
Adaptive Regularization Algorithms with Inexact Evaluations

for Nonconvex Optimization

Stefania Bellavia∗, Gianmarco Gurioli†, Benedetta Morini‡, and Philippe L. Toint§

18 April 2019

Abstract

A regularization algorithm using inexact function values and inexact derivatives is
proposed and its evaluation complexity analyzed. This algorithm is applicable to uncon-
strained problems and to problems with inexpensive constraints (that is constraints whose
evaluation and enforcement has negligible cost) under the assumption that the derivative
of highest degree is β-Hölder continuous. It features a very flexible adaptive mechanism
for determining the inexactness which is allowed, at each iteration, when computing objec-
tive function values and derivatives. The complexity analysis covers arbitrary optimality
order and arbitrary degree of available approximate derivatives. It extends results of
Cartis, Gould and Toint [Sharp worst-case evaluation complexity bounds for arbitrary-

order nonconvex optimization with inexpensive constraints, arXiv:1811.01220, 2018] on
the evaluation complexity to the inexact case: if a q-th order minimizer is sought using
approximations to the first p derivatives, it is proved that a suitable approximate mini-

mizer within ǫ is computed by the proposed algorithm in at most O
(

ǫ−
p+β

p−q+β

)

iterations

and at most O
(

| log(ǫ)|ǫ−
p+β

p−q+β

)

approximate evaluations. An algorithmic variant, al-
though more rigid in practice, can be proved to find such an approximate minimizer in

O
(

| log(ǫ)| + ǫ−
p+β

p−q+β

)

evaluations. While the proposed framework remains so far con-
ceptual for high degrees and orders, it is shown to yield simple and computationally
realistic inexact methods when specialized to the unconstrained and bound-constrained
first- and second-order cases. The deterministic complexity results are finally extended
to the stochastic context, yielding adaptive sample-size rules for subsampling methods
typical of machine learning.

Keywords: Evaluation complexity, regularization methods, inexact functions and deriva-
tives, subsampling methods.

1 Introduction

Evaluation complexity of algorithms for nonlinear and possibly nonconvex optimization prob-
lems has been the subject of active research in recent years. This field is concerned by de-

∗Dipartimento di Ingegneria Industriale, Università degli Studi, Firenze, Italy. Member of the INdAM
Research Group GNCS. Email: stefania.bellavia@unifi.it.

†Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi, Firenze, Italy. Member
of the INdAM Research Group GNCS. Email: gianmarco.gurioli@unifi.it.

‡Dipartimento di Ingegneria Industriale, Università degli Studi, Firenze, Italy. Member of the INdAM
Research Group GNCS. Email: benedetta.morini@unifi.it.

§Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000 Namur,
Belgium. Email: philippe.toint@unamur.be.

1

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations2

riving formal bounds on the number of evaluations of the objective function (and possibly
of its derivatives) necessary to obtain approximate optimal solutions within a user-specified
accuracy. Until recently, the results had focused on methods using first- and second-order
derivatives of the objective function, and on convergence guarantees to first- or second-order
stationary points [29, 23, 24, 19, 11]. Among these contributions, [24, 11] analyzed the “reg-
ularization method”, in which a model of the objective function around a given iterate is
constructed by adding a regularization term to the local Taylor expansion, model which is
then approximately minimized in an attempt to find a new point with a significantly lower
objective function value [21]. Such methods have been shown to possess optimal evaluation
complexity [14] for first- and second-order models and minimizers, and have generated con-
siderable interest in the research community. A theoretically significant step was made in [7]
for unconstrained problems, where evaluation complexity bounds were obtained for conver-
gence to first-order stationary points of a simplified regularization method using models of
arbitrary degree. Even more recently, [13] proposed a conceptual unified framework subsum-
ing all known results for regularization methods, establishing an upper evaluation complexity
bound for arbitrary model degree and also, for the first time, for arbitrary orders of optimality.
This paper additionally covers unconstrained problems and problems involving “inexpensive”
constraints, that is constraints whose evaluation/enforcement cost is negligible compared to
that of evaluating the objective function and its derivatives. It also allows for a full range
of smoothness assumptions on the objective function. Finally it proves that the complexity
results obtained are optimal in the sense that upper and lower evaluation complexity bounds
match in order. In [13], all the above mentioned results are established for versions of the
regularization algorithms where it is assumed that objective function values and values of its
derivatives (when necessary) can be computed exactly.

In practice, it may sometimes be difficult or impossible to obtain accurate values of the
problem’s function and/or derivatives. This difficulty has been known for a long time and
has generated its own stream of results, among which we note the trust-region method using
dynamic accuracy on the objective function and (possibly on) its gradient (see Sections 8.4.1.1
and 10.6 of [17] and [4]), and the purely probabilistic approaches of [25] and [8]. Since
unconstrained cubic regularization methods have become popular in the machine learning
community (see [1] for a survey of optimization in this area) due to their optimal complexity,
several contributions have considered building those function and derivative’s approximations
by “subsampling” the (very many) nonlinear terms whose sum defines the objective functions
typical of machine learning applications. Inexact Hessian information is considered in [16, 5,
30, 31], approximate gradient and Hessian evaluations are used in [12, 15, 27, 32], function,
gradient and Hessian values are sampled in [22, 6]. The amount of inexactness allowed is
controlled dynamically in [12, 15, 22, 16, 5].

Contributions. The present paper proposes an extension of the unifying framework of
[13] for unconstrained or inexpensively-constrained problems that allows inexact evaluations
of the objective function and of the required derivatives, in an adaptive way inspired by the
trust-region scheme of [17, Section 10.6]. This extension has the advantage of preserving
the optimal complexity of the standard regularization methods and, as in [13], evaluation
complexity results are provided for arbitrary model degree and arbitrary order of optimality.
In particular, the proposed framework allows all combinations of exact/inexact objective
functions and derivatives of any order (including of course degrees and orders one and two,
for which simple specializations are outlined). We also consider an interesting but practically

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations3

more restrictive variant of our algorithm for which an improved complexity can be derived.
We finally consider a stochastic version of our framework and derive rules for sample size in
the context of subsampling methods for machine learning.

The paper is organized as follows. Section 2 recalls the notions of high-order optimality
proposed in [13] and introduces the general Adaptive Regularization algorithm with model
of order p allowing Dynamic Accuracy (ARpDA). The details of how to obtain the desired
relative accuracy levels from known absolute errors are examined in Section 3. The evaluation
complexity of obtaining approximate minimizers using this algorithm is then analyzed in
Section 4. The algorithmic variant of the algorithm is discussed in Section 5. The general
framework is specialized to first- and second-order optimization in Section 6, showing that
practical implementation for low order is simple and computationally realistic. The stochastic
evaluation complexity and sampling rules for machine learning applications are finally derived
in Section 7. Conclusions and perspectives are presented in Section 8.

Notations. Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm for
vectors and matrices. For a general symmetric tensor S of order p, we define

‖S‖[p]
def
= max

‖v‖=1
|S[v]p| = max

‖v1‖=···=‖vp‖=1
|S[v1, . . . , vp]| (1.1)

the induced Euclidean norm. We also denote by ∇j
xf(x) the j-th order derivative tensor of

f evaluated at x and note that such a tensor is always symmetric for any j ≥ 2. ∇0
xf(x) is a

synonym for f(x). ⌈α⌉ and ⌊α⌋ denote the smallest integer not smaller than α and the largest
integer not exceeding α, respectively. If i is a non-negative integer and β a real in (0, 1] we
define (i + β)! =

∏i
ℓ=1(ℓ + β). For symmetric matrices, λmin[M] is the leftmost eigenvalue

of M . Pr[event] finally denotes the probability of an event. Finally globminx∈S f(x) denotes
the smallest value of f(x) over x ∈ S.

2 High-order necessary conditions and the ARpDA algorithm

Given p ≥ 1, we consider the set-constrained optimization problem

min
x∈F

f(x), (2.1)

where F ⊆ IRn is closed and nonempty, and where we assume that the values of the objective

function f and its derivatives must be computed inexactly. We also assume that f ∈ Cp,β(IRn),
meaning that:

• f is p-times continuously differentiable,

• f is bounded below by flow, and

• the p-th derivative tensor of f at x is globally Hölder continuous, that is, there exist
constants L ≥ 0 and β ∈ (0, 1] such that, for all x, y ∈ IRn,

‖∇p
xf(x)−∇p

xf(y)‖[p] ≤ L‖x− y‖β . (2.2)

The more standard case where f is assumed to have Lipschitz-continuous p-th derivative is
recovered by setting β = 1 in the above assumptions (for example, the choices p = 2 and

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations4

β = 1 correspond to the assumption that f has a Lipschitz continuous Hessian). In what
follows, we assume that β is known.

If we denote the pth degree Taylor expansion of f around x evaluated at s by

T fp (x, s)
def
= f(x) +

p
∑

ℓ=1

1

ℓ!
∇ℓ
xf(x)[s]

ℓ, (2.3)

we may then define the Taylor increment by

∆T fp (x, s) = T fp (x, 0)− T fp (x, s). (2.4)

Under the above assumptions, we recall the crucial bounds on differences between f and its
derivatives and their Taylor’s expansion.

Lemma 2.1 [13, Lemma 2.1] Let f ∈ Cp,β(IRn), and T fp (x, s) be the Taylor approxima-
tion of f(x+ s) about x given by (2.3). Then for all x, s ∈ IRn,

|f(x+ s)− T fp (x, s)| ≤
L

(p+ β)!
‖s‖p+β , (2.5)

‖∇j
xf(x+ s)−∇j

sT
f
p (x, s)‖[j] ≤

L

(p− j + β)!
‖s‖p+β−j . (j = 1, . . . , p). (2.6)

We also follow [13] and define a q-th-order-necessary minimizer as a point x ∈ IRn such
that, for some δ ∈ (0, 1],

φδf,q(x)
def
= f(x)− globmin

x+d∈F

‖d‖≤δ

T fq (x, d) = 0. (2.7)

Observe that, in the unconstrained case, this definition subsumes the usual optimality criteria
for orders one and two, since, if q = 1, (2.7) gives that, for any δ ∈ (0, 1] (and in particular
for δ = 1),

φδf,q(x) = ‖∇1
xf(x)‖δ, (2.8)

and first-order optimality is thus equivalent to

‖∇1
xf(x)‖ = 0.

Similarly, for q = 2, (2.7) is equivalent to

‖∇1
xf(x)‖ = 0 and λmin[∇

2
xf(x)] ≥ 0. (2.9)

Its properties are further discussed in [13], but we emphasize that, for any q ≥ 1 and in
contrast with other known measures, it varies continuously when x varies continuosly in F .
In the unconstrained case, solving the global optimization problem involved in its definition
is easy for q = 1 as the global minimizer is analytically given by d∗ = −δ∇1

xf(x)/‖∇
1
xf(x)‖,

and also for q = 2 using a trust-region scheme (whose cost is essentially comparable to that

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations5

of computing the leftmost eigenvalue in (2.9)). However this task may become NP-hard for
larger q. This makes φδf,q(x) an essentially theoretical tool for these cases. In any case, the

computation of φδf,q(x) does not involve evaluating f or any of its derivatives, and its cost
therefore does not affect the evaluation complexity of interest here.

If we now relax the notion of exact minimizers, we may define an (ǫ, δ)-approximate q-th-
order-necessary minimizer as a point x ∈ IRn

φδf,q(x) ≤ ǫχq(δ), (2.10)

where

χq(δ)
def
=

q
∑

ℓ=1

δℓ

ℓ!
(2.11)

provides a natural scaling. Again this notion reduces to familiar concepts in the low-order un-
constrained cases. For instance, we verify that for unconstrained problems with q = 2, (2.10)
requires that, if d is the global minimizer in (2.7) (the solution of a trust-region problem),

max
[

0,−
(

∇1
xf(x)

Td+ 1
2
dT∇2

xf(x)d
)]

≤ ǫ(δ + 1
2
δ2),

which automatically holds for any δ ∈ (0, 1] if ‖∇1
xf(x)‖ ≤ ǫ and λmin[∇

2
xf(x)] ≥ −ǫ. We

note that, when assessing whether x is an (ǫ, δ)-approximate q-th-order-necessary minimizer,

the global minimization in (2.7) can be stopped as soon as ∆T fq (x, d) exceeds ǫχq(δ), thereby
significantly reducing the cost of this assessment.

