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Abstract

Iterative algorithms for the solution of convex quadratic optimization problems are
investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on
the performance of a Conjugate Gradients and a Full-Orthormalization methods are de-
rived, the necessary quantities occurring in the theoretical bounds estimated and new
practical algorithms derived. Numerical experiments suggest that the new methods have
significant potential, including in the steadily more important context of multi-precision
computations.
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1 The problem

We are interested in iterative methods for solving convex quadratic optimization problem

min
x∈IRn

q(x)
def
= 1

2
xTAx− bTx (1.1)

where A is an n × n symmetric positive definite matrix and b a given vector in IRn. Such
problems are at the centre of efficient methods for a large variety of domains in applied
mathematics, the most proeminent being large-scale numerical nonlinear optimization and the
solution of large symmetric positive-definite linear systems (often derived from applications
in partial differential equations). It is thus critical to make the solution of (1.1) as efficient
as possible, especially when the problem size grows. Since the cost of most iterative methods
for solving (1.1) is often dominated by the (potentially many) computations of products of
the form Ap for some vector p, it is then of interest to investigate if efficiency gains may be
obtained for this ’core’ operation. This is the object of this paper.

Two different but converging contexts motivate the analysis presented here. The first is
the frequent occurence of problems involving a hierachy of model representations themselves
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resulting in the ability to use approximate versions of A to compute the product Ap. This
occurs for instance in discretized applications, possibly in a multi-resolution framework, or in
inexactly weighted linear and nonlinear least-squares where the product itself is obtained by
applying an iterative procedure(1). The second is the increasing importance of computations
in multi-precision arithmetic on the new generations of high-performance computers (see [12]
and the many references therein), in which the use of varying levels of accuracy is seen as a
key ingredient in obtaining state-of-the-art energy-efficient computer architectures. In both
cases, using ’inexact’ products Ap (while controlling their inexactness) within Krylov-based
iterative methods is natural option. In what follows, we focus on the analysis of this choice
from the point of view of ensuring a prescribed decrease in the objective function q.

Although using inexact product in Krylov-based iterative methods has already been in-
vestigated (see [17, 18, 19, 10] for example), the proposed analysis typically focus on the
Euclidean norm of the residual but none of them, to the best of our knowledge, considers
its effect on assessing decrease in the objective function of the associated optimization prob-
lem. This point of view is however important. In optimization, monitoring the evolution
of the objective function or of its model is an obvious concern: ensuring a fraction of the
optimal decrease is, for instance, a standard convergence argument in trust-region or inexact
Newton methods. In applications arising from elliptic partial differential applications, several
authors have argued that monitoring the energy norm of the error leads to better subproblem
termination rules, avoiding under- or over-solving (see [1, 3, 5, 2]).

As it turns out, monitoring the residual of the linear system

Ax = b (1.2)

provides a handle for monitoring the error in the quadratic q, provided it is considered in the

appropriate norm. Indeed, if x∗ is the solution of (1.2) and r(x)
def
= Ax− b, then

1
2
‖r(x)‖2A−1 = 1

2
(Ax− b)TA−1(Ax− b)

= 1
2
(x− x∗)TA(x− x∗)

= 1
2
[xTAx− 2xTAx∗ + xT∗Ax∗]

= q(x)− q(x∗).

(1.3)

This approach however requires first that r(x) or a sufficiently good approximation thereof
is available and, second, that its A−1-norm can be estimated, both of which are non-trivial if
the products Ap are inexact.

The contributions of this paper are the derivation of theoretical residual bounds ensuring
that the error on ‖r(x)‖A−1 remains suitably small in the presence of inexact products (Sec-
tion 2), the traduction of these results into computable estimates and the definition of the
associated algorithms (Section 3), and the demonstration, in Section 4, that very significant
efficiency gains can be obtained by the use of these algorithms, both in the case where the
accuracy of Ap can be varied continuously and in the case where it is bound to prescribed
levels (as is the case in multi-precision arithmetic). We finally provide some conclusions and
perspectives in Section 5.

Notations. In the sequel of this paper, ‖ · ‖2 denotes the standard Euclidean norm for
vectors and its induced (spectral) norm for matrices. In addition, if M is symmetric positive

(1)Our starting point was a nonlinear weighted least-squares problem occuring in large-scale data assimilation
for weather forecasting [9], where the inverse of the weighting matrix can not be computed. It use thus requires
the iterative solution of an innermost linear system.
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definite and x is a vector, ‖x‖M = ‖M1/2x‖2. The dual norm of ‖.‖M with respect to the
Euclidean inner product is the norm ‖.‖M−1 . Tr(M) is the trace of the matrix M and ei is
the i-th vector of the canonical basis of IRn.

2 A rigorous error analysis

Standard Krylov-based methods (we will consider here the full orthonormalization (FOM)
method [16] and the conjugate-gradients (CG) algorithm [11] with and without reorthogonal-
ization, both initialized with the zero vector, i.e. x0 = 0 and r0 = −b) do provide recurrences
for the residual rk = r(xk), where xk is the approximate solution at iteration k. However,
these recurrences rely on the assumption that the products Ap computed in the course of the
FOM or CG iterations are exact. In our context, where we aim at using inexact products,
we therefore need to bound the residual gap, that is the difference between the residuals rk
within FOM or CG at iteration k and the true residual r(xk), where xk is the approximate
solution at this iteration. If we manage to do this and, at the same time, make the computed
residual rk small (as is typical in the application of FOM or CG), we therefore obtain the
following desirable property.

Lemma 2.1 Suppose that, at some iterate xk of either FOM or CG, one has that for
any rk

max
[
‖rk − r(xk)‖A−1 , ‖rk‖A−1

]
≤
√
ε

2
‖b‖A−1 . (2.1)

Then
|q(xk)− q(x∗)| ≤ ε|q(x∗)| (2.2)

Proof. First evaluating the quadratic q at x = x∗ = A−1b gives a very useful identity,
namely that

|q(x∗)| = −q(x∗) = 1
2
‖b‖2A−1 = 1

2
‖x∗‖2A = 1

2
|bTx∗|. (2.3)

Using this identity, (1.3), the triangle inequality and (2.1) we deduce that

|q(xk)− q(x∗)| = 1
2
‖r(xk)‖2A−1

≤ 1
2

(‖r(xk)− rk‖A−1 + ‖rk‖A−1)2

≤ 1
2

(
√
ε‖b‖A−1)

2

= 1
2
ε‖b‖2A−1

= ε|q(x∗)|.

(2.4)

2

Thus the decrease in the quadratic q obtained at xk is at least (1 − ε) times the maximum
obtainable decrease. This is exactly the type of result we wish if we are to terminate the
quadratic minimization, for instance in a trust-region context (see [6, Theorem 6.3.5]). Be-
cause we expect FOM or CG to make rk small eventually, the rest of the section is now
devoted to analyzing how to enforce the part of (2.1) related to the residual gap, that is the

condition that ‖rk − r(xk)‖A−1 ≤
√
ε
2 ‖b‖A−1 .
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Because this last condition measures the residual gap in the A−1-norm (i.e. a norm in
the dual space), it is natural to use the A-norm in the primal space and to consider the
primal-dual matrix norm defined by

‖E‖A−1,A
def
= sup

x 6=0

‖Ex‖A−1

‖x‖A
= ‖A−1/2EA−1/2‖2. (2.5)

We will thus use this norm to measure the size of the backward error made on the matrix-
vector product. Note for future reference that

‖A‖A−1,A = 1. (2.6)

We first derive a useful observation.

Lemma 2.2 Let A be a symmetric and positive definite matrix and E be any symmetric
perturbation. Then, if ‖E‖A−1,A < 1, the matrix A+ E is symmetric positive definite.

Proof. Assume that ‖E‖A−1,A < 1. From the definition of the norm ‖ · ‖A−1,A we
deduce that

‖E‖2A−1,A = sup
x 6=0

xTETA−1Ex

xTAx
= sup

u6=0

uTA−1/2ETA−1EA−1/2u

uTu
< 1, (2.7)

which shows that ‖A−1/2EA−1/2‖2 < 1. Using

λmin(I +A−1/2EA−1/2) ≥ λmin(I)− |λmax(A−1/2EA−1/2)| > 0,

we obtain that I + A−1/2EA−1/2 is symmetric and positive definite. Sylvester’s inertia
theorem then yields that A1/2(I + A−1/2EA−1/2)A1/2 is symmetric and positive definite,
which completes the proof. 2

2.1 Inexact FOM

We first focus on deriving conditions on the FOM algorithm for which the analysis is simpler.
A first version of the inexact FOM algorithm (initialized with the zero vector) can be stated
as follows.

Theoretical inexact FOM algorithm
1. Set β = ‖b‖2, and v1 = [b/β],
2. For k=1, 2, . . . , do
3. wk = (A+ Ek)vk
4. For i = 1, . . . , k do
5. hi,k = vTi wk
6. wk = wk − hi,kvi
7. EndFor
8. hk+1,k = ‖wk‖2
9. yk = H−1

k (βe1)
10. if |hk+1,ke

T
k yk| is small enough then go to 13

11. vk+1 = wk/hk+1,k

12. EndFor
13. xk = Vkyk
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In this description, we use the notation Hk = [hi,j ]
k
i,j=1. It is also convenient to define

H̃k =

[
Hk

hk+1,ke
T
k

]
and Vk = [v1, . . . , vk] .

It is well-known [16, 13] that both Hk and H̃k are upper Hessenberg matrices and that, if
Ek = 0 for all k, the Arnoldi relation

AVkyk = Vk+1H̃kyk (2.8)

holds. Note that, again for Ek = 0, the approximation xk, the residual rk and qk, the
estimated value of the quadratic objective at xk, are not directly recurred by FOM, but can
easily be retrieved from

xk = Vkyk, rk = Vk+1H̃kyk − b = Axk − b = r(xk) and qk = − 1
2
bTxk = q(xk). (2.9)

Note that, unless no error is made in the products, qk might differ from q(xk), just as rk may
differ from r(xk). Also note that, because of Step 9 of the algorithm, ‖rk+1‖2 = |hk+1,ke

T
k yk|

and thus Step 10 branches out of the outer loop as soon as ‖rk+1‖2 is small enough. When
the error matrices Ek are nonzero, it is easy to verify that (2.8) becomes

AVkyk +GkVkyk = Vk+1H̃kyk (2.10)

where

Gk = (E1v1, . . . , Ekvk)V
T
k =

k∑
j=1

Ejvjv
T
j . (2.11)

We now derive conditions on the error matrices Ej which ensure that the relative residual
gap (measured in dual norm) remains suitably small.

Lemma 2.3 Let επ > 0 and let φ ∈ IRk be a positive vector such that

k∑
j=1

1

φj
≤ 1. (2.12)

Suppose furthermore that

‖Ej‖A−1,A ≤ ωFOM
j

def
= min

[
1,

επ ‖b‖A−1

φj‖vj‖A‖H−1k ‖2‖rj−1‖2

]
for all j ∈ {1, . . . , k}.

(2.13)
Then

‖r(xk)− rk‖A−1 ≤ επ ‖b‖A−1 .

Proof. Using (2.11), (2.10), (2.9) and the triangle inequality, we find that

‖r(xk)− rk‖A−1 = ‖GkVkyk‖A−1 = ‖
k∑
j=1

Ejvje
T
j yk‖A−1 ≤

k∑
j=1

‖Ej‖A−1,A‖vj‖A|eTj yk|.

(2.14)
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Furthermore,
eTj yk = eTj H

−1
k (βe1)

because of the definition of yk in Step 9 of FOM. Introducing y0j−1 = [yj−1, 0]T ∈ IRk and

H̃0
j−1 =

[
H̃j−1 0

0 0

]
∈ IRk×k, one has that

eTj H
−1
k H̃0

j−1y
0
j−1 = eTj H

−1
k Hky

0
j−1 = 0.

