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Abstract

We provide sharp worst-case evaluation complexity bounds for nonconvex minimiza-
tion problems with general inexpensive constraints, i.e. problems where the cost of eval-
uating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is
negligible compared to that of evaluating the objective function. These bounds unify,
extend or improve all known upper and lower complexity bounds for unconstrained and
convexly-constrained problems. It is shown that, given an accuracy level ǫ, a degree of
highest available Lipschitz continuous derivatives p and a desired optimality order q be-

tween one and p, a conceptual regularization algorithm requires no more than O(ǫ−
p+1

p−q+1 )
evaluations of the objective function and its derivatives to compute a suitably approxi-
mate q-th order minimizer. With an appropriate choice of the regularization, a similar
result also holds if the p-th derivative is merely Hölder rather than Lipschitz continuous.
We provide an example that shows that the above complexity bound is sharp for uncon-
strained and a wide class of constrained problems; we also give reasons for the optimality
of regularization methods from a worst-case complexity point of view, within a large class
of algorithms that use the same derivative information.

1 Introduction

Since the seminal paper by Vavasis [21] on the complexity of finding first-order critical points in
unconstrained nonlinear optimization was published 25 years ago, the question of the optimal
worst-case complexity of optimization methods has been of interest to mathematicians and
also, because of its strong connection with deep learning, to computer scientists. Of late, there
has been a growing interest in this research field, both for convex and nonconvex problems.
This paper focusses on the latter class and follows a now subtantial(1) trend of research where
bounds on the worst-case evaluation complexity (or oracle complexity) of obtaining first- and
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(more rarely) second-order-necessary minimizers(2) for nonlinear nonconvex unconstrained
optimization problems [21, 17, 14, 19, 5]. These papers all provide upper evaluation complexity
bounds: they show that, to obtain an ǫ-approximate first-order-necessary minimizer (for
unconstrained problem, this is a point at which the gradient of the objective function is
less than ǫ in norm), at most O(ǫ−2) evaluations of the objective function(3) are needed
if a model involving first derivatives is used, and at most O(ǫ−3/2) evaluations are needed
if using second derivatives is permitted. This result was extended to convexly-constrained
problems in [6]. A broader framework allowing the use of Taylor series of degree p was more
recently proposed in [2], in which case the worst-case evaluation complexity bound for ǫ-first-

order-necessary unconstrained minimizer is shown to be O(ǫ
− p+1

p ), thereby generalizing the
previous results for this case. Complexity for obtaining ǫ-approximate second-order-necessary
unconstrained minimizers was considered in [19, 5], where a bound of O(ǫ−3) evaluations was
proved to obtain an ǫ-second-order-necessary minimizer using a Taylor’s model of degree two,

and a bound of O(ǫ
− p+1

p−1 ) evaluations was shown in [8] for the case where a Taylor model of
degree p is used. Defining q-th-order-necessary minimizers for q > 2 was considered in [11],
where the difficulty of stating and verifying necessary optimality was discussed. In particular,
it was concluded in this latter reference that defining and computing ǫ-approximate q-th-
order-necessary minimizers for q > 2 is likely to remain elusive, essentially because of the
nonlinearity and lack of continuity of the kernels of the derivatives involved. A more general
Taylor-based definition of optimality was introduced instead, which allowed to show an upper
bound of O(ǫ−(q+1)) on evaluation complexity for convexly-constrained problems, in particular
improving on the bound of O(ǫ−9/2) stated in [1] for the case p = q = 3.

The unconstrained and convexly-constrained cases where the assumption of Lipschitz con-
tinuity is replaced by the weaker β-Hölder continuity (β ∈ (0, 1]) have also been studied for

q = 1 in [18, 7, 9]. These references show that at most O(ǫ
− p+β

p−1+β ) evaluations are needed for
obtaining an ǫ-first-order-necessary minimizer.

While upper complexity bounds are important as they provide a handle on the intrinsic
difficulty of the considered problem, they do so at the condition of not being overly pessimistic.
To address this last point, lower bounds on the evaluation complexity of unconstrained non-
convex optimization problems and methods were derived in [4, 17] and [12], where it was shown
that the known upper complexity bounds are sharp (irrespective of problem’s dimension) for
most known methods using Taylor’s models of degree one or two. That is to say that there are
examples for which the complexity order predicted by the upper bound is actually achieved.
More recently, Carmon et al. [3] provided an elaborate construction showing that at least

a multiple of ǫ
− p+1

p function evaluations may be needed to obtain an ǫ-first-order-necessary
unconstrained minimizer where derivatives of order at most p are used. This result, which
matches in order the upper bound of [2], covers a very wide class of potential optimization
methods(4) but has the drawback of being only valid for problems whose dimension essentially
exceeds the number of iterations needed, which can be very large and quickly grows when ǫ
tends to zero.

Contributions. The present paper aims at unifying and generalizing all the above results
in a single framework, providing, for problems with inexpensive or no constraints, provably

(2)That is points satisfying the first- or second-order necessary optimality conditions for minimization.
(3)And its available derivatives.
(4)In particular, it covers randomized methods, which we do not consider in this paper.
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optimal evaluation complexity bounds for arbitrary optimality order, all relevant model de-
grees and levels of smoothness of the objective function. By “inexpensive constraints”, we
mean general set constraints whose enforcement and evaluation(5) cost is negligible compared
to the cost of evaluating the objective function. As a consequence, the evaluation complex-
ity for such problems is meaningfully captured by focusing of the number of evaluations of
this latter function. This class of minimization problems contains important cases such as
bound-constrained problems and convexly-constrained problems (when the projection onto
the feasible set is inexpensive), but also allows possibly nonconvex or even disconnected fea-
sible sets.

In order to achieve these objectives, we first revisit the Taylor-based optimality measure of
[11] and define (ǫ,δ)-q-th-order-necessary minimizers, a notion extending the standard ǫ-first-
and ǫ-second-order cases to arbitrary orders. We then present a conceptual regularization

algorithm using degree p models and show that this algorithm requires at most O(ǫ−
p+β

p−q+β )
evaluations of f and its derivatives to find such an (ǫ,δ)-q-th-order-necessary minimizer when
the p-th derivative of f is assumed to be β-Hölder continuous. (If the p-th derivative is

assumed to be Lispchitz continuous, the bound becomesO(ǫ
− p+1

p−q+1 ).) This bound matches the
best known lower bounds for first- and second-order, and improves on the bound in O(ǫ−(q+1))
given by [11]. We then show that this bound is sharp in order for unconstrained problems with
Lipschitz continuous p-th derivative by completing and extending the result of [3] in two ways.

The first is to show that the lower worst-case bound of order ǫ
− p+1

p evaluations for obtaining a
first-order-necessary minimizer using at most p derivatives is also valid for problems of every
dimension, and the second is to show that this bound can be generalized to a multiple of

ǫ
− p+1

p−q+1 for obtaining a q-th-order-necessary minimizer of any order q. In particular, this
result matches in order the upper bound obtained in the first part of the paper and subsumes
or improves known lower bounds for first- and second-order-necessary minimizers. While our
lower bounds are derived for regularization algorithms applied to unconstrained problems, we
also indicate that they may be extended to a much wider class of minimization methods and
to a significant class of constrained problems.

The paper is organized as follows. Section 2 introduces the (possibly constrained) mini-
mization problem of interest and the concept of (ǫ,δ)-approximate q-th-order-necessary min-
imizers. It also presents a variant of the Adaptive Regularization algorithm using degree p
Taylor’s models (ARp) whose purpose is to find such minimizers. Section 3 then provides
an upper bound on the evaluation complexity for the ARp algorithm to achieve this task.
Section 4 then discusses specialization of this result to the case where ǫ-approximate second-
order-necessary minimizers are sought. The complexity upper bound of Section 3 is then
proved to be sharp in Section 5 for the Lipschitz-continuous cases where the feasible set
contains a ray. Some conclusions are finally presented in Section 6.

Notation. Throughout the paper, ‖v‖ denotes the standard Euclidean norm of a vector
v ∈ IRn. For a symmetric tensor S of order p, S[v1, . . . , vp] is the result of applying S to the
vectors v1, . . . , vp, S[v]

p is the result of applying S to p copies of the vector v and

‖S‖[p]
def
= max

‖v‖=1
|S[v]p| = max

‖v1‖=···=‖vp‖=1
|S[v1, . . . , vp]| (1.1)

(where the second equality results from Theorem 2.1 in [23]) is the associated induced norm
for such tensors. If S1 and S2 are tensors, S1 ⊗ S2 is their tensor product and Sk⊗

1 is the

(5)Constraint’s values and that of their derivatives, if relevant.
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product of S1 k times with itself. For a real, sufficiently differentiable univariate function
f , f (i) denotes its i-th derivative and f (0) is a synonym for f . For an integer k and a real

β ∈ (0, 1], we define (k + β)!
def
=
∏k

ℓ=1(β + ℓ) (this coincides with the standard factorial if
β = 1). As is usual, we also define 0! = 1. If M is a symmetric matrix, λmin(M) is its
left-most eigenvalue. If α is a real, ⌈α⌉ and ⌊α⌋ denote the smallest integer not smaller than
α and the largest integer not exceeding α, respectively. Finally globminx∈S f(x) denotes the
smallest value of f(x) over x ∈ S.

