)[10] requires ωg ≤ 1 − η2 while we require ωg ≤ 1

2
(1 − η1). A fixed value is also used for ωf , whose

upper bound depends on ωg. The Hessian approximation is computed using an unsafeguarded standard BFGS
update.

Gratton, Toint: Optimization in variable precision 4

Algorithm 2.1: Trust region with dynamic accuracy on f and g (TR1DA)

Step0: Initialization: An initial point x0, an initial trust-region radius ∆0, an initial
accuracy levels ωf,0 and a desired final gradient accuracy ǫ ∈ (0, 1] are given. The
constants η0, η1, η2, γ1 and γ2 are also given and satisfy

0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 and 0 < η0 < 1
2
η1.

Compute f0 = f(x0, ωf,0) and set k = 0.

Step 1: Check for termination: If k = 0 or xk 6= xk−1, choose ωg,k ∈ (0, κg] and
compute g(xk, ωg,k) such that

‖g(xk, ωg,k)− g(xk, 0)‖ ≤ ωg,k‖g(x, ωg,k)‖. (2.5)

In all cases, terminate if

‖g(xk, ωg,k)‖ ≤
ǫ

1 + κg
. (2.6)

Step 2: Step calculation: Select a symmetric Hessian approximation Hk and com-
pute a step sk such that ‖sk‖ ≤ ∆k which sufficiently reduces the model

m(xk, s) = fk +∇1
xf(xk)

T s+ 1
2
sTHks (2.7)

in the sense that

m(xk, 0)−m(xk, sk) ≥ 1
2
‖∇1

xf(xk)‖min
[

‖∇1
xf(xk)‖,∆k

]

(2.8)

Step 3: Evaluate the objective function: Select

ω+
f,k ∈

(

0, η0[m(xk, 0)−m(xk, sk)]
]

(2.9)

and compute f+
k = f(xk + sk, ω

+
f,k). If ω

+
f,k < ωf,k, recompute fk = f(xk, ω

+
f,k) .

Step 4: Acceptance of the trial point: Define the ratio

ρk =
fk − f+

k

m(xk, 0)−m(xk, sk)
. (2.10)

If ρk ≥ η1, then define xk+1 = xk + sk and set ωf,k+1 = ω+
f,k. Otherwise set

xk+1 = xk, ωf,k+1 = ωf,k and ωg,k+1 = ωg,k.

Step 5: Radius update: Set

∆k+1 ∈

[∆k,∞) if ρk ≥ η2,

[γ2∆k,∆k) if ρk ∈ [η1, η2),
[γ1∆k, γ2∆k] if ρk < η1.

(2.11)

Increment k by 1 and go to Step 2.

Gratton, Toint: Optimization in variable precision 5

3 Numerical experience

We now present some numerical evidence that the TR1DA algorithm can perform well and
provide significant savings in terms of energy costs, when these are dominated by the function
and gradient evaluations. Our experiments are run in Matlab (64bits) and use a collection
of 86 small unconstrained test problems(4) detailed in Table 3.1. In what follows, we declare
a run successful when an iterate is found such that (2.6), and hence (2.12), hold in at most
1000 iterations.