It then follows that

eTj yk = eTj H
−1
k (βe1 − H̃0

j−1y
0
j−1) = eTj H

−1
k

[
βẽ1 − H̃j−1yj−1

0

]
where ẽ1 is the first vector of the canonical basis of IRj . Thus, using the second part of
(2.9),

eTj yk = eTj H
−1
k

[
V T
j (βVj ẽ1 − VjH̃j−1yj−1)

0

]
= eTj H

−1
k

[
V T
j (b− VjH̃j−1yj−1)

0

]
= −eTj H−1k

[
V T
j rj−1

0

]
.

The Cauchy-Schwarz inequality then implies that

|eTj yk| ≤ ‖ej‖2‖H−1k ‖2‖V
T
j rj−1‖2 ≤ ‖H−1k ‖2‖rj−1‖2

because the columns of Vj are orthonormal. Thus we deduce from (2.14) and (2.13) that

‖r(xk)k − rk‖A−1

‖b‖A−1

≤ ‖H−1k ‖2

∑k
j=1 ωj‖vj‖A‖rj−1‖2

‖b‖A−1

.

Now the definition of ωFOM
j in (2.13) gives that

‖r(xk)− rk‖A−1

‖b‖A−1

≤ επ
k∑
j=1

1

φj
≤ επ,

as requested. 2

We now combine all the above results in a single theorem.

Theorem 2.4 Let ε > 0 and suppose that, at iteration k > 0 of the FOM algorithm,

‖rk‖A−1 ≤ 1
2

√
ε ‖b‖A−1 (2.15)

and the product error matrices Ej satisfy (2.13) with επ = 1
2

√
ε for some positive vector

φ ∈ IRk satisfying (2.12). Then (2.2) holds.
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Proof. Directly results from Lemmas 2.1 and 2.3. 2

2.2 Inexact CG

We now turn to the conjugate gradient algorithm and derive an analog of Theorem 2.4 for
this case. We first state the algorithm itself.

Theoretical inexact CG algorithm
1. Set x0 = 0, β0 = ‖b‖22, r0 = −b and p0 = r0
2. For k=0, 1, . . . , do
3. ck = (A+ Ek)pk
4. αk = βk/p

T
k ck

5. xk+1 = xk + αkpk
6. rk+1 = rk + αkck
7. if rk+1 is small enough then stop
8. βk+1 = rTk+1rk+1

9. pk+1 = −rk+1 + (βk+1/βk)pk
10. EndFor

Observe that, at variance with FOM, the values of the iterates xk and recurred residuals rk
are explicitly available. The value of qk may again be retrieved from (2.9).

We next restate, for clarity, a simple result relating the residual gap to the error matrices
for the conjugate gradient algorithm (see [18]).

Lemma 2.5 The residual gap in the inexact CG satisfies

r(xk)− rk = −
k−1∑
j=0

αjEjpj .

Proof. We proceed inductively. Observe that r(x0)−r0 = 0 and r(x1)−r1 = −α0E0p0.
Suppose now that the result is true for iterations 1, . . . , k. We then have that

r(xk+1)− rk+1 = (Axk + αkApk − b)− rk + rk − rk+1

= r(xk) + αkApk − rk − αk(A+ Ek)pk

= r(xk)− rk − αkEkpk.

2

We are now in position the derive suitable bounds on the error matrices.
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Lemma 2.6 Let επ > 0 and let φ ∈ IRk be a positive vector satisfying (2.12). Suppose
furthermore that

‖Ej‖A−1,A ≤ ωCG
j

def
=

επ ‖b‖A−1‖pj‖A
φj+1‖rj‖22 + επ ‖b‖A−1‖pj‖A

, for all j ∈ {0, . . . , k − 1}. (2.16)

Then
‖r(xk)− rk‖A−1 ≤ επ ‖b‖A−1 .

Proof. First note that (2.16) ensures that ωCG
j ∈ (0, 1). Lemma 2.5, the triangle

inequality and (2.5) imply that

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

‖αjEjpj‖A−1 ≤
k−1∑
j=0

|αj |‖Ej‖A−1,A‖pj‖A ≤
k−1∑
i=0

|αj |ωCG
j ‖pj‖A.

(2.17)
Now, using (2.16),

αj =
‖rj‖22

pTj (A+ Ej)pj
≤ ‖rj‖22
pTj Apj − ωCG

j ‖pj‖2A
=

‖rj‖22
(1− ωCG

j )‖pj‖2A
.

Substituting this bound in (2.17) and using (2.16) again, we obtain that

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

ωCG
j

1− ωCG
j

‖rj‖22
‖pj‖A

. (2.18)

But the definition of ωj in (2.16) gives that

ωCG
j

1− ωCG
j

=
(επ ‖b‖A−1‖pj‖A)(φj+1‖rj‖22 + επ ‖b‖A−1‖pj‖A)

(φj+1‖rj‖22 + επ ‖b‖A−1‖pj‖A)φj+1‖rj‖22
=
επ ‖b‖A−1‖pj‖A
φj+1‖rj‖22

,

so that (2.18) becomes

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

επ ‖b‖A−1

φj+1
≤ επ ‖b‖A−1 . (2.19)

2

As above, we summarize the results for the CG algorithm.

Theorem 2.7 Let ε > 0 and suppose that (2.15) holds at iteration k > 0 of the CG
algorithm, and that the product error matrices Ej satisfy (2.16) with επ = 1

2

√
ε for some

positive vector φ ∈ IRk satisfying (2.12). Then (2.2) holds.

Some comments are in order at this stage.
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1. Both (2.13) and (2.16) assume the primal-dual norm is the natural norm for measuring
the size of the error matrices Ej . While this may be true in certain applications, it
makes these requirements difficult to verify as such in other cases.

2. Even discounting that potential difficulty, (2.13) and (2.16) remain unfortunately im-
practical, since they involve quantites, such as ‖b‖A−1 , ‖vj‖A or ‖pj‖A, which cannot
be computed readily in the course of the FOM or CG algorithm. Moreover, ‖rk‖A−1 in
(2.15) is also unavailable in practice.

3. Observe that (2.13) allows a growth of the error in ‖rj‖−1 while (2.16) allows a growth
of the order of ‖rj‖−2‖pj‖A instead.

4. In (2.13), the minimum with one is taken to ensure that the relative error remains
meaningful (while at the same time allowing to apply Lemma 2.2). This guarantee is
automatic in (2.16).

5. The φj appearing in (2.13) and (2.16) may be considered as an “error management
strategy”, in that they potentially allow for mitigating the direct effect of the residual
norm in the definition of the error bound. A simple choice is to define φj = n for all j,
which obviously satisfies (2.12). We will show below that they can be used to further
advantage.

2.3 Bounding the error of the computed quadratic value

Neither the FOM or CG algorithm updates recursively the value of the quadratic objective
function at the current iterate. However, tracking this value may be important in practice
(as we will see in Section 3), and, if there is no error in the products Ap, can be done easily
without computing additional products with A. Indeed, since xk is the minimizer of q(·) in
the direction xk, one verifies that

q(xk) = 1
2
xTkAxk − bTxk = − 1

2
bTxk.

In the presence of errors on Ap, this property may no longer hold, and it is of interest to
analyze how much qk = − 1

2
bTxk differs from q(xk). This is important if the decrease in the

quadratic objective function is used for other purposes, as is the case, for instance, in trust-
region methods where this decrease is a key ingredient in the management of the trust-region
radius (see [6, Chapter 6]).

In order to provide an error estimate, we first prove the following backward error property.

Lemma 2.8 Let A be a symmetric positive-definite n× n matrix and b a vector in IRn.
Then, for any x ∈ IRn,

min
E

{‖E‖A−1,A

‖A‖A−1,A
| xT (A+ E)x = xT b

}
=
|xT r(x)|
‖x‖2A

. (2.20)
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Proof. Using (2.5) and (2.6), we rewrite the optimization problem as

min
E

{
‖A−1/2EA−1/2‖2 | xTEx = xT (b−Ax)

}
which, since A is positive-definite and setting y = A1/2x, is itself equivalent to

min
E

{
‖A−1/2EA−1/2‖2 | yTA−1/2EA−1/2y = −xT r(x)

}
.

But, for any symmetric matrix M and scalar γ,

min
M

{
‖M‖2 | yTMy = γ

}
= γ

is attained for M = γyyT /‖y‖42. Thus

E = −(xT r(x))
AxxTA

‖x‖4A
and ‖E‖A−1,A = ‖A−1/2EA−1/2‖2 =

|xT r(x)|
‖x‖2A

.

2

Consider x the result of applying the FOM or CG methods with inexact products, such that
(2.15) and and either (2.13) or (2.16) holds. We deduce from the preceding lemma that there
exists a quadratic

q̂(x) = 1
2
xT (A+ E)x− bTx (2.21)

such that, by construction q̂(x) = − 1
2
bTx = q and

|q(x)− q| = |q(x)− q̂(x)|

= 1
2
|xTEx|

≤ 1
2
‖E‖A−1,A‖x‖2A

= 1
2
|xT r(x)|

≤ 1
2

‖r(x)‖A−1

‖x∗‖A
‖x∗‖A‖x‖A,

(2.22)

we successively used (2.21), the Cauchy-Schwarz inequality, Lemma 2.8, the Cauchy-Schwarz
inequality again and (2.3). But, using the triangle inequality, Lemma 2.3 or (2.19), (2.3) and
(2.15), we obtain that

‖x‖A ≤ ‖x∗‖A + ‖x− x∗‖A
= ‖x∗‖A + ‖r(x)‖A−1

≤ ‖x∗‖A + ‖r(x)− r‖A−1 + ‖r‖A−1

≤ (1 + 2επ)‖x∗‖A

and hence, using (2.15) and (2.3) again,

|q(x)− q| ≤ 1
2

‖r(x)‖A−1

‖x‖A
‖x‖2A ≤ 2επ(1 + 2επ)|q(x∗)|.

We summarize the above discussion in the following theorem.
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Theorem 2.9 Let x be the result of applying the FOM or CG algorithm with inexact
products and suppose that (2.15) and either (2.13) or (2.16) holds with επ = 1

2

√
ε. Then

|q(x)− q|
|q(x∗)|

≤
√
ε(1 +

√
ε). (2.23)

Remembering that επ = 1
2

√
ε, we see that this bound is considerably weaker than (2.2) but

is likely to be pessimistic, as we have not taken into account in (2.22) the fact that the angle
between x and r(x) is expected to be small. This will be numerically confirmed in Section 4.

3 Computable bounds and practical inexact algorithms

The first two comments at the end of Section 2.2 might, at first sight, suggest that the above
approach has to remain of purely theoretical interest. However, the potential of allowing inex-
act products revealed by (2.13) and (2.16) prompts us to estimate the unavailable quantities,
from which practical algorithms may then be derived. We consider these questions in this
section, and demonstrate in the next section that substantial benefits may result.