2 High-order necessary conditions for optimality and the ARp

algorithm

Given p ≥ 1, this paper considers the set-constrained optimization problem

min
x∈F

f(x), (2.1)

where we assume that F ⊆ IRn is closed and nonempty, and where f ∈ Cp,β(IRn), namely,
that:

• f is p-times continuously differentiable,

• f is bounded below by flow, and

• the p-th derivative tensor of f at x is globally Hölder continuous, that is, there exist
constants L ≥ 0 and β ∈ (0, 1] such that, for all x, y ∈ IRn,

‖∇p
xf(x)−∇p

xf(y)‖[p] ≤ L‖x− y‖β . (2.2)

Observe that convexity or even connectedness of F is not requested. Observe also that the
more usual case of Lipschitz continuous p-th derivative corresponds to β = 1. We note that
our assumption covers the continuous range of objective function’s smoothness from Hölder
continuous gradients to Lipschitz continuous p-th derivatives. In what follows, we assume
that β is known.
If Tp(x, s) is the standard p-th degree Taylor’s expansion of f about x computed for the
increment s, that is

Tp(x, s)
def
= f(x) +

p
∑

ℓ=1

1

ℓ!
∇ℓ

xf(x)[s]
ℓ, (2.3)

(2.2) provides crucial approximation bounds, whose proof can be found in the appendix.

Lemma 2.1 Let f ∈ Cp,β(IRn), and Tp(x, s) be the Taylor approximation of f(x + s)
about x given by (2.3). Then for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

(p+ β)!
‖s‖p+β, (2.4)

‖∇j
xf(x+ s)−∇j

sTp(x, s)‖[j] ≤
L

(p− j + β)!
‖s‖p−j+β. (j = 1, . . . , p). (2.5)
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In order to characterize minimizers of (2.1), we follow [11] and introduce, for given δ ∈ (0, 1]
and j ≤ p,

φδf,j(x)
def
= f(x)− globmin

x+d∈F

‖d‖≤δ

Tj(x, d), (2.6)

which can be interpreted as the magnitude of the largest decrease achievable on the Taylor’s

expansion of degree j within the intersection a ball of radius δ with the feasible set. It was
shown in [11] that φδf,j(x) is a proper generalization of well-known unconstrained optimality
measures for low orders, in that, for δ = 1,

φδf,1(x) = ‖∇1
xf(x)‖ δ, (2.7)

φδf,2(x) =
∣

∣min[0, λmin

(

∇2
xf(x)

)∣

∣ δ2 (2.8)

provided ∇1
xf(x) = 0, and also, if additionally ∇2

xf(x) is positive semi-definite, that

φδf,3 = ‖ projection of ∇3
xf(x) onto the nullspace of ∇2

xf(x) ‖ δ
3. (2.9)

At variance with other optimality measures, φδj,f (x) is well-defined for any order j ≥ 1 and
varies continuously when x varies continuoulsy in F . The role of the “optimality radius” δ
in (2.6) merits some discussion. While the choice of δ = 1 is adequate for retrieving known
optimality conditions in the unconstrained case for j = 1, j = 2 provided ∇1

xf(x) = 0, and
j = 3 provided additionnaly ∇2

xf(x) is positive semi-definite (as we have just seen), δ becomes
important in other cases. Corollary 3.6 in [11] indicates that, when F is convex, q-th-order
necessary “path-based” optimality conditions hold if

lim
δ→0

φδf,j(x)

δj
= 0 for j = 1, . . . , q. (2.10)

The limit for δ → 0 is necessary to capture the notion of local minimizer for (2.1). However,
considering φδf,j(x) for non-vanishing δ has substantial advantages from the point of view of
optimization: while it may fail to indicate that x is a local minimizer, it does so only by
providing a direction leading to values of f below f(x), thereby helping to avoid local but
non-global approximate solutions. We refer the reader to [11] for a further discussion, but
conclude that considering fixed δ has strong advantages when solving (2.1).

A special case is when x is an isolated feasible point, that is a point which is the sole
intersection between F and any sufficiently small neighbourhood of x. Such a point is clearly
a local minimizer, and this is reflected by the fact that φδf,q(x) = 0 for any f , any q and any
sufficiently small δ.

The main drawback of using φδf,j(x) is, of course, that its computation requires the global
minimization of Tp(x, d) in the intersection of the ball of radius δ with F . We are not aware
of an easy way to do this in general(6) when n > 1, which is why our analysis remains of an
essentially theoretical nature, as was the case for [11]. Note however that, albeit potentially
very difficult, solving this global minimization problem does not involve calculating the value
of f or of any of its derivatives. In that sense, this drawback is thus irrelevant for the
worst-case evaluation complexity which solely focuses on these evaluations.

(6)A small value of δ might help, but this computation remains NP-hard in most cases.
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Observe now that, if we were to relax the first-order condition ∇1
xf(x) = 0 for uncon-

strained problems to ‖∇1
xf(x)‖ ≤ ǫ and, at the same time, relax the second-order condition

to
∣

∣min[0, λmin

(

∇2
xf(x)

)∣

∣ ≤ ǫ, we then deduce that

φδf,2(x) ≤ ǫδ + 1
2
ǫδ2 = ǫ

2
∑

ℓ=1

δℓ

ℓ!
. (2.11)

A natural generalization of this observation is to define an (ǫ, δ)-approximate q-th-order-
necessary minimizer of f as a point x such that

φδf,q(x) ≤ ǫχq(δ) (2.12)

where

χq(δ)
def
=

q
∑

ℓ=1

δℓ

ℓ!
. (2.13)

Because (2.12) is a new way to look at approximate optimality and is crucial for the rest of
this paper, it is worthwhile to motivate and discuss it further.

1. When ǫ = 0, (2.12) implies that the complicated path-based necessary optimality con-
ditions derived in [11] do hold. This results from the fact that these latter conditions
merely express that the Taylor’s model of order q cannot decrease close enough to x
along any feasible polynomial path emanating from x, which is clearly the case if x is
a global minimizer of the same models in the intersection of the feasible set and a ball
of radius δ centered at x. By continuity, these path-based conditions must therefore
hold in the limit under (2.12) when ǫ tends to zero. The role of (2.12) as a condition
for approximate minimization is thus coherent and consistent with known necessary
conditions.

2. Inspired by (2.10), the stronger approximate optimality condition

φδf,j(x) ≤ ǫ δj for j ∈ {1, . . . , q} (2.14)

was used in [11] instead of (2.12). Our main reason to prefer (2.12) is the follow-
ing. Observe that (2.14) implies in particular that φδf,q(x) ≤ ǫδq, which in turn im-

plies, for δ small enough for the first-order term to dominate, that φδf,1(x) ≤ ǫδq. In

the unconstrained case (for example), this requires ‖∇1
xf(xk)‖ ≤ ǫδq−1, imposing an

inordinate level of first-order optimality, much stronger than the standard condition
‖∇1

xf(xk)‖ ≤ ǫ. No such difficulty arises with (2.12) because the right-hand side of the
condition involves all powers of δ, which is not the case of the right-hand side of (2.14).
Note however that the vital continuity properties of φδf,q are not affected by the choice
of the right-hand side, and are thus inherited by (2.12).

3. For given δ ∈ (0, 1], (2.12) does not imply that φδf,j(x) ≤ ǫχj(δ) for j ∈ {1, . . . , q − 1},

although the violation of this condition tends to zero with δ(7). This slight blemish can
be cured by requiring that φδf,j(x) ≤ ǫχj(δ) for j ∈ {1, . . . , q} instead of (2.12), but we
claim that the benefit of this stronger definition is outweighted by the need to perform
q−1 additional constrained global minimizations, and therefore focus our exposition to
the case using the simpler (2.12).

(7)When δ tends to zero, the terms of orders j + 1 and higher in the Taylor’s expansion defining φδ
f,q(x) and

χq(δ) become negligible compared to the first j.
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In order to further justify (2.12), we now make more explicit the “minimizing guarantees”
provided by this approximate optimality condition, by formulating a result analogous to
Theorem 3.7 in [11]. This result gives a lower bound on the value of f(x) in the feasible
neighbourhood of an (ǫ, δ)-approximate q-th-order-necessary minimizer.

Theorem 2.2 Suppose that f is p times continuouly differentiable and that ∇q
xf is

β-Hölder continuous with constant L (in the sense of (2.2) with p = q) in an open
neighbourhood of radius δ ∈ (0, 1] of some x ∈ F . Suppose also that x is an (ǫ, δ)-
approximate q-th-order-necessary minimizer of f in the sense of (2.12). Then

f(x+d) ≥ f(x)−2ǫχq(δ) for all d with x+d ∈ F and ‖d‖ ≤ min

[

δ,

(

(q + 1)!ǫ

L

) 1
q+β−1

]

.

(2.15)

Proof. Using the triangle inequality, (2.2), (2.4) and (2.12), we obtain that

f(x+ d) ≥ f(x+ d)− Tq(x, d) + Tq(x, d)

≥ −|f(x+ d)− Tq(x, d)|+ Tq(x, 0)− φδf,q(x)

≥ − L
(q + 1)!