Name dim. source Name dim. source Name dim. source

argauss 3 [28, 8] arglina 10 [28, 8] arglinb 10 [28, 8]
arglinc 10 [28, 8] argtrig 10 [28, 8] arwhead 10 [14, 20]
bard 3 [8] bdarwhd 10 [20] beale 2 [8]
biggs6 6 [28, 8] box 3 [28, 8] booth 2 [8]
brkmcc 2 [8] brazthing 2 - brownal 10 [28, 8]
brownbs 2 [28, 8] brownden 4 [28, 8] broyden3d 10 [28, 8]
broydenbd 10 [28, 8] chebyqad 10 [28, 8] cliff 2 [8]
clustr 2 [8] cosine 2 [20] crglvy 10 [28, 8]
cube 2 [8] dixmaana 12 [17, 8] dixmaanj 12 [17, 8]
dixon 10 [8] dqrtic 10 [8] edensch 5 [26]
eg2 10 [15, 20] eg2s 10 [15, 20] engval1 10 [28, 8]
engval2 10 [28, 8] freuroth 4 [28, 8] genhumps 2 [20]
gottfr 2 [8] gulf 4 [28, 8] hairy 2 [20]
helix 3 [28, 8] hilbert 10 [8] himln3 10 [8]
himm25 10 [8] himm27 10 [8] himm28 10 [8]
himm29 10 [8] himm30 10 [8] himm33 10 [8]
hypcir 2 [8] indef 5 [20] integreq 2 [28, 8]
jensmp 2 [28, 8] kowosb 4 [28, 8] lminsurf 25 [22, 8]
mancino 10 [34, 8] mexhat 2 [7] meyer3 3 [28, 8]
morebv 12 [28, 8] msqrtals 16 [8] msqrtbls 16 [8]
nlminsurf 25 [22, 8] osbornea 5 [28, 8] osborneb 11 [28, 8]
penalty1 10 [28, 8] penalty2 10 [28, 8] powellbs 2 [28, 8]
powellsg 4 [28, 8] powellsq 2 [8] powr 10 [8]
recipe 2 [8] rosenbr 2 [28, 8] schmvett 3 [33, 8]
scosine 2 [20] sisser 2 [8] spmsqrt 10 [8]
tquartic 10 [8] tridia 10 [8] trigger 7 [31, 8]
vardim 10 [28, 8] watson 12 [28, 8] wmsqrtals 16 -
wmsqrtbls 16 - woods 12 [28, 8] zangwil2 2 [8]
zangwil3 3 [8]

Table 3.1: The test problems

In the following set of experiments with the TR1DA variants, we assume that the objective
function’s value f(xk, ωk)) and the gradient g(xk, ωk) can be computed in double, single or
half precision (with corresponding accuracy level equal to machine precision, half machine

(4)The collection of [8] and a few other problems, all available in Matlab.

Gratton, Toint: Optimization in variable precision 6

precision or quarter machine precision). Thus, when the TR1DA algorithm specifies an
accuracy level ωf or ωg, this may not be attainable as such, but the lower of the three available
levels of accuracy is then chosen to perform the computation in (possibly moderately) higher
accuracy than requested. The equivalent double-precision costs of the evaluations of f and g

in single precision are then computed by dividing the cost of evaluation in double precision by
four(5). Those for half precision are correspond to double-precision costs divided by sixteen.

To set the stage, our first experiment starts by comparing three variants of the TR1DA
algorithm:

LMQN: a version using ωf = ωg = 0 for all k (i.e. using the full double precision arithmetic
throughout),

LMQN-s: a version using single precision evaluation of the objective function and gradient
for all k,

LMQN-h: a version using half precision evaluation of the objective function and gradient
for all k.

These variants correspond to a simple minded approach where the expensive parts of the
optimization calculation are conducted in reduced precision without any further adaptive
accuracy management. For each variant, we report, for three different values of the final
gradient accuracy ǫ,

1. the robustness as given by the number of successful solves for the relevant ǫ (nsucc),

2. the average number of iterations (its.),

3. the average equivalent double-precision costs of objective function’s evaluations (costf),

4. the average equivalent double-precision costs of gradient’s evaluations (costg),

5. the ratio of the average number of iterations used by the variant compared to that used
by LMQN, computed on problems solved by both LMQN and the variant (rel. its.),

6. the ratio of the average equivalent double-precision evaluation costs for f used by the
variant compared to that used by LMQN, computed on problems solved by both LMQN
and the variant (rel. costf),

7. the ratio of the average equivalent double-precision evaluation costs for g used by the
variant compared to that used by LMQN, computed on problems solved by both LMQN
and the variant (rel. costg),

where all averages are computed on a sample of 20 independent runs. We are interested in
making the values in the last two indicators as small as possible while maintaining a reasonable
robustness (reported by nsucc).

