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Abstract

An adaptive regularization algorithm using high-order models is proposed for partially
separable convexly constrained nonlinear optimization problems whose objective function
contains non-Lipschitzian ℓq-norm regularization terms for q ∈ (0, 1). It is shown that the
algorithm using an p-th order Taylor model for p odd needs in general at most O(ǫ−(p+1)/p)
evaluations of the objective function and its derivatives (at points where they are defined)
to produce an ǫ-approximate first-order critical point. This result is obtained either
with Taylor models at the price of requiring the feasible set to be ’kernel-centered’ (which
includes bound constraints and many other cases of interest), or for non-Lipschitz models,
at the price of passing the difficulty to the computation of the step. Since this complexity
bound is identical in order to that already known for purely Lipschitzian minimization
subject to convex constraints [9], the new result shows that introducing non-Lipschitzian
singularities in the objective function may not affect the worst-case evaluation complexity
order. The result also shows that using the problem’s partially separable structure (if
present) does not affect complexity order either. A final (worse) complexity bound is
derived for the case where Taylor models are used with a general convex feasible set.

Keywords: complexity theory, nonlinear optimization, non-Lipschitz function, ℓq-norm regular-

ization, partially separable problems.

1 Introduction

We consider the partially separable convexly constrained nonlinear optimization problem:

min
x∈F

f(x) =
∑

i∈N

fi(Uix) +
∑

i∈H

|Uix|
q =

∑

i∈N

fi(xi) +
∑

i∈H

fi(xi) (1.1)

where F is a non-empty closed convex set, N ∪H
def
= M, N ∩H = ∅, fi : IR

n → IR, q ∈ (0, 1),

fi(xi) = |xi|
q = |Uix|

q for i ∈ H and where, for i ∈ M, xi
def
= Uix with Ui a (fixed) ni × n
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matrix with ni ≤ n. Without loss of generality, we assume that ‖Ui‖ = 1 for all i ∈ M and
that the ranges of the UT

i for i ∈ N span IRn in that the intersection of the nullspaces of the
Ui is reduced to the origin(1). In what follows, the “element functions” fi (i ∈ N ) will be
“well-behaved” smooth functions with Lipschitz continuous derivatives(2). If H 6= ∅, we also
require that

ni = 1 (1.2)

and (initially at least(3)) that the feasible set is ’kernel centered’, in the sense that, if PX [·] is
the orthogonal projection ont the convex set X , then, for i ∈ H,

Pker(Ui)[F ] ⊆ F whenever ker(Ui) ∩ F 6= ∅ (1.3)

in addition of F being convex, closed and non-empty. As will be discussed below (after
Lemma 4.2), we may assume without loss of generality that, ker(Ui) ∩ F 6= ∅ (and thus
Pker(Ui)[F ] ⊆ F) for all i ∈ H. ’Kernel centered’ feasible sets include boxes (corresponding to
bound constrained problems), spheres/cylinders centered at the origin and other sets such as

{

(x1, x2) ∈ IRn1+1 | x1 ∈ F1 and g1(x1) ≤ x2 ≤ −g2(x1)
}

, H = {2}, (1.4)

where F1 is a non-empty closed convex set in IRn1 and gi(·) are convex functions from IRn1 to
IR (i = 1, 2, n1 +1 ≤ n) such that gi(x1) ≤ 0 (i = 1, 2) for x1 ∈ F1. Compositions using (1.4)
recursively, rotations, cartesian products or intersections of such sets are also kernel-centered.

Problem (1.1) has many applications in engineering and science. Using the non-Lipschitz
regularization function in the second term of the objective function f has remarkable advan-
tages for the restoration of piecewise constant images and sparse signals [1, 4, 28], and sparse
variable selection, for instance in bioinformatics [14, 27]. Theory and algorithms for solving
q-norm regularized optimization problems have been developed in [12, 15, 29].

The partially separable structure defined in problem (1.1) is ubiquitous in applications of
optimization. It is most useful in the frequent case where ni ≪ n and subsumes that of sparse
optimization (in the special case where the rows of each Ui are selected rows of the identity
matrix). Moreover the decomposition in (1.1) has the advantage of being invariant for linear
changes of variables (only the Ui matrices vary).

Partially separable optimization was proposed by Griewank and Toint in [26], studied
for more than thirty years (see [10, 11, 20, 21, 30] for instance) and extensively used in the
popular CUTE(st) testing environment [23] as well as in the AMPL [19], LANCELOT [17]
and FILTRANE [24] packages, amongst others. In particular, the design of trust-region al-
gorithms exploiting the partially separable decomposition (1.1) was investigated by Conn,
Gould, Sartenaer and Toint in [16, 18] and Shahabuddin [33].