‖d‖q+β + f(x)− ǫχq(δ).

Thus, if ‖d‖ ≤ δ,

f(x+ d) ≥ f(x)−
L

(q + 1)!
‖d‖q+β−1 δ − ǫχq(δ)

and the desired bound follows from the fact that δ ≤ χq(δ). ✷

In order to find (ǫ, δ)-approximate q-th-order-necessary minimizers, we consider applying a
variant of the ARp algorithm to (2.1). This algorithm, described as Algorithm 2.1 on the
following page, is of the regularization type in that, at each iterate xk, a step sk is computed
which approximately minimizes (in a sense defined below) the model

mk(s) = Tp(xk, s) +
σk

(p+ β)!
‖s‖p+β (2.16)

subject to xk+s ∈ F , where p in an integer such that p ≥ q and σk ≥ σmin is a “regularization
parameter”.

A few comments are useful at this stage.

1. Since σk ≥ σmin by (2.22), we have that mk(s) is bounded below as a function of s and
the existence of a constrained global minimizer s∗k is guaranteed.

2. Step 2 requires, that, for sk 6= 0, we also compute δk. This is easy for orders one
and two. If q = 1, the formula for a global minimizer s∗k is analytic and δk = 1 is
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Algorithm 2.1: ARp for (ǫ, δ)-approximate q-th-order-necessary minimizers

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1). The constants δ−1, ̟, θ,
η1, η2, γ1, γ2, γ3 and σmin are also given and satisfy

̟ ∈ (0, 1], θ > 0, δ−1 ∈ (0, 1], σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2 < γ3.

(2.17)

Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate {∇i
xf(xk)}

q
i=1. If (2.12) holds with δ =

δk−1, terminate with the approximate solution xǫ = xk. Otherwise compute
{∇i

xf(xk)}
p
i=q+1.

Step 2: Step calculation. Attempt to compute a step sk such that xk + sk ∈ F and
an optimality radius δk ∈ (0, 1] by approximately minimizing the model mk(s) in
the sense that

mk(sk) < mk(0) (2.18)

and either
‖sk‖ ≥ ̟ǫ

1
p−q+β (2.19)

or

φδkmk,q
(sk) ≤

θ‖sk‖
p−q+β

(p− q + β)!
χq(δk). (2.20)

If no such step exist, terminate with the approximate solution xǫ = xk.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
. (2.21)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈







[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.22)

Increment k by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.
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always acceptable. The situation is similar for q = 2, where s∗k can be assessed using
a trust-region method whose radius is δk = 1 (more details are provided at the end of
Section 3). The task is more difficult for higher orders where one may have to rely on
the arguments of Lemma 2.5 below, or use different subproblems with decreasing values
of δ. However, none of these computations involve the evaluation of f or its derivatives,
and therefore the evaluation complexity bound discussed in this paper is unaffected.

3. That one needs to consider the second case in Step 2 (where no step exists satisfying
(2.18) – (2.20)) can be seen by examining the following one-dimensional example. Let
p = q = 3 and β = 1, and suppose that δk−1 = 1, Tq(xk, s) = s2− 2s3 and σk = 4! = 24.
Then mk(s) = s2 − 2s3 + s4 = s2(s − 1)2 and the origin is a global minimizer of
the model (and a local minimizer of Tq(xk, s)) but yet Tq(xk, δ) = −1, yielding that

φ
δk−1

f,q (xk) = 1 > ǫχq(1) for ǫ ≤ 1/χq(1) = 4
7
. Thus, Step 1 with δk−1 = 1 has failed to

identify that termination was possible. In addition, we see that, at variance with the
cases q = 1 and q = 2, a global minimizer of the model (2.16) may not, for q ≥ 3, be a
global minimizer of its q-th order Taylor’s expansion in the intersection of F and a ball
of arbitrary radius: we may have to restrict this radius (to δk−1 = 1

2
in our example)

for this important property to hold (see Lemma 2.5 below).

4. If (2.19) holds, the possibly expensive computation of φδkmk,q
(sk) in (2.20) is unnecessary

and δk may be chosen arbitrarily in (0, 1].

5. We assume the availability of a feasible starting point, which is without loss of generality
for inexpensive constraints.

6. Before termination, each successful iteration requires the evaluation of f and its first p
derivative tensors, while only the evaluation of f is needed at unsuccessful ones.

7. The mechanism of the algorithm ensures the non-increasing nature of the sequence
{f(xk)}k≥0.

Iterations for which ρk ≥ η1 (and hence xk+1 = xk+sk) are called “successful” and we denote

by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0 and k. We

immediately observe that the total number of iterations (successful or not) can be bounded
as a function of the number of successful ones (and include a proof in the appendix).

Lemma 2.3 [2, Theorem 2.4] The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (2.23)

for some σmax > 0, then

k + 1 ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

. (2.24)

We also verify that the algorithm is well-defined in the sense that either a step sk satisfying
(2.18)–(2.20) can always be found, or termination is justified. For unconstrained problems
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with q ∈ {1, 2}, the first possibility directly results from the observation that φδmk,j
(sk) (as

given by (2.7)-(2.9) for f = mk and j ∈ {1, 2, 3}) can be made suitably small at a global
minimizer of the model. The situation is more complicated for other cases. In order to clarify
it, we first state a useful technical lemma, whose proof is in the appendix.

Lemma 2.4 Let s be a vector of IRn. Then

‖∇j
s

(

‖s‖p+β
)

‖[j] =
(p+ β)!

(p− j + β)!
‖s‖p−j+β for j ∈ {0, . . . , p} (2.25)

and
‖∇p+1

s

(

‖s‖p+β
)

‖[p+1] = β (p+ β)! ‖s‖β−1. (2.26)

We now provide reasonable sufficient conditions for a nonzero step sk and an optimality
radius δk to satisfy (2.18)–(2.20).

Lemma 2.5 Suppose that s∗k is a global minimizer of mk(s) under the constraint that
xk + s ∈ F , such mk(s

∗
k) < mk(0). Then there exist a neighbourhood of s∗k and a range

of sufficiently small δ such that (2.18) and (2.20) hold for any sk in the intersection of
this neighbourhood with F and any δk in this range.

Proof. Let s∗k be the global minimizer of the modelmk(s) over all s such that xk+s ∈ F .
Since mk(s

∗
k) < mk(0), we have that s∗k 6= 0. By Taylor’s theorem, we have that, for all d,

0 ≤ mk(s
∗
k + d)−mk(s

∗
k) =

p
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ +
1

(p+ 1)!
∇p+1

s mk(s
∗
k + ξd)[d]p+1

for some ξ ∈ (0, 1). Thus, using the triangle inequality, (2.16) and (2.26),

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ ≤

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] +

‖d‖p+1

(p+ 1)!
‖∇p+1

s mk(s
∗
k + ξd)‖[p+1]

=

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] + βσk

‖d‖p+1

(p+ 1)!
‖s∗k + ξd‖β−1.

(2.27)
Since s∗k 6= 0, we may then choose δk < ‖s∗k‖ such that, for every d with ‖d‖ ≤ δk,
‖s∗k + ξd‖ ≥ 1

2
‖s∗k‖ > 0 and

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] + 21−ββσk

‖d‖p+1

(p+ 1)!
‖s∗k‖

β−1 ≤
θ‖s∗k‖

p−q+β

2(p− q + β)!
‖d‖. (2.28)

Hence we deduce from (2.27) and (2.28) that, for ‖d‖ ≤ δk,

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ ≤
θ‖s∗k‖

p−q+β

2(p− q + β)!
δk ≤

θ‖s∗k‖
p−q+β

2(p− q + β)!
χq(δk),
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where the last inequality follows from (2.13). Continuity of mk and its derivatives and the
inequality mk(s

∗
k) < mk(0) then imply that there exists a neighbourhood of s∗k 6= 0 such

that (2.18) holds and

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s)[d]
ℓ ≤

θ‖s‖p−q+β

(p− q + β)!
χq(δk).

for all s in this neighbourhood and all d with ‖d‖ ≤ δk. This yields that, for all such s
with xk + s ∈ F ,

φδkmk,q
(s) = max

[

0, globmax
‖d‖≤δk
xk+d∈F

(

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ

)]

≤
θ‖s‖p−q+β

(p− q + β)!
χq(δk),

as requested. ✷

As can be seen in the proof of this lemma, δk may need to be small if any of the tensors

∇ℓ
smk(s

∗
k) =

p
∑

j=ℓ

1

j!
∇j

smk(0)[s
∗
k]

j−ℓ

for ℓ ∈ {1, . . . , p+ 1} has a large norm. This may occur in particular if β and ‖s∗k‖ are both
close to zero, as is shown by the last term in the left-hand side of (2.28). We also note that
(2.20) obviously holds for sk = s∗k if xk + s∗k is an isolated feasible point. It now remains to
verify that it is justified to terminate in Step 2 when no suitable nonzero step can be found.

Lemma 2.6 Suppose that the algorithm terminates in Step 2 of iteration k with xǫ = xk.
Then there exists a δ ∈ (0, 1] such that (2.12) holds for x = xǫ and xǫ is an (ǫ, δ)-
approximate qth-order-necessary minimizer.