Having defined what we mean by high-order approximate minimizers, we now turn to des-
cribing what we mean by inaccurate objective function and derivatives values. It is important
to observe at this point that, in an optimization problem, the role of the objective function is
more central than that of any of its derivatives, since it is the quantity we ultimately wish to
decrease. For this reason, we will handle the allowed inexactness in f differently from that in
∇j
xf : we will require an (adaptive) absolute accuracy for the first and a relative accuracy for

the second. In fact, we can, in a first approach, abstract the relative accuracy requirements
for the derivatives ∇j

xf(x) into a requirement on the relative accuracy of ∆T fp (x, s). Let
ω ∈ [0, 1] represent a relative accuracy level and denote inexact quantities with an overbar.
For what follows, we will thus require that, if

∆T
f
p(x, s, ω) = T

f
p(xk, 0, ω)− T

f
p(xk, s, ω), (2.12)

then
|∆T

f
p(x, s, ω)−∆T fp (x, s)| ≤ ω∆T

f
p(x, s, ω). (2.13)

It may not be obvious at this point how to enforce this relative error bound: this is the object
of Section 3 below. For now, we simply assume that it can be done in a finite number of

evaluations of {∇j
xf(x)}

p
j=1 which are inexact approximations of {∇j

xf(x)}
p
j=1.

Given an inexactly computed ∆T
f
p(x, s, ω) satisfying (2.13), we then have to consider

to compute our optimality measure inexactly too. Observing that the definition (2.7) is
independent of f(x) because of cancellation, we see that

φ
δ
f,q(x, ω) = max

[

0, globmax
x+d∈F

‖d‖≤δ

∆T
f
q (x, d, ω)

]

. (2.14)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations6

Under the above assumptions, we now describe an algorithm allowing inexact computation
of both the objective function and its derivatives whose purpose is to find (for given q and a
suitable relative accuracy ω) a point xk satisfying

φ
δ
f,q(x, ω) ≤

ǫ

1 + ω
χq(δ) (2.15)

for some optimality radius δ ∈ (0, 1]. This algorithm uses a regularized Taylor’s model defined
at iteration k by

mk(s)
def
= T

f
p(xk, s, ωk) +

σk
(p+ β)!

‖s‖p+β. (2.16)

This model is then approximately minimized and the resulting trial point is then accepted or
rejected depending on whether or not it produces a significant decrease. This is detailed in
Algorithm 2.1 on the following page.

Some comments on this algorithm are useful at this stage.

1. That Step 2 may not be able, for q > 2, to compute a nonzero step (and should then
cause termination) can be seen by considering the following one-dimensional example.
Let p = q = 3, F = IR, ωk = 0 and δk−1 = 1 and suppose that T3(xk, s) = s2 − 2s3

and also that σk = 24. This implies that mk(s) = s2 − 2s3 + s4 = s2(1 − s)2 and we
immediately see that the origin is a global minimizer of mk(s). But a simple calculation

shows that φ
δk−1

f,q = T3(xk, 0) − T3(xk, 1) = 1 and hence termination will not occur in
Step 1 if ǫ < 1/χ3(1) = 4/7. As a consequence, as was pointed out in [13], the possibility
of a zero sk cannot be ignored in Step 2. In this case, it is not possible to satisfy (2.19)
and the algorithm terminates with xε = xk. It has been proved in [13, Lemma 2.6] that
this is acceptable (see also Lemma 2.4 below).

2. Our assumption (2.13) is used three times in the algorithm: in Step 1 for computing

φ
δk−1

f,q (xk, ωk) and in Step 2 when computing sk and φ
δk
mk,q

(sk, ωk).

3. As indicated above, we require a bound on the absolute error in the objective function
value: this is the object of (2.21) and (2.22), where we introduced the notation fk(xk, ωk)
to denote an inexact approximation of f(xk). Note that a new value of fk(xk, ωk) should

be computed to ensure (2.22) in Step 3 only if k > 0 and ωk−1∆T
f
p(xk−1, sk−1, ωk−1) >

ωk∆T
f
p(xk, sk, ωk). If this is the case the (inexact) function value is computed twice per

iteration instead of just once.

4. At variance with the trust-region method with dynamic accuracy of [17, Section 10.6]
and [4], we do not recompute approximate values of the objective function at xk once the
computation of sk is complete (provided we can ensure (2.13), as discussed in Section 3).

5. If ‖sk‖ ≥ µǫ
1

p−q+β in Step 2, then the (potentially costly) calculation of φ
δk
mk,q

(sk, ωk) is
unecessary and δk may be chosen arbitrarily in (0, 1].

6. We call iteration k successful when ρk ≥ η1 and xk+1 = xk + sk. The iteration is called
unsuccessful otherwise, and xk+1 = xk in this case. We use the notation

Sk = {j ∈ {0, . . . , k} | ρj ≥ η1} (2.26)

to denote the set of successful iterations of index at most k.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations7

Algorithm 2.1: Adaptive Regularization of order p with Dynamic Accuracy
(ARpDA)

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1) and an initial relative
accuracy ω0 ≥ 0. The constants κω, δ−1, θ, µ, η1, η2, γ1, γ2, γ3 and σmin are also
given and satisfy θ > 0, µ ∈ (0, 1], δ−1 ∈ (0, 1], σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3, (2.17)

α ∈ (0, 1), κω ∈ (0, 1
2
αη1] and ω0 = min

[

κω,
1

σ0

]

. (2.18)

Set k = 0.

Step 1: Compute the optimality measure and check for termination.

Compute φ
δk−1

f,q (xk, ωk). If (2.15) holds with δ = δk−1, terminate with the
approximate solution xǫ = xk.

Step 2: Step calculation. Attempt to compute a step sk 6= 0 such that xk + sk ∈ F
and an optimality radius δk ∈ (0, 1] by approximately minimizing the model mk(s)
in the sense that

mk(sk) < mk(0) (2.19)

and
‖sk‖ ≥ µǫ

1
p−q+β or φ

δk
mk,q

(sk, ωk) ≤
θ‖sk‖

p−q+β

(p− q + β)!
χq(δk). (2.20)

If no such step exists, terminate with the approximate solution xǫ = xk.

Step 3: Acceptance of the trial point. Compute fk(xk + sk, ωk) ensuring that

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ωk|∆T
f
p(xk, sk, ωk)|. (2.21)

Also ensure (by setting fk(xk, ωk) = fk−1(xk, ωk−1) or by (re)computing
fk(xk, ωk)) that

|fk(xk, ωk)− f(xk)| ≤ ωk|∆T
f
p(xk, sk, ωk)|. (2.22)

Then define

ρk =
fk(xk, ωk)− fk(xk + sk, ωk)

∆T
f
p(xk, sk, ωk)

. (2.23)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈

[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.24)

Step 5: Relative accuracy update. Set

ωk+1 = min

[

κω,
1

σk+1

]

. (2.25)

Increment k by one and go to Step 1.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations8

7. As indicated above, ensuring (2.13) may require a certain number of (approximate) eval-
uations of the derivatives of f . For a single iteration of the algorithm, these evaluations
are always at the current iterate xk.

8. It is worth noting that from (2.17), (2.18), (2.24) and (2.25), together with the positivity
of σ0 and σmin,

0 < ωk ≤ κω < 1. (2.27)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations9

We now state some properties of the algorithm that are derived without modification from
the case where the computation of f and its derivatives are exact.

Lemma 2.2 [11, Theorem 2.1] The mechanism of the ARpDA algorithm ensures that,
if

σk ≤ σmax, (2.28)

for some σmax > 0, then

k + 1 ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

. (2.29)

This shows that the number of unsuccessful iterations must remain a fixed proportion of that
of the successful ones.

Lemma 2.3 [13, Lemma 2.5] Suppose that s∗k 6= 0 is a global minimizer of mk(s) under
the constraint that xk+ s ∈ F , such mk(s

∗
k) < mk(0). Then there exist a neighbourhood

of s∗k and a range of sufficiently small δ such that (2.19) and the second part of (2.20)
hold for any sk in the intersection of this neighbourhood with F and any δk in this range.

This last lemma thus ensures that the algorithm is well-defined when sk 6= 0. The lemma
below shows that it is reasonable to terminate the algorithm whenever a nonzero descent step
cannot be computed.

Lemma 2.4 [13, Lemma 2.6] Suppose that the algorithm terminates in Step 2 of itera-
tion k with xε = xk. Then there exists a δ ∈ (0, 1] such that (2.15) holds for x = xε.

3 Enforcing the relative error on Taylor increments

We now return to the question of enforcing (2.13). For improved readability, we temporarily
ignore the iteration index k.

3.1 The accuracy checks

While there may be circumstances where (2.13) can be enforced directly, we consider here

that the only control the user has on the accuracy of ∆T
f
p(x, s, ω) is by enforcing bounds

{εj}
p
j=1 on the absolute errors on the derivative tensors {∇j

xf(x)}
p
j=1. In other words, we

seek to ensure (2.13) by selecting absolute accuracies {εj}
p
j=1 such that, when

‖∇j
xf(x)−∇j

xf(x)‖[j] ≤ εj for j ∈ {1, . . . , p}, (3.1)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations10

the desired accuracy requirement follows.
In all cases described below, the process can be viewed as an iteration with four main

steps. The first is to compute the relevant approximate derivative satisfying (3.1) for given
values of {εj}

p
j=1. The second is to use these approximate derivatives to compute the desired

Taylor increment and associated quantities. Tests are then performed in the third step to
verify the desired accuracy requirements and terminate if they are met. If not the case, the
absolute accuracies {εj}

p
j=1 are then decreased before a new iteration is started.

As can be expected, a suitable relative accuracy requirement will be achievable as long as

∆T
f
p(x, s, ω) remains safely away from zero, but, if exact computations are to be avoided, we

may have to accept a simpler absolute accuracy guarantee when ∆T
f
p(x, s, ω) vanishes.

We then formalize the resulting accuracy tests in the VERIFY algorithm, stated as Algo-
rithm 3.1 on the current page.

Assume that for a vector vω, a bound δ ≥ ‖vω‖, a degree r, the requested relative and
absolute accuracies ω and ξ > 0, the increment ∆T r(x, vω, ω) are given. We intend to use the

algorithm for ∆T
f
q (x, vω, ω), ∆T

f
p(x, vω, ω) and ∆T

mk
q (x, vω, ω). For keeping our development

general, we use the notations ∆T r(x, vω, ω) and ∆Tr(x, vω) without superscript. Moreover,
we assume that the current absolute accuracies {ζj}

r
j=1 of the derivatives of T r(x, vω, ω) with

respect to vω at vω = 0 are given. Because it will be the case below, we assume for simplicity
that ∆T r(x, vω, ω) ≥ 0.

Algorithm 3.1: Verify the accuracy of ∆T r(x, vω, ω)

flag = VERIFY
(

δ,∆T r(x, vω, ω), {ζj}
r
j=1, ω, ξ

)

Set flag = 0.
• If

∆T r(x, vω, ω) = 0 and max
j∈{1,...,r}

ζj ≤ ξ, (3.2)

set flag = 1.

• Else, if

∆T r(x, vω, ω) > 0 and
r
∑

j=1

ζj
j!
δj ≤ ω∆T r(x, vω, ω), (3.3)

set flag = 2.

• Else, if
∆T r(x, vω, ω) > 0 and

r
∑

j=1

ζj
j!
δj ≤ ξχr(δ), (3.4)

set flag = 3.

Let us now consider what properties are ensured for the various possible values of flag.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations11

Lemma 3.1 Suppose that

∥

∥

∥

[

∇j
vωTr(x, vω)

]

vω=0
−
[

∇j
vωTr(x, vω)

]

vω=0

∥

∥

∥

[j]
≤ ζj for j ∈ {1, . . . , r} (3.5)

and ω ∈ (0, 1). Then we have that

• if max
j∈{1,...,r}

ζj ≤ ξ, (3.6)

then the VERIFY algorithm returns a nonzero flag,

• if the VERIFY algorithm terminates with flag = 1, then ∆T r(x, vω, ω) = 0 and

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤ ξχr(‖v‖) for all v, (3.7)

• if the VERIFY algorithm terminates with flag = 2, then ∆T r(x, vω, ω) > 0 and

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤ ω∆T r(x, vω, ω), for all v with ‖v‖ ≤ δ, (3.8)

• if the VERIFY algorithm terminates with flag = 3, then ∆T r(x, vω, ω) > 0 and

max
[

∆T r(x, vω, ω),
∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣

]

≤
ξ

ω
χr(δ) for all v with ‖v‖ ≤ δ.