Focussing now on the nice multivariate element functions (i ∈ N ), we note that using the
partially separable nature of a function f can be very useful if one wishes to use derivatives
of

fN (x)
def
=
∑

i∈N

fi(Uix) =
∑

i∈N

fi(xi) (1.5)

(1)If the {UT
i }i∈N do not span IRn, problem (1.1) can be modified without altering its optimal value by

introducing an additional identically zero element term f0(U0x) (say) in N with associated U0 such that
∩i∈N ker(Ui) ⊆ range(UT

0 ). It is clear that, since f0(x0) = 0, it is differentiable with Lipschitz continuous
derivative for any order p ≥ 1. Obviously, this covers the case where N = ∅ 6= H.

(2)Hence the symbol N for “nice”.
(3)We will drop this assumption in Section 5.
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of order larger than one in the context of the p-th order Taylor series

TfN ,p
(x, s) = fN (x) +

p
∑

j=1

1

j!
∇j

xfN (x)[s]j . (1.6)

Indeed, it may be verified that

∇j
xfN (x)[s]j =

∑

i∈N

∇j
xi
fi(xi)[Uis]

j . (1.7)

This last expression indicates that only the |N | tensors {∇j
xifi(xi)}i∈N of dimension nj

i needs

to be computed and stored, a very substantial gain compared to the nj-dimensional ∇j
xfN (x)

when (as is common) ni ≪ n for all i. It may therefore be argued that exploiting derivative
tensors of order larger than 2 — and thus using the high-order Taylor series (1.6) as a local
model of f(x + s) in the neighbourhood of x — may be practically feasible if f is partially
separable. Of course the same comment applies to

fH(x)
def
=
∑

i∈H

fi(Uix) =
∑

i∈H

fi(xi) (1.8)

whenever the required derivatives of fi(xi) = |xi|
p (i ∈ H) exist.

Interestingly, the use of high-order Taylor models for optimization was recently inves-
tigated by Birgin et al. [3] in the context of adaptive regularization algorithms for uncon-
strained problems. Their proposal belongs to this emerging class of methods pioneered by
Griewank [25], Nesterov and Polyak [32] and Cartis, Gould and Toint [6, 7] for the uncon-
strained case and by these last authors in [8] for the convexly constrained case of interest here.
Such methods are distinguished by their excellent evaluation complexity, in that they need
at most O(ǫ−(p+1)/p) evaluations of the objective function and their derivatives to produce
an ǫ-approximate first-order critical point, compared to the O(ǫ−2) evaluations which might
be necessary for the steepest descent and Newton’s methods (see [31] and [5] for details).
However, most adaptive regularization methods rely on a non-separable regularization term
in the model of the objective function, making exploitation of structure difficult(4).

The purpose of the present paper is twofold. Its first aim is to show that worst-case
evaluation complexity for nonconvex minimization subject to convex constraints is not affected
by the introduction of non-Lipschitzian singularities in the objective function. The second
and concurrent one is to show that this complexity is not affected either by the use of partially
separable structure, if present in the problem.

The remaining of the paper is organized as follows. Section 2 establishes a necessary
first-order optimality condition for the non-Lipschitzian case. Section 3 then introduces the
partially separable adaptive regularization algorithm for this problem while Section 4 is de-
voted to its worst-case evaluation complexity analysis for the case where Taylor models are
used with a kernel-centered feasible set. Section 5 drops the kernel-centered assumption for
non-Lipschitz models and Taylor models. The results are discussed in Section 6 and some
final conclusions and perspectives are presented in Section 7.
Notations. In what follow, ‖x‖ denotes the Euclidean norm of the vector x and ‖T‖p the
recursively induced Euclidean norm on the p-th order tensor T (see [3, 9] for details). The
notation T [s]i means that the tensor T is applied to i copies of the vector s. For any set X ,
|X | denotes its cardinality. For any I ⊆M, we also denote fI(x) =

∑

i∈I fi(x).