Proof. Given Lemma 2.5, if the algorithm terminates within Step 2, it must be
because every global minimizer s∗k of mk(s) under the constraints xk + s ∈ F is such that
mk(s

∗
k) ≥ mk(0). In that case, s∗k = 0 is one such global minimizer and we have that, for

all d,

0 ≤ mk(d)−mk(0) =

q
∑

ℓ=1

1

ℓ!
∇j

xf(xk)[d]
j +

p
∑

ℓ=q+1

1

ℓ!
∇j

xf(xk)[d]
j +

σk
(p+ β)!

‖d‖p+β.

We may now choose δ ∈ (0, 1] small enough to ensure that, for all d with ‖d‖ ≤ δ,
∣

∣

∣

∣

∣

∣

p
∑

ℓ=q+1

1

ℓ!
∇j

xf(xk)[d]
j +

σk
(p+ β)!

‖d‖p+β

∣

∣

∣

∣

∣

∣

≤ ǫ‖d‖ ≤ ǫ χq(δ), (2.29)

which in turn implies that, for all d with ‖d‖ ≤ δ,

φδf,q(xk) = max

[

0, globmax
‖d‖≤δ

xk+d∈F

(

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk)[d]
ℓ

)]

≤ ǫ χq(δk),
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concluding the proof. ✷

Observe that, in this proof, we could have chosen δ small enough to ensure
σk

(p+ β)!
‖d‖p+β ≤ ǫχp(δ)

instead of (2.29), yielding φδf,p(xk) ≤ ǫχp(δ), which is a stronger necessary optimality condition
than (2.12). Together, Lemmas 2.5 and 2.6 ensure that Algorithm 2.1 is well-defined.

3 An upper bound on the evaluation complexity

The proofs of the following two lemmas are very similar to corresponding results in [2] and
hence we again defer them to the appendix (but still include them for completeness, as the
algorithm has changed).

Lemma 3.1 The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

Tp(xk, 0)− Tp(xk, sk) ≥
σk

(p+ β)!
‖sk‖

p+β, (3.1)

and so (2.21) is well-defined.

Lemma 3.2 Let f ∈ Cp,β(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[

σ0,
γ3L

1− η2

]

. (3.2)

We are now in position to prove the crucial lower bound on the step length.

Lemma 3.3 Let f ∈ Cp,β(IRn). Then, for all k ≥ 0 such that Algorithm 2.1 does not
terminate at iteration k + 1,

‖sk‖ ≥ κsǫ
1

p−q+β , (3.3)

where

κs
def
= min

[

̟,

(

(p− q + β)!

(L+ σmax + θ)

) 1
p−q+β

]

. (3.4)

Proof. If ‖sk‖ > ̟ǫ
1

p−q+β , the result is obvious. Suppose now that ‖sk‖ ≤ ̟ǫ
1

p−q+β .
Since the algorithm does not terminate at iteration k + 1, we have that

φδkf,q(xk+1) > ǫχq(δk) (3.5)
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Let the global minimum in the definition of φδkf,q(xk+1) be achieved at d with ‖d‖ ≤ δk.

Since φδkf,q(xk+1) > 0, we have from (2.6) that

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ < 0

Then, successively using (2.6) for f at xk+1, the triangle inequality, (2.16), (1.1) and
(2.25), we deduce that

φδkf,q(xk+1) = −

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ

= −

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ +

q
∑

ℓ=1

1

ℓ!
∇ℓ

sTp(xk, sk)[d]
ℓ −

q
∑

ℓ=1

1

ℓ!
∇ℓ

sTp(xk, sk)[d]
ℓ

− σk
(p+ β)!

q
∑

k=ℓ

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

(sk)
)

[d]ℓ +
σk

(p+ β)!

q
∑

k=ℓ

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

(sk)
)

[d]ℓ

≤

∣

∣

∣

∣

∣

q
∑

ℓ=1

1

ℓ!

[

∇ℓ
xf(xk+1)−∇ℓ

sTp(xk, sk)
]

[d]ℓ

∣

∣

∣

∣

∣

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

Tp(xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ

+ σk
(p+ β)!

∣

∣

∣

∣

∣

q
∑

k=ℓ

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

s=sk

)

[d]ℓ

∣

∣

∣

∣

∣

≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ +

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk

(3.6)
Now, since ‖d‖ ≤ δk, and using (2.6) for mk at sk,

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ ≤ max

[

0,−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ

]

≤ φδkmk,q
(sk).

Therefore, using (2.20) and (3.6), we have that

φδkf,q(xk+1) ≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk +
θ χq(δk)

(p− q + β)!
‖sk‖

p−q+β

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk

≤

[

L+ σk + θ
]

χq(δk)

(p− q + β)!
‖sk‖

p−q+β,

(3.7)

where we have used the fact that ‖sk‖ ≤ ̟ǫ
1

p−q+β ≤ 1 to deduce the last inequality. As a
consequence, (3.5) implies that

‖sk‖ ≥

[

ǫ(p− q + β)!

(L+ σk + θ)

] 1
p−q+β



Cartis, Gould, Toint — Complexity bounds for arbitrary-order nonconvex optimization 14

and (3.3) then immediately follows from (3.2). ✷

The bound given by this lemma is another indication that choosing θ of the order of L (when
this is known a priori) makes sense.

We now combine all the above results to deduce an upper bound on the maximum number
of successful iterations, from which a final complexity bound immediately follows.

Theorem 3.4 Let f ∈ Cp,β(IRn). Then, given ǫ ∈ (0, 1), Algorithm 2.1 needs at most

⌊

κp(f(x0)− flow)
(

ǫ
− p+β

p−q+β

)⌋

+ 1

successful iterations (each involving one evaluation of f and its p first derivatives) and
at most

⌊

⌊

κp(f(x0)− flow)
(

ǫ−
p+β

p−q+β

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)⌋

(3.8)

iterations in total to produce an iterate xǫ such that (2.12) holds, where σmax is given
by (3.2) and where

κp
def
=

(p+ β)!

η1σmin
max

{

̟−(p+β),

[

(L+ σmax + θ)

(p− q + β)!

]
p+β

p−q+β

}

.

Proof. At each successful iteration k before termination, we have the guaranteed decrease

f(xk)− f(xk+1) ≥ η1(Tp(xk, 0)− Tp(xk, sk)) ≥
η1σmin

(p+ β)!
‖sk‖

p+β (3.9)

where we used (2.21), (3.1) and (2.22). Moreover we deduce from (3.9), (3.3) and (3.2)
that

f(xk)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β

j where κ−1
p

def
=

η1σminκs
(p+ β)!

. (3.10)

Thus, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1
p ǫ

p+β
p−q+β

j |Sk|.

Using that f is bounded below by flow, we conclude

|Sk| ≤
f(x0)− flow

κ−1
p

ǫ
− p+β

p−q+β

j (3.11)

until termination. The desired bound on the number of successful iterations follows from
combining (3.11). Lemma 2.3 is then invoked to compute the upper bound on the total
number of iterations. ✷
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In particular, if the p-th derivative of f is assumed to be globally Lipschitz rather than merely
Hölder continuous (i.e. if β = 1), the bound (3.8) on the maximum number of evaluations
becomes

⌊

⌊

κp(f(x0)− flow)
(

ǫ−
p+1

p−q+1

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)⌋

(3.12)

where

κp
def
=

(p+ 1)!

η1σmin
max

{

̟p+β,

[

q!(L+ σmax + θ)(e− 1)

(p− q + 1)!

]
p+1

p−q+1

}

.

This worst-case evaluation bound generalizes known bounds for q = 1 (see [2]) or q = 2
(see[8]) and significantly improve upon the bounds in O(ǫ−(q+1)) given by [11] for a more
stringent termination rule. It also extends the results obtained in [6] for convexly-constrained
problems with q = 1 by allowing the significantly broader class of inexpensive constraints.

We also note that it is possible to weaken the assumption that∇p
xf must satisfy the Hölder

inequality (2.2) for every x, y ∈ IRn (as required in the beginning of Section 2). The weakest
possible smoothness assumption is to require that (2.2) holds only for points belonging to
the same segment of the “path of iterates” ∪k≥0[xk, xk+1] (this is necessary for the proof of
Lemma 2.1). As this path joining feasible iterates may be hard to predict a priori, one may
instead use the monotonic character of Algorithm 2.1 and require (2.2) to hold for all x, y
in the intersection of F with the level set {x ∈ IRn | f(x) ≤ f(x0)}. Again, it may be hard
to determine this set and to ensure that it contains the path of iterates, and one may then
resort to requiring (2.2) to hold in the whole of F , which must then be convex to ensure the
desired Hölder property on every segment [xk, xk+1].