(3.9)

Proof. W ✷

e first prove the first proposition. If ∆T r(x, vω, ω) = 0 and (3.6), then (3.2) ensures that
flag = 1 is returned. If ∆T r(x, vω, ω) > 0, from (2.11) and (3.6), we deduce that

r
∑

j=1

ζj
j!
δj ≤

[

max
j∈{1,...,r}

ζj

]

χr(δ) ≤ ξχr(δ)

also causing termination with flag = 3 because of (3.4) if it has not occurred with flag = 2
because of (3.3), hence proving the first proposition.

Consider now the three possible termination cases and suppose first that termination
occurs with flag = 1. Then, using the triangle inequality, (3.5), (3.2) and (2.11), we have
that, for any v,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤
r
∑

j=1

ζj
j!
‖v‖j ≤ ξχr(‖v‖)

yielding (3.7). Suppose now that flag = 2. Then (3.3) holds and for any v with ‖v‖ ≤ δ,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤
r
∑

j=1

ζj
j!
‖v‖j ≤

r
∑

j=1

ζj
j!
δj ≤ ω∆T r(x, vω, ω),

which is (3.8). Suppose finally that flag = 3. Since termination did not occur in (3.3), we
have that

0 < ω∆T r(x, vω, ω) ≤ ξχr(δ). (3.10)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations12

Furthermore, (3.4) implies that, for any v with ‖v‖ ≤ δ,

∣

∣∆T r(x, v, ω)−∆Tr(x, v)
∣

∣ ≤
r
∑

j=1

ζj
j!
‖v‖j ≤

r
∑

j=1

ζj
j!
δj ≤

ξ

ω
χr(δ).

This inequality and (3.10) together imply (3.9).
Clearly, the outcome corresponding to our initial aim to obtain a relative error at most ω
corresponds to the case where flag = 2. As we will see below, the two other cases are also
useful.

3.2 Computing φ
δk−1

f,q (xk, ωk)

We now consider, in Algorithm 3.2, how to compute the optimality measure φ
δk−1

f,q (xk, ωk) in
Step 1 of the ARpDA algorithm.

We immediately observe that Algorithm 3.2 terminates in a finite number of iterations, since
it does so as soon as flag > 0, which, because of the first proposition of Lemma 3.1, must
happen after a finite number of passes in iterations using (3.12). We discuss in Section 3.4
exactly how many such decreases might be needed.

We now verify that terminating the ARpDA algorithm as indicated in this modified version
of Step 1 provides the required result. We start noting that, if xk is an isolated feasible point
(i.e. such that the intersection of any ball of radius δk−1 > 0 centered at xk with F is reduced
to xk), then clearly dk = 0 and thus, irrespective of ωk and δk−1 > 0,

φ
δk−1

f,q (xk) = 0 = ∆T
f
q (xk, dk, ωk) = φ

δk−1

f,q (xk, ωk), (3.13)

which means that φ
δk−1

f,q (xk, ωk) is a faithful indicator of optimality at xk.

Lemma 3.2 If the ARpDA algorithm terminates within Step 1.4, then

φ
δk−1

f,q (xk) ≤ ǫχq(δk−1) (3.14)

and xk is a (ǫ, δk−1)-approximate q-th-order-necessary minimizer. Otherwise Algo-
rithm 3.2 terminates with

(1− ωk)φ
δk−1

f,q (xk, ωk) ≤ φ
δk−1

f,q (xk) ≤ (1 + ωk)φ
δk−1

f,q (xk, ωk). (3.15)

Proof. W ✷

e first notice that Step 1.2 of Algorithm 3.2 yields (3.5) with Tr = T fr , r = q and {ζj}
r
j=1 =

{εj,iε}
q
j=1. Furthermore, ω = ωk ∈ (0, 1), so that the assumptions of Lemma 3.1 are satisfied.

If xk is an isolated feasible point, the lemma’s conclusions directly follow from (3.13). Assume
therefore that xk is not an isolated feasible point and note first that, because Step 1.3 finds

the global maximum of ∆T
f
q (xk, d, ωk), we have that ∆T

f
q (xk, dk, ωk) ≥ 0. Suppose now that,

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations13

Algorithm 3.2: Modified Step 1 of the ARpDA algorithm

Step 1: Compute the optimality measure and check for termination.

Step 1.0: The iterate xk and the radius δk−1 ∈ (0, 1] are given, as well as con-
stants γε ∈ (0, 1) and κε > 0. Set iε = 0.

Step 1.1: Choose an initial set of derivative absolute accuracies {εj,0}
p
j=1 such

that
εj,0 ≤ κε for j ∈ {1, . . . , p}. (3.11)

Step 1.2: If unavailable, compute {∇j
xf(xk)}

q
j=1 satisfying

‖∇j
xf(x)−∇j

xf(x)‖[j] ≤ εj,iε for j ∈ {1, . . . , q}.

Step 1.3: Solve
globmax
xk+d∈F

‖d‖≤δk−1

∆T
f
q (xk, d, ωk),

to obtain the maximizer dk and the corresponding Taylor increment

∆T
f
q (xk, dk, ωk). Compute

flag = VERIFY
(

δk−1,∆T
f
q (xk, dk, ωk), {ǫj}

q
j=1, ωk,

1
2
ωkǫ
)

.

Step 1.4: Terminate the ARpDA algorithm with the approximate solution xǫ =
xk if flag = 1, or if flag = 3, or if flag = 2 and (2.15) holds with δ = δk−1.
Also go to Step 2 of the ARpDA algorithm if flag = 2 but (2.15) fails.

Step 1.5: Otherwise (i.e. if flag = 0), set

εj,iε+1 = γεεj,iε for j ∈ {1, . . . , p}, (3.12)

increment iε by one and return to Step 1.1.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations14

in Step 1.3, the VERIFY algorithm returns flag = 1 and thus that ∆T
f
q (xk, dk, ωk) = 0.

This means that xk is a global minimizer of T
f
q (xk, d, ωk) in the intersection of a ball of radius

δk−1 and F and ∆T
f
q (xk, d, ωk) ≤ 0 for any d in this intersection. Thus, for any such d, we

obtain from (3.7) with ξ = 1
2
ωkǫ that

∆T fq (xk, d) ≤ ∆T
f
q (xk, d, ωk) +

∣

∣

∣
∆T

f
q (xk, d, ωk)−∆T fq (xk, d)

∣

∣

∣
≤ 1

2
ωkǫχq(δk−1),

which, since ωk ≤ 1, implies (3.14). Suppose next that the VERIFY algorithm returns flag

= 3. Then ∆T
f
q (xk, dk, ωk) > 0 and thus dk 6= 0. Using the fact that the nature of Step 1.3

ensures that ∆T
f
q (xk, d, ωk) ≤ ∆T

f
q (xk, dk, ωk) for d with ‖d‖ ≤ δk−1 we have, using (3.9)

with ξ = 1
2
ωkǫ, that, for all such d,

∆T fq (xk, d) ≤ ∆T
f
q (xk, d, ωk) +

∣

∣

∣
∆T

f
q (xk, d, ωk)−∆T fq (xk, d)

∣

∣

∣

≤ ∆T
f
q (xk, dk, ωk) +

∣

∣

∣
∆T

f
q (xk, d, ωk)−∆T fq (xk, d)

∣

∣

∣

≤ ǫχq(δk−1)

yielding (3.14). If the VERIFY algorithm returns flag = 2, then, for any d with ‖d‖ ≤ δk−1,

∆T fq (xk, d) ≤ ∆T
f
q (xk, d, ωk) +

∣

∣

∣
∆T

f
q (xk, d, ωk)−∆T fq (xk, d)

∣

∣

∣
≤ (1 + ωk)∆T

f
q (xk, dk, ωk).

Thus, for all d with ‖d‖ ≤ δk−1,

max
[

0,∆T fq (xk, d)
]

≤ (1 + ωk)max
[

0,∆T
f
q (xk, dk, ωk)

]

= (1 + ωk)φ
δk−1

f,q (xk, ωk). (3.16)

But termination implies that (2.15) holds for δ = δk−1, and (3.14) follows with this value of
δ. Finally, if the ARpDA algorithm does not terminates within Step 1.4 but Algorithm 3.2
terminates, it must be because the VERIFY algorithm returns flag = 2. This implies, as
above, that (3.16) holds, which is the rightmost part of (3.15). Similarly, for any d with
‖d‖ ≤ δk−1,

∆T fq (xk, d) ≥ ∆T
f
q (xk, d, ωk)−

∣

∣

∣
∆T

f
q (xk, d, ωk)−∆T fq (xk, d)

∣

∣

∣

≥ ∆T
f
q (xk, d, ωk)− ωk∆T

f
q (xk, dk, ωk).

Hence

globmax
xk+d∈F
‖d‖≤δk−1

∆T fq (xk, d) ≥ globmax
xk+d∈F
‖d‖≤δk−1

[

∆T
f
q (xk, d, ωk)− ωk∆T

f
q (xk, dk, ωk)

]

= (1− ωk)∆T
f
q (xk, dk, ωk).

Since ∆T
f
q (xk, dk, ωk) > 0 when the VERIFY algorithm returns flag = 2, we then obtain

that, for all ‖d‖ ≤ δk−1,

max
[

0, globmax
xk+d∈F
‖d‖≤δk−1

∆T fq (xk, d)
]

≥ max
[

0, (1− ωk)∆T
f
q (xk, dk, ωk)

]

= (1− ωk)φ
δk−1

f,q (xk, ωk),

which is the leftmost part of (3.15).

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations15

3.3 Computing sk

We now consider computing sk at Step 2 of the ARpDA algorithm. The process is more
complicated than for Step 1, as it potentially involves two situations in which one wishes to
guarantee a suitable relative error. The first is when minimizing the model

mk(s) = f(xk, ωk)−∆T
f
p(xk, s, ωk) +

σk
(p+ β)!

‖s‖p+β

or, equivalently, maximizing

−mk(s) = −f(xk, ωk) + ∆T
f
p(xk, s, ωk)−

σk
(p+ β)!

‖s‖p+β , (3.17)

and the second is when globally minimizing the model’s Taylor expansion taken at xk + sk in
a neighbourhood of diameter δk. The first of these situations can be handled in a way very

similar to that used above for computing φ
δk−1

f,q (xk) in Step 1: given a set of approximate
derivatives, a step sk is computed such that it satisfies (2.19) and (2.20), the relative error

of the associated ∆T
f
p(xk, sk, ωk) is then evaluated and, if it is insufficient, the accuracy

on the derivative approximations improved and the process restarted. If the relative error

on ∆T
f
p(xk, sk, ωk) is satisfactory and the first test of (2.20) fails, it remains to check that

the relative error on φ
δk
mk,q

(sk, ωk) is also satisfactory. Moreover, as in the original ARpDA
algorithm, we have to take into account the possibility that minimizing the model might
result in a vanishing decrease. The resulting somewhat involved process is formalized in
Algorithm 3.3 on the following page.

Observe that, in Step 2.2, dmkk and ∆T
mk
q (sk, d

mk
k , ωk) result from the computation of φ

δk
mk,q

(sk, ωk)
which is necessary to verify the second part of (2.20). Note also that we have specified, in the
call to VERIFY in Step 2.4 of Algorithm 3.3, absolute accuracy values equal to {3ǫj}

q
j=1. This

is because this call aims at checking the accuracy of the Taylor expansion of the model and

the derivatives which are then approximated are not {∇j
xf(xk)}

q
j=1, but {∇

j
dT

mk
q (sk, 0)}

q
j=1.

It is easy to verify that these (approximate) derivatives are given by

∇j
dT

mk
q (sk, 0) =

p
∑

ℓ=j

∇ℓ
xf(xk)‖sk‖

ℓ−j

(ℓ− j)!
+
[

∇j
s‖s‖

p+β
]

s=sk
, (3.19)

where the last term of the right-hand side is exact. This yields the following error bound.

Lemma 3.3 Suppose that ‖sk‖ ≤ µǫ
1

p−q+β . Then, for all j ∈ {1, . . . , p},

∣

∣

∣
∇j
dT

mk
q (sk, 0)−∇j

dT
mk
q (sk, 0)

∣

∣

∣
≤ 3 εj . (3.20)

Proof. U ✷

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations16

Algorithm 3.3: Modified Step 2 of the ARpDA algorithm

Step 2: Step calculation.