(4)The only exception we are aware of is the unpublished note [22] in which a p-th order Taylor model is
coupled with a regularization term involving the (totally separable) q-th power of the q norm (q ≥ 1).
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2 First-order necessary conditions

In this section, we first present exact and approximate first-order necessary conditions for
a local minimizer of problem (1.1). Such conditions for optimization problems with non-
Lipschitzian singularities have been independently defined in the scaled form [15] or in sub-
spaces [2, 14]. In a recent paper [13], KKT necessary optimality conditions for constrained
optimization problems with non-Lipschitzan singularities are studied under the relaxed con-
stant positive linear dependence and basic qualification. The above optimality conditions
take the singularity into account by no longer requiring that the gradient (for unconstrained
problems, say) nearly vanishes at an approximate solution xǫ (which would be impossible if
the singularity is active) but by requiring that a scaled version of this requirement holds in
that ‖Xǫ∇1

xf(xǫ)‖ is suitably small, where Xǫ is a diagonal matrix whose diagonal entries are
the components of xǫ. Unfortunately, if the i-th component of xǫ is small but not quite small
enough to consider that the singularity is active for variable i (say it is equal to 2ǫ), the i-th
component of ∇1

xf(x) can be as large as a multiple of ǫ−1. As a result, comparing worst-case
evaluation complexity bounds with those known for purely Lipschitz continuous problems
(such as those proposed in [3] or [9]) may be misleading, since these latter conditions would
never accept an approximate first-order critical point with such a large gradient. In order to
avoid these pitfalls, we now propose a stronger definition of approximate first-order critical
point for non-Lipschitzian problems where such “border-line” situations do not occur. The
new definition is also makes use of subspaces but exactly reduces to the standard condition
for Lipschitzian problems if the singularity is not active at xǫ, even if it is close to it.

Given a vector x ∈ IRn and ǫ ≥ 0, denote

C(x, ǫ)
def
= {i ∈ H | |Uix| ≤ ǫ}, R(x, ǫ)

def
=

⋂

i∈C(x,ǫ)

ker(Ui) =

[

span
i∈C(x,ǫ)

{UT
i }

]⊥

and
W(x, ǫ)

def
= N ∪ (H \ C(x, ǫ)).

For convenience, if ǫ = 0, we denote C(x)
def
= C(x, 0), R(x)

def
= R(x, ǫ) and W(x)

def
=

W(x, 0).
Observe that the definition of R(x, ǫ) above gives that

R(x, ǫ)⊥ ⊆ span
i∈H
{UT

i }. (2.1)

Also note that any x ∈ IRn can be decomposed uniquely as x = y + z where y ∈ R(x)⊥ and
z ∈ R(x). By the definition of R(x), it is not difficult to verify that

Uiz = 0, ∀i ∈ C(x) and x ∈ R(x).

Finaly note that, although f(x) is nonsmooth if H 6= ∅, fW(x,ǫ)(x) is as differentiable as the
fi(x) for i ∈ N and any ǫ ≥ 0. This allows us to formulate our first-order necessary condition.



Chen, Toint, Wang: Evaluation complexity of non-Lipschitzian optimization 5

Theorem 2.1 If x∗ ∈ F is a local minimizer of problem (1.1), then

χf (x∗) = 0, (2.2)

where, for any x ∈ F ,

χf (x∗) = χf (x∗, 0)
def
=

∣

∣

∣

∣

∣

∣

∣

min
x+d∈F

d∈R(x),‖d‖≤1

∇1
xfW(x)(x)

Td

∣

∣

∣

∣

∣

∣

∣

. (2.3)

Proof. Suppose first thatR(x∗) = {0} (which happens if x∗ = 0 ∈ F and spani∈H{U
T
i } =

IRn). Then (2.2)-(2.3) holds vacuously. Now suppose that R(x∗) contains at least one
nonzero element. By assumption, there exists δx∗ > 0 such that

f(x∗) = min{fN (x) + fH(x) | x ∈ F , ‖x− x∗‖ ≤ δx∗}

= min{fN (y + z) + fH(y + z) | y + z ∈ F , y ∈ R(x∗)
⊥, z ∈ R(x∗), ‖y + z − x∗‖ ≤ δx∗}

≤ min{fN (y + z) +
∑

i∈H

|Ui(y + z)|q | y + z ∈ F , y = 0, z ∈ R(x∗), ‖z − x∗‖ ≤ δx∗}

= min{fN (z) +
∑

i∈H

|Uiz|
q | z ∈ F ∩R(x∗), ‖z − x∗‖ ≤ δx∗}

= min{fN (z) +
∑

i∈H\C(x∗)

|Uiz|
q | z ∈ F ∩R(x∗), ‖z − x∗‖ ≤ δx∗}.

We now introduce a new problem, which is problem (1.1) reduced to R(x∗), namely,

min fW(x∗)(z) = fN (z) +
∑

i∈H\C(x∗)

|Uiz|
q,

s.t. z ∈ F ∩R(x∗)

(2.4)

where the gradient ∇1
zfW(x∗)(z) is locally Lipschitz continuous in some (bounded) neigh-

borhood of x∗. It then follows from x∗ ∈ R(x∗) that

fW(x∗)(x∗) = fN (x∗) +
∑

i∈H\C(x∗)

|Uix∗|
q = f(x∗).