4 Seeking ǫ-approximate second-order-necessary minimizers

We now discuss the particular and much-studied case where second-order minimizers are
sought for unconstrained problems with Lipschitz continuous Hessians (that is p ≥ q = 2,
F = IRn and β = 1). As we now show, a specialization of Algorithm 2.1 to this case is
very close (but not identical) to well-known methods. Let us consider Step 1 first. The

computation of φ
δk−1

f,2 (xk) then reduce to

φ
δk−1

f,2 (xk) = max

[

0,− globmin
‖d‖≤δk−1

(

∇1
xf(xk)

Td+ 1
2
dT∇2

xf(xk)d
)

]

, (4.1)

which amounts to solving a standard trust-region subproblem with radius δk−1 (see [13]).
Hence verifying (4.1) or testing the more usual approximate second-order criterion

‖∇1
xf(xk)‖ ≤ ǫ and λmin

(

∇2
xf(xk)

)

≥ −ǫ, (4.2)

have very similar numerical costs (remember that finding the leftmost eigenvalue of the Hes-
sian is the same as finding the global minimizer of the associated Rayleigh quotient). If we
now turn to the computation of sk in Step 2, Algorithm 2.1 then computes such a step by
attempting to minimize the model

Tp(xk, s) +
σk

(p+ 1)!
‖s‖p+1, (4.3)
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as has already been proposed before for general p [2, 8]. Moreover, the failure of (2.12) in
Step 1 is enough, when q ≤ 2, to guarantee the existence of nonzero global minimizers of
Tp(xk, s) and mk(s), and thus to ensure that a nonzero sk is possible. The approximate
model minimization is stopped as soon as (2.19) or (2.20) holds, the latter then reducing to
checking that

φδmk,2
(xk) = max

[

0,− globmin
‖d‖≤δ

(

∇1
smk(sk)

Td+ 1
2
dT∇2

smk(sk)d
)

]

≤
θ‖sk‖

p−1

(p− 1)!
χ2(δ) (4.4)

for some δ ∈ (0, 1]. For each potential sk, finding δ ∈ (0, 1] requires solving (possibly approx-
imately)

− globmin
‖d‖≤δ

(

∇1
smk(sk)

Td+ 1
2
dT∇2

smk(sk)d
)

≤
θ‖sk‖

p−1

(p− 1)!
χ2(δ).

While this could be acceptable without affecting the overall evaluation complexity of the
algorithm, a simpler alternative is available for q = 2. We may consider terminating the
model minimization when either (2.19) holds, or

0 > globmin
‖d‖≤1

(

∇1
smk(sk)

Td+ 1
2
dT∇2

smk(sk)d
)

≥ −
θ‖sk‖

p−1

(p− 1)!
χ2(1) = −

3θ‖sk‖
p−1

2(p− 1)!
. (4.5)

The inequality is guaranteed to hold when sk is close enough to s∗k, a global minimizer of
the model mk(s), since then ∇1

smk(s
∗
k) = 0 and ∇2

smk(s
∗
k) is positive semi definite, and then

d = 0 provides the global minimizer of the second-order Taylor model of mk(s) around sk.
Verifying (4.5) only requires at most one trust-region calculation for each potential step and
ensures (4.4) with δ = 1, making the choice δk = 1 acceptable. The cost this technique is
comparable to that that proposed in [8] where an eigenvalue computation is required for each
potential step. Combining these observations, Algorithm 2.1 then becomes Algorithm 4.1.

If p = q = 2, computing sk in Step 2 amounts to approximately minimizing the now well-
known cubic model of [15, 19, 22, 5]. In addition, if sk is the exact global minimizer of
this model, the above argument shows that (4.5) automatically holds at sk and checking
this inequality by solving a trust-region subproblem is thus unnecessary. The only difference
between our proposed algorithm and the more usual cubic regularization (ARC) method with
exact global minimization is that the latter would check (4.2) for termination, while the
algorithm presented here would instead check (4.1) with δk−1 = 1 by solving a trust-region
subproblem. As observed above, both techniques have comparable numerical cost.

The bound (3.12) then ensures that Algorithm 4.1 terminates in at most O
(

ǫ
− p+1

p−1

)

eval-

uations of f , its gradient and Hessian. This algorithm thus shares(8) the upper complexity
bounds stated in [8] for general p with different values of ǫ fpr fisrt- and second-order, and in
[19, 5] for p = 2.

(8)For a marginally weaker (see footnote (7) and Theorem 2.2) but still necessary and, in our view, more
sensible approximate optimality condition.
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Algorithm 4.1: ARp for ǫ-approximate second-order-necessary minimizers

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1). The constants ̟, θ, η1, η2,
γ1, γ2, γ3 and σmin are also given and satisfy (2.17). Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate {∇i
xf(xk)}

2
i=1. If (2.12) holds with φ

1
f,2(xk)

given by (4.1) and δk−1 = 1, terminate with the approximate solution xǫ = xk.
Otherwise compute {∇i

xf(xk)}
p
i=3.

Step 2: Step calculation. Compute a step sk 6= 0 by approximately minimizing the
model (4.3) in the sense that (2.18) holds and

‖sk‖ ≥ ̟ǫ
1

p−2+β or (4.5) holds.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define ρk as in
(2.21). If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Compute σk+1 as in (2.22). Increment
k by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.

5 A matching lower bound on the evaluation complexity for
the Lipschitz continuous case

We now intend to show that the upper bound on evaluation complexity of Theorem 3.4 is tight
in terms of the order given for unconstrained and a broad class of constrained problems with
Lipschitz continuous p-th derivative (i.e. β = 1(9)). This objective is attained by defining a
variant of the high-degree Hermite interpolation technique developed in [11], and then using
this technique to build, for any number p of available derivatives of the objective function
and any optimality order q, an unconstrained univariate example of suitably slow convergence
(i.e. for which the order in ǫ given by (3.12) is achieved). This example is then embedded in
higher dimensions to provide general lower bounds.

5.1 High-degree univariate Hermite interpolation

We start by investigating some useful properties of Hermite interpolation. Let us assume that
we wish to construct a univariate Hermite interpolant π of degree 2(p+ 1) of the form

π(τ) =

2p+1
∑

i=0

ci τ
i (5.1)

on the interval [0, s] satisfying the 2(p+ 1) conditions

π(i)(0) = f
(i)
0 , π(i)(s) = f

(i)
1 for i ∈ {0, . . . , p}, (5.2)

(9)A example of slow convergence for general β and p > 1 + β is provided in [9].
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where f
(i)
0 and f

(i)
1 are given. The values of the coefficients c0, . . . , cp may then be obtained

by

ci =
f
(i)
0

i!
for i ∈ {0, . . . , p}

while the remaining ones satisfy the linear system











a0,0s
p+1 a0,1s

p+2 · · · a0,p−1s
2p a1,ps

2p+1

a1,0s
p a2,2s

p+1 · · · a2,p−1s
2p−1 a2,ps

2p

...
...

. . .
...

...
ap,0s ap,1s

2 · · · ap,p−1s
p ap,ps

p+1





















cp+1

cp+2
...

c2p+1











=













f
(0)
1 − T

(0)
p (0, s)

f
(1)
1 − T

(1)
p (0, s)
...

f
(p)
1 − T

(p)
p (0, s))













(5.3)
where

Tp(0, s) =

p
∑

i=0

f
(i)
0

i!
si and ai,j =

(p+ j + 1)!

(p+ j + 1− i)!
(i, j = 0, . . . , p).

Observe that (5.3) can be rewritten as











sp

sp−1

. . .

1











Ap











s
s2

. . .

sp+1





















cp+1

cp+2
...

c2p+1











=













f
(0)
1 − T

(0)
p (0, s)

f
(1)
1 − T

(1)
p (0, s)
...

f
(p)
1 − T

(p)
p (0, s))













with Ap is the matrix whose (i, j)-th entry is ai,j , which only depends on p. It was show in
[11, Appendix] that Ap is nonsingular. Therefore











cp+1 s
cp+2 s

2

...
c2p+1 s

p+1











= A−1
p













1
sp [f

(0)
1 − T

(0)
p (0, s)]

1
sp−1 [f

(1)
1 − T

(1)
p (0, s)]

...

f
(p)
1 − T

(p)
p (0, s)













.

We therefore deduce that, for any τ ∈ [0, s] ,

|π(p+1)(τ)| =

∣

∣

∣

∣

∣

p
∑

i=0

(p+ 1 + i)!

i!
cp+1+i τ

i

∣

∣

∣

∣

∣

≤

p
∑

i=0

(p+ 1 + i)!

i!

(

|cp+1+i| s
i+1
)

s−1

≤
(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞ max
j=0,...,p

∣

∣

∣

∣

∣

f
(j)
1 − T

(j)
p (0, s)

sp−j+1

∣

∣

∣

∣

∣

.

The mean-value theorem then implies that, for any 0 ≤ τ2 ≤ τ1 ≤ s and some ξ ∈ [τ2, τ1] ⊆
[0, s],

|π(p)(τ1)− π(p)(τ2)|
|τ1 − τ2|

= |π(p+1)(ξ)|

≤ max
τ∈[0,s]

|π(p+1)(τ)|

≤
(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞ max
j=0,...,p

∣

∣

∣

∣

∣

f
(j)
1 − T

(j)
p (0, s)

sp−j+1

∣

∣

∣

∣

∣

.

(5.4)



Cartis, Gould, Toint — Complexity bounds for arbitrary-order nonconvex optimization 19

This development thus leads us to the following conclusion.