Step 2.0: The iterate xk, the radius δk−1 ∈ (0, 1], the constants γε ∈ (0, 1),
ϑ ∈ (0, 1), the counter iε and the absolute accuracies {εj,iε}

p
j=1 are given.

Step 2.1: If unavailable, compute {∇j
xf(xk)}

p
j=1 satisfying (3.1) with εj = εj,iε

for j ∈ {1, . . . , p}.

Step 2.2: • Attempt to compute a step sk 6= 0 with xk + sk ∈ F such that
(2.19) holds.

• If this not possible, set flags = 1 and go to Step 2.3.

• Otherwise, pursue the approximate minimization of the model mk(s) for
xk + sk ∈ F in order to satisfy (2.20), yielding a step sk, a decrease

∆T
f
p(xk, sk, ωk) and, if the first part of (2.20) fails, the global maximizer

dmkk of ∆T
mk
q (sk, d, ωk) subject to ‖d‖ ≤ δk and xk+ sk+ d ∈ F , together

with the corresponding Taylor increment ∆T
mk
q (sk, d

mk
k , ωk).

• Compute

flags = VERIFY
(

‖sk‖,∆T
f
p(xk, sk, ωk), {ǫj}

p
j=1, ωk,

1
2
ωkǫ
)

.

If flags = 0 go to Step 2.5.

Step 2.3: If flags = 1 or flags = 3, compute

globmin
xk+s∈F

mk(s),

to obtain the minimizer sk, ∆T
f
p(xk, sk, ωk).

Set dmkk = 0 = ∆T
mk
q (sk, d

mk
k , ωk) and compute

flags = VERIFY
(

‖sk‖,∆T
f
p(xk, sk, ωk), {ǫj}

p
j=1, ωk,

1
2
ωkǫ
)

.

If flags = 0 go to Step 2.5.

Step 2.4: If flags = 1 or flags = 3, terminate the ARpDA algorithm with

xǫ = xk. Otherwise, if ‖sk‖ ≥ µǫ
1

p−q+β or if ‖sk‖ < µǫ
1

p−q+β and

flagd=VERIFY
(

δk,∆T
mk
q (sk, d

mk
k , ωk), {3ǫj}

q
j=1, ωk,

ϑ(1− κω)

(1 + κω)2
ωkǫ

2

)

> 0,

go to Step 3 of the ARpDA algorithm with the step sk, the associated

∆T
f
p(xk, sk, ωk) and δk.

Step 2.5: Set (if flags = 0 or flagd = 0),

εj,iǫ+1 = γεεj,iǫ for j ∈ {1, . . . , p}, (3.18)

increment iε by one and go to Step 2.1.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations17

sing the triangle inequality, (3.19), the inequality ‖sk‖ ≤ µǫ
1

p−q+β ≤ µ and (2.11), we have
that, for all j ∈ {1, . . . , p},

∣

∣

∣
∇j
dT

mk
q (sk, 0)−∇j

dT
mk
q (sk, 0)

∣

∣

∣
≤

p
∑

ℓ=j

εj‖sk‖
ℓ−j

(ℓ− j)!
≤ εj

p
∑

ℓ=j

µℓ−j

(ℓ− j)!
≤ εj(1 + χp(µ))

and (3.20) follows since χp(µ) ≤ 2µ.

Again, Algorithm 3.3 must terminate in a finite number of iterations. Indeed, if after
finitely many iterations flags = 1 or flags = 3 at the start of Step 2.4, the conclusion is

obvious. Suppose now that flags = 2 at all iterations. If ‖sk‖ < µǫ
1

p−q+β always hold, the
first proposition of Lemma 3.1 ensures that flagd > 0 after finitely many decreases in (3.18),

also causing termination. Termination might of course occur if ‖sk‖ ≥ µǫ
1

p−q+β before this
limit.

The next Lemma characterizes the outcomes of Algorithm 3.3.

Lemma 3.4 Suppose that the modified Step 2 is used in the ARpDA algorithm. If this
algorithm terminates within that step, then there exists a δ ∈ (0, 1] such that (2.15)
holds for x = xε or

φ
‖sk‖
f,p (xk) ≤ ǫχp(‖sk‖). (3.21)

Otherwise we have that (2.19) and

∣

∣

∣
∆T

f
p(xk, sk, ωk)−∆T fp (xk, sk)

∣

∣

∣
≤ ωk∆T

f
p(xk, sk, ωk) (3.22)

are satisfied. Moreover, either ‖sk‖ ≥ µǫ
1

p−q+β , or

φδkmk,q(sk) ≤ (1 + κω) max

[

ϑ(1− κω)

(1 + κω)2
ǫ,
θ‖sk‖

p−q+β

(p− q + β)!

]

χq(δk). (3.23)

hold.

Proof. W ✷

e first note that, because of (3.17) and because Step 2.2 imposes (2.19), we have that

∆T
f
p(xk, sk, ωk) ≥ 0 at the end of this step. Let us first consider the case where the calls

to the VERIFY algorithm in Step 2.2 and in Step 2.3 both return flags = 1 or flags = 3

and note that Step 2.1 yields (3.5) with Tr = T fr , r = p and {ζj}
r
j=1 = {εj,iε}

p
j=1. Moreover,

ω = ωk ∈ (0, 1) so that we can use Lemma 3.1 to analyse the outcome of the above calls to
the VERIFY Algorithm. If ‖sk‖ = 0, Lemma 2.4 ensures that (2.15) holds for x = xε for a

radius δ ∈ (0, 1). Otherwise, we have that ∆T
f
p(xk, s, ωk) > 0 because of (2.19) and, since sk

is then a global minimizer of mk, that

∆T
f
p(xk, s, ωk)−

σk
(p+ β)!

‖s‖p+β ≤ ∆T
f
p(xk, sk, ωk)−

σk
(p+ β)!

‖sk‖
p+β (3.24)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations18

for all s. Thus, if ‖s‖ ≤ ‖sk‖, then ∆T
f
p(xk, s, ωk) ≤ ∆T

f
p(xk, sk, ωk). This implies that

globmax
xk+s∈F
‖s‖≤‖sk‖

∆T
f
p(xk, s, ωk) = ∆T

f
p(xk, sk, ωk).

We may now repeat the proof of Lemma 3.2 for the cases flags ∈ {1, 3}, with q replaced by
p and δk−1 replaced by ‖sk‖, and deduce that (3.21) holds.

Assume now that Algorithm 3.3 terminates in Step 2.4. This means that the VERIFY
algorithm invoked in either Step 2.2 or Step 2.3 terminates with flags = 2, and we deduce
from (3.8) that(3.22) holds.

Let us now consider the case ‖sk‖ < µǫ
1

p−q+β and note that Lemma 3.3 ensures that (3.5)
is satisfied with Tr = Tmkr , r = q and {ζj}

r
j=1 = {3εj,iε}

q
j=1. Moreover, the triangle inequality

gives
∆Tmkq (sk, d) ≤ ∆T

mk
q (sk, d, ωk) +

∣

∣∆T
mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣ . (3.25)

First, assume that, in Step 2.4, Algorithm 3.3 terminates because flagd = 1 is returned
by VERIFY. Then, ∆T

mk
q (sk, d

mk
k , ωk) = 0. Moreover, using (3.25), the definition of dmkk

given at Step 2.2 of Algorithm 3.3, (3.7) and recalling that ωk ≤ 1, we obtain that, for all d
with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ ∆T
mk
q (sk, d, ωk) +

∣

∣∆T
mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

≤ ∆T
mk
q (sk, d

mk
k , ωk) +

∣

∣∆T
mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

=
∣

∣∆T
mk
q (sk, d, ωk)−∆Tmkq (sk, d)

∣

∣

≤
ϑ(1− κω)

2(1 + κω)2
ωk ǫ χq(‖d‖)

≤
ϑ(1− κω)

(1 + κω)2
ǫ χq(δk). (3.26)

If, instead, termination occurs with VERIFY returning flagd = 2, then we will show that
for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ (1 + ωk)∆T
mk
q (sk, d

mk
k , ωk) ≤ (1 + ωk)

θ‖sk‖
p−q+β

(p− q + β)!
χq(δk). (3.27)

Indeed, from (3.25), (3.8), (2.27) and the definition of dmkk at Step 2.2 of Algorithm 3.3, we
obtain for all d with ‖d‖ ≤ δk

∆Tmkq (sk, d) ≤ (1 + ωk)∆T
mk
q (sk, d

mk
k , ωk),

≤ (1 + ωk)max

[

0, globmax
xk+sk+d∈F

‖d‖≤δk

∆T
mk
q (sk, d, ωk)

]

= (1 + ωk)φ
δk
mk,q

(sk, ωk),

in which the equality follows from the definition (2.14). We can then conclude, using (2.20),
that (3.27) holds for all d with ‖d‖ ≤ δk.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations19

Finally, if termination occurs instead because VERIFY returns flagd = 3, we deduce from
the (3.25) and (3.9) that, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤
ϑ(1− κω)

(1 + κω)2
ǫ χq(δk) (3.28)

Observe now that (2.27), (2.7) (for mk at sk) and each of (3.26), (3.27) or (3.28) ensures
(3.23).

Note that (3.21) can be viewed as a stronger optimality condition than (2.10) since it
implies that the p-th (rather than q-th with q ≤ p) order Taylor expansion of f around xk is
bounded below by a correctly scaled multiple of ǫ, and in a possibly larger neighbourhood. It
is thus acceptable to terminate the ARpDA algorithm with xǫ = xk as stated in Step 2.4 of
Algorithm 3.3.

3.4 The complexity of a single ARpDA iteration

The last part of this section is devoted to bounding the evaluation complexity of a single
iteration of the ARpDA algorithm. The count in (approximate) objective function evaluations
is the simplest: these only occur in Step 3 which requires at most two such evaluations.

Now observe that evaluations of {∇j
xf}

p
j=1 possibly occur in Steps 1.2 and 2.1. However it

is important to note that, within these steps, the derivatives are evaluated only if the current

values of the absolute errors are smaller than that used for the previous evalutions of the
same derivative at the same point (xk). Moreover, these absolute errors are, by construction,
linearly decreasing with rate γε within the same iteration of the ARpDA algorithm (they
are initialized in Step 1.1, decreased each time by a factor γε in (3.12) invoked in Step 1.5,
down to values {εj,iε}

p
j=1 which are then passed to the modified Step 2, and decreased there

further in (3.18) in Step 2.5, again by successive multiplication with γε). Furthermore, we
have argued already, both for the modified Step 1 and the modified Step 2, that any of these
algorithms terminates as soon as (3.6) holds for the relevant value of ξ, which we therefore
need to determine. For Step 1, this value is 1

2
ωkǫ, while, for Step 2, it is given by

min

[

1
2
ωkǫ,

ϑ(1− κω)

(1 + κω)2
ωkǫ

2

]

=
ϑ(1− κω)

2(1 + κω)2
ωkǫ (3.29)

when ‖sk‖ < µǫ
1

p−q+β and by 1
2
ωkǫ when ‖sk‖ ≥ µǫ

1
p−q+β . As a consequence, we obtain the

following lemma.

Lemma 3.5 Suppose that ωk ≥ ωmin > 0 for all k. Then each iteration of the ARpDA
algorithm involves at most 2 (approximate) evaluations of the objective function and at
most 1 + νmax(ǫ) (approximate) evaluations of its p first derivatives, where

νmax(ǫ) =

⌊

1

log(γε)

{

log

(

ϑ(1− κω)

6(1 + κω)2
ωminǫ

)

− log(κε)

}⌋

. (3.30)

Proof. T ✷

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations20

he upper bound on the (approximate) function evaluations immediately follows from the
observation that, as mentioned at the beginning of the current paragraph, these computations
occur at most twice in Step 3 of Algorithm 2.1. Concerning the second part of the thesis we

notice that, from Lemma 3.3, in Step 2.4 of Algorithm 3.3 we have to make {∇j
xf(xk)}

p
j=1 three

times more accurate than the desired accuracy in {∇j
dT

mk
q (sk, 0)}

q
j=1, when ‖sk‖ < µǫ

1
p−q+β

(the input values for the absolute accuracy values in the VERIFY call are {3ǫj}
q
j=1). Thus,

the VERIFY Algorithm stops whenever

max
j∈{1,...,q}

εj ≤
ϑ(1− κω)ωkǫ

6(1 + κω)
2 .