Therefore, we have that

fW(x∗)(x∗) ≤ min{fW(x∗)(z) | z ∈ F ∩ C(x∗), ‖z − x∗‖ ≤ δx∗}

which implies that x∗ is a local minimizer of problem (2.4). Hence, we have

∇1
zfW(x∗)(x∗)

T (z − x∗) ≥ 0, z ∈ F ∩R(x∗). (2.5)

In addition,

{d = 0} ⊆ {d | x∗ + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ 1} ⊆ {d | x∗ + d ∈ F , d ∈ R(x∗)}

which gives the desired result (2.2)-(2.3). ✷
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We call x∗ a first-order stationary point of (1.1), if x∗ satisfies the relation (2.2) in Theorem 2.1.
For ǫ > 0, we call xǫ an ǫ-approximate first-order stationary point of (1.1), if xǫ satisfies

χf (xǫ, ǫ)
def
=

∣

∣

∣

∣

∣

∣

∣

min
x+d∈F

d∈R(xǫ,ǫ),‖d‖≤1

∇1
xfW(xǫ,ǫ)(xǫ)

Td

∣

∣

∣

∣

∣

∣

∣

≤ ǫ. (2.6)

Theorem 2.2 Let xǫ be an ǫ-approximate first-order stationary point of (1.1). Then
any cluster point of {xǫ}ǫ>0 is a first-order stationary point of problem (1.1) as ǫ→ 0.

Proof. Suppose that x∗ is any cluster point of {xǫ}ǫ>0. Hence there must exist an
infinite sequence {ǫk} converging to zero and an infinite sequence {xǫk}k≥0 ⊆ {xǫ}ǫ>0

such that x∗ = limk→∞ xǫk and xǫk is an ǫk-approximate first-order stationary point of
(1.1) for eack k ≥ 0. If R(x∗) = {0}, (2.2) holds vacuously and hence x∗ is a first-order
stationary point. Suppose therefore that R(x∗) contains at least one nonzero element,
implying that the dimension of R(x∗) is strictly positive.

First of all, we claim that there must exist k∗ ≥ 0 such that R(xǫk , ǫk)
⊥ ⊆ R(x∗)

⊥ for any
k ≥ k∗. Indeed, if that is not the case, there exists a subsequence of {xǫk}, say {xǫkj }, such

that limj→∞ ǫkj = 0 and R(xǫkj , ǫkj )
⊥ 6⊆ R(x∗)

⊥ for all j. Using now (2.1) and the fact

that H is a finite set, we obtain that there must exist an i0 ∈ H such that i0 ∈ C(xǫkjt
, ǫkjt )

but i0 /∈ C(x∗) where {kjt} ⊆ {kj} with t = 1, 2, · · · . For convenience, we continue to use
{kj} to denote its subsequence {kjt}. Hence, we have that

|Ui0xǫkj | ≤ ǫkj .

Let j go to infinity. It then follows from the above inequality that |Ui0x∗| = 0, which
contradicts the fact that i0 /∈ C(x∗). Thus, we conclude that, for some k∗ ≥ 0 and all
k ≥ k∗, R(xǫk , ǫk)

⊥ ⊆ R(x∗)
⊥. Therefore we have that R(x∗) ⊆ R(xǫk , ǫk) for k ≥ k∗.

For any fixed ǫk approximate first-order stationary point xǫk , consider the following two
minimization problems.

min ∇1
xfW(xǫk

,ǫk)(xǫk)
Td,

s.t. xǫk + d ∈ F , d ∈ R(xǫk , ǫk), ‖d‖ ≤ 1,
(2.7)

and

min ∇1
xfW(xǫk

,ǫk)(xǫk)
Td,

s.t. xǫk + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ 1.
(2.8)

Since d = 0 is a feasible point of both problems (2.7) and (2.8), the minimum values of
(2.7) and (2.8) are both nonpositive. Moreover, it follows from R(x∗) ⊆ R(xǫk , ǫk) that
the minimum value of (2.8) is not smaller than that of (2.7).
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Hence, from (2.6), we have that for any xǫk ,

∣

∣

∣

∣

∣

∣

∣

∣

min
xǫk

+d∈F
d∈R(x∗),‖d‖≤1

∇1
xfW(xǫk

,ǫk)(xǫk)
Td

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

min
xǫk

+d∈F
d∈R(xǫk

,ǫk),‖d‖≤1

∇1
xfW(xǫk

,ǫk)(xǫk)
Td

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫk. (2.9)