Theorem 5.1 Suppose that {f
(j)
ℓ } are given for ℓ ∈ {1, 2} and j ∈ {0, . . . , p}. Suppose

also that there exists a constant κf ≥ 0 such that, for all j ∈ {0, , . . . , p},

|f
(j)
1 − T (j)

p (0, s)| ≤ κf s
p−j+1. (5.5)

Then the Hermite interpolation polynomial π(τ) on [0, s] given by (5.1) and satisfying
(5.2) admits a Lipschitz continuous p-th derivative on [0, s], with Lipschitz constant given
by

Lp
def
=

(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞κf ,

which only depends on p and κf .

Proof. Directly results from (5.4) and (5.5). ✷

Observe that (5.5) is identical to (2.5) when β = 1 and n = 1. This means that the conditions

of Theorem 5.1 automatically hold if the interpolation data {f
(j)
i } is itself extracted from a

function having a Lipschitz continuous p-th derivative.
Applying the above results to several interpolation intervals then yields the existence of

a smooth Hermite interpolant.

Theorem 5.2 Suppose that, for some integer ke > 0 and p > 0, the data {f
(j)
k } and

{xk} is given for k ∈ {0, . . . , ke} and j ∈ {0, . . . , p}. Suppose also that sk = xk+1 − xk ∈
(0, κs] for k ∈ {0, . . . , ke} and some κs > 0, and that, for some constant κf ≥ 0 and
k ∈ {0, . . . , ke − 1},

|f
(j)
k+1 − T

(j)
k,p(xk, sk)| ≤ κf s

p−j+1
k . (5.6)

where Tk,p(xk, s) =
∑p

i=0 f
(i)
k si/i!. Then there exists a p times continuously differentiable

function f from IR to IR with Lipschitz continuous p-th derivative such that, for k ∈
{0, . . . , ke},

f (j)(xk) = f
(j)
k for j ∈ {0, . . . , p}.

Moreover, the range of f only depends on p, κf , maxk f
(0)
k and mink f

(0)
k .

Proof. We first use Theorem 5.1 to define a Hermite interpolant πk(s) of the form

(5.1) on each interval [xk, xk+1] = [xk, xk + sk] (k ∈ {0, . . . , ke}) using f
(j)
0 = f

(j)
k and

f
(j)
1 = f

(j)
k+1 for j ∈ {0, . . . , p}, and then set

f(xk + s) = πk(s)

for any s ∈ [0, sk]. We may then smoothly prolongate f for x ∈ IR by defining two addi-
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tional interpolation intervals [x−1, x0] = [−s−1, 0] and [xke , xke + ske ] with end conditions

f−1 = f
(0)
0 , fke+1 = f

(0)
ke

and f
(j)
−1 = f

(j)
ke+1 = 0 for j ∈ {1, . . . , p},

and where s−1 and ske are chosen sufficiently large to ensure that (5.6) also holds on
intervals -1 and ke. We next set

f(x) =











f
(0)
0 for x ≤ x−1,
πk(x− xk) for x ∈ [xk, xk+1] and k ∈ {−1, . . . , n},

f
(0)
ke

for x ≥ xke + ske .

✷

5.2 Slow convergence to (ǫ,δ)-approximate q-th-order-necessary minimizers

We now consider an unconstrained univariate instance of problem (2.1). Our aim is first to
show that, for each choice of p ≥ 1 and q ∈ {1, . . . , p}, there exists an objective function f
for problem (2.1) with f ∈ Cp,1(IR) (i.e. β = 1) such that obtaining an (ǫ, δ)-approximate
q-th-order-necessary minimizer may require at least

ǫ
− p+1

p−q+1

evaluations of the objective function and its derivatives using Algorithm 2.1, matching, in
order of ǫ ∈ (0, 1], the upper bound (3.12). Our development follows the broad outline of [12]
but extends it to approximate minimizers of arbitrary order. Given a model degree p ≥ 1 and

an optimality order q ∈ {1, . . . , p}, we first define the sequences {f
(j)
k } for j ∈ {0, . . . , p} and

k ∈ {0, . . . , kǫ} with

kǫ =
⌈

ǫ
− p+1

p−q+1

⌉

(5.7)

by

ωk = ǫ
kǫ − k

kǫ
. (5.8)

as well as
f
(j
k = 0 for j ∈ {1, . . . , q − 1} ∪ {q + 1, . . . , p} (5.9)

and
f
(q)
k = −(ǫ+ ωk) q!χq(1) < 0. (5.10)

Thus

Tp(xk, s) =

p
∑

j=0

f
(j)
k

j!
sj = f

(0)
k − (ǫ+ ωk)χq(1)s

q (5.11)

and, assuming δk−1 = 1 for all k (we verify below that this is acceptable),

φ
δk−1

f,q (xk) = (ǫ+ ωk)χq(δk−1) (5.12)

We also set σk = p! for all k ∈ {0, . . . , kǫ} (we again verify below that is acceptable). Note
that

ωk ∈ (0, ǫ] and φ
δk−1

f,q > ǫχq(δk−1) for k ∈ {0, . . . , kǫ − 1}, (5.13)
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(and (2.12) fails at xk), while

ωkǫ = 0 and φ
δk−1

f,q (xkǫ) = ǫχq(δk−1) (5.14)

(and (2.12) holds at xkǫ). It is easy to verify using (5.11) that the model (2.16) is then globally
minimized for

sk =

[

|f
(q)
k |

(q − 1)!

]
1

p−q+1

= [q(ǫ+ ωk)χq(1)]
1

p−q+1 > ǫ
1

p−q+1 (k ∈ {0, . . . , kǫ}). (5.15)

Hence this step satisfies (2.19) if we choose ̟ = 1. Because of this fact, we are free to choose
δk arbitrarily in (0, 1] and we choose δk = 1. Thus, provided we make the choice δ−1 = 1
ensuring (5.12) for k = 0 , the value δk = 1 is admissible for all k. The step (5.15) yields that

mk(sk) = f
(0)
k − (ǫ+ ωk)χq(δk)[q(ǫ+ ωk)χq(δk)]

q
p−q+1 + 1

p+1 [q(ǫ+ ωk)χq(δk)]
p+1

p−q+1

= f
(0)
k − ζ(q, p)[q(ǫ+ ωk)χq(δk)]

p+1
p−q+1

(5.16)
where

ζ(q, p)
def
=

p− q + 1

q(p+ 1)
∈ (0, 1). (5.17)

Thus mk(sk) < mk(0) and (2.18) holds. We then define

f
(0)
0 = 2[2qχq(1)]

p+1
p−q+1 and f

(0)
k+1 = f

(0)
k − ζ(q, p)[q(ǫ+ ωk)χq(δk)]

p+1
p−q+1 , (5.18)

which provides the identity

mk(sk) = f
(0)
k+1 (5.19)

(ensuring that iteration k is successful because ρk = 1 in (2.21) and thus that our choice of a
constant σk is acceptable). In addition, using (5.18), (5.13), (5.17), the equality δk = 1 and

the inequality kǫ ≤ 1 + ǫ
− p+1

p−q+1 from (5.7) gives that, for k ∈ {0, . . . , kǫ},

f
(0)
0 ≥ f

(0)
k ≥ f

(0)
0 − kζ(q, p)[2qǫχq(δk)]

p+1
p−q+1

≥ f
(0)
0 − kǫǫ

p+1
p−q+1 [2qχq(1)]

p+1
p−q+1

≥ f
(0)
0 −

(

1 + ǫ
p+1

p−q+1

)

[2qχq(1)]
p+1

p−q+1

≥ f
(0)
0 − 2[2qχq(1)]

p+1
p−q+1 ,

and hence that
f
(0)
k ∈

[

0, 2[2qχq(1)]
p+1

p−q+1

]

for k ∈ {0, . . . , kǫ}. (5.20)

We also set

δ−1 = 1, x0 = 0 and xk =
k−1
∑

i=0

si.

Then (5.19) and (2.16) give that

|f
(0)
k+1 − Tp(xk, sk)| =

1

p+ 1
|sk|

p+1. (5.21)
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Now note that, using (5.11) and the first equality in (5.15),

T (j)
p (xk, sk) =

f
(q)
k

(q − j)!
sq−j
k δ[j≤q] = −

(q − 1)!

(q − j)!
sp−j+1
k δ[j≤q]

where δ[·] is the standard indicator function. We may now verify that, for j ∈ {1, . . . , q − 1},

|f
(j)
k+1 − T (j)

p (xk, sk)| = |0− T (j)
p (xk, sk)| ≤

∣

∣

∣

∣

(q − 1)!

(q − j)!

∣

∣

∣

∣

|sk|
p−j+1 ≤ (q − 1)! |sk|

p−j+1, (5.22)

while, for j = q, we have that

|f
(q)
k+1 − T (q)

p (xk, sk)| = | − (q − 1)! sp−q+1
k + (q − 1)! sp−q+1

k | = 0 (5.23)

and, for j ∈ {q + 1, . . . , p},

|f
(j)
k+1 − T (j)

p (xk, sk)| = |0− 0| = 0. (5.24)

Combining (5.21), (5.22), (5.23) and (5.24), we deduce that (5.6) holds with κf = (q − 1)!.
We may thus apply Theorem 5.2 with β = 1, κf = (q − 1)! and κs = 1, and deduce the
existence of a p times continuously differentiable function f from IR to IR with Lipschitz

continuous derivatives of order 0 to p which interpolates the {f
(j)
k } at {xk} for k ∈ {0, . . . , n}

and j ∈ {0, . . . , p}. Moreover, (5.20) and Theorem 5.2 imply that the range of f only depends
on p and q. In addition, (5.19) ensures that every iteration is successful and thus, because of
(2.22), that the value σk = p! may be used at all iterations.