3.1 Managing the inaccuracy budget

An important ingredient of a computable inexact FOM or CG algorithm is the choice of φ
in (2.13) or (2.16). We note that (2.12) limits the sum of the inverse of φj over all iteration
preceding termination. Of course, choosing φj = n is adequate (assuming FOM or CG will
not use more than n iterations!), but is often suboptimal. Indeed, the expected number of
iterations to termination is very commonly, for not too-ill-conditioned or correctly precondi-
tioned problems, much lower than the problem’s dimension. This can be exploited to make
the φj smaller, for instance by choosing φj equal to this expected iteration number. This last
number may be obtained from the maximum of iterations for FOM or CG (kusermax) typically
imposed by the user, or from

kspectralmax =
log(ε)

log(ρ)
where ρ

def
=

√
λmax/λmin − 1√
λmax/λmin + 1

(3.1)

where λmin and λmax approximate λmin(A) and λmax(A), respectively (see [8, Theorem 10.2.6]
for example). Moreover, it is possible to adjust the φj adaptively in the case where the user
is able to specify a bound on ‖Ej‖A−1,A when it is smaller than ωj . As we will see below, this
typically happens when the accuracy of the product Ap cannot be chosen continuously, but
is bound to prescribed levels (such as arithmetic precision). Suppose therefore that, besides
the product (A + E)p, one knows a value ω̂j ≤ ωj such that ‖Ej‖A−1,A ≤ ω̂j . We may then
decide to add the (potential) “unused inaccuracy” to the available inaccuracy budget for the
remaining iterations, thereby allowing larger subsequent errors. Indeed, knowing ω̂j , one may

first compute φ̂j as the root of the (linear) equation ω̂j = ωj(φj), that is

φ̂j =
επ ‖b‖A−1

ω̂j‖vj‖A‖H−1k ‖2‖rj−1‖2
for FOM, and φ̂j =

(1− ω̂j)επ ‖b‖A−1‖pj‖A
ω̂j‖rj‖22

for CG,

(3.2)



Gratton, Simon, Toint: Variable precision Krylov methods (draft – not for circulation) 12

and then reset

φi =
kmax − j

1−
∑j

p=1 φ̂
−1
p

(i = j + 1, . . . , kmax).

In practice, this allows maintaining only single running values for φj+1 and Φj
def
= 1−

∑j
p=1 φ̂

−1
p

for j ranging from 0 to kmax − 1.

3.2 Estimations

We now attempt to estimate unavailable quantities in the theoretical FOM and CG algo-
rithms. We first consider that ‖E‖A−1,A may not be available from the application context
and note that, from (2.7),

‖E‖A−1,A = ‖A−1/2EA−1/2‖2 ≥ λmin(A)−1‖E‖2, (3.3)

so that abound on ‖E‖2 can be used provided one knows (an approximation of) the smallest
eigenvalue of A. We also have to compute ‖u‖A for a variety of vectors u (the vj for FOM
and the pj for CG). We can also use the fact that

λmin(A)1/2‖u‖2 ≤ ‖u‖A ≤ ‖A‖1/22 ‖u‖2

to derive suitable bounds. However, for ill-conditioned problem, these bounds are likely to
be often very loose. Another approach is to choose

‖u‖A ≈
1

n
Tr(A)‖u‖2

as an approximation (this would be the average value for vectors u with random independent
components). Finding an estimation of ‖b‖A−1 is slighlty more difficult, since this is the size
of value of the quadratic at the solution, the quantity we seek to compute. As it turns out(2),
the best available approximation is the absolute value of current value of the quadratic at the
current iterate, and thus we choose

‖b‖A−1 ≈ |q(xk)| ≈ |qk| = 1
2
|bTxk|. (3.4)

(At x = 0; which occurs at the first iteration of both FOM and CG), we choose the even
more approximate value ‖b‖2/

√
‖A‖2.). Finally, (2.13) requires an approximation of ‖H−1k ‖2.

Unfortunately, this value depends on the Hk matrix at termination of FOM and its estimation
from the current Hi turns out to be quite poor. We have therefore chosen the safe option to
use

‖H−1k ‖2 =
1

λmin(Hk)
≤ 1

λmin(A)
. (3.5)

Combining the above approximations, we suggest to approximate (2.13) by the condition

‖Ej‖2 ≤ min

[
1,

επ n|qj |λmin(A)

φj‖rj−1‖2Tr(A)‖vj‖2

]
for all j ∈ {2, . . . , k}, (3.6)

and (2.16) by

‖Ej‖2 ≤
επ |qj |Tr(A)‖pj‖2

nφj+1‖rj‖22 + επ |qj |Tr(A)‖pj‖2
, for all j ∈ {1, . . . , k − 1}. (3.7)

(2)Despite the weak bound of Theorem 2.9.
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(The formulae are similar for j = 1 in FOM and j = 0 in CG, with |qj | replaced by ‖b‖2λmax).
It also remains to replace (2.15) by a computable estimate. We have chosen to follow

ideas in [4] ignoring pathological convergence instances and to estimate

1
2
‖rk‖2A−1 = q(xk)− q(x∗) ≈ q(xk−d)− q(xk)

where d is a small integer (10, in our case) specifying a “stabilization delay” in the curve of
decreasing quadratic values. Using this estimate then suggests replacing (2.15) by the test

q(xk−d)− q(xk) ≤ 1
4
ε|q(xk)|,

which, given that q(xk) is unavailable, is itself approximated by the test

qk−d − qk ≤ 1
4
ε|qk|. (3.8)

We conclude this paragraph by stressing the somewhat ad hoc nature of the above approx-
imations, which rely in particular on an estimate of the smallest and (less crucially) largest
eigenvalues of A. As for the theory presented in Section 2, their justification essentially results
from the numerical results presented in Section 4.

3.3 Resulting practical algorithms

We now consolidate our approximations within the body of the FOM and CG algorithms in
order to obtain practical versions of these only relying on computable quantities. We note
that our definitions of these quantities nevertheless require the user to provide a (potentially
very rough, see Section 4) approximate values for the smallest and largest eigenvalues of A.
We start by the FOM algorithm on the following page.
Steps 1 to 3 include the determination of a bound on the expected number of iteration and the
initialization of φ and the inaccuracy budget Φ. The requested accuracy ωk and the associated
inexact product are computed in Steps 5 and 6. The running quadratic qk value is computed
in Step 13 and used for possibly terminating the iteration in Step 14, using the “delay” test
(3.8). The formula in Step 13 uses the fact that qk = − 1

2
bTxk = − 1

2
bTVkyk = − 1

2
zT yk, the

j-th component of z being set at iteration j to vTj b (in Steps 3 and 19). Steps 15 to 21
introduce the management of the inaccuracy budget described in Section 3.1. Because kmax

is based on an estimation of the maximum number of iterations that may be too low, the
φ are not updated any longer when kmax is reached. This phenomenon occurs for very low
condition number in our experiments (only for κ(A) ∼ 101). Iterations with fixed accuracy
then occur at the end of the minimization(3)

Given that the FOM algorithm uses the time and memory for orthonormalization, it seems
natural to compare it with an version of the CG algorithm also incorporating reorthonormal-
ization. We therefore include this option in our practical inexact CG method, along with
the techniques just described in the FOM case for estimating and managing the inaccuracy
budget and selecting the accuracy level for inexact products. This gives the algorithm on
page 15.

It is important to note that the cost of applying any of the above algorithms is still
dominated by that of the matrix vector products, provided the cost of reorthogonalization
does not escalate, that is when the number of iterations remains a moderate fraction of the
problem size.

(3)An other strategy could be to stop the algorithm after kmax iterations. Preliminary experiments suggest
that it reduces the number of iterations when the targeted precision is low without significantly damaging the
quality of the solution. For κ(A) ≥ 102, the algorithms stop before the accumulated budget vanishes.



Gratton, Simon, Toint: Variable precision Krylov methods (draft – not for circulation) 14

A practical inexact FOM algorithm
Given A, b, ε, kusermax, λmin, λmax and d.

1. Compute kspectralmax from λmin and λmax using (3.1)
2. kmax = min[kusermax, k

spectral
max ]

3. Set q0 = 0, β = ‖b‖2, v1 = b/β, z1 = β, φ1 = kmax and Φ1 = 1
4. For k = 1, . . . , kusermax, do
5. Determine ωk from (3.6) with επ = 1

2

√
ε

6. Compute the product wk = (A+ Ek)vk with ‖E‖2 ≤ ωk, also returning ω̂k
7. For i = 1, . . . , k do
8. hi,k = vTi w
9. wk = wk − hi,kvi

10. EndFor
11. hk+1,k = ‖wk‖2
12. yk = H−1

k (βe1)
13. qk = − 1

2z
T yk

14. if qk−d − qk ≤ 1
4ε|qk|, then go to 25

15. Compute φ̂k from ω̂k using the second part of (3.2)

16. Φk+1 = Φk − φ̂−1
k

17. If kmax > k
18. φk+1 = (kmax − k)/Φk+1

19. Else
20. φk+1 = φk
21. EndIf
22. vk+1 = wk/hk+1,k

23. zk+1 = vTk+1b
24. EndFor
25. xk = Vkyk

4 Numerical experiments

In the numerical experiments we now present, we first to verify and illustrate the theory
of Section 2 and then illustrate how performance is affected by the use of the (possibly
very) approximate but computable quantities discussed in Section 3. We focus mainly on
the reduction in the computational costs associated with the use of inexact matrix-vector
products, the original aim of the paper. We use synthetic examples with varying conditionning
and examples extracted from the NIST Matrix Market collection(4).

4.1 Continuously varying accuracy

We start with synthetic examples, where, for each example, we have constructed a random
symmetric matrix of size n = 1000 whose eigenvalues are equidistant in logarithm (base 10)
between prescribed λmin(A) and λmax(A) = 1, and a random normalized right-hand side b.
Note that eigenvalues are not clustered.

We start by considering the case where the accuracy of the products can be specified
continuously, assuming that it is possible for the user to obtain the requested accuracy (i.e.
ω̂j = ωj for all j). It can be verified that this implies that φj = φ̂j = kmax for all j =

(4)Available at https://math.nist.gov/MatrixMarket
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A practical inexact CG algorithm
Given A, b, ε, kusermax, λmin, λmax, d and reorth.

1. Compute kspectralmax from λmin and λmax using (3.1)
2. kmax = min[kusermax, k

spectral
max ]

3. Set x0 = 0, r0 = −b, q0 = 0, β0 = ‖b‖2, u1 = b/β0, p0 = b, φ0 = kmax and Φ0 = 1
4. For k = 0, . . . , kusermax, do
5. Determine ωk from (3.7) with επ = 1

2

√
ε

6. Compute the product ck = (A+ Ek)pk with ‖E‖2 ≤ ωk, also returning ω̂k
7. αk = β2

k/p
T
k ck

8. xk+1 = xk + αkpk
9. qk+1 = 1

2b
Txk+1

10. If qk+1−d − qk+1 ≤ 1
4ε|qk+1|, then stop

11. Compute φ̂k from ω̂k using the first part of (3.2)

12. Φk+1 = Φk − φ̂−1
k

13. If kmax > k
14. φk+1 = (kmax − k)/Φk+1

15. Else
16. φk+1 = φk
17. EndIf
18. rk+1 = rk + αkck
19. If ( reorth )
20. For i = 1, . . . , k do
21. rk+1 = rk+1 − (uTi rk+1)ui
22. EndFor
23. βk+1 = ‖rk+1‖2
24. uk+1 = rk+1/βk+1

25. Else
26. βk+1 = ‖rk+1‖2
27. EndIf
28. pk+1 = −rk+1 + (βk+1/βk)2pk
29. EndFor

1, . . . , kmax.
In order to illustrate the effective cost of inexact products, we assume that computing Ap

is obtained by running a linearly convergent process, whose rate is given by ρ (as defined in
(3.1)). This would be the case, for instance, if A = JTW−1J and only W is known(5). The
cost of a full accuracy product is then given by

log(εM )

log(ρ)

where εM is the machine precision, while that of an inexact product with accuracy requirement
ω is then assumed to be

log(ω)

log(ρ)
.

These values are then summed in the course of the FOM/CG algorithm to represent an
equivalent number of full accuracy products.