Suppose that dǫk is a minimizer of problem (2.8), then (2.9) implies that

−ǫk ≤ ∇
1
xfW(xǫk

,ǫk)(xǫk)
Tdǫk ≤ 0, (2.10)

where dǫk should satisfy that xǫk + dǫk ∈ F , dǫk ∈ R(x∗) and ‖dǫk‖ ≤ 1. Note that, since
dǫk ∈ R(x∗),

∇1
xfW(xǫk

,ǫk)(xǫk)
Tdǫk =



∇xfN (xǫk) +
∑

i∈H\C(xǫk
)

q|Uixǫk |
q−1sign(Uixǫk)U

T
i





T

dǫk

= ∇xfN (xǫk)
Tdǫk +

∑

i∈H\C(xǫk
)

q|Uixǫk |
q−1sign(Uixǫk)Uidǫk

= ∇xfN (xǫk)
Tdǫk +

∑

i∈H

q|Uixǫk |
q−1sign(Uixǫk)Uidǫk .

(2.11)

From the compactness of {d | ‖d‖ ≤ 1}, we know that there must exist a subsequence
of {dǫk} such that dǫkj → d∗ ∈ R(x∗) with ‖d∗‖ ≤ 1 as j goes to infinity. Since for

i ∈ H\C(x∗), we have limk→∞ |Uixǫk |
q−1 = |Uix∗|

q−1. Let k go to infinity in (2.10) and
(2.11), and we obtain that

0 = ∇1
xfW(xǫk

,ǫk)(x∗)
Td∗ = ∇fN (x∗)

Td∗ +
∑

i∈H\C(x∗)

q|Uix∗|
q−1sign(Uix∗)Uid∗,

which implies that

min
x∗+d∈F

d∈R(x∗),‖d‖≤1

∇1
xfW(xǫk

,ǫk)(x∗)
Td = ∇1

xfW(x∗)(x∗)
Td∗ = 0

and completes the proof. ✷

3 A partially separable regularization algorithm

We now examine the desired properties of the element functions fi more closely. Assume
first that, for i ∈ N , each element function fi is p times continuously differentiable and its
p-th order derivative tensor ∇p

xfi is globally Lipschitz continuous with constant Li ≥ 0 in the
sense that, for all xi, yi ∈ range(Ui),

‖∇p
xi
fi(xi)−∇

p
xi
fi(yi)‖p ≤ Li‖xi − yi‖. (3.1)
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It can be shown (see (4.6) below) that this assumption implies that, for i ∈ N ,

fi(xi + si) = Tfi,p(xi, si) +
1

(p+ 1)!
τiLi‖si‖

p+1 with |τi| ≤ 1, (3.2)

where si = Uis.
Because the quantity τiLi in (3.2) is usually unknown in practice, it is impossible to use

(3.2) directly to model the objective function in a neighbourhood of x. However, we may
replace this term with an adaptive parameter σi, which yields the following (p+ 1)-th order
model for the i-th element (i ∈ N ):

mi(xi, si) = Tfi,p(xi, si) +
1

(p+ 1)!
σi‖si‖

p+1. (3.3)

There is more than one possible choice for defining the element models for i ∈ H. The
first(5) is to pursue the line of polynomial Taylor-based models, for which we need the following
technical result.

Lemma 3.1 We have that, for i ∈ H and all x, s ∈ IRn with Uix 6= 0 6= Ui(x+ s),

|xi + si|
q = |xi|

q + q
∞
∑

j=1

1

j!

(

j−1
∏

ℓ=1

(q − ℓ)

)

|xi|
q−jµ(xi, si)

j , (3.4)

where

µ(xi, si)
def
=















si if xi > 0 and xi + si > 0,
−si if xi < 0 and xi + si < 0,
−(2xi + si) if xi > 0 and xi + si < 0,
2xi + si if xi < 0 and xi + si > 0.

(3.5)

Proof. If y ∈ IR+, it can be verified that the Taylor expansion |y + z|q at y 6= 0 and
y + z ∈ IR+ is given by

[y + z]q = yq + q
∞
∑

j=1

1

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

yq−jzj . (3.6)

Let us now consider i ∈ H. Relation (3.6) yields that, if xi > 0 and xi + si > 0,

|xi + si|
q = |xi|

q + q
∞
∑

j=1

1

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

|xi|
q−jsji . (3.7)

By symmetry, if we have that if xi < 0 and xi + si < 0, then

|xi + si|
q = |xi|

q + q
∞
∑

j=1

(−1)j

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

|xi|
q−jsji . (3.8)

(5)Another choice is discussed in Section 5.
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Moreover, if xi > 0 and xi + si < 0, then

|xi + si|
q = | − xi|

q + q

∞
∑

j=1

(−1)j

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

| − xi|
q−j(2xi + si)

j . (3.9)