This argument allows us to state the following lower bound on the complexity of the
regularization algorithm using a p-th degree model.

Lemma 5.3 Given any p ∈ IN0 and q ∈ {1, . . . , p}, there exists a p times continuoulsy
differentiable function f from IR to IR with range only depending on p and q and Lipschitz
continuous p-th derivative such that, when the regularization algorithm with p-th degree
model (Algorithm 2.1) is applied to minimize f without constraints, it takes exactly

kǫ =
⌈

ǫ
− p+1

p−q+1

⌉

iterations (and evaluations of the objective function and its derivatives) to find an (ǫ,δ)-
approximate q-th-order-necessary minimizer.

This implies the following important consequence for higher dimensional problems.
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Theorem 5.4 Given any n ∈ IN0, p ∈ IN0 and q ∈ {1, . . . , p}, there exists a p times
continuoulsy differentiable function f from IRn to IR with range only depending on p
and q and Lipschitz continuous p-th derivative tensor such that, when the regularization
algorithm with p-th degree model (Algorithm 2.1) is applied to minimize f without
constraints, it takes exactly

kǫ =
⌈

ǫ
− p+1

p−q+1

⌉

(5.25)

iterations (and evaluations of the objective function and its derivatives) to find an (ǫ, δ)-
approximate q-th-order-necessary minimizer. Furthermore, the same conclusion holds if
the optimization problem under consideration involves constraints provided the feasible
set F contains a ray.

Proof. The first conclusion directly follows from Lemma 5.3 since it is always possible
to include the unimodal example as an independent component of a multivariate one.

The second conclusion follows from the observation that our univariate example of slow
convergence is only defined on IR+ (even if Theorem 5.2 provides an extension to the
complete real line). As a consequence, it may be used on any feasible ray. ✷

We now make a few observations.

1. Theorem 5.4 generalizes to arbitrary q the bound obtained in [3] for the case q = 1 and
also shows that, at variance with the result derived in this reference, the generalized
bound applies for arbitrary problem’s dimension, but depends on ǫ, p and q.

2. For simplicity, we have chosen, in the above example, to minimize the model mk(s)
globally at every iteration, but we might consider other pairs (sk, δk). A similar example
of slow convergence may in fact be constructed along the lines used above(10) for any
sequence of acceptable(11) model reducing steps and associated optimality radii (in the
sense of Lemma 2.5), provided the optimality radii remain bounded away from zero.
This means that our example of slow convergence applies not only to Algorithm 2.1
but also to a much broader class of minimization methods. Moreover, it is also possible
to weaken the constraints on the step further by relaxing (5.19) and only insisting on
acceptable decrease of the objective function value in Step 3 of the algorithm.

In [3], the authors derive their upper bound for q = 1 for the general class of “zero-
preserving” algorithms, which are algorithms that “never explore (from xk) coordinates
which appear not to affect the function”, that is directions d along which Tp(xk, ·)
is constant. This property is obviously shared by Algorithm 2.1 because it attempts
to reduce the Taylors’ expansion of f around the current iterate (the presence of the
isotropic regularization term is irrelevant for this).

3. Our example does not apply, for instance, to a linesearch method using global univariate
minimization in a direction of search computed from the Taylor’s expansion of f , which

(10)At the price of possibly larger constants.
(11)Remember that δ = 1 is always possible for q = 1. It thus unsurprising that no such condition appears in
[3].
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is another zero-preserving method. Note however that this method, just as every other
linesearch method (including possibly randomized coordinate searches), is bound to fail
when attempting to compute approximate minimizers of order beyond three, because
the Taylor’s expansion at a non-optimal point then needs no longer decrease along lines.
This is demonstrated by the following old example [16, 20]. Let

f(x1, x2) = ( 1
2
x21 − x2)(x

2
1 − x2).

Then f(0, 0) = 0 and the origin is not a minimizer since f decreases along the arc
x2 = 3

4
x1. Yet the origin is the global minimizer along every line passing through the

origin, preventing any linesearch method to progress away from (0, 0).

Let us now consider an alternative unconstrained minimization method which would attempt
to reduce the unregularized model (that is (2.16) with σk = 0) in order to find an unconstrained
first-order minimizer. It is easy to see that if one chooses

f
(1)
k = −(ǫ+ ωk), f

(i)
k = 0 for i ∈ {2, . . . , p− 1} and f

(p)
k = p!,

the same reasoning as above yields that the largest obtainable decrease with this model occurs
at

sk =

(

ǫ+ ωk

p

) 1
p−1

and is given by

f
(0)
k −mk(sk) = (p− 1)

(

ǫ+ ωk

p

)
p

p−1

.

This then implies that at least a multiple of ǫ
− p

p−1 evaluations may be needed to find approx-

imate first-order-necessary minimizers, which is worse than the bound in ǫ
− p+1

p holding for
the regularized algorithm. This is consistent with the known lower O(ǫ−2) bound for first-
order points that holds for the (unregularized) Newton method (and hence the trust-region
method), both of which use p = 2. Adding the regularization term thus not only provides a
mechanism to limit the stepsize and make the step well-defined when Tp(xk, s) is unbounded
below, but also amounts to increasing the ’useful degree’ of the model by one, improving the
worst-case complexity bound.

Summing up the above discussion, we conclude that an example of slow convergence
requiring at least (5.25) evaluations can be built for any method whose steps decrease the
regularized (σk ≥ σmin) or unregularized (σk = 0) model (2.16) and whose approximate local
optimality can be measured by (2.20) for some constant θ and δk = 1 (which we can always
enforce by adapting̟ and (5.9)). For orders up to two, this includes most variants of steepest-
descent and Newton’s methods including those globalized with regularization, trust-region, a
linesearch or a mixture of these (see [12] for a discussion). General linesearch methods are
excluded for high-order optimization as they may fail to converge to approximate minimizers
of order four and beyond.

Finally, one may wonder at what would happen if, for the interpolation data (5.9)-(5.10),
the model

mk(s) = Tp(xk, s) +
σk
m!

|s|m

were used for some m > p + 1, resulting in a shorter step. The global model minimizer
would then occur at s = [q(ǫ+ωk)χq(1)]

1/(m−1) and give an optimal model decrease equal to
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[q(ǫ+ωk)χq(1)]
m/(m−1)(m−q)/m. However, (5.6) would then fail for j = 0 and the argument

leading to an example of slow convergence would break down.

6 Summary, further comments and open questions

For any optimality order q ≥ 1, we have provided the concept of an (ǫ, δ)-approximate q-th-
order-necessary minimizer for the very general set-constrained problem (2.1). We have then
proposed a conceptual regularization algorithm to find such approximate minimizers and

have shown that, if ∇p
xf is β-Hölder continuous, this algorithm requires at most O(ǫ

− p+β
p−q+β )

evaluations of the objective function and its p first derivatives to terminate. When ∇p
xf is

Lipschitz continuous, we have used an unconstrained univariate version of the problem to
show that this bound is sharp in terms of the order in ǫ for any feasible set containing a ray
and any problem dimension.

In view of the results in [7, 18], one may wonder at what would happen if the regularization
power (i.e. the power of ‖s‖ used in the last term of the model (2.16)) is allowed to differ from
p+β. The theory presented above must then be re-examined and the crucial point is whether a
global upper bound σmax on the regularization parameter can still be ensured as in Lemma 3.2.
One easily verifies that this is the case for regularization powers r ∈ (p, p + β]. Arguments

parallel to those presented above then yield an upper bound of O(ǫ−
r

r−q ) evaluations(12),
recovering the bound given in Section 3.3 of [7] for q = 1. The situation is however more
complicated (and beyond the scope of the present paper) for r > p+β and the determination
of a suitable general complexity upper bound for this latter case has not been formalized
at this stage, but the analysis for q = 1 discussed in Section 3.2 of [7] suggests that an
improvement of the bound for larger r is unlikely.

Although the results presented essentially solve the question of determining the optimal
evaluation complexity for unconstrained problems and problems with general inexpensive
constraints, some interesting issues remain open at this stage. A first such issue is whether an
example of slow convergence for all ǫ ∈ (0, 1) can be found for feasible domains not containing
a ray. A second is to extend the general complexity theory for problems whose constraints
are not inexpensive: the discussion in [10] indicates that this is a challenging research area.
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Appendix A

A.1 Proof of Lemmas in Section 2

Proof of Lemma 2.1. We first establish the identity

Ik−1,β
def
=

∫ 1

0
ξβ(1− ξ)k−1 dξ =

(k − 1)!

(k + β)!
, where (k + β)!

def
=

k
∏

i=1

(i+ β). (A.1)
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To see this, integrating by parts, we have that

Ik−1,β =
[

−(k − 1)ξβ(1− ξ)k−2
]1

0
+

(k − 1)

(1 + β)
ξ1+β(1− ξ)k−2 dξ =

(k − 1)

(1 + β)
Ik−2,1+β

and thus, recursively, that

Ik−1,β =
(k − 1)!