(5)This case occurs in approximately weighted nonlinear least-squares, for instance in data assimilation for
weather forecasting.
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In order to illustrate the theory of Section 2, we first run versions of FOM and CG where
we use the exact tests (2.13) and (2.16) (rather than (3.6)(6) and (3.7)), the true ‖Ej‖A−1,A

and the original termination test (2.15). This is of course impractical but allows measuring
the potential for inexactness provided by Theorems 2.4 and 2.7. We consider 6 algorithms:

FOM: the standard FOM with products computed in full machine accuracy,
iFOM: the practical inexact FOM algorithm on page 14.
CG: the standard CG with products computed in full machine accuracy,
CGR: the standard CG with reorthogonalization and products computed in

full machine accuracy,
iCG: the practical inexact CG algorithm on the previous page without

reorthogonalization,
iCGR: the practical inexact CG algorithm on the preceding page with

reorthogonalization,

Tables 4.1-4.3 report the results obtained for three choices of accuracy (ε = 10−3, 10−5 and
10−7) and, for each ε, choosing the conditionings of A equal to 10i for i = 1, . . . , 8. In these
tables,

κ(A) is the condition number of A,
nit is the number of iterations required for termination,
cost is the equivalent number of full accuracy products used,
“r.res.gap” is the squared relative residual gap 1

2
‖r(x)− r‖2A−1/|q(x)|,

“r.sol.err” is the relative error on the solution value (q(x)− q(x∗))/|q(x∗)|,
“r.val.err” is the relative error on the quadratic value |q(x)− q|/|q(x∗)|.

From (2.4) we have that “r.res.gap” + “r.sol.err” ≤ ε, representing the total error on the true
optimal value, while “r.val.err” obeys (2.23).

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

FOM 101 7 7.0e+00 3.5e-30 1.6e-04 1.1e-15 102 22 2.2e+01 9.5e-29 2.3e-04 7.4e-15
iFOM 7 2.0e+00 3.7e-30 1.6e-04 7.2e-06 22 9.0e+00 8.8e-29 2.3e-04 7.6e-07
CG 8 8.0e+00 5.0e-30 4.2e-05 2.2e-16 26 2.6e+01 6.2e-29 4.2e-05 1.2e-15
CGR 8 8.0e+00 5.9e-30 4.2e-05 1.1e-15 26 2.6e+01 7.1e-29 4.2e-05 3.5e-15
iCG 8 2.0e+00 1.9e-06 4.4e-05 6.5e-06 26 9.0e+00 2.6e-07 4.2e-05 4.1e-05
iCGR 8 2.0e+00 1.9e-06 4.3e-05 8.3e-05 26 9.0e+00 2.1e-07 4.3e-05 1.6e-05

FOM 103 69 6.9e+01 4.3e-27 2.3e-04 4.2e-14 104 192 1.9e+02 3.0e-25 2.5e-04 4.6e-13
iFOM 69 3.3e+01 4.7e-27 2.3e-04 2.4e-07 192 1.1e+02 3.0e-25 2.5e-04 1.0e-09
CG 88 8.8e+01 2.0e-27 1.9e-05 3.4e-11 290 2.9e+02 1.3e-25 7.1e-06 1.0e-07
CGR 88 8.8e+01 2.1e-27 1.9e-05 9.6e-15 250 2.5e+02 1.2e-25 6.8e-06 4.4e-15
iCG 89 3.4e+01 2.4e-08 1.8e-05 1.9e-05 301 1.2e+02 2.5e-09 7.1e-06 2.4e-06
iCGR 88 3.3e+01 2.0e-08 1.9e-05 1.1e-05 250 1.0e+02 3.3e-09 6.8e-06 2.4e-06

FOM 105 363 3.6e+02 1.9e-23 2.5e-04 6.7e-13 106 494 4.9e+02 1.7e-21 2.4e-04 7.7e-12
iFOM 363 2.5e+02 1.9e-23 2.5e-04 2.0e-10 494 3.9e+02 1.3e-21 2.4e-04 1.5e-10
CG 928 9.3e+02 1.0e-23 2.5e-06 1.1e-07 2983 3.0e+03 6.3e-22 8.5e-07 1.3e-08
CGR 433 4.3e+02 9.8e-24 2.4e-06 2.5e-13 565 5.6e+02 6.9e-22 8.2e-07 1.2e-12
iCG 993 4.5e+02 2.8e-10 2.5e-06 1.4e-06 3000 1.5e+03 3.7e-11 3.1e-06 3.3e-07
iCGR 433 2.1e+02 4.9e-10 2.4e-06 2.3e-07 565 3.0e+02 4.5e-10 8.2e-07 7.4e-07

FOM 107 583 5.8e+02 1.1e-19 2.5e-04 9.2e-12 108 650 6.5e+02 7.0e-18 2.4e-04 2.6e-10
iFOM 583 5.2e+02 9.4e-20 2.5e-04 2.2e-09 650 6.5e+02 6.7e-18 2.4e-04 1.2e-09
CG 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 656 6.6e+02 5.5e-20 2.7e-07 1.9e-11 721 7.2e+02 5.1e-18 8.6e-08 4.2e-10
iCG 3000 1.7e+03 1.6e-11 2.0e-02 1.3e-06 3000 1.9e+03 3.6e-12 3.5e-01 2.4e-06
iCGR 656 3.7e+02 6.6e-10 2.7e-07 2.1e-07 721 4.4e+02 7.0e-10 8.7e-08 1.0e-06

Table 4.1: Using exact bounds for ε = 10−3

These tables suggest the following conclusions.

1. Compared to their full-accuracy versions FOM, CG and CGR, the inexact variants
iFOM, iCG and iCGR exhibit very significant potential savings in the costs of the prod-

(6)We still use (3.5) to approximate ‖H−1
k ‖2.
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

FOM 101 11 1.1e+01 4.1e-30 8.3e-07 6.6e-16 102 34 3.4e+01 9.0e-29 2.0e-06 7.1e-15
iFOM 11 4.0e+00 3.3e-30 8.3e-07 2.0e-07 34 1.4e+01 1.0e-28 2.0e-06 1.1e-08
CG 11 1.1e+01 4.6e-30 8.3e-07 8.8e-16 38 3.8e+01 5.4e-29 3.7e-07 1.1e-15
CGR 11 1.1e+01 6.4e-30 8.3e-07 4.4e-16 38 3.8e+01 7.1e-29 3.7e-07 3.4e-15
iCG 11 4.0e+00 1.1e-08 8.5e-07 2.9e-07 38 1.4e+01 1.2e-09 3.7e-07 6.6e-07
iCGR 11 4.0e+00 1.1e-08 8.4e-07 4.8e-06 38 1.4e+01 1.1e-09 3.7e-07 7.9e-07

FOM 103 104 1.0e+02 4.6e-27 2.3e-06 4.4e-14 104 263 2.6e+02 2.6e-25 2.5e-06 4.5e-13
iFOM 104 5.3e+01 4.7e-27 2.3e-06 1.6e-08 263 1.6e+02 2.9e-25 2.5e-06 1.1e-10
CG 123 1.2e+02 2.2e-27 1.8e-07 1.5e-08 393 3.9e+02 1.5e-25 6.9e-08 8.9e-09
CGR 122 1.2e+02 2.3e-27 1.9e-07 5.8e-15 307 3.1e+02 1.6e-25 7.1e-08 6.1e-14
iCG 124 5.0e+01 1.3e-10 1.9e-07 6.2e-09 408 1.8e+02 1.5e-11 7.0e-08 2.0e-07
iCGR 122 4.9e+01 1.2e-10 1.9e-07 6.6e-07 307 1.4e+02 1.6e-11 7.1e-08 6.3e-08

FOM 105 433 4.3e+02 2.1e-23 2.4e-06 5.0e-13 106 554 5.5e+02 1.4e-21 2.3e-06 7.3e-12
iFOM 433 3.2e+02 2.3e-23 2.4e-06 1.1e-10 554 4.6e+02 1.2e-21 2.3e-06 1.7e-11
CG 1252 1.3e+03 1.0e-23 2.5e-08 1.6e-08 3000 3.0e+03 7.4e-22 8.0e-07 6.9e-08
CGR 486 4.9e+02 1.0e-23 2.5e-08 4.5e-13 606 6.1e+02 6.6e-22 8.1e-09 5.0e-12
iCG 1339 6.5e+02 1.6e-12 2.5e-08 1.1e-07 3000 1.6e+03 4.6e-13 2.5e-06 9.3e-08
iCGR 486 2.5e+02 5.2e-12 2.5e-08 4.5e-08 606 3.4e+02 6.9e-12 8.1e-09 1.1e-07

FOM 107 636 6.4e+02 1.1e-19 2.5e-06 6.4e-12 108 697 7.0e+02 6.8e-18 2.3e-06 4.4e-10
iFOM 636 6.1e+02 8.4e-20 2.5e-06 2.9e-10 697 7.5e+02 5.2e-18 2.3e-06 8.9e-11
CG 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 687 6.9e+02 4.9e-20 2.9e-09 2.2e-11 746 7.5e+02 4.1e-18 8.8e-10 6.7e-11
iCG 3000 1.9e+03 1.5e-13 1.9e-02 4.1e-06 3000 2.1e+03 3.5e-14 3.4e-01 4.8e-06
iCGR 687 4.2e+02 6.9e-12 2.8e-09 2.9e-08 747 5.0e+02 7.6e-12 5.9e-10 1.8e-07

Table 4.2: Using exact bounds for ε = 10−5

ucts Ap. This is especially the case when the conditioning of the problem is moderate
(at most 104). As it could be argued that the methods discussed here should be ap-
plied on preconditioned systems, this restriction only moderately affect the practical
applicability of the technique.

2. Among the inexact variants, iCGR seems to promise the largest gains in terms of prod-
uct costs. The iCG variant, which may be preferable a priori since it does not involve
the cost and memory requirements for reorthogonalization, suffers from this very feature
for more ill-conditioned problems: it is adversely affected by rounding errors and may
terminate prematurely when reaching its maximum number of iterations (3n here).

3. The iFOM variant is still efficient and typically produces a more accurate residual gap
that the two other inexact variants. Note that, although CGR and FOM are equivalent
in exact arithmetic, this is no longer the case for iCGR and iFOM, because the error is
made in the product with different vectors (pj for the former and vj for the latter).

4. The theoretical bounds (2.13) and (2.16) appear to be often much too restrictive. This
is most likely due to the fact that they are based on norms, which take the worst case
into account irrespective of the particular directions encountered in the course of the
computation. The approximation (3.5), in particular, is often the most restrictive, which
might explain the overly accurate residual gaps obtained with the iFOM algorithm.

5. We see that the accuracy obtained on the quadratic value (“r.val.err”) is often compa-
rable to the bound on optimality (“r.sol.err”), thereby confirming our comment after
Theorem 2.9.

6. The validity of the theoretical bound (obtained in exact arithmetic) does not seem to
suffer too much from the effect of rounding errors, even for large condition numbers and
high accuracy.