Symmetrically, if xi < 0 and xi + si > 0, then again,

|xi + si|
q = | − xi|

q + q
∞
∑

j=1

1

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

| − xi|
q−j(2xi + si)

j (3.10)

(3.4)-(3.5) then trivially results from (3.7)-(3.10) and the identity | − xi| = |xi|. ✷

We now slightly abuse notation by defining

T|·|q ,p(xi, si)
def
=































Txq ,p(xi, si) if xi > 0 and xi + si > 0,

T(−x)q ,p(xi,−si) if xi < 0 and xi + si < 0,

T(−x)q ,p(−xi, 2xi + si) if xi > 0 and xi + si < 0,

Txq ,p(−xi, 2xi + si) if xi < 0 and xi + si > 0.

(3.11)

We are now in position to define the regularized “two-sided” model for the element function
fi (i ∈ H) as

mi(xi, si)
def
= T|·|q ,p(xi, si). (3.12)

Figure 3.1 illustrates the two-sided model (3.11)-(3.12) for xi = − 1
2
, p = 3, q = 1

2
.

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 3.1: The square root function (continuous) and its two-sided model with p = 3 evalu-
ated at xi = − 1

2
(dashed)

We may now build the complete model for f at x as

m(x, s) =
∑

i∈M

mi(xi, si). (3.13)
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The algorithm considered in this paper exploits the model (3.13) as follows. At each
iteration k, the model (3.13) taken at the iterate x = xk is (approximately) minimized in
order to define a step sk. If the decrease in the objective function value along sk is comparable
to that predicted by the Taylor model, the trial point xk + sk is accepted as the new iterate
and the regularization parameters σi,k (i.e. σi at iteration k) possibly updated. The process
is terminated when an approximate local minimizer is found, that is when, for some k ≥ 0,

χf (xk, ǫ) ≤ ǫ. (3.14)

In order to simplify notation in what follows, we make the following definitions:

Ck
def
= C(xk, ǫ), Rk

def
= R(xk, ǫ), Wk

def
= W(xk, ǫ),

and
C+k

def
= C(xk + sk, ǫ), R+

k
def
= R(xk + sk, ǫ), W+

k
def
= W(xk + sk, ǫ).

Having defined the criticality measure (2.3), it is natural to use this measure also for
terminating the approximate model minimization: to find sk, we therefore minimize m(xk, s)
over s until, for some constant θ ≥ 0 and some exponent r > 1,

χm(xk, sk, ǫ) = χm
W+

k

(xk, sk, ǫ) ≤ min

[

1
4
q2 min

i∈H∩W+
k

|Ui(xk + sk)|
r, θ‖sk‖

p

]

(3.15)

where

χm
W+

k

(xk, sk, ǫ)
def
=

∣

∣

∣

∣

∣

∣

∣

∣

min
xk+sk+d∈F
d∈R+

k
,‖d‖≤1

∇1
smW+

k
(xk, sk)

Td

∣

∣

∣

∣

∣

∣

∣

∣

. (3.16)

We also require that, once |Ui(xk + s)| < ǫ occurs for some i ∈ H in the course of the
model minimization, it is fixed at this value, meaning that the remaining minimization is
carried out in R(xk + s, ǫ). Thus the dimension of R(xk + s, ǫ) (and therefore of R(xk, ǫ)) is
monotonically non-increasing during the step computation and across iterations. Note that
computing a step sk satisfying (3.15) is always possible since the subspace R(xk + s, ǫ) can
only become smaller during the model minimization and since we have seen in Section 2 that
χm(xk, sk) = 0 at any local minimizer of mW(xk+s,ǫ)(xk, s).

3.1 The algorithm

We now introduce some notation useful for describing our algorithm. Define

xi,k
def
= Uixk, si,k

def
= Uisk.

Also let
δfi,k

def
= fi(xi,k)− fi(xi,k + si,k)

δfk
def
= fW+

k
(xk)− fW+

k
(xk + sk) =

∑

i∈W+
k

δfi,k,

δmi,k
def
= mi(xi,k, 0)−mi(xi,k, si,k),
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δmk
def
= mW+

k
(xk, 0)−mW+

k
(xk, sk) =

∑

i∈W+
k

δmi,k,

and

δTk
def
= Tf

W+
k

,p(xk, 0)− Tf
W+

k

,p(xk, sk)

= [TfN ,p(xk, 0)− TfN ,p(xk, sk)] + [T|·|
H\C+

k
,p
(xk, 0)− T|·|

H\C+
k

,p
(xk, sk)]

= δmk +
1

(p+ 1)!