(k − 1 + β)!
I0,k−1+β =

(k − 1)!

(k − 1 + β)!

∫ 1

0
ξk−1+β dξ =

(k − 1)!

(k + β)!
.

As in [11], consider the Taylor identity

ψ(1)− τk(1) =
1

(k − 1)!

∫ 1

0
(1− ξ)k−1[ψ(k)(ξ)− ψ(k)(0)] dξ (A.2)

involving a given univariate Ck function ψ(t) and its k-th order Taylor approximation

τk(t) =
k
∑

i=0

ψ(i)(0)
ti

i!

expressed in terms of the value ψ(0) = ψ and ith derivatives ψ(i), i = 1, . . . , k. Then, picking
ψ(t) = f(x + ts), for given x, s ∈ IRn, and k = p, the identity (A.2), and the relationships
ψ(p)(t) = ∇p

xf(x+ ts)[s]p and τp(1) = Tp(x, s) give that

f(x+ s)− Tp(x, s) =
1

(p− 1)!

∫ 1

0
(1− ξ)k−1 (∇p

xf(x+ ξs)−∇p
xf(x)) [s]

p dξ,

and thus from the definition of the tensor norm (1.1), the Hölder bound (2.2) and the identity
(A.1) when k = p that

f(x+ s)− Tp(x, s) ≤ 1
(p− 1)!

∫ 1

0
(1− ξ)k−1

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))

[

s

‖s‖

]p∣
∣

∣

∣

‖s‖p dξ

≤ 1
(p− 1)!

∫ 1

0
(1− ξ)k−1 max

‖v‖=1
|(∇p

xf(x+ ξs)−∇p
xf(x)) [v]

p| ‖s‖p dξ

= 1
(p− 1)!

∫ 1

0
(1− ξ)k−1‖∇p

xf(x+ ξs)−∇p
xf(x))‖[p]dξ · ‖s‖

p

≤ 1
(p− 1)!

∫ 1

0
ξβ(1− ξ)p−1 dξ · L‖s‖p+β =

L

(p+ β)!
‖s‖p+β

for all x, s ∈ IRn, which is the required (2.4).
Likewise, for arbitrary unit vectors v1, . . . , vj , choosing ψ(t) = ∇j

xf(x+ ts)[v1, . . . , vj ] and
k = p− j,it follows from (A.2), the relationships ψ(p−j)(t) = ∇p

xf(x+ ts)[v1, . . . , vj ][s]
p−j and

τp−j(1) = ∇j
sTp(x, s) that

(∇j
xf(x+ s)−∇j

sTp(x, s))[v1, . . . , vj ]

= 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1 (∇p

xf(x+ ξs)−∇p
xf(x)[ v1, . . . , vj ][s]

p−j dξ.
(A.3)
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Then picking v1, . . . , vj to maximize the absolute value of left-hand size of (A.3) and using
the tensor norm (1.1), the Hölder bound (2.2) and the identity (A.1) when k = p− j, we find
that

‖∇j
xf(x+ s)−∇j

sTp(x, s)‖[j]

≤ 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1

∣

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))[v1, . . . , vj ]

[

s

‖s‖

]p−j
∣

∣

∣

∣

∣

‖s‖p−j dξ

≤ 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1 max

‖v1‖=···=‖vp‖=1
|(∇p

xf(x+ ξs)−∇p
xf(x)) [v1, . . . , vp]| ‖s‖

p−j dξ

= 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1‖∇p

xf(x+ ξs)−∇p
xf(x)‖[p] dξ · ‖s‖

p−j

≤ 1
(p− j − 1)!

∫ 1

0
ξβ(1− ξ)p−j−1 dξ · L‖s‖p−j+β =

L

(p− j + β)!
‖s‖p−j+β

for all x, s ∈ IRn, which gives (2.5). ✷

Proof of Lemma 2.3. The regularization parameter update (2.22) gives that, for each k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk,

where Uk
def
= {0, . . . , k}\Sk. Thus we deduce inductively that σ0γ

|Sk|
1 γ

|Uk|
2 ≤ σk. We therefore

obtain, using (2.23), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(

σmax

σ0

)

,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(

σmax

σ0

)

,

since γ2 > 1. The desired result (2.24) then follows from the equality k + 1 = |Sk|+ |Uk| and
the inequality γ1 < 1 given by (2.17). ✷

Proof of Lemma 2.4. We first observe that ∇j
s

(

‖s‖p+β
)

is a j-th order tensor, whose norm
is defined using (1.1). Moreover, using the relationships

∇s

(

‖s‖τ
)

= τ ‖s‖τ−2s and ∇s

(

sτ⊗
)

= τ s(τ−1)⊗ ⊗ I, (τ ∈ IR), (A.4)

defining

ν0
def
= 1, and νi

def
=

i
∏

ℓ=1

(p+ 2− 2ℓ), (A.5)
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and proceeding by induction, we obtain that, for some µj,i ≥ 0 with µ1,1 = 1,

∇s

[

∇j−1
s

(

‖s‖p+β
)

]

= ∇s

[

j
∑

i=2

µj−1,i−1νi−1‖s‖
p+β−2(i−1) s(2(i−1)−(j−1))⊗ ⊗ I((j−1)−(i−1))⊗

]

=

j
∑

i=2

µj−1,i−1νi−1

[

(p+ β − 2(i− 1))‖s‖p+β−2(i−1)−2 s(2(i−1)−(j−1)+1)⊗ ⊗ I(j−i)⊗

+((2(i− 1)− (j − 1))‖s‖p+β−2(i−1) s(2(i−1)−(j−1)−1)⊗ ⊗ I(j−1)−(i−1)+1)⊗
]

=

j
∑

i=2

µj−1,i−1νi−1

[

(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+(2(i− 1)− j + 1)‖s‖p+β−2(i−1) s(2(i−1)−j)⊗ ⊗ I(j−(i−1))⊗
]

=

j
∑

i=2

µj−1,i−1νi−1(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+

j−1
∑

i=1

(2i− j + 1)µj−1,iνi‖s‖
p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

]

=

j
∑

i=1

(

(p+ β + 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi
)

‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗.

where the last equation uses the convention that µj,0 = 0 for all j. Thus we may write

∇j
s

(

‖s‖p+β
)

= ∇s

[

∇j−1
s

(

‖s‖p+β
)

]

=

j
∑

i=1

µj,iνi ‖s‖
p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗ (A.6)

with
µj,iνi = (p+ β + 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi

=
[

µj−1,i−1 + (2i− j + 1)µj−1,i

]

νi,
(A.7)

where we used the identity

νi = (p+ β + 2− 2i)νi−1 for i = 1, . . . , j (A.8)

to deduce the second equality. Now (A.6) gives that

∇j
s

(

‖s‖p+β
)

[v]j =

j
∑

i=1

µj,iνi‖s‖
p+β−j

(

sT v

‖s‖

)2i−j

(vT v)j−i.

It is then easy to see that the maximum in (1.1) is achieved for v = s/‖s‖, so that

‖∇j
s

(

‖s‖p+β
)

‖[j] =

(

j
∑

i=1

µj,iνi

)

‖s‖p+β−j = πj‖s‖
p+β−j . (A.9)

with

πj
def
=

j
∑

i=1

µj,i νi. (A.10)
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Successively using this definition, (A.7), (A.8) (twice), the identity µj−1,j = 0 and (A.10)
again, we then deduce that

πj =

j
∑

i=1

µj−1,i−1νi +

j
∑

i=1

(2i− j + 1)µj−1,i

]

νi

=

j−1
∑

i=1

µj−1,iνi+1 +

j
∑

i=1

(2i− j + 1)µj−1,i

]

νi

=

j−1
∑

i=1

µj−1,i

[

νi+1 + (2i− j + 1)νi
]

=

j−1
∑

i=1

µj−1,i

[

(p+ β + 2− 2(i+ 1))νi + (2i− j + 1)νi
]

= (p+ β + 1− j)

j−1
∑

i=1

µj−1,i νi

= (p+ β + 1− j)πj−1,

(A.11)

Since π1 = p+β from the first part of (A.4), we obtain that πj = (p+β)!/(p− j+β)!, which,
combined with (A.9) and (A.10), gives (2.25). We obtain (2.26) from (A.9) and (A.10), the
observation that πp = (p+ β)! and (A.11) for j = p+ 1. ✷

A.2 Proof of Lemmas in Section 3

Proof of Lemma 3.1. (See [2, Lemma 2.1]) Observe that, because of (2.18) and (2.16),

0 ≤ mk(0)−mk(sk) = Tp(xk, 0)− Tp(xk, sk)−
σk
p+ 1

‖sk‖
p+β

which implies the desired bound. Note that sk 6= 0 as long as we can satisfy condition (2.18),
and so (3.1) implies (2.21) is well defined. ✷

Proof of Lemma 3.2. (See [2, Lemma 2.2]) Assume that

σk ≥
L

1− η2
. (A.12)

Using (2.4) and (3.1), we may then deduce that

|ρk − 1| ≤
|f(xk + sk)− Tp(xk, sk)|

|Tp(xk, 0)− Tp(xk, sk)|
≤

L

σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As
a consequence, the mechanism of the algorithm ensures that (3.2) holds. ✷