We now show the effect of using the practical algorithms on page 14 and on page 15.
In addition to using the approximate constants and tests described in Section 3, we also
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

FOM 101 14 1.4e+01 4.0e-30 1.7e-08 6.6e-16 102 45 4.5e+01 1.0e-28 2.2e-08 6.5e-15
iFOM 14 5.0e+00 3.3e-30 1.7e-08 1.2e-07 45 2.0e+01 8.8e-29 2.2e-08 2.1e-08
CG 15 1.5e+01 4.8e-30 4.6e-09 0.0e+00 49 4.9e+01 5.7e-29 4.6e-09 3.1e-16
CGR 15 1.5e+01 5.6e-30 4.6e-09 1.1e-15 49 4.9e+01 7.0e-29 4.6e-09 4.3e-15
iCG 15 5.0e+00 7.3e-11 4.6e-09 1.4e-07 49 1.9e+01 7.1e-12 4.6e-09 2.7e-07
iCGR 15 5.0e+00 7.0e-11 4.7e-09 3.3e-07 49 1.9e+01 9.1e-12 4.6e-09 1.2e-07

FOM 103 136 1.4e+02 4.3e-27 2.5e-08 3.7e-14 104 320 3.2e+02 2.5e-25 2.4e-08 3.9e-13
iFOM 136 7.4e+01 5.7e-27 2.5e-08 2.3e-10 320 2.1e+02 2.5e-25 2.4e-08 1.3e-10
CG 157 1.6e+02 2.0e-27 1.9e-09 6.7e-09 499 5.0e+02 1.3e-25 7.0e-10 5.2e-10
CGR 155 1.6e+02 2.4e-27 1.7e-09 7.1e-15 356 3.6e+02 1.3e-25 6.9e-10 2.9e-14
iCG 160 6.8e+01 9.0e-13 1.8e-09 9.9e-08 520 2.4e+02 8.7e-14 6.8e-10 2.1e-08
iCGR 155 6.6e+01 7.7e-13 1.7e-09 1.5e-08 356 1.7e+02 8.4e-14 6.9e-10 8.4e-09

FOM 105 486 4.9e+02 2.1e-23 2.5e-08 8.3e-13 106 598 6.0e+02 1.1e-21 2.2e-08 3.5e-12
iFOM 486 3.8e+02 1.8e-23 2.5e-08 2.4e-11 598 5.4e+02 1.2e-21 2.2e-08 6.7e-11
CG 1559 1.6e+03 8.8e-24 2.5e-10 7.2e-10 3000 3.0e+03 7.4e-22 8.0e-07 6.9e-08
CGR 525 5.2e+02 8.6e-24 2.4e-10 3.0e-13 637 6.4e+02 6.4e-22 7.3e-11 1.6e-12
iCG 1662 8.6e+02 8.5e-15 2.5e-10 1.6e-09 3000 1.8e+03 3.3e-15 2.1e-06 8.5e-08
iCGR 525 2.9e+02 6.3e-14 2.4e-10 5.5e-09 637 3.9e+02 8.0e-14 7.4e-11 1.1e-08

FOM 107 674 6.7e+02 1.2e-19 2.3e-08 8.8e-12 108 729 7.3e+02 6.3e-18 2.3e-08 4.2e-10
iFOM 674 6.9e+02 8.8e-20 2.3e-08 2.4e-11 729 8.4e+02 7.1e-18 2.3e-08 2.9e-10
CG 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 713 7.1e+02 5.8e-20 4.4e-11 4.8e-12 769 7.7e+02 4.1e-18 1.0e-10 2.4e-10
iCG 3000 2.1e+03 1.6e-15 1.8e-02 1.8e-06 3000 2.2e+03 3.6e-16 3.3e-01 6.0e-07
iCGR 713 4.7e+02 8.3e-14 1.8e-11 1.5e-08 769 5.5e+02 8.6e-14 2.4e-10 1.9e-08

Table 4.3: Using exact bounds for ε = 10−7

perturbed the smallest and largest eigenvalues estimates by a random relative perturbation
of magnitude between 0 and 100%, with the result that these estimates only hold in order, but
typically have no exact digit. We report the results of the corresponding runs in Tables 4.4
to 4.6, using the same conventions as for Tables 4.1 to 4.3,

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 17 5.0e+00 3.9e-30 6.9e-07 3.3e-05 102 32 1.2e+01 1.0e-28 4.3e-06 7.9e-07
iCG 17 5.0e+00 2.1e-06 2.1e-06 1.1e-05 32 1.1e+01 7.9e-07 5.2e-06 5.2e-05
iCGR 17 5.0e+00 2.2e-06 2.2e-06 4.4e-05 32 1.1e+01 9.0e-07 5.0e-06 4.0e-05

iFOM 103 75 3.3e+01 4.2e-27 1.1e-04 4.6e-07 104 187 9.7e+01 3.1e-25 3.3e-04 7.5e-08
iCG 75 2.7e+01 8.1e-07 1.2e-04 5.2e-05 199 7.7e+01 7.1e-07 4.8e-04 3.8e-05
iCGR 76 2.7e+01 7.4e-07 9.5e-05 1.6e-05 187 7.2e+01 9.0e-07 3.3e-04 1.8e-05

iFOM 105 351 2.1e+02 1.7e-23 4.4e-04 2.5e-08 106 490 3.4e+02 1.5e-21 3.0e-04 4.8e-08
iCG 523 2.2e+02 1.0e-06 1.6e-03 1.8e-05 1305 5.7e+02 1.5e-06 5.9e-03 7.5e-05
iCGR 351 1.5e+02 3.0e-06 4.4e-04 4.6e-05 490 2.2e+02 4.1e-05 3.4e-04 6.8e-05

iFOM 107 586 4.6e+02 8.7e-20 1.9e-04 2.3e-08 108 651 5.8e+02 7.2e-18 2.2e-04 7.4e-09
iCG 3000 1.4e+03 4.3e-06 2.4e-02 7.0e-05 3000 1.5e+03 1.6e-06 3.7e-01 9.3e-05
iCGR 587 2.8e+02 1.9e-04 3.6e-04 7.9e-04 651 3.3e+02 3.1e-04 5.2e-04 3.3e-03

Table 4.4: Using practical algorithms with ε = 10−3

This leads to the following comments.

1. The practical methods effectively provide significant gains in the cost of performing the
matrix-vector products in FOM or CG.

2. The practical variants typically take slightly more iterations than their “impractical”
versions discussed above, which is partly explained by the fact that the termination
criterion is based on the delay d (10 in our case) to assess termination. This is obvious for
the case κ(A) = 101 for which the algorithms implemented in full machine precision and
the ”impractical” algorithms converge in 7 to 15 iterations (depending on the targeted
accuracy), which is the order of the delay. Experiments with a delay d equal to 5 led to
a decrease in the iteration number, especially for matrices with low condition numbers
(not shown). Thus, the tuning of the parameter d is problem dependent and should be
adapted to the condition number.
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 21 7.0e+00 4.1e-30 3.3e-09 1.3e-06 102 44 1.7e+01 1.1e-28 3.3e-08 1.4e-08
iCG 21 6.0e+00 1.2e-08 1.2e-08 5.0e-06 49 1.7e+01 5.2e-09 9.5e-09 4.9e-06
iCGR 21 6.0e+00 1.1e-08 1.1e-08 3.8e-07 44 1.5e+01 5.7e-09 3.9e-08 2.1e-06

iFOM 103 111 5.2e+01 4.4e-27 9.1e-07 5.3e-08 104 266 1.5e+02 3.4e-25 2.0e-06 6.2e-09
iCG 123 4.6e+01 5.1e-09 2.3e-07 2.9e-06 307 1.3e+02 5.6e-09 5.4e-06 1.3e-06
iCGR 112 4.3e+01 5.3e-09 7.9e-07 1.7e-06 266 1.1e+02 9.0e-09 2.0e-06 2.3e-06

iFOM 105 436 2.8e+02 1.9e-23 1.9e-06 7.9e-09 106 558 4.1e+02 1.3e-21 1.6e-06 1.0e-09
iCG 867 3.8e+02 8.6e-09 1.6e-05 1.0e-06 2345 1.1e+03 4.0e-08 7.0e-05 1.3e-05
iCGR 436 1.9e+02 9.9e-08 2.1e-06 2.4e-06 558 2.6e+02 2.8e-06 4.6e-06 9.7e-05

iFOM 107 642 5.4e+02 8.0e-20 1.4e-06 1.2e-09 108 704 6.7e+02 7.3e-18 9.9e-07 9.6e-10
iCG 3000 1.5e+03 3.3e-07 2.3e-02 3.0e-05 3000 1.6e+03 3.1e-07 3.6e-01 4.7e-05
iCGR 643 3.2e+02 4.7e-05 4.7e-05 6.5e-04 704 3.7e+02 1.7e-04 1.7e-04 1.0e-03

Table 4.5: Using practical algorithms with ε = 10−5

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 32 1.0e+01 3.9e-30 2.3e-11 2.7e-08 102 56 2.3e+01 9.5e-29 2.3e-10 7.3e-09
iCG 23 8.0e+00 8.8e-11 8.8e-11 6.4e-07 51 1.9e+01 3.8e-11 2.0e-09 2.9e-07
iCGR 24 8.0e+00 8.2e-11 8.2e-11 7.5e-09 55 2.0e+01 3.9e-11 3.8e-10 2.3e-07

iFOM 103 145 7.2e+01 5.3e-27 6.9e-09 4.8e-09 104 324 1.9e+02 2.7e-25 1.7e-08 2.1e-10
iCG 145 5.9e+01 3.6e-11 1.2e-08 2.5e-07 387 1.7e+02 4.1e-11 1.7e-07 6.5e-07
iCGR 145 5.9e+01 4.0e-11 6.9e-09 8.1e-08 324 1.4e+02 7.4e-11 1.7e-08 6.7e-08

iFOM 105 491 3.4e+02 2.4e-23 1.4e-08 4.7e-10 106 605 4.8e+02 1.3e-21 9.1e-09 2.3e-10
iCG 1017 4.8e+02 6.1e-11 1.8e-06 4.3e-07 2672 1.3e+03 7.5e-10 1.3e-05 2.0e-06
iCGR 492 2.3e+02 1.8e-09 1.4e-08 4.3e-08 605 3.0e+02 7.7e-08 8.3e-08 2.4e-06

iFOM 107 683 6.1e+02 9.6e-20 5.4e-09 3.0e-10 108 738 7.6e+02 7.2e-18 4.5e-09 9.4e-10
iCG 3000 1.6e+03 5.0e-09 2.2e-02 4.1e-06 3000 1.7e+03 6.7e-09 3.5e-01 4.3e-06
iCGR 683 3.6e+02 2.2e-06 2.2e-06 7.1e-05 738 4.1e+02 4.2e-05 4.2e-05 3.8e-05

Table 4.6: Using practical algorithms with ε = 10−7

3. The relative ranking of the various algorithms is very consistent with that observed
above for the “impractical” variants. The only qualitative difference observed is, not
surprisingly(7), that the practical algorithms seem to suffer more from the rounding
errors, in that the desired accuracy cannot be reached when the ratio of accuracy on
conditioning (ε/κ(A)) approaches machine precision.

We conclude this analysis of the case where the accuracy of the product Ap can be spec-
ified continuously by presenting some results of running the practical inexact algorithms on
some examples from the NIST Matrix Market. Dimension, condition number and 2-norm of
the matrices are given in Table (4.7). All of them are symmetric positive definite and are
associated with PDE problems.