Table 3.2 shows that the variants LMQN-s and LMQN-h compare very poorly to LMQN
for two reasons. The first and most important is the quickly decreasing robustness when
the final gradient accuracy ǫ gets tighter. The second is that, even for the cases where the
robustness is not too bad (LMQN-s for ǫ = 10−3 and maybe 10−5), we observe no improvement
in costf and costg (as reported in the two last columns of the table). However, and as expected,
when LMQN-h happens to succeed, it does so at a much lower cost, both for f and g.

Our second experiment again compares 3 variants:

(5)Remember it is proportional to the square of the number of significant digits.

Gratton, Toint: Optimization in variable precision 7

ǫ Variant nsucc its. costf costg rel. its. rel. costf rel. costg

1e-03 LMQN 82 41.05 42.04 42.04
LMQN-s 78 41.40 42.60 42.60 1.03 1.04 1.04
LMQN-h 22 16.95 1.12 1.12 0.97 0.06 0.06

1e-05 LMQN 80 46.34 47.38 47.38
LMQN-s 48 47.79 48.96 48.96 1.08 1.08 1.08
LMQN-h 10 17.80 1.18 1.18 1.38 0.08 0.08

1e-07 LMQN 67 62.76 63.85 63.85
LMQN-s 25 28.28 28.96 28.96 0.82 0.81 0.81
LMQN-h 6 15.83 1.05 1.05 0.97 0.06 0.06

Table 3.2: Results for LMQN-s and LMQN-h compared to LMQN

LMQN: as above,

iLMQN-a: a variant of the TR1DA algorithm where, for each k

ωf,k = min[1
10
, 4

100
η1
(

mk(0)−mk(sk)
)

] and ωg,k = 1
2
κg. (3.1)

iLMQN-b: a variant of the TR1DA algorithm where, for each k, ωf,k is chosen as in (3.1)
and

ωg,k = min[κg, ωf,k]. (3.2)

The updating formulae for iLMQNa are directly inspired by (2.9) and (2.4) above. The
difference between the two updates of ωg,k appear to give contrasted but interesting outcomes,
as we discuss below. The results obtained for these variants are presented in Table 3.3 in the
same format as that used for Table 3.2, the comparison in the last three columns being again
computed with respect to LMQN.

ǫ Variant nsucc its. costf costg rel. its. rel. costf rel. costg

1e-03 LMQN 82 41.05 42.04 42.04
iLMQN-a 80 50.05 9.88 6.11 1.23 0.24 0.15
iLMQN-b 76 52.67 13.85 3.34 1.36 0.35 0.08

1e-05 LMQN 80 46.34 47.38 47.38
iLMQN-a 75 75.92 36.21 24.77 1.40 0.63 0.42
iLMQN-b 63 72.57 39.85 4.60 1.78 0.95 0.11

1e-07 LMQN 67 62.76 63.85 63.85
iLMQN-a 47 65.83 58.97 37.50 1.18 1.03 0.65
iLMQN-b 40 87.35 95.09 5.52 1.39 1.45 0.09

Table 3.3: Results for the variable-precision variants

These results are graphically summarized in Figures 3.1 and 3.2. In both figures, each
group of vars represents the performance of the five methods discussed above: LMQN (dark
blue), LMQN-s (light blue), LMQN-h (green), iLMQN-a (brown) and iLMQN-b (yellow). The
left part of Figure 3.1 gives the ratio of successful solves to the number of problems, while

Gratton, Toint: Optimization in variable precision 8

the right part shows the relative number of iterations compared to that used by LMQN (on
problems solved by both algorithms). Figure 3.2 gives the relative energy costs compared to
LMQN, the right part presenting the costs of evaluating the objective function and the ledt
part the costs of evaluating the gradients.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 3.1: Relative reliabilities and iteration numbers

1 2 3
0

0.5

1

1.5

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: Relative energy savings for the evaluations of f and g

The following conclusions follow from Table 3.3 and Figures 3.1-3.2.

1. For moderate final accuracy requirements (ǫ = 10−3 or 10−5), the inexact variants
iLMQN-a and iLMQN-b perform well: they provide very acceptable robustness com-
pared to the exact method and, most importantly here, yield very significant savings
in costs, both for the gradient and the objective function, at the price of a reasonable
increase in the number of iterations.