We may thus conclude from Lemma 3.1 that no further reduction in {εj}
p
j=1 (and hence

no further approximation of {∇j
xf(xk)}

p
j=1) will occur once iε, the number of decreases in

{εj}
p
j=1, is large enough to ensure that

γiǫε [max
j∈{1,...,p}

εj,0] ≤
ϑ(1− κω)

6(1 + κω)
2ωminǫ

(Note that this inequality could hold for iǫ = 0.) Because of our assumption that ωk ≥ ωmin

and (3.11), the above inequality is then verified when

iǫ ≤

⌊

1

log(γε)

{

log

(

ϑ(1− κω)

6(1 + κω)
2ωminǫ

)

− log(κε)

}⌋

,

which concludes the proof when taking into account that the derivatives must be computed
at least once per iteration.

Note that, for simplicity, we have ignored the fact that only q ≤ p derivatives need to be
evaluated in Steps 1.2. Lemma 3.5 can obviously be refined to reflect this observation.

We conclude this section by a comment on what happens whenever exact objective func-
tion and derivatives are used. In that case the (exact) derivatives are computed only once
per iteration of the ARpDA algorithm (in Step 1.2 for the first q and in Step 2.1 for the
remaining p − q) and every other call to VERIFY returns flag = 1 or flag = 2. Moreover,
there is no need to recompute f to obtain (2.22) in Step 3. The evaluation complexity of a
single iteration of the ARpDA algorithm then reduces to a single evaluation of f and its first
p derivatives (and νmax(ǫ) = 1 for all k), as expected.

4 Evaluation complexity of the deterministic ARpDA

This section is devoted to the evaluation complexity analysis of the ARpDA algorithm in the
deterministic context. We start by providing a simple lower bound on the model decrease.

Lemma 4.1 [13, Lemma 3.1] The mechanism of the ARpDA algorithm guarantees that,
for all k ≥ 0,

∆T
f
p(xk, sk, ωk) >

σk
(p+ β)!

‖sk‖
p+β, (4.1)

and so (2.23) is well-defined.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations21

Proof. W ✷

e have that

0 < mk(0)−mk(sk) = T p(xk, 0, ωk)− T p(xk, sk, ωk)−
σk

(p+ β)!
‖sk‖

p+β .

We next show that the regularization parameter σk has to remain bounded, even in the
presence of inexact computation of f and its derivatives. This lemma hinges heavily on
(2.13), (2.21) and (2.22).

Lemma 4.2 Let f ∈ Cp,β(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[

σ0,
γ3(L+ 3)

1− η2

]

(4.2)

and
ωk ≥ ωmin

def
= min

[

κω,
1

σmax

]

. (4.3)

Proof. A ✷

ssume that

σk ≥
L+ 3

1− η2
. (4.4)

Also observe that, because of the triangle inequality, (3.22) (as ensured by Lemma 3.4) and
(2.22),

|T
f
p(xk, sk, ωk)− T fp (xk, sk)| ≤ |fk(xk, ωk)− f(xk)|

+|∆T
f
p(xk, sk, ωk)−∆T fp (xk, sk)|

≤ 2ωk|∆T
f
p(xk, sk, ωk)|

and hence, again using the triangle inequality, (2.21), (2.5), (2.25), (4.1) and (4.4),

|ρk − 1| ≤
|fk(xk + sk, ωk)− T

f
p(xk, sk, ωk)|

∆T
f
p(xk, sk, ωk)

≤ 1

∆T
f
p(xk, sk, ωk)

[

|fk(xk + sk, ωk)− f(xk + sk)|+ |f(xk + sk)− T fp (xk, sk)|

+|T
f
p(xk, sk, ωk)− T fp (xk, sk)|

]

≤ 1

∆T
f
p(xk, sk, ωk)

[

|f(xk + sk)− T fp (xk, sk)|+ 3ωk∆T
f
p(xk, sk, ωk)

]

≤ 1

∆T
f
p(xk, sk, ωk)

[

L
(p+ β)!

‖sk‖
p+β +

3∆T
f
p(xk, sk, ωk)
σk

]

< L
σk

+ 3
σk

≤ 1− η2

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations22

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and, because
of (2.24), σk+1 ≤ σk. As a consequence, the mechanism of the algorithm ensures that (4.2)
holds. Observe now that this result and (2.25) imply that, for all k, ωk may be chosen such
that min[κω, σ

−1
max] ≤ ωk ≤ κω, yielding (4.3).

It is important to note that (4.3) in this lemma provides the lower bound on ωk required in
Lemma 3.5. We now borrow a technical result from [13].

Lemma 4.3 [13, Lemma 2.4] Let s be a vector of IRn and p ∈ IN0 and β ∈ (0, 1] such
that j ∈ {0, . . . , p}. Then

‖∇j
s

(

‖s‖p+β
)

‖[j] ≤
(p+ β)!

(p− j + β)!
‖s‖p−j+β. (4.5)

Our next move is to prove a lower bound on the step norm. While the proof of this re-
sult is clearly inspired from that of [13, Lemma 3.3], it nevertheless crucially differs when
approximate values are considered instead of exact ones.

Lemma 4.4 Let f ∈ Cp,β(IRn). Then, for all k ≥ 0 such that the ARpDA algorithm
does not terminate at iteration k + 1,

‖sk‖ ≥ κsǫ
1

p−q+β , (4.6)

where

κs
def
= min

{

µ,

[

(1− κω)(1− ϑ)(p− q + β)!

(1 + κω)(L+ σmax + θ(1 + κω))

]
1

p−q+β

}

. (4.7)

Proof. I ✷

f ‖sk‖ ≥ µǫ
1

p−q+β , the result is obvious. Suppose now that

‖sk‖ < µǫ
1

p−q+β . (4.8)

Since the algorithm does not terminate at iteration k + 1, we have that

φ
δk
f,q(xk+1) >

ǫ

1 + ωk
χq(δk)

and therefore, using (3.15), that

φδkf,q(xk+1) >
1− ωk
1 + ωk

ǫ χq(δk). (4.9)

Let the global minimum in the definition of φδkf,q(xk+1) be achieved at d with ‖d‖ ≤ δk. Then,

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations23

using (2.7), the triangle inequality and (4.5), we deduce that

φδkf,q(xk+1) = −

q
∑

ℓ=1

1

ℓ!
∇ℓ
xf(xk+1)[d]

ℓ

≤

∣

∣

∣

∣

∣

q
∑

ℓ=1

1

ℓ!
∇ℓ
xf(xk+1)[d]

ℓ −

q
∑

ℓ=1

1

ℓ!
∇ℓ
sT

f
p (xk, sk)[d]

ℓ

∣

∣

∣

∣

∣

−

q
∑

ℓ=1

1

ℓ!
∇ℓ
sT

f
p (xk, sk)[d]

ℓ

≤

q
∑

ℓ=1

1

ℓ!

[

‖∇ℓ
xf(xk+1)−∇ℓ

sT
f
p (xk, sk)‖[ℓ]

]

δℓk

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

T fp (xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk. (4.10)

Now, because of (2.16), (2.7) (for mk at sk) and the fact that ‖d‖ ≤ δk, we have that

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

T fp (xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ = ∆Tmkq (sk, d) ≤ φδkmk,q(sk).

Then, as ‖sk‖ < µǫ
1

p−q+β < 1 because of (4.8), we may use (3.23) (ensured by Lemma 3.4)
and (2.6) and distinguish the cases where the maximum in (3.23) is attained in its first or its
second argument. In the latter case, we deduce from (4.10) that

φδkf,q(xk+1) ≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk + (1 + κω)
θ χq(δk)

(p− q + β)!
‖sk‖

p−q+β

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk

≤

[

L+ σk + θ(1 + κω)
]

χq(δk)

(p− q + β)!
‖sk‖

p−q+β; (4.11)

otherwise, (4.10) guarantees that

φδkf,q(xk+1) ≤
(L+ σk)χq(δk)

(p− q + β)!
‖sk‖

p−q+β +
ϑ(1− κω)

1 + κω
ǫχq(δk). (4.12)

Using now (4.9), (2.27), (4.8), (4.11) and (4.12),we thus have that

‖sk‖≥min

{

µǫ
1

p−q+β ,

[

ǫ(1− κω)(p− q + β)!
(1 + κω)(L+ σk + θ(1 + κω))

]
1

p−q+β

,

[

ǫ(1− κω)(1− ϑ)(p− q + β)!
(1 + κω)(L+ σk)

]
1

p−q+β

}

≥min

{

µǫ
1

p−q+β ,

[

ǫ(1− κω)(1− ϑ)(p− q + β)!
(1 + κω)(L+ σk + θ(1 + κω))

]
1

p−q+β

}

,

where we have used the fact that θ ∈ (0, 1) to obtain the last inequality. Then (4.6) follows
from (4.2).

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations24

We now combine all the above results to deduce an upper bound on the maximum number
of successful iterations, from which a final complexity bound immediately follows.

Theorem 4.5 Let f ∈ Cp,β(IRn) and ǫ ∈ (0, 1) be given. Then the ARpDA algorithm
using the modified Steps 1 (on page 13) and 2 (on page 16) produces an iterate xǫ such
that (2.10) or (3.21) holds in at most

⌊

κp(f(x0)− flow)
(

ǫ
− p+β
p−q+β

)⌋

+ 1 (4.13)

successful iterations,

τ(ǫ)
def
=

⌊{

⌊

κp(f(x0)− flow)
(

ǫ
− p+β
p−q+β

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)}⌋

(4.14)
iterations in total, 2τ(ǫ) (approximate) evaluations of f and (1+νmax(ǫ))τ(ǫ) approximate
evaluations of {∇j

xf}
p
j=1, where σmax is given by (4.2), ωmin by (4.3), νmax(ǫ) by (3.30),

and where

κp
def
=

(p+ β)!

η1(1− α)σmin
max

{

1

µp+β
,

[

(1 + κω)(L+ σmax + θ(1 + κω))

(1− κω)(1− ϑ)(p− q + β)!

]
p+β
p−q+β

}

. (4.15)

Proof. A ✷

t each successful iteration k before termination the algorithm guarantees the decrease

f(xk)− f(xk+1) ≥ [fk(xk, ωk)− fk(xk+1, ωk)]− 2ωk∆T
f
p(xk, sk, ωk)

≥ η1∆T
f
p(xk, sk, ωk)− αη1∆T

f
p(xk, sk, ωk)

>
η1(1− α)σmin

(p+ β)!
‖sk‖

p+β,

(4.16)

where we used (2.18), (2.21), (2.22), (2.23), (4.1) and (2.24). Moreover we deduce from (4.16)
and (4.6) that

f(xk)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β where κ−1

p
def
=

η1(1− α)σminκ
p+β
s

(p+ β)!
. (4.17)

Thus, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β |Sk|.

Using that f is bounded below by flow, we conclude that

|Sk| ≤ κp(f(x0)− flow)ǫ
− p+β
p−q+β (4.18)

until termination, and the desired bound on the number of successful iterations follows.
Lemma 2.2 is then invoked to compute the upper bound on the total number of iterations, and
Lemma 3.5 to deduce the upper bounds on the number of evaluations of f and its derivatives.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations25

We emphasize that (4.13) was shown in [13] to be optimal for a quite wide class of minimization
algorithms. The slightly weaker bound (1 + νmax(ǫ))τ(ǫ) may be seen as the (very modest)
price to pay for allowing inexact evaluations.

Focusing on the order in ǫ and using (4.14), we therefore obtain the following condensed
result on evaluation complexity for nonconvex optimization.

Theorem 4.6 Let f ∈ Cp,β(IRn). Then, given ǫ ∈ (0, 1), the ARpDA algorithm using
the modified Steps 1 (on page 13) and 2 (on page 16) needs at most

O
(

ǫ
− p+β
p−q+β

)

iterations and (approximate) evaluations of f

and at most

O
(

| log(ǫ)|ǫ−
p+β
p−q+β

)

(approximate) evaluations of the p first derivatives

to compute an (ǫ, δ)-approximate q-th-order-necessary minimizer for the set-constrained
problem (2.1).