∑

i∈N

σi,k‖si,k‖
p+1.

(3.17)

The partially separable adaptive regularization algorithm is now formally stated as Algo-
rithm 3.1 on the following page.

Note that an x0 ∈ F can always be computed by projecting an infeasible starting point
onto F . The idea of the second and third parts of (3.21) and (3.22) is to identify cases
where the model mi overestimates the element function fi to an excessive extent, leaving
some space for reducing the regularization and hence allowing longer steps. The requirement
that ρk ≥ η in both (3.21) and (3.22) is intended to prevent a situation where a particular
regularization parameter is increased and another decreased at a given unsuccessful iteration,
followed by the opposite situation at the next iteration, potentially leading to cycling. Other
more elaborate mechanisms can be designed to achieve the same goal, such as attempting to
reduce a given regularization parameter at most a fixed number of times before the occurence
of a successful iteration, but we do not investigate those alternatives in detail here. The
idea of the second and third parts of (3.21) and (3.22) is simply to identify cases where the
model mi overestimates the element function fi to an excessive extent, leaving some space
for reducing the regularization and hence allowing longer steps.

We note at this stage that the condition sk ∈ Rk implies that

Ck ⊆ C
+
k and W+

k ⊆ Wk.

Note that the above algorithm considerably simplifies in the Lipschitzian case where H =
∅, since

fWk
(x) = fM(x) = f(x)

for all k ≥ 0 and all x ∈ F = FQ.

4 Evaluation complexity for ’kernel-centered’ fesible sets

We start our worst-case analysis by formalizing our assumptions for problem (1.1).

AS.1 The feasible set F is closed, convex and non-empty.

AS.2 Each element function fi (i ∈ N ) is p times continuously differentiable in an
open set containing F , where p is odd whenever H 6= ∅.
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Algorithm 3.1: Partially Separable Adaptive Regularization

Step 0: Initialization: x0 ∈ F and {σ0,i}i∈N > 0 are given as well as the accuracy ǫ ∈
(0, 1] and constants 0 < γ0 < 1 < γ1 ≤ γ2, η ∈ (0, 1), θ ≥ 0, σmin ∈ (0,mini∈N σ0,i]
and κbig > 1. Set k = 0.

Step 1: Termination: Evaluate f(xk) and {∇
1
xfWk

(xk)}. If χf (xk, ǫ) ≤ ǫ, return xǫ =
xk and terminate. Otherwise evaluate {∇i

xfWk
(xk)}

p
i=2.

Step 2: Step computation: Compute a step sk ∈ Rk such that xk + sk ∈ F ,
m(xk, sk) < m(xk, 0) and (3.15) holds.

Step 3: Step acceptance: Compute

ρk =
δfk
δTk

(3.18)

and set xk+1 = xk if ρk < η, or xk+1 = xk + sk if ρk ≥ η.

Step 4: Update the “nice” regularization parameters: For i ∈ N , if

fi(xi,k + si,k) > mi(xi,k, si,k) (3.19)

set
σi,k+1 ∈ [γ1σi,k, γ2σi,k]. (3.20)

Otherwise, if either

ρk ≥ η and δfi,k ≤ 0 and δfi,k < δmi,k − κbig|δfk| (3.21)

or
ρk ≥ η and δfi,k > 0 and δfi,k > δmi,k + κbig|δfk| (3.22)

then set
σi,k+1 ∈ [max[σmin, γ0σi,k], σi,k], (3.23)

else set
σi,k+1 = σi,k. (3.24)

Increment k by one and go to Step 1.
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AS.3 The p-th derivative of each fi (i ∈ N ) is Lipschitz continuous on F with
associated Lipschitz constant Li (in the sense of (3.1)).

AS.4 There exists a constant flow such that fN (x) ≥ flow for all x ∈ F .

AS.5 There exists a constant κ0N ≥ 0 such that

‖∇j
xfN (0)‖ ≤ κ0N

for all j ∈ {1, . . . , p}.

Note that AS.4 is necessary for problem (1.1) to be well-defined. Also observe that AS.5
guarantees the existence of a constant κN ≥ κ0N such that

‖∇1
xfN (x))‖ ≤ κN for all x ∈ {x ∈ F | ‖x‖ ≤ 1}. (4.1)

Obviously, AS.2 alone implies (4.1) (without the need of assuming AS.5) if F is bounded.
We first observe that our assumptions on the partially separable nature of the objective

function imply the following useful bounds.