Matrix Dimension κ2(A) ‖A‖2
bcsstm02 66 8.8 0.17
nos4 100 1.5e03 0.85
bcsstk09 1083 9.5e03 6.8e07
bcsstk05 153 1.4e04 6.2e06
bcsstk27 1224 2.4e04 3.5e06
685 bus 685 4.2e05 2.6e04
nos1 237 2.0e07 2.5e09
nos7 729 2.4e09 9.9e06

Table 4.7: Properties of the Matrix Market matrices (sorted by increasing condition number)

(7)Because of the low accuracy of the estimates λmax and λmin.
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Again, we perturbed the smallest and largest eigenvalues estimates by a random relative
perturbation of magnitude between 0 and 100%. We report the results of the corresponding
runs in Tables 4.8 to 4.10, using the same conventions as for Tables 4.1 to 4.3.

method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 7 7.0e+00 1.2e-31 3.5e-05 2.1e-16 nos4 45 4.5e+01 1.5e-28 2.4e-04 5.4e-15
iFOM 16 5.0e+00 1.3e-31 1.6e-06 2.2e-04 55 2.9e+01 1.0e-28 7.5e-07 6.9e-08
CG 7 7.0e+00 2.6e-32 3.5e-05 0.0e+00 50 5.0e+01 2.9e-29 8.4e-06 5.2e-12
CGR 7 7.0e+00 8.8e-32 3.5e-05 2.1e-16 50 5.0e+01 1.3e-28 8.4e-06 5.6e-15
iCG 16 5.0e+00 1.3e-05 1.3e-05 1.7e-04 56 2.2e+01 8.3e-09 8.4e-07 5.4e-05
iCGR 17 5.0e+00 1.3e-05 1.3e-05 5.1e-04 55 2.1e+01 1.4e-07 8.5e-07 4.2e-06
FOM bcsstk09 89 8.9e+01 7.6e-27 2.5e-04 1.6e-13 bcsstk05 84 8.4e+01 1.1e-27 2.0e-04 4.6e-13
iFOM 92 7.3e+01 2.3e-26 2.0e-04 5.8e-12 93 6.4e+01 3.8e-27 4.6e-05 4.8e-10
CG 52 5.2e+01 1.8e-27 5.5e-02 2.6e-14 73 7.3e+01 2.4e-28 6.8e-03 2.0e-06
CGR 52 5.2e+01 2.4e-27 5.5e-02 5.4e-14 65 6.5e+01 8.7e-28 7.6e-03 2.1e-14
iCG 92 5.2e+01 3.1e-16 2.0e-04 2.6e-08 121 6.2e+01 1.2e-12 1.1e-04 4.3e-07
iCGR 92 5.2e+01 1.2e-15 2.0e-04 8.8e-09 93 4.7e+01 5.0e-12 4.6e-05 1.5e-07
FOM bcsstk27 219 2.2e+02 4.7e-27 2.4e-04 4.9e-13 685 bus 130 1.3e+02 1.8e-26 2.5e-04 3.4e-12
iFOM 214 1.7e+02 3.9e-27 3.1e-04 1.8e-11 139 9.9e+01 3.2e-26 8.2e-05 1.8e-10
CG 154 1.5e+02 9.4e-30 1.0e-02 1.2e-06 225 2.2e+02 2.4e-27 7.2e-05 8.5e-09
CGR 137 1.4e+02 1.8e-27 1.1e-02 2.7e-15 141 1.4e+02 9.6e-27 7.0e-05 1.1e-13
iCG 238 1.3e+02 4.3e-14 1.0e-03 6.5e-07 267 1.4e+02 5.4e-11 4.0e-04 3.3e-06
iCGR 214 1.2e+02 1.0e-13 3.1e-04 4.0e-09 139 6.9e+01 9.2e-10 8.2e-05 1.1e-06
FOM nos1 191 1.9e+02 2.2e-22 2.0e-04 1.4e-10 nos7 207 2.1e+02 6.1e-20 2.4e-04 2.1e-08
iFOM 200 2.6e+02 4.9e-22 4.8e-05 1.4e-10 181 2.5e+02 4.4e-18 3.0e-03 2.0e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 1497 1.5e+03 3.0e-20 1.8e-05 1.9e-07
CGR 182 1.8e+02 7.3e-24 4.7e-03 4.4e-12 240 2.4e+02 1.8e-19 1.9e-05 5.4e-10
iCG 711 4.8e+02 1.3e-13 3.9e-01 3.8e-06 529 3.3e+02 1.8e-06 1.5e-01 1.6e-04
iCGR 200 1.4e+02 7.2e-10 4.8e-05 2.6e-06 182 1.2e+02 4.9e-05 3.1e-03 1.9e-03

Table 4.8: Matrix Market: using practical algorithms with ε = 10−3

method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 9 9.0e+00 4.9e-32 2.2e-06 4.2e-16 nos4 53 5.3e+01 2.6e-28 2.3e-06 1.9e-15
iFOM 18 6.0e+00 9.6e-32 5.9e-09 1.8e-05 63 3.5e+01 1.3e-28 2.7e-09 6.7e-09
CG 10 1.0e+01 2.4e-32 4.9e-07 0.0e+00 59 5.9e+01 3.2e-29 5.4e-08 1.9e-08
CGR 10 1.0e+01 1.1e-31 4.9e-07 0.0e+00 59 5.9e+01 1.4e-28 5.4e-08 3.0e-15
iCG 18 5.0e+00 7.2e-08 7.2e-08 5.8e-05 64 2.7e+01 1.3e-10 4.2e-09 8.2e-06
iCGR 19 6.0e+00 1.0e-07 1.0e-07 4.8e-07 63 2.5e+01 1.3e-09 3.9e-09 1.2e-05
FOM bcsstk09 153 1.5e+02 8.6e-27 2.5e-06 1.4e-13 bcsstk05 119 1.2e+02 2.5e-27 2.2e-06 5.1e-13
iFOM 152 1.3e+02 7.1e-27 2.6e-06 7.2e-13 129 9.2e+01 1.8e-27 2.7e-09 9.2e-11
CG 80 8.0e+01 4.3e-27 6.1e-04 9.7e-14 113 1.1e+02 3.8e-28 7.8e-05 4.0e-07
CGR 80 8.0e+01 3.5e-27 6.1e-04 1.0e-14 89 8.9e+01 8.5e-28 6.9e-05 4.4e-15
iCG 152 8.9e+01 1.2e-18 2.7e-06 4.7e-09 179 9.6e+01 3.8e-15 1.1e-05 9.3e-08
iCGR 152 8.9e+01 6.1e-18 2.7e-06 3.6e-10 129 6.7e+01 3.6e-13 2.7e-09 6.7e-08
FOM bcsstk27 302 3.0e+02 5.6e-27 2.4e-06 4.5e-13 685 bus 182 1.8e+02 7.4e-26 2.3e-06 3.6e-12
iFOM 293 2.4e+02 3.6e-27 4.1e-06 1.3e-12 188 1.4e+02 7.1e-26 1.0e-06 2.7e-11
CG 305 3.0e+02 1.8e-29 1.0e-04 2.5e-07 322 3.2e+02 4.8e-27 7.0e-07 4.4e-09
CGR 235 2.4e+02 1.9e-27 1.0e-04 2.3e-15 191 1.9e+02 1.7e-26 6.5e-07 3.2e-14
iCG 397 2.3e+02 3.5e-16 7.8e-06 7.0e-08 370 2.0e+02 2.7e-13 4.9e-06 2.8e-07
iCGR 293 1.7e+02 6.2e-16 4.1e-06 9.7e-10 188 9.8e+01 6.6e-12 1.0e-06 8.4e-07
FOM nos1 220 2.2e+02 4.7e-22 2.1e-06 1.4e-10 nos7 270 2.7e+02 1.0e-18 1.8e-06 2.2e-08
iFOM 230 3.1e+02 1.7e-21 9.0e-09 1.4e-10 251 3.5e+02 1.0e-17 1.4e-05 2.1e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 2102 2.1e+03 1.5e-22 1.7e-07 2.7e-08
CGR 199 2.0e+02 1.1e-23 5.6e-05 1.7e-12 300 3.0e+02 1.2e-18 9.6e-08 1.0e-09
iCG 711 5.2e+02 9.1e-16 3.8e-01 1.4e-06 1361 8.8e+02 6.5e-08 3.0e-03 6.9e-05
iCGR 230 1.6e+02 5.9e-12 8.9e-09 2.1e-07 261 1.7e+02 1.4e-06 1.4e-05 2.4e-05

Table 4.9: Matrix Market: using practical algorithms with ε = 10−5

Similar comments to the synthetic cases can be made:

1. The practical variants tend to result in an increase of the iteration numbers compared
to both the exact (FOM, CG and CG with reorthogonalization) and the ”impractical”
methods with inaccurate matrix-vector products (not shown for the latter ones). For
instance, the practical CG with reorthogonalization requires almost twice the number
of iterations of the method with exact matrix-vector products.

2. Despite these increases in the iteration number, the costs of the practical methods
remain lower than those of the exact methods. As for the CG with reorthogonalization,
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method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 11 1.1e+01 7.1e-32 2.5e-09 2.1e-16 nos4 60 6.0e+01 4.0e-28 2.4e-08 1.2e-15
iFOM 24 8.0e+00 1.4e-31 3.9e-11 8.9e-07 70 4.1e+01 9.9e-29 3.5e-13 6.6e-10
CG 11 1.1e+01 3.0e-32 2.5e-09 0.0e+00 65 6.5e+01 3.9e-29 4.2e-10 1.0e-09
CGR 11 1.1e+01 1.1e-31 2.5e-09 2.1e-16 64 6.4e+01 1.7e-28 6.7e-10 4.7e-15
iCG 19 6.0e+00 7.5e-10 7.5e-10 2.6e-07 72 3.2e+01 5.6e-13 1.9e-12 6.8e-07
iCGR 21 7.0e+00 6.7e-10 6.7e-10 4.9e-07 70 3.0e+01 1.2e-11 1.2e-11 1.1e-06
FOM bcsstk09 185 1.8e+02 7.3e-27 2.5e-08 1.6e-13 bcsstk05 127 1.3e+02 2.7e-27 2.3e-08 5.0e-13
iFOM 195 1.7e+02 1.0e-26 3.6e-09 9.0e-14 137 1.0e+02 3.3e-27 9.5e-12 9.0e-12
CG 140 1.4e+02 3.2e-27 5.9e-06 4.8e-08 193 1.9e+02 6.6e-28 7.6e-07 7.1e-08
CGR 140 1.4e+02 3.9e-27 5.7e-06 1.7e-14 121 1.2e+02 1.2e-27 7.2e-07 8.8e-15
iCG 195 1.2e+02 7.6e-21 4.9e-09 3.0e-09 232 1.3e+02 1.1e-16 2.1e-08 3.5e-08
iCGR 195 1.2e+02 2.0e-20 3.8e-09 4.0e-11 137 7.6e+01 4.4e-15 9.5e-12 1.7e-08
FOM bcsstk27 377 3.8e+02 6.8e-27 2.4e-08 5.2e-13 685 bus 213 2.1e+02 3.1e-26 2.1e-08 3.5e-12
iFOM 375 3.3e+02 4.8e-27 2.7e-08 2.9e-13 222 1.8e+02 2.0e-26 3.8e-09 1.3e-11
CG 449 4.5e+02 2.6e-29 1.1e-06 3.7e-09 385 3.8e+02 3.1e-27 7.4e-09 2.1e-10
CGR 317 3.2e+02 1.9e-27 1.0e-06 3.7e-15 219 2.2e+02 8.5e-27 6.4e-09 2.7e-14
iCG 516 3.2e+02 2.9e-18 1.6e-07 5.4e-09 456 2.6e+02 8.1e-15 3.3e-08 7.3e-08
iCGR 375 2.3e+02 5.1e-18 2.7e-08 3.5e-11 222 1.2e+02 9.0e-14 3.8e-09 5.3e-08
FOM nos1 226 2.3e+02 2.6e-22 1.9e-08 1.4e-10 nos7 315 3.2e+02 8.2e-19 2.0e-08 2.0e-08
iFOM 236 3.5e+02 6.8e-23 8.1e-12 1.4e-10 311 4.5e+02 4.8e-20 6.5e-08 2.3e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 2187 2.2e+03 6.7e-19 7.3e-08 5.4e-10
CGR 222 2.2e+02 2.8e-23 4.5e-07 6.3e-13 341 3.4e+02 1.6e-18 1.0e-09 1.5e-09
iCG 711 5.7e+02 2.2e-17 3.6e-01 1.0e-06 2002 1.4e+03 8.6e-10 5.3e-05 3.8e-06
iCGR 236 1.8e+02 7.1e-14 8.8e-12 2.9e-08 318 2.1e+02 2.5e-08 9.7e-08 5.0e-05

Table 4.10: Matrix Market: using practical algorithms with ε = 10−7

the practical variant results in costs that are 15% to 40% lower than those of the exact
method depending on the matrix.

3. Again the practical algorithms seem more sensitive to rounding errors. For instance,
the desired accuracy cannot be reached for the 685 bus and nos7 matrices without
reorthogonalization. As observed in the synthetic matrices, it results in a decrease in
the number of iterations of the practical methods, and so a damage of the quality of
the solution, compared to the methods with accurate matrix-vector products.