In particular, if the p-th derivative of f is assumed to be globally Lipschitz rather than merely
Hölder continuous (i.e. if β = 1), these orders reduce to

O
(

ǫ
− p+1
p−q+1

)

iterations and (approximate) evaluations of f

and at most

O
(

| log(ǫ)|ǫ
− p+1
p−q+1

)

(approximate) evaluations of the p first derivatives.

As indicated in the comment at the end of Section 3, all O(| log(ǫ)|) terms reduce to a constant
independent of ǫ if exact evaluations of f and its derivatives are used, and the above results
then recover the optimal complexity results of [13].

We conclude this section by commenting on the special case where the objective function
evaluations are exact and that of the derivatives inexact. We first note that this case is already
covered by the theory presented above (since (2.21) and (2.22) automatically holds as their
left-hand side is identically zero), but this remark also shows that the ARpDA algorithm can
be simplified by replacing the computation of f(xk + sk, ωk) by that of f(xk + sk) and by
skipping the verification and possible recomputation of f(xk, ωk) entirely. As consequence,
the ARpDA algorithm only evaluates the exact objective function f once per iteration, and
the maximum number of such evaluations is therefore given by τ(ǫ) instead of 2τ(ǫ), while
the maximum number of (inexact) derivatives evaluations is still given by (1 + νmax(ǫ))τ(ǫ).

5 A variant of the ARpDA algorithm

We now describe a variant of the ARpDA algorithm for which an even better complexity
can be proved, but at the price of a more restrictive dynamic accuracy strategy. In the
Step 1.0 of the ARpDA algorithm, we allow the choice of an arbitrary set of {εj,0}

p
j=1 with

the constraint that εj,0 ≤ κε for j ∈ {1, . . . , p}. This allows these accuracy thresholds to vary
non-monotonically from iteration to iteration, providing considerable flexibility and allowing

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations26

large inaccuracies even if these thresholds were made small in past iterations due to local
nonlinearity. A different, more rigid, strategy is also possible: suppose that the thresholds
{εj,0}

p
j=1 are not reset at each iteration, that is

Step 1.1 is only executed for k = 0. (5.1)

This clearly results in a monotonic decrease of each εj across all iterations. As a consequence,
νmax(ǫ) in (3.30) now bounds the total number of reductions of the εj over all iterations,
i.e. on the entire run of the algorithm. We then deduce that the total number of derivatives
evaluation is then bounded by νmax(ǫ) + τ(ǫ) (instead of (1 + νmax(ǫ))τ(ǫ)) and we may
establish the worst-case complexity of the resulting “monotonic” variant as follows.

Theorem 5.1 Let f ∈ Cp,β(IRn) and ǫ ∈ (0, 1) be given. Then the ARpDA algorithm
using the modified Steps 1 (on page 13) and 2 (on page 16) as well as the modified rule
(5.1) produces an iterate xǫ such that (2.10) or (3.21) holds in at most (4.13) successful
iterations, τ(ǫ) iterations in total, 2τ(ǫ) (approximate) evaluations of f and νmax(ǫ)+τ(ǫ)
approximate evaluations of {∇j

xf}
p
j=1, where τ(ǫ) is given by (4.14), κp is given by (4.15),

σmax by (4.2), ωmin by (4.3) and νmax(ǫ) by (3.30).

As above, this complexity bound can be condensed to

O
(

ǫ
− p+β
p−q+β

)

iterations and (approximate) evaluations of f

O
(

| log(ǫ)|+ ǫ
− p+β
p−q+β

)

(approximate) evaluations of the p first derivatives,
(5.2)

typically improving on Theorem 4.6. When p = 2, q = 1 and β = 1, the ARpDA variant
using the more restrictive accuracy strategy (5.1) requires at most

O
(

| log(ǫ)|+ ǫ−3/2
)

(approximate) evaluations of the gradient, which corresponds to the bound derived for the
ARC-DFO algorithm of [12]. This is not surprising as this latter algorithm uses a mono-
tonically decreasing sequence of finite-difference stepsizes, implying monotonically decreasing
gradient-accuracy thresholds.

One should however notice that the improved bound (5.2) comes at the price of asking, for
potentially many iterations, an accuracy on {∇j

xf}
p
j=1 which is tighter than what is needed

to ensure progress of the minimization. In practice, this might be a significant drawback. We
will thus restrict our attention, in what follows, to the original ARpDA algorithm, but similar
developments are obviously possible for the “monotonic” variant just discussed.

6 Application to unconstrained and bound-constrained first-

and second-order nonconvex inexact optimization

Because of its wide-ranging applicability, the framework discussed above may appear some-
what daunting in its generality. Moreover, the fact that it involves (possibly constrained)

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations27

global optimization subproblems in several of its steps may suggest that it has to remain con-
ceptual. We show in this section that this is not the case, and stress that it is much simpler

when specialized to small values of p and q (which are, for now, the most practical ones) and
that our approach leads to elegant and implementable numerical algorithms. To illustrate
this point, we now review what happens for p ≤ 2.

We first discuss the case where one seeks to compute a first-order critical point for an
unconstrained optimization problem using approximate function values as well as approximate
first derivatives. For simplicity of exposition, we will also assume that the gradient of f is
Lipschitz (rather than Hölder) continuous. In our general context, this means that we consider
the case where q = 1, p = 1, β = 1 and F = IRn. We first note that, as pointed out in (2.8),

φδf,1(x) = ‖∇1
xf(x)‖δ and φ

δ
f,1 = ‖∇1

xf(x)‖δ irrespective of δ ∈ (0, 1], (6.1)

which means that, since we can choose δ = 1, Step 1 of the ARpdA algorithm reduces to the
computation of an approximate gradient ∇1

xf(xk) with relative error ωk and verification that
ǫ-approximate optimality is not yet achieved. If that is the case, computing sk at Step 2 is
also extremely simple since it is easy to verify that

sk = s∗k = −
1

σk
∇1
xf(xk).

Lemma 2.3 then ensures that this step is acceptable for some δk ∈ (0, 1], the value of which
being irrelevant since it is not used in Step 1 of the next iteration. Moreover, if the relative
error on ∇1

xf(xk) is bounded by ωk, then

|∆T
f
1(xk, sk)−∆T f1 (xk, sk)| ≤ ‖∇1

xf(xk)−∇1
xf(xk)‖

‖∇1
xf(xk)‖
σk

≤ ωk
‖∇1

xf(xk)‖
2

σk

= ωk∆T
f
1(xk, sk)

and (2.13) automatically holds, so that no iteration is needed in Algorithm 3.3. The result-
ing algorithm, where we have made the modified Step 1 explicit, is given as Algorithm 6.1
(AR1DA) on page 29.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations28

Theorem 4.6 then guarantees that the AR1DA Algorithm will find an ǫ-approximate first-
order minimizer for the unconstrained version of problem (2.1) in at most O

(

ǫ−2
)

iterations
and approximate evaluations of the objective function (which is proved in [13] to be optimal)
and at most O

(

| log(ǫ)|ǫ−2
)

approximate evaluations of the gradient. Note that

1. the accuracy requirement is truly adaptive and the absolute accuracy ε1,i may remain

quite large as long as ‖∇1
xf(xk)‖ itself remains large, as shown by item 3 in Step 1.

2. The accuracy requirement for computing f does not depend on the absolute accuracy
of the gradient, but only on its norm (squared). At initial iterations, this may be quite
large.

3. The AR1DA Algorithm is very close in spirit to the trust-region with dynamic accuracy
of [17, Sections 8.4.1.1 and 10.6] and, when values of f are computed exactly, essentially
recovers a proposal in [9]. It is also close to the proposal of [25], which is based on an
Armijo-like linesearch and has similar accuracy requirements.

We now turn to the case where one seeks a first-order critical point for an unconstrained
problem using approximate gradients and Hessians (under the assumption that the exact
Hessian is Lispchitz continuous). As for the case p = q = 1, we have that (6.1) holds, making
the verification of optimality in Step 1 relatively easy. Computing sk is now more complicated
but still practical, as it now implies minimizing the regularized quadratic model mk starting
from xk until a step sk is found such that

‖sk‖ ≥ µǫ
1
2 or φ

δ
mk,1

(sk, ωk) = ‖∇1
smk(sk)‖ ≤ 1

2
θ‖sk‖

2

(as proposed in [11], see also [21, 24, 10, 18]), with the additional constraint that, for sk 6= 0,

max[ε1,i, ε2,i] ≤ ωk
∆T

f
2(xk, sk, ωk)

χ2(‖sk‖)
(6.7)

where
∆T

f
2(xk, sk, ωk) = −∇1

xf(xk)
T sk − 1

2
sTk∇

2
xf(xk)sk.

The resulting algorithm AR2DA is quite similar to AR1DA and is omitted for brevity.
We note that

1. Algorithm AR2DA is guaranteed by Theorem 4.6 to find an ǫ-approximate first-order
minimizer for the unconstrained version of problem (2.1) in at most O

(

ǫ−3/2
)

iterations
and approximate evaluations of the objective function (which is proved in [13] to be
optimal) and at most O

(

| log(ǫ)|ǫ−3/2
)

approximate evaluations of the gradient and
Hessian.

2. As for AR1DA, the absolute accuracies required by AR2DA on the approximate func-
tion, gradient and Hessian only depend on the magnitude of the Taylor increment, which
is typically quite large in early iterations. The relative errors on the latter two remain
bounded away from zero.

3. The absolute accuracies required on the approximate gradient and Hessian are compa-
rable in magnitude, although (6.7) could be exploited to favour one with respect to the
other.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations29

Algorithm 6.1: The AR1DA Algorithm

Step 0: Initialization. An initial point x0 ∈ IRn and an initial regularization parame-
ter σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1) and an initial relative
accuracy ω0 ≥ 0. The constants α, κω, κε, η1, η2, γ1, γ2, γ3 and σmin are also given
and satisfy σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3,

κε ∈ (0, 1] α ∈ (0, 1), κω ∈ (0, 1
2
αη1] and ω0 = min

[

κω,
1

σ0

]

.

Set k = 0.

Step 1: Compute the optimality measure and check for termination.
Initialize ε1,0 = κε and set i = 0. Do

1. compute ∇1
xf(xk) with ‖∇1

xf(xk)−∇1
xf(xk)‖ ≤ ε1,i and increment i by one.

2. if ‖∇1
xf(xk)‖ ≤ ǫ/(2(1 + ωk)), terminate with xǫ = xk;

3. if ε1,i ≤ ωk‖∇1
xf(xk)‖, go to Step 2;

4. set ε1,i+1 = γεε1,i and return to item 1 in this enumeration.

Step 2: Step calculation. Set

sk = −∇1
xf(xk)/σk and ∆T

f
1(xk, sk, ωk) = ‖∇1

xf(xk)‖
2/σk.

Step 3: Acceptance of the trial point.
Compute fk(xk + sk, ωk) ensuring that

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ωk|∆T
f
1(xk, sk, ωk)|. (6.2)

Also ensure (by setting fk(xk, ωk) = fk−1(xk, ωk−1) or by (re)computing
fk(xk, ωk)) that

|fk(xk, ωk)− f(xk)| ≤ ωk|∆T
f
1(xk, sk, ωk)| (6.3)

Then define
ρk =

fk(xk, ωk)− fk(xk + sk, ωk)

∆T
f
1(xk, sk, ωk)

. (6.4)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈

[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(6.5)

Step 5: Relative accuracy update. Set

ωk+1 = min

[

κω,
1

σk+1

]

. (6.6)

Increment k by one and go to Step 1.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations30

The case where p = 2 and q = 2 (i.e. when second-order solutions are sought) is also com-

putationally quite accessible: calculating the optimality measure φ
δk
f,1(xk, ωk) or φ

δk
mk,1

(sk, ωk)
now involve a standard trust-region subproblem, for which both exact and approximate nu-
merical solvers are known (see [17, Chapter 7] for instance), but the rest of the algorithm
— in particular its adaptive accuracy requirement — is very similar to what we just dis-
cussed (see also [13]). Theorem 4.6 then ensures that resulting method converges to an ǫ-
approximate second-order-necessary minimizer for the unconstrained version of problem (2.1)
in at most O

(

ǫ−3
)

iterations and approximate evaluations of the objective function and at
most O

(

| log(ǫ)|ǫ−3
)

approximate evaluations of the gradient and Hessian.
We conclude this section by a brief discussion of the case where q = 1 and p ∈ {1, 2}

as before, but where F is now defined by bound constraints. It is clear that evaluating and
enforcing such constraints (by projection, say) has negliglible cost and therefore falls in our

framework. In this case, the calculations of φ
δk
f,1(xk, ωk) or φ

δk
mk,1

(sk, ωk) now involve simple
linear optimization problems∗, which is computationally quite tractable. If p = 1, Step 2.2
and 2.3 involve convex quadratic optimization, while they involve minimizing a regularized
quadratic model if p = 2. All results remain the same, and the ARpDA algorithm is then guar-
anteed to find a bound-constrained approximate first-order approximate minimizer in at most
O
(

ǫ−2
)

or O
(

ǫ−3/2
)

iterations and approximate evaluations of the objective function (which

is proved in [13] to be optimal) and at most O
(

| log(ǫ)|ǫ−2
)

or O
(

| log(ǫ)|ǫ−3/2
)

approximate
evaluations of the gradient and Hessian. The same algorithms and results obviously extend
to the case where F is a convex polyhedral set or any closed non-empty convex set, provided
the cost of the projection on this set remains negligible compared to that of (approximately)
evaluating the objective function and its derivatives.