2. The iLMQN-a variant appears to dominate the iLMQN-b in robustness and savings
in the evaluation of the objective function. iLMQN-b nevertheless shows significantly
larger savings in the gradient’s evaluation costs, but worse performance for the evalua-
tion of the objective function.

3. When the final accuracy is thigher (ǫ = 10−7), the inexact methods seem to loose
their edge. Not only they become less robust (especially iLMQN-b), but the gains in

Gratton, Toint: Optimization in variable precision 9

function evaluation costs disappear (while those in gradient evaluation costs remain
significant for the problems the methods are able to solve). A closer examination of the
detailed numerical results indicates that, unsurprisingly, inexact methods mostly fail on
ill-conditioned problems (e.g. brownbs, powellbs, meyer3, osborneb).

4. The comparison of iLMQN-a and even iLMQN-b with LMQN-s and LMQN-h clearly
favours the new methods both in robsutness and gains obtained, showing that purpose-
designed algorithms outperform simple-minded approaches in this context.

Summarizing, the iLMQN-a multi-precision algorithm appears, in our experiments, to pro-
duce significant savings in function’s and gradient’s evaluation costs when the final accuracy
requirement and/or the problem conditioning is moderate. Using the iLMQN-b variant may
produce, on the problems where it succeeds, larger gains in gradient’s evaluation cost at the
price of more costly function evaluations.

4 Conclusions and perspectives

We have provided an improved provably convergent(6) variant of the trust-region method using
dynamic accuracy and have shown that, when considered in the context high performance
computing and multiprecision arithmetic, this variant has the potential to bring significant
savings in objective function’s and gradient’s evaluation cost. Despite the encouraging results
reported in this note, the authors are of course aware that the numerical experiments discussed
here are limited in size and scope and that the suggested conclusions need further assessment.
In particular, it may be of interest to compare inexact trust-region algorithms with inexact
regularization methods [4], especially if not only first-order but also second-order critical
points are sought.

References

[1] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. Accelerating
scientific computations with mixed precision algorithms. Comput. Phys. Commun., 180:25262533, 2009.

[2] S. Bellavia, S. Gratton, and E. Riccietti. A Levenberg-Marquardt method for large nonlinear least-squares
problems with dynamic accuracy in functions and gradients. Numerische Mathematik, 140:791–825, 2018.

[3] S. Bellavia, G. Gurioli, and B. Morini. Theoretical study of an adaptive cubic regularization method with
dynamic inexact Hessian information. arXiv:1808.06239, 2018.

[4] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Deterministic and stochastic inexact regularization
algorithms for nonconvex optimization with optimal complexity. arXiv:1811.03831, 2018.

[5] E. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer. A subsampling line-search method with
second-order results. arXiv:1810.07211, 2018.

[6] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic trust
region method via supermartingales. arXiv:1609.07428v3, 2018.

[7] A.A. Brown and M. Bartholomew-Biggs. Some effective methods for unconstrained optimization based
on the solution of ordinary differential equations. Technical Report Technical Report 178, Hatfield Poly-
technic, Hatfield, UK, 1987.

[8] A. G. Buckley. Test functions for unconstrained minimization. Technical Report CS-3, Computing Science
Division, Dalhousie University, Dalhousie, Canada, 1989.

(6)With optimal wirst-case complexity.

Gratton, Toint: Optimization in variable precision 10

[9] R. G. Carter. A worst-case example using linesearch methods for numerical optimization with inexact
gradient evaluations. Technical Report MCS-P283-1291, Argonne National Laboratory, Argonne, USA,
1991.

[10] R. G. Carter. Numerical experience with a class of algorithms for nonlinear optimization using inexact
function and gradient information. SIAM Journal on Scientific and Statistical Computing, 14(2):368–388,
1993.

[11] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Worst-case evaluation complexity and optimality of second-
order methods for nonconvex smooth optimization. To appear in the Proceedings of the 2018 International
Conference of Mathematicians (ICM 2018), Rio de Janeiro, 2018.