4. We note significant increases of the iteration numbers for the practical algorithms with
the matrix bcsstm02. Its condition number is very low (κ(A) = 8.8) and results in a
fast convergence of the exact algorithms (less than 10 iterations). As for the synthetic
matrices, the fact that the delay d (equal to 10) introduced in the stopping criterion is
too large partly explains these increases.

Finally, it should be noted that the problems associated with the Matrix Market matrices
seem to be ”easier” than the synthetic case, in the sense that the CG, FOM and CGR
methods are able to provide solutions for which the relative errors on the solution value are
lower than the prescribed accuracy, even for ill-conditioned matrices. This is not the case for
the synthetic matrices.

4.2 Multi-precision and discontinuous accuracy

While admissible in theory, the case where accuracy of the product can be continuously
adapted may be unrealistic. Indeed the computational process by which the products Ap are
computed may be constrained to produce results whose accuracy is fixed to one of several
predetermined levels. This occurs in particular in the inaccuracy arises from the use of multi-
precision arithmetic, or if the inaccuracies results from the use of hierachical models such as
nested discretizations. Because of the current high interest in multi-precision computations,
we present our results in this context.
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Using single of half precision arithmetic is nowadays considered as crucial for allowing
fast computations that are energy-wise efficient. The energy use of floating-points units is
broadly proportional to the chip area used, which is itself dominated by the square of the
length of the mantissa of the involved numbers. Thus half precision arithmetic is much more
energy efficient than the corresponding double precision version. As a consequence, the use
of specialized multi-precision floating points units is considered as critical in the context of
very-high performance computing [14, 12].

In the following set of experiments with the practical FOM and CG algorithms, we assume
that the products Ap can be computed in double, single or half precision (with corresponding
accuracy level equal to machine precision, half machine precision or quarter machine pre-
cision). Thus, when the inexact algorithm specifies an accuracy level ωj , this may not be
attainable as such, but the lower of these three levels of accuracy is then chosen to perform
the computation in (possibly moderately) higher accuracy than requested. In this case, we
assume that it is possible to return the precision level effectively used to the algorithm by
specifying ω̂j ≤ ωj .

To measure the gains obtainable in this context, we again need to define an “equivalent”
cost of a product Ap in double, single or half precision. According [14, 12] and [7, 15], the
gain in efficiency depends on the details of the architecture and is between 5 and 3 for each
decrease from double to single precision, or from single to half. In our experiments, we have
assigned a unit cost to a matrix product in double precison, a cost 1

4
for a product in single

precision and a cost 1
16

to a product in half precision.
As in the previous paragraph, Tables 4.11-4.13 (resp. 4.14-4.16) report the results obtained

when running the practical FOM and CG algorithms with synthetic matrices (resp. matrices
from the NIST Matrix Market) and simulating the accuracy reduction to one of the three
chosen precision levels, for three choices of final accuracy (ε = 10−3, 10−5 and 10−7). The
“cost” column is now computed as just described.

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 17 1.2e+00 3.8e-30 4.0e-06 5.5e-05 102 32 5.2e+00 9.1e-29 4.3e-06 1.8e-06
iCG 17 1.1e+00 6.6e-06 6.7e-06 5.4e-06 32 2.9e+00 2.3e-06 6.6e-06 8.2e-05
iCGR 17 1.1e+00 7.3e-06 7.3e-06 3.8e-05 32 2.9e+00 2.4e-06 6.4e-06 4.5e-05

iFOM 103 75 2.1e+01 5.0e-27 1.1e-04 5.0e-07 104 187 1.3e+02 3.0e-25 3.3e-04 1.1e-07
iCG 75 1.1e+01 1.7e-06 1.2e-04 7.8e-05 200 4.9e+01 1.3e-06 4.6e-04 3.6e-05
iCGR 76 1.1e+01 1.6e-06 9.6e-05 1.7e-05 187 4.6e+01 1.6e-06 3.3e-04 2.9e-06

iFOM 105 351 3.5e+02 1.9e-23 4.4e-04 3.3e-08 106 490 4.9e+02 1.3e-21 3.0e-04 8.9e-08
iCG 524 1.4e+02 1.6e-06 1.5e-03 1.8e-05 1307 3.6e+02 2.1e-06 5.9e-03 7.2e-05
iCGR 351 9.2e+01 4.5e-06 4.4e-04 4.3e-05 490 1.4e+02 5.8e-05 3.5e-04 1.3e-06

iFOM 107 586 5.9e+02 6.1e-20 1.9e-04 5.1e-08 108 651 6.5e+02 5.9e-18 2.2e-04 5.7e-09
iCG 3000 8.4e+02 6.4e-06 2.4e-02 1.1e-04 3000 1.2e+03 2.2e-06 3.7e-01 1.4e-04
iCGR 587 1.9e+02 2.2e-04 3.9e-04 8.9e-04 651 3.1e+02 3.2e-04 5.3e-04 3.4e-03

Table 4.11: Using practical algorithms in multi-precision arithmetic with ε = 10−3

The results for the multi-precision case indicate that the management of the inaccuracy
budget discussed in Section 3.1 is quite effective. We note that it leads to even more significant
efficiency gains for moderately conditioned problems. The situation is however reversed for
the more ill-conditioned cases using synthetic matrices, because ω then exceeds more quickly
the accuracy threshold allowing single precision. While the small inaccuracy allowed by the
bound can be exploited in the continuous case, this is no longer the case here and many
products are then computed in full double precision. This is especially noticeable for the
iFOM algorithm, due to the conservative nature of (2.13) involving ‖Hk‖. However, we note
efficiency gains occuring also for the ill-conditioned cases with the real matrices compared
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 23 2.2e+00 4.0e-30 1.3e-08 4.1e-07 102 44 8.4e+00 9.3e-29 3.3e-08 2.0e-07
iCG 21 1.9e+00 2.9e-08 2.9e-08 4.4e-06 52 6.4e+00 1.3e-08 1.4e-08 9.7e-06
iCGR 21 1.9e+00 3.0e-08 3.0e-08 8.3e-07 44 5.9e+00 1.5e-08 4.7e-08 3.1e-07

iFOM 103 111 4.5e+01 5.2e-27 9.1e-07 6.9e-08 104 266 2.2e+02 2.9e-25 2.0e-06 8.6e-09
iCG 132 2.3e+01 1.2e-08 8.1e-08 8.0e-07 304 8.0e+01 1.0e-08 6.3e-06 1.0e-06
iCGR 112 2.2e+01 1.1e-08 7.9e-07 8.9e-07 266 7.0e+01 1.8e-08 2.0e-06 1.6e-06

iFOM 105 436 4.4e+02 2.0e-23 1.9e-06 1.2e-08 106 558 5.6e+02 1.2e-21 1.6e-06 1.0e-09
iCG 870 2.4e+02 1.5e-08 1.5e-05 2.2e-06 2348 7.1e+02 9.1e-08 7.0e-05 2.5e-05
iCGR 436 1.3e+02 1.7e-07 2.1e-06 4.0e-07 558 2.0e+02 4.9e-06 6.5e-06 1.3e-04

iFOM 107 642 6.4e+02 9.7e-20 1.4e-06 3.2e-09 108 704 7.0e+02 6.4e-18 9.9e-07 3.8e-09
iCG 3000 1.2e+03 1.3e-06 2.3e-02 4.1e-05 3000 2.1e+03 8.9e-07 3.6e-01 5.4e-05
iCGR 643 3.0e+02 7.7e-05 7.7e-05 8.9e-04 704 4.3e+02 2.1e-04 2.1e-04 1.3e-03

Table 4.12: Using practical algorithms in multi-precision arithmetic with ε = 10−5

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

iFOM 101 32 3.5e+00 4.0e-30 7.8e-11 1.4e-07 102 57 1.4e+01 9.1e-29 1.5e-10 1.1e-08
iCG 22 2.7e+00 2.2e-10 2.1e-10 9.0e-07 52 8.9e+00 8.7e-11 1.4e-09 2.1e-07
iCGR 24 2.8e+00 2.2e-10 2.2e-10 9.1e-08 55 9.1e+00 9.5e-11 4.4e-10 3.6e-07

iFOM 103 145 8.1e+01 3.9e-27 6.9e-09 6.7e-09 104 324 2.9e+02 2.6e-25 1.7e-08 1.9e-10
iCG 152 3.4e+01 7.7e-11 4.9e-09 3.2e-07 396 1.2e+02 7.6e-11 1.2e-07 8.8e-07
iCGR 145 3.4e+01 8.6e-11 6.9e-09 3.6e-08 324 1.0e+02 1.4e-10 1.7e-08 4.4e-08

iFOM 105 491 4.9e+02 1.8e-23 1.4e-08 6.0e-10 106 605 6.0e+02 1.2e-21 9.1e-09 6.7e-10
iCG 1030 4.2e+02 1.0e-10 1.5e-06 6.3e-07 2556 1.2e+03 3.1e-09 2.3e-05 2.1e-06
iCGR 492 2.0e+02 3.7e-09 1.6e-08 2.6e-07 605 3.3e+02 2.0e-07 2.1e-07 1.9e-05

iFOM 107 683 6.8e+02 9.6e-20 5.4e-09 9.9e-10 108 737 7.4e+02 6.4e-18 5.9e-09 3.6e-09
iCG 3000 2.1e+03 1.3e-07 2.2e-02 8.9e-06 3000 2.8e+03 2.1e-07 3.6e-01 1.1e-05
iCGR 683 4.4e+02 5.5e-06 5.5e-06 1.1e-04 738 5.6e+02 7.9e-05 7.9e-05 1.3e-04

Table 4.13: Using practical algorithms in multi-precision arithmetic with ε = 10−7

to the continuous varying accuracy case. This can be partly associated with the significant
decreases in the number of iterations for the methods, and the fact that these problems
are easier than those obtained in the synthetic cases. However, it remains cases where the
desired accuracy cannot be reached without reorthogonalization due to rounding errors. As a
consequence, a good problem preconditioning is even more important in the multi-precision
context.

5 Conclusions

We have considered the iterative solution of convex quadratic optimization problems and
have proposed an analysis of variants of FOM and CG which allow and control inaccurate
matrix-vector products, with the aim of monitoring the decrease of the quadratic objective
function. Circumventing the unavailability of some of the quantities involved in the theory,
we have proposed estimates and derived new practical algorithms that use them. We have
finally discussed a fairly large set of numerical experiments, suggesting that significant gains
in efficiency can be achieved by the use of variable precision products Such gains are most
noticeable for problems that are reasonably well-conditioned, and occur both in the case
where the accuracy of the products can be controlled continuously, and in the case where the
control is limited to predefined levels. We have illustrated the latter in the important context
of multi-precision computations.