7 A stochastic viewpoint on ARpDA

7.1 Probabilistic complexity

In this section we consider the case where the bounds {εj}
p
j=1 on the absolute errors on the

derivative tensors {∇j
xf(x)}

p
j=1 are satisfied with probability at least (1− t), with t ∈ (0, 1).

This may occur, for instance, if the approximate derivative tensors are obtained by some
stochastic sampling scheme, as we detail below. We therefore assume that

Pr
[

‖∇j
xf(xk)−∇j

xf(xk)‖[j] ≤ εj

]

≥ (1− t) for each j ∈ {1, . . . , p}. (7.1)

We also assume that inequalities (2.21) and (2.22) in Step 3 of the ARpDA algorithm are
satisfied with probability at least (1− t), i.e.

Pr
[

|fk(xk + sk, ωk)− f(xk + sk)| ≤ ε0

]

≥ 1− t, (7.2)

and
Pr
[

|fk(xk, ωk)− f(xk)| ≤ ε0

]

≥ 1− t (7.3)

where we have defined ε0
def
= ωk|∆T

f
p(xk, sk, ωk)|. Clearly, different values for t could be

chosen in (7.1), one for each index (tensor order) j ∈ {1, ..., p}. Similarly, different values of

∗Formerly known as linear programming problems, or LPs.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations31

t in (7.2) and (7.3) could be considered. However, for the sake of simplicity, we assume here
that all the inequalities involved in (7.1)–(7.3) hold with the same fixed lower bound (1− t)
on the probability of success. We also assume that the events in (7.1)–(7.3) are independent.

Stochastic variants of trust-region and adaptive cubic regularization methods have been
analyzed in [2, 8, 15, 30, 32]. In [8, 15], complexity results are given in expectation, while the
analysis is carried out in probability in [2, 30, 32]. We choose to follow the high-probability
approach of [30, 32], where an overall and cumulative success of (7.1)–(7.3) is assumed along
all the iterations up to termination.

We stress that Algorithms 3.2 and 3.3 terminates independently of the satisfaction of the
accuracy requirements on the tensor derivatives. This is due to the fact that termination
relies on the inequality (3.6). Moreover, during the iterations of either of these algorithms
before the last, it may happen that the accuracy on the tensor derivatives fails to be achieved,
but this has no impact on the worst-case complexity. Satisfying the accuracy requirement is
only crucial in the last iteration of Algorithm 3.2 or 3.3 (that is in Steps 1.2 and 2.2). Let
Er(S) be the event: “the relations

‖∇j
xf(xk)−∇j

xf(xk)‖[j] ≤ εj for all j ∈ {1, . . . , r}

hold for some j at Step S of the last iteration of the relevant algorithm”. In Step 1.2, inexact
values are computed for the first q derivatives, and the probability that event Eq(1.2) occurs
is therefore at least (1 − t)q. Similarly, the probability that event Eq(2.2) occurs is at least
(1 − t)p. Finally, at Step 3 of the ARpDA algorithm, the probability that both (2.21) and
(2.22) hold is at least (1− t)2. Then, letting for i ∈ {1, . . . , k}, E[i] be the event: “Inequalities
(2.13), (2.21) and (2.22) hold at iteration i, of the ARpDA algorithm”, the probability that
E[i] occurs is then at least (1− t)p+q+2. Finally, letting E(k) be the event: “E[i] occurs for all
iterations i ∈ {1, . . . , k} of the ARpDA algorithm”, we deduce that

Pr
[

E(k)
]

≡ Pr

[

k
⋂

i=1

E[i]

]

≥ (1− t)k(p+q+2).

Thus, requiring that the event E(k) occurs with probability at least 1− t, we obtain that

Pr
[

E(k)
]

≥ (1− t)k(p+q+2) = 1− t, i.e., t = 1− (1− t)
1

k(p+q+2) = O

(

t

k(p+ q + 2)

)

.

Taking into account that, when (2.13), (2.21) and (2.22) hold, the ARpDA algorithm ter-

minates in at most k = O
(

ǫ
− p+β
p−q+β

)

iterations (as stated by Theorem 4.6), we deduce the
following result.

Theorem 7.1 Let f ∈ Cp,β(IRn). Suppose that the probabilistic assumptions of this
section hold and that, at each of iteration of the ARpDA algorithm, the probability t
satisfies

t = O

(

t ǫ
p+β
p−q+β

(p+ q + 2)

)

. (7.4)

Then, given ǫ ∈ (0, 1), the conclusions of Theorem 4.6 hold with probability at least
(1− t).

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations32

As a consequence, when p = q = 2 and β = 1 we have to choose t = O
(

1
6
t ǫ3
)

, while, when
p = q = β = 1, we have to choose t = O

(

1
4
t ǫ2
)

.
We stress that the above analysis is unduly pessimistic in the case where p = q = 1.

Indeed, as already noticed in Section 6, no reduction in {εj} is necessary at Step 2, as

(2.13) is automatically enforced whenever the relative error on the first derivative ∇1
xf(x) is

bounded by ωk. Noting that this last event has probability at least 1 − t, we can conclude
that Pr(E[i]) ≥ (1 − t)3 and to get the optimal complexity O

(

ǫ−2
)

with probability at least
1 − t, we need to choose t = O

(

1
3
t ǫ2
)

. We also emphasize that the purpose of Theorem 7.1
is limited to offer guidance on desirable value of t and not to prescribe an algorithmically
binding bound. Indeed some of the constants involved in the bound of Theorem 4.6 (and thus
of Theorem 7.1) are typically unknown a priori (which is why we have not been more specific
in (7.4)).

7.2 Sample size in subsampling for finite-sum problems

In what follows, we now focus on the solution of large-scale instances of the finite-sum prob-
lems arising in machine learning and data analysis, that are modelled as

min
x∈F

f(x) =
1

N

N
∑

i=1

ψi(x), (7.5)

with N > 0 and ψi : IR
n → IR. Restricting ourselves to the cases where p ≤ 2, we discuss

the application of Algorithm AR1DA and AR2DA to problem (7.5). In this case, the ap-
proximation of the objective function’s value and of first and second derivatives is obtained
by a subsampling procedures, i.e. these quantities are approximated by randomly sampling
component functions ψi. More precisely, at iteration k these approximations take the form:

fk(xk, ωk) =
1

|Dk,1|

∑

i∈Dk,1

ψi(xk), fk(xk + sk, ωk) =
1

|Dk,2|

∑

i∈Dk,2

ψi(xk + sk),

∇1
xf(xk) =

1

|Gk|

∑

i∈Gk

∇1
xψi(xk), and ∇2

xf(xk) =
1

|Hk|

∑

i∈Hk

∇2
xψi(xk),

where Dk,1, Dk,2, Gk and Hk are subsets of {1, 2, . . . , N}. The question then arises of esti-
mating the cardinality of these sample sets in order to ensure that the approximations of the
objective function’s value and its first and second derivatives satisfy (7.1) for j = 1 and j = 2,
(7.2) and (7.3). This issue can be addressed using the operator-Bernstein inequality given in
[28] and recently extended in [3] to random tensors of general order. In the next theorem we
derive our final result concerning the sample sizes for subsampling the objective function and
its derivatives up to order two.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations33

Theorem 7.2 Suppose that there exist non-negative constants {κψ,j}
2
j=0 such that, for

x ∈ IRn and all j ∈ {0, 1, 2}

max
i∈{1,...,N}

‖∇j
xψi(x)‖ ≤ κψ,j(x). (7.6)

Let t ∈ (0, 1) and suppose that a subsample Ak is chosen randomly and uniformly from
{1, . . . , N} and that, for some j ∈ {0, 1, 2}, one computes

∇j
xf(x) =

1

|Ak|

∑

i∈Ak

∇j
xψi(x),

with

|Ak| ≥ min

{

N,

⌈

4κψ,j(x)

εj

(

2κψ,j(x)

εj
+

1

3

)

log

(

d

t

)⌉}

, (7.7)

where

d =

2, if j = 0,
n+ 1, if j = 1,
2n, if j = 2.

Then condition (7.1) holds for x = xk with probability at least (1 − t) if j ∈ {1, 2}, or,
if j = 0, each of the conditions (7.2) and (7.3) holds with probability at least (1− t) for
x = xk + sk and x = xk, respectively.

Proof. L ✷

et Ak ⊆ {1, . . . , N} be a sample set of cardinality |Ak|. Consider j ∈ {0, 1, 2} and |Ak|
random tensors Zu(x) such that,

Pr
[

Zu(x) = ∇j
xψi(x)

]

=
1

N
, (i ∈ {1, . . . , N}).

For u ∈ Ak, let us define

Xu
def
=
(

Zu(x)−∇j
xf(x)

)

, ∇j
xf(x)

def
=

1

|Ak|

∑

u∈Ak

Zu(x)

and
X

def
=
∑

u∈Ak

Xu = |Ak|
(

∇j
xf(x)−∇j

xf(x)
)

.

Since (7.5) gives that

1

N

N
∑

i=1

∇j
xψi(x) = ∇j

xf(x),

we deduce that

E(Xu) =
1

N

N
∑

i=1

(

∇j
xψi(x)−∇j

xf(x)
)

= 0, u ∈ Ak.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations34

Moreover, assuming Zu(x) = ∇j
xψl(x) for some l ∈ {1, . . . , N} and using (7.6), we have that

‖Xu‖ ≤

∥

∥

∥

∥

∥

N − 1

N
∇j
xψl(x)−

1

N

∑

i∈{1,...,N}\{l}

∇j
xψi(x)

∥

∥

∥

∥

∥

≤ 2
N − 1

N
κψ,j(x) ≤ 2κψ,j(x),

so that the variance of X can be bounded as follows:

v(X) = max
[

‖E(XXT)‖, ‖E(XTX)‖
]

= max
[
∥

∥

∥

∑

u∈Ak

E(XuX
T
u)
∥

∥

∥
,
∥

∥

∥

∑

u∈Ak

E(XT
uXu)

∥

∥

∥

]

≤ max
[

∑

u∈Ak

‖E(XuX
T
u)‖,

∑

u∈Ak

‖E(XT
uXu)‖

]

≤ max
[

∑

u∈Ak

E(‖XuX
T
u ‖),

∑

u∈Ak

E(‖XT
uXu‖)

]

≤
∑

u∈Ak

E(‖Xu‖
2) ≤ 4|Ak|κ

2
ψ,j(x),

in which the first and the third inequalities hold because of the triangular inequality, while
the second is due to the Jensen’s inequality (note that the spectral norm ‖ · ‖ is convex).
Therefore, according to the Operator-Bernstein Inequality stated in [28, Theorem 6.1.1], we
obtain that

Pr
[

‖∇j
xf(x)−∇j

xf(x)‖ ≥ ǫj

]

= Pr
[

‖X‖ ≥ ǫj |Ak|
]

≤ d e
−

ǫ2j |Ak|

4κψ,j(x)(2κψ,j(x)+ 1
3
ǫj) , (7.8)

with d = 2 if j = 0, d = n + 1 if j = 1 and d = 2n if j = 2. Then, bounding the right-hand
side of (7.8) by t, taking logarithms and extracting |Ak| gives (7.7).