[12] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, Series A, 159(2):337–375, 2018.

[13] X. Chen, B. Jiang, T. Lin, and S. Zhang. On adaptive cubic regularization Newton’s methods for convex
optimization via random sampling. arXiv:1802.05426, 2018.

[14] A. R. Conn, N. I. M. Gould, M. Lescrenier, and Ph. L. Toint. Performance of a multifrontal scheme for
partially separable optimization. In S. Gomez and J. P. Hennart, editors, Advances in Optimization and
Numerical Analysis, Proceedings of the Sixth Workshop on Optimization and Numerical Analysis, Oaxaca,
Mexico, volume 275, pages 79–96, Dordrecht, The Netherlands, 1994. Kluwer Academic Publishers.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear
optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag,
Heidelberg, Berlin, New York, 1992.

[16] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on Optimization.
SIAM, Philadelphia, USA, 2000.

[17] L. C. W. Dixon and Z. Maany. A family of test problems with sparse Hessian for unconstrained op-
timization. Technical Report 206, Numerical Optimization Center, Hatfield Polytechnic, Hatfield, UK,
1988.

[18] C. Elster and A. Neumaier. A method of trust region type for minimizing noisy functions. Computing,
58(1):31–46, 1997.

[19] S. Galal and M. Horowitz. Energy-efficient floating-point unit design. IEEE Transactions on Computers,
60(7), 2011.

[20] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing environ-
ment with safe threads for mathematical optimization. Computational Optimization and Applications,
60(3):545–557, 2015.

[21] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[22] A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured optimization
problems. Numerische Mathematik, 39:119–137, 1982.

[23] N. J. Higham. The rise of multiprecision computations. Talk at SAMSI 2017, April 2017.
https://bit-ly/higham-samsi2017.

[24] L. Kugler. Is good enough computing good enough? Commun. ACM, 58:1214, 2015.

[25] S. Leyffer, S. Wild, M. Fagan, M. Snir, K. Palem, K. Yoshii, and H. Finkel. Moore with less – leapgrogging
Moore’s law with inexactness for supercomputing. arXiv:1610.02606v2, 2016. (to appear in Proceedings
of PMES 2018: 3rd International Workshop on Post Moore’s Era Supercomputing).

[26] G. Li. The secant/finite difference algorithm for solving sparse nonlinear systems of equations. SIAM
Journal on Numerical Analysis, 25(5):1181–1196, 1988.

[27] S. Matsuoka. private communication, March 2018.

[28] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software. ACM
Transactions on Mathematical Software, 7(1):17–41, 1981.

[29] J. Nocedal and S. J. Wright. Numerical Optimization. Series in Operations Research. Springer Verlag,
Heidelberg, Berlin, New York, 1999.

[30] K. V. Palem. Inexactness and a future of computing. Phil. Trans. R. Soc. A, 372(20130281), 2014.

Gratton, Toint: Optimization in variable precision 11

[31] G. Poenisch and H. Schwetlick. Computing turning points of curves implicitly defined by nonlinear
equations depending on a parameter. Computing, 20:101–121, 1981.

[32] J. Pu, S. Galal, X. Yang, O. Shacham, and M. Horowitz. FPMax: a 106GFLOPS/W at 217GFLOPS/mm2
single-precision FPU, and a 43.7 GFLOPS/W at 74.6 GFLOPS/mm2 double-precision FPU, in 28nm
UTBB FDSOI. Hardware Architecture, 2016.

[33] J.W. Schmidt and K. Vetters. Albeitungsfreie verfahren fur nichtlineare optimierungsproblem. Numerische
Mathematik, 15:263–282, 1970.

[34] E. Spedicato. Computational experience with quasi-Newton algorithms for minimization problems of
moderately large size. Technical Report CISE-N-175, CISE Documentation Service, Segrate, Milano,
1975.

[35] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex optimization
under inexact Hessian information. arXiv:1708.07164v3, 2017.