In view of the promising potential of the new algorithms, it is now interesting to apply
them in more general contexts, such as other optimization algorithms for instance involving
nonquadratic and possibly nonconvex objective functions. Given the emerging concepts for
new high-performance computer architecture and the needs resulting thereof, it is also worth-
while, in our opinion, to pursue experimentation with the new methods in the framework
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method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 7 7.0e+00 1.2e-31 3.5e-05 2.1e-16 nos4 45 4.5e+01 1.5e-28 2.4e-04 5.4e-15
iFOM 16 1.4e+00 9.0e-32 2.1e-05 6.5e-04 55 3.8e+01 1.2e-28 7.5e-07 9.4e-08
CG 7 7.0e+00 2.6e-32 3.5e-05 0.0e+00 50 5.0e+01 2.9e-29 8.4e-06 5.2e-12
CGR 7 7.0e+00 8.8e-32 3.5e-05 2.1e-16 50 5.0e+01 1.3e-28 8.4e-06 5.6e-15
iCG 16 1.2e+00 8.5e-05 8.5e-05 3.0e-04 56 1.4e+01 9.4e-09 8.4e-07 5.8e-05
iCGR 17 1.2e+00 8.7e-05 8.7e-05 4.0e-04 55 1.2e+01 2.0e-07 8.9e-07 7.0e-07
FOM bcsstk09 89 8.9e+01 7.6e-27 2.5e-04 1.6e-13 bcsstk05 84 8.4e+01 1.1e-27 2.0e-04 4.6e-13
iFOM 92 2.2e+01 2.1e-26 2.0e-04 5.9e-12 93 1.9e+01 1.5e-27 4.6e-05 4.8e-10
CG 52 5.2e+01 1.8e-27 5.5e-02 2.6e-14 73 7.3e+01 2.4e-28 6.8e-03 2.0e-06
CGR 52 5.2e+01 2.4e-27 5.5e-02 5.4e-14 65 6.5e+01 8.7e-28 7.6e-03 2.1e-14
iCG 92 5.8e+00 3.0e-16 2.0e-04 2.6e-08 119 8.4e+00 2.4e-15 1.0e-04 4.4e-07
iCGR 92 5.8e+00 1.2e-15 2.0e-04 8.7e-09 93 5.8e+00 4.3e-12 4.6e-05 3.6e-07
FOM bcsstk27 219 2.2e+02 4.7e-27 2.4e-04 4.9e-13 685 bus 130 1.3e+02 1.8e-26 2.5e-04 3.4e-12
iFOM 214 2.0e+02 4.0e-27 3.1e-04 1.3e-11 139 6.1e+01 2.1e-26 8.2e-05 3.0e-10
CG 154 1.5e+02 9.4e-30 1.0e-02 1.2e-06 225 2.2e+02 2.4e-27 7.2e-05 8.5e-09
CGR 137 1.4e+02 1.8e-27 1.1e-02 2.7e-15 141 1.4e+02 9.6e-27 7.0e-05 1.1e-13
iCG 236 5.5e+01 1.4e-16 1.0e-03 4.9e-08 266 3.0e+01 4.2e-11 3.5e-04 3.5e-06
iCGR 214 5.0e+01 1.9e-16 3.1e-04 1.8e-10 139 1.3e+01 1.0e-09 8.2e-05 7.0e-07
FOM nos1 191 1.9e+02 2.2e-22 2.0e-04 1.4e-10 nos7 207 2.1e+02 6.1e-20 2.4e-04 2.1e-08
iFOM 200 1.7e+02 1.1e-21 4.8e-05 1.4e-10 181 1.8e+02 6.7e-19 3.0e-03 2.1e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 1497 1.5e+03 3.0e-20 1.8e-05 1.9e-07
CGR 182 1.8e+02 7.3e-24 4.7e-03 4.4e-12 240 2.4e+02 1.8e-19 1.9e-05 5.4e-10
iCG 711 1.6e+02 6.6e-18 3.6e-01 2.7e-07 258 3.3e+01 1.8e-07 5.4e-01 6.2e-05
iCGR 200 4.0e+01 3.0e-16 4.8e-05 6.4e-10 186 2.3e+01 6.1e-05 3.1e-03 1.7e-03

Table 4.14: Matrix Market: using practical algorithms in multi-precision with ε = 10−3

method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 9 9.0e+00 4.9e-32 2.2e-06 4.2e-16 nos4 53 5.3e+01 2.6e-28 2.3e-06 1.9e-15
iFOM 17 2.0e+00 8.7e-32 1.5e-07 1.2e-04 63 5.2e+01 9.0e-29 2.7e-09 8.9e-09
CG 10 1.0e+01 2.4e-32 4.9e-07 0.0e+00 59 5.9e+01 3.2e-29 5.4e-08 1.9e-08
CGR 10 1.0e+01 1.1e-31 4.9e-07 0.0e+00 59 5.9e+01 1.4e-28 5.4e-08 3.0e-15
iCG 21 1.9e+00 6.7e-07 6.7e-07 2.2e-04 64 1.7e+01 1.5e-10 4.2e-09 8.6e-06
iCGR 19 1.8e+00 5.3e-07 5.3e-07 3.1e-05 63 1.6e+01 2.0e-09 4.6e-09 1.5e-05
FOM bcsstk09 153 1.5e+02 8.6e-27 2.5e-06 1.4e-13 bcsstk05 119 1.2e+02 2.5e-27 2.2e-06 5.1e-13
iFOM 152 4.3e+01 4.4e-27 2.6e-06 8.7e-13 129 2.6e+01 4.0e-27 2.7e-09 9.1e-11
CG 80 8.0e+01 4.3e-27 6.1e-04 9.7e-14 113 1.1e+02 3.8e-28 7.8e-05 4.0e-07
CGR 80 8.0e+01 3.5e-27 6.1e-04 1.0e-14 89 8.9e+01 8.5e-28 6.9e-05 4.4e-15
iCG 152 1.1e+01 8.1e-19 2.7e-06 4.2e-09 179 1.2e+01 2.5e-15 1.0e-05 3.2e-10
iCGR 152 1.1e+01 4.5e-18 2.7e-06 3.2e-10 129 8.6e+00 2.7e-13 2.7e-09 5.8e-08
FOM bcsstk27 302 3.0e+02 5.6e-27 2.4e-06 4.5e-13 685 bus 182 1.8e+02 7.4e-26 2.3e-06 3.6e-12
iFOM 293 2.7e+02 4.6e-27 4.1e-06 1.4e-13 188 1.2e+02 3.9e-26 1.0e-06 2.5e-11
CG 305 3.0e+02 1.8e-29 1.0e-04 2.5e-07 322 3.2e+02 4.8e-27 7.0e-07 4.4e-09
CGR 235 2.4e+02 1.9e-27 1.0e-04 2.3e-15 191 1.9e+02 1.7e-26 6.5e-07 3.2e-14
iCG 395 9.4e+01 2.5e-17 7.6e-06 6.4e-08 370 7.1e+01 2.6e-13 5.0e-06 3.4e-07
iCGR 293 6.8e+01 2.7e-17 4.1e-06 3.5e-10 188 2.9e+01 7.6e-12 1.0e-06 8.7e-07
FOM nos1 220 2.2e+02 4.7e-22 2.1e-06 1.4e-10 nos7 270 2.7e+02 1.0e-18 1.8e-06 2.2e-08
iFOM 230 1.9e+02 2.0e-21 9.0e-09 1.4e-10 252 2.5e+02 4.2e-18 1.4e-05 2.0e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 2102 2.1e+03 1.5e-22 1.7e-07 2.7e-08
CGR 199 2.0e+02 1.1e-23 5.6e-05 1.7e-12 300 3.0e+02 1.2e-18 9.6e-08 1.0e-09
iCG 711 1.7e+02 1.1e-18 3.6e-01 7.7e-07 1097 1.5e+02 1.1e-07 1.0e-02 1.5e-04
iCGR 230 4.5e+01 2.4e-16 9.0e-09 6.4e-09 274 3.4e+01 1.7e-06 6.4e-06 9.9e-05

Table 4.15: Matrix Market: using practical algorithms in multi-precision with ε = 10−5

of multi-precision arithmetic, because the effective solution of symmetric positive-definite
systems is obviously important beyond optimization.

While we have taken the point of view that the cost of matrix-vector products dominates
the overall computational burden, a realistic assumption in large scale applications where this
product often involves the application of several complicated operators (see [9] for example),
the cost of orthogonalization (or re-orthogonalization) must not be neglected for algorithms
that use it. Strategies to reduce this cost are therefore of interest. It is not the purpose of
this paper to develop a rigorous analysis of variable accuracy orthogonalization techniques,
but we defer this analysis to a future contribution.
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method Matrix nit cost r.res.gap r.sol.err r.val.err. Matrix nit cost r.res.gap r.sol.err r.val.err.
FOM bcsstm02 11 1.1e+01 7.1e-32 2.5e-09 2.1e-16 nos4 60 6.0e+01 4.0e-28 2.4e-08 1.2e-15
iFOM 18 2.4e+00 1.5e-31 9.4e-10 8.7e-06 70 6.0e+01 1.4e-28 3.5e-13 8.6e-10
CG 11 1.1e+01 3.0e-32 2.5e-09 0.0e+00 65 6.5e+01 3.9e-29 4.2e-10 1.0e-09
CGR 11 1.1e+01 1.1e-31 2.5e-09 2.1e-16 64 6.4e+01 1.7e-28 6.7e-10 4.7e-15
iCG 20 2.4e+00 9.4e-09 9.4e-09 7.5e-06 72 2.3e+01 6.1e-13 2.0e-12 7.2e-07
iCGR 21 2.4e+00 8.8e-09 8.8e-09 2.2e-06 70 1.9e+01 1.7e-11 1.7e-11 1.3e-06
FOM bcsstk09 185 1.8e+02 7.3e-27 2.5e-08 1.6e-13 bcsstk05 127 1.3e+02 2.7e-27 2.3e-08 5.0e-13
iFOM 195 8.6e+01 1.0e-26 3.6e-09 1.9e-13 137 4.0e+01 2.0e-27 9.5e-12 8.2e-12
CG 140 1.4e+02 3.2e-27 5.9e-06 4.8e-08 193 1.9e+02 6.6e-28 7.6e-07 7.1e-08
CGR 140 1.4e+02 3.9e-27 5.7e-06 1.7e-14 121 1.2e+02 1.2e-27 7.2e-07 8.8e-15
iCG 195 1.8e+01 7.6e-21 4.9e-09 3.0e-09 232 2.0e+01 1.1e-16 2.1e-08 3.5e-08
iCGR 195 1.8e+01 2.0e-20 3.8e-09 4.0e-11 137 1.1e+01 4.4e-15 9.5e-12 1.7e-08
FOM bcsstk27 377 3.8e+02 6.8e-27 2.4e-08 5.2e-13 685 bus 213 2.1e+02 3.1e-26 2.1e-08 3.5e-12
iFOM 375 3.5e+02 3.4e-27 2.7e-08 3.7e-13 222 1.6e+02 1.3e-26 3.8e-09 1.6e-11
CG 449 4.5e+02 2.6e-29 1.1e-06 3.7e-09 385 3.8e+02 3.1e-27 7.4e-09 2.1e-10
CGR 317 3.2e+02 1.9e-27 1.0e-06 3.7e-15 219 2.2e+02 8.5e-27 6.4e-09 2.7e-14
iCG 519 1.2e+02 1.0e-18 1.5e-07 3.4e-09 445 9.8e+01 6.0e-15 7.7e-08 6.4e-08
iCGR 375 8.7e+01 1.4e-18 2.7e-08 3.1e-11 222 4.5e+01 1.2e-13 3.8e-09 1.1e-07
FOM nos1 226 2.3e+02 2.6e-22 1.9e-08 1.4e-10 nos7 315 3.2e+02 8.2e-19 2.0e-08 2.0e-08
iFOM 236 2.0e+02 5.7e-22 9.7e-12 1.4e-10 311 3.1e+02 2.8e-18 6.3e-08 2.1e-08
CG 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 2187 2.2e+03 6.7e-19 7.3e-08 5.4e-10
CGR 222 2.2e+02 2.8e-23 4.5e-07 6.3e-13 341 3.4e+02 1.6e-18 1.0e-09 1.5e-09
iCG 711 1.7e+02 1.8e-18 3.6e-01 1.7e-06 2040 3.4e+02 3.7e-09 5.3e-05 6.7e-06
iCGR 236 4.8e+01 1.6e-16 1.0e-11 5.4e-09 331 6.0e+01 3.6e-08 5.7e-08 1.1e-05

Table 4.16: Matrix Market: using practical algorithms in multi-precision with ε = 10−7

(Tokyo Institute of Technology) for providing further pointers on computer architecture, and to Pr. M. Daydé
(IRIT) for his continued and friendly support.
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