In particular, Theorem 7.2 gives the lower bounds

|Dk,ℓ| ≥ min

{

N,

⌈

4κψ,j(x)

ε0

(

2κψ,j(x)

ε0
+

1

3

)

log

(

2

t

)⌉}

, ℓ = 1, 2, (7.9)

|Gk| ≥ min

{

N,

⌈

4κψ,j(x)

ε1

(

2κψ,j(x)

ε1
+

1

3

)

log

(

n+ 1

t

)⌉}

(7.10)

and

|Hk| ≥ min

{

N,

⌈

4κψ,j(x)

ε2

(

2κψ,j(x)

ε2
+

1

3

)

log

(

2n

t

)⌉}

. (7.11)

The adaptive nature of these sample sizes is apparent in formulae (7.9)–(7.11), because they
depend on x and εj , which are themselves dynamically updated in the course of the ARpDA
algorithm. Depending on the size of N , it may clearly be necessary to consider the whole set
{1, . . . , N} for small values of {εj}

2
j=0. If the cost of evaluating functions ψi, for 1 ≤ i ≤ N , is

comparable for all i, the cost of evaluating fk(xk, ωk) amounts to the fraction |Dk,1|/N of the
effort for computing the exact value f(xk). Analogous considerations hold for the objective
function’s derivatives.

The implementation of rules (7.9)-(7.11) requires the knowledge of the size of the functions
ψi’s and their first and second order derivatives. If only global information is available, the

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations35

dependence on x may obviously be avoided by choosing a uniform upper bound κψ,j for
all x ∈ F , at the cost of a lesser adaptivity. Similar bounds on the sample size used to
approximate gradients and Hessians up to a prescribed probability have been derived and
used in [26] where it has also been observed that there are problems where estimations of the
needed uniform upper bounds can be obtained. In particular, let {(ai, bi)}

N
i=1 denote the pairs

forming a data set with ai ∈ IRn being the vector containing the features of the i-th example
and bi being its label. In [26] authors considered the minimization of objective function
(1/N)

∑N
i=1(Φ(a

T
i x) − bia

T
i x) over a sparsity inducing constraint set, e.g., F = {x ∈ IRn |

‖x‖1 ≤ 1}, for cumulant generating functions Φ of different forms, and explicitly provided
the uniform bound κψ,1. Taking into account that x belongs to the set F , uniform bounds
for the objective function and the Hessian norm can also be derived.

Uniform bounds are available also in the unconstrained setting for binary classification
problems modelled by the sigmoid function and least-squares loss, i.e. problems of the form
(7.5) with F ≡ IRn and

ψi(x) =

(

bi −
1

1 + e−a
T
i x

)2

, i = 1 . . . , N. (7.12)

Let vi(x) = (1 + e−a
T
i x)−1 and note that bi ∈ {0, 1} and vi(x) ∈ (0, 1) for any x ∈ IRn. Then,

|ψi(x)| ≤ 1, for any x ∈ IRn. Moreover, uniform upper bounds κψ,j for ∇
j
xψi(x), j = 1, 2 can

be easily derived and they are reported Table 1 along with the expression of the first and
second order derivatives of ψi(x). The computation of these bounds requires a pre-processing
phase as the norm of the features vectors {ai}

N
i=1 of the data sets are needed.

Derivatives κψ,j
∇xψi(x) −(bi − vi(x))(1− vi(x))vi(x)ai 1

5
‖ai‖

∇2
xψi(x) vi(x)(1− vi(x))(3vi(x)

2 − 2vi(x)(1 + bi) + bi)aia
T
i

1
10
‖ai‖

2

Table 1: First and second order derivatives of (7.12) and corresponding uniform bounds

Finally, whenever N is large enough to ensure that (7.9)–(7.11) do not require the full
sample, the size of the sample used to obtain a single approximate objective function value
is O(ε−2

0). Analogously, gradient and Hessian values are approximated by averaging over
samples of size O(ε−2

1) and O(ε−2
2), respectively. In Step 3 of the AR1DA algorithm, the

choice ε0 ∈
[

γǫωk‖∇
j
xf(x)‖2/σk, ωk‖∇

j
xf(x)‖2/σk

]

is required to ensure that (6.2)-(6.3) are

satisfied. With this choice, iteration k of the AR1DA algorithm requires O(‖∇j
xf(x)‖−4) ψi-

evaluations (O(ǫ−4) ψi-evaluations in the worst case). Similarly, ε0 = O(ωk‖∆T
f
2(xk, sk, ωk)‖)

is needed at iteration k of the AR2DA algorithm. As a consequence, and if the algorithm does
not terminate at iteration k + 1, it follows from Lemma 4.1 and 4.4 that O(ǫ−(3/(3−q))2) ψi-
evaluations may be required in the worst case. Finally, using Lemma 3.5 and (3.29), we claim
that each iteration of the AR1DA and AR2DA algorithms requires at most O((1+νmax(ǫ))ǫ

−2)
evaluations of component gradients and component Hessians, where νmax(ǫ) has been defined
in (3.30). These bounds turn out to be better or the same as those derived in [8],[15],[32].
Although they may appear discouraging, it should be kept in mind that they are valid only
if N is truly large compared with 1/ǫ (for instance, it has to exceed O(ǫ−4) to allow for
approximate functions in the AR1DA Algorithm). In other words, the sampling schemes
(7.9)–(7.11) are most relevant when 1/ǫ remains modest compared with N .

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations36

We conclude by emphasizing that the per-iteration failure probability t given in (7.4) is
not too demanding in what concerns the sample size, because it only occurs in the logarithm
term of (7.7). The same is true of the impact of the value of the unknown constants hidden
in the O(·) notation in (7.4).

8 Conclusion and perspectives

We have provided a general regularization algorithm using inexact function and derivatives’
values, featuring a flexible adaptive mechanism for specifying the amount of inexactness ac-
ceptable at each iteration. This algorithm, inspired by the unifying framework proposed in
[13], is applicable to unconstrained and inexpensively-constrained nonconvex optimization
problems, and provides optimal iteration complexity for arbitrary degree of available deriva-
tives, arbitrary order of optimality and the full range of smoothness assumptions on the
objective function highest derivative. We have also specialized this algorithm to the cases
of first- and second-order methods, exhibiting simple and numerically realistic methods. We
have finally provided a probabilistic version of the complexity analysis and derived associated
lower bounds on sample size in the context of subsampling methods.

There are of course many ways in which the proposed algorithm might be improved. For
instance, the central calculation of relatively accurate Taylor increments may possibly be
made more efficient by updating the absolute accuracies for different degrees separately. Fur-
ther techniques to avoid unnecessary derivative computations (without affecting the optimal
complexity) could also be investigated.

The framework proposed in this paper also offers obvious avenues for specializations to
specific contexts, among which we outline two. The first is that of algorithms using stochastic
approximations of function values and derivatives. The technique presented here derives
probabilistic conditions under which properties of the deterministic algorithms are preserved.
It does not provide an algorithm which is robust against failures to satisfy the adaptive
accuracy requirements. This is in contrast with the interesting analysis of unconstrained first-
order methods of [25] and [8]. Combining the generality of our approach with the robustness
of the proposal in these latter papers is thus desirable. The second interesting avenue is
the application of the new results to multi-precision optimization in the context of very
high performance computing. In this context, it is of paramount importance to limit energy
dissipation in the course of an accurate calculation, and this may be obtained by varying the
accuracy of the most crucially expensive of its parts (see [20] for unconstrained quadratic
optimization). The discussion above again provides guidance at what level of arithmetic
accuracy is needed to achieve overall performance while maintaining optimal complexity.
Both these topics are the object of ongoing research and will be reported on at a later stage.

Acknowledgments

INdAM-GNCS partially supported the first and third authors under Progetti di Ricerca 2018. The second
author was partially supported by INdAM through a GNCS grant. The last author gratefully acknowledges the
support and friendly environment provided by the Department of Industrial Engineering at the Università degli
Studi, Florence (Italy) during his visit in the fall of 2018. The authors are also indebted to two careful referees,
whose comments and perceptive questions have resulted in a significant improvement of the manuscript.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations37

References

[1] L. Bottou, F. E. Curtis and J. Nocedal. Optimization Methods for Large-Scale Machine Learning. SIAM

Review, 60:233-311, 2018.

[2] A. Bandeira, K. Scheinberg and L. Vicente. Convergence of trust-region methods based on probabilistic
models. SIAM Journal on Optimization, 24:1238:1264, 2014.

[3] Z. Luo, L. Qi and Ph. L Toint. Bernstein Concentration Inequalities for Tensors via Einstein Products.
arXiv:1902.03056, 2018.

[4] S. Bellavia, S. Gratton, and E. Riccietti. A Levenberg-Marquardt method for large nonlinear least-squares
problems with dynamic accuracy in functions and gradients. Numerische Mathematik, 140:791–825, 2018.

[5] S. Bellavia, G. Gurioli, and B. Morini. Theoretical study of an adaptive cubic regularization method with
dynamic inexact Hessian information. arXiv:1808.06239, 2018.

[6] E. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer. A subsampling line-search method with
second-order results. arXiv:1810.07211, 2018.

[7] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint. Worst-case evaluation
complexity for unconstrained nonlinear optimization using high-order regularized models. Mathematical

Programming, Series A, 163(1):359–368, 2017.

[8] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic trust
region method via supermartingales. arXiv:1609.07428v3, 2018.

[9] T. Bonniot. Convergence and complexity of unconstrained optimization methods with inexact gradients.
Master’s thesis, ENSEEIHT, Toulouse, France, September 2018. (supervised by S. Gratton, D. Orban
and Ph. Toint).

[10] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Trust-region and other regularization of linear least-squares
problems. BIT, 49(1):21–53, 2009.

[11] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part II: worst-case function-evaluation complexity. Mathematical Programming, Series A,
130(2):295–319, 2011.

[12] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-order and derivative-free
algorithms for smooth nonconvex minimization. SIAM Journal on Optimization, 22(1):66–86, 2012.

[13] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Sharp worst-case evaluation complexity bounds for arbitrary-
order nonconvex optimization with inexpensive constraints. arXiv:1811.01220, 2018.

[14] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Worst-case evaluation complexity and optimality of second-
order methods for nonconvex smooth optimization. To appear in the Proceedings of the 2018 International
Conference of Mathematicians (ICM 2018), Rio de Janeiro, 2018.

[15] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, Series A, 159(2):337–375, 2018.

[16] X. Chen, B. Jiang, T. Lin, and S. Zhang. On adaptive cubic regularization Newton’s methods for convex
optimization via random sampling. arXiv:1802.05426, 2018.

[17] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on Optimization.
SIAM, Philadelphia, USA, 2000.

[18] J. P. Dussault. Simple unified convergence proofs for the trust-region and a new ARC variant. Technical
report, University of Sherbrooke, Sherbrooke, Canada, 2015.

[19] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[20] S. Gratton, E. Simon, and Ph. L. Toint. Minimizing convex quadratics with variable precision Krylov
methods. arXiv:1807.07476, 2018.

[21] A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding cubic
terms. Technical Report NA/12, Department of Applied Mathematics and Theoretical Physics, University
of Cambridge, Cambridge, United Kingdom, 1981.

[22] L. Liu, X. Liu, C.-J. Hsieh, and D. Tao. Stochastic second-order methods for non-convex optimization
with inexact Hessian and gradient. arXiv:1809.09853, 2018.

Bellavia, Gurioli, Morini, Toint: Adaptive Regularization Algorithms with Inexact Evaluations38

[23] Yu. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2004.

[24] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, Series A, 108(1):177–205, 2006.

[25] C. Paquette and K. Scheinberg. A stochastic line search method with convergence rate analysis.
arXiv:1807.07994, 2018.

[26] F. Roosta-Khorasani, M. W. Mahoney. Sub-sampled Newton methods. Mathematical Programming,
174(1-2):293–326, 2019.

[27] N. Tripuraneni, M. Stern, J. Regier, and M. I. Jordan. Stochastic cubic regularization for fast nonconvex
optimization. arXiv:1711.02838v2, 2017.

[28] J. Tropp. An Introduction to Matrix Concentration Inequalities. Number 8:1-2 in Foundations and Trends
in Machine Learning. Now Publishing, Boston, USA, 2015.

[29] S. A. Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimization, 3(1):60–80,
1993.

[30] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex optimization
under inexact Hessian information. arXiv:1708.07164v3, 2017.

[31] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Second-order optimization for non-convex machine
learning: An empirical study. arXiv:1708.07827v2, 2018.

[32] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Inexact non-convex Newton-type methods.
arXiv:1802.06925, 2018.