Lemma 4.1 There exist constants 0 < ςmin ≤ ςmax such that, for all s ∈ IRm and all
v ≥ 1 and for any subset X ⊆M,

ςvmin‖sX ‖
v ≤

∑

i∈X

‖si‖
v ≤ |X | ςvmax ‖sX ‖

v, (4.2)

where sX = Pspani∈X {UT
i }(s).

Proof. Assume that, for every ς > 0 there exists a vector sς in spani∈X {U
T
i } of norm

1 such that maxi∈X ‖Uisς‖ < ς‖sς‖ = ς. Then taking a sequence of {ςi} converging to
zero and using the compactness of the unit sphere, we obtain that the sequence {sςi}
has at least one limit point s0 with ‖s0‖ = 1 such that maxi∈X ‖Uis0‖ = 0, which is
impossible since we assumed that the intersection of the nullspaces of the Ui is reduced
to the origin. Thus our assumption is false and there is constant ςmin > 0 such that, for
every s ∈ spani∈X {U

T
i },

max
i∈X
‖si‖ = max

i∈X
‖Uis‖ ≥ ςmin‖s‖.

The first inequality of (4.2) then follows from the fact that
∑

i∈X

‖si‖
v ≥ max

i∈X
‖si‖

v ≥ ςvmin‖s‖
v.

We have also that
∑

i∈X

‖si‖
v ≤ |X |max

i∈X
‖Uis‖

v ≤ |X |max
i∈X

(‖Ui‖‖s‖)
v ,

which yields the second inequality of (4.2) with ςmax = max
i∈X
‖Ui‖. ✷
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Taken for v = 1 and X = N , this lemma states that
∑

i∈N ‖ · ‖ is a norm on IRn whose
equivalence constants with respect to the Euclidean one are ςmin and |N | ςmax. In most
applications, these constants are very moderate numbers.
We now turn to the consequence of the Lipschitz continuity of ∇p

xfi and define, for a given
k ≥ 0 and a given constant φ > 0 independent of ǫ,

Ok,φ
def
= {i ∈ W+

k ∩H | min[ |xi,k|, |xi,k + si,k| ] ≥ φ}. (4.3)

Note that
Ok,φ = H \

[

C(xk, φ) ∪ C(xk + sk, φ)
]

.

Lemma 4.2 Suppose that AS.2 and AS.3 hold. Then, for k ≥ 0 and Lmax
def
= maxi∈N Li,

fi(xi,k+ si,k) = mi(xi,k, si,k)+
1

(p+ 1)!

[

τi,k(p+1)Lmax−σi,k

]

‖si,k‖
p+1 with |τi,k| ≤ 1,

(4.4)
for all i ∈ N . If, in addition, φ > 0 is given and independent of ǫ, then there exists a
constant L(φ) independent of ǫ such that

‖∇1
xfN∪Ok,φ

(xk + sk)−∇
1
smN∪Ok,φ

(xk, sk)‖ ≤ L(φ)‖sk‖
p. (4.5)

Proof. First note that, if fi has a Lipschitz continuous p-th derivative as a function of
Uix, then (1.7) shows that it also has a Lipschitz continuous p-th derivative as a function
of x. It is therefore enough to consider the element functions as functions of xi = Uix.

AS.3 and (3.1) imply that

fi(xi,k + si,k) = Tfi,p(xi,k, si,k) +
τi,k
p!

Lmax‖si,k‖
p+1 with |τi,k| ≤ 1, (4.6)

for each i ∈ N (see [3] or [9, Section 2.2]), and (4.4) then follows from (3.3).

Consider now i ∈ Ok,φ and assume first that xi,k > φ and xi,k+si,k > φ. Then fi(xi) = xqi
is infinitely differentiable on the interval [xi,k, xi,k + si,k] ⊂ [φ,∞) and the norm of its
(p+ 1)-st derivative tensor is bounded above on this interval by

LH(φ)
def
=

∣

∣

∣

∣

∣

p+1
∏

ℓ=0

(q − ℓ)

∣

∣

∣

∣

∣

φq−p−1. (4.7)

We then apply the same reasoning as above using the Taylor series expansion of xqi at xi,k
and, because of the first line of (3.11), deduce that

fi(xi,k + si,k) = mi(xi,k, si,k) +
1

(p+ 1)!
τi,k(p+ 1)LH(φ)|si,k|

p+1 with |τi,k| ≤ 1, (4.8)

and
‖∇1

xfi(xi,k + si,k)−∇
1
smi(xi,k, si,k)‖ ≤ LH(φ)|si,k|

p, (4.9)
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hold in this case (see [3]). The argument is obviously similar if xi,k < −φ and xi,k + si,k <
−φ, using symmetry and the second line of (3.11). Let us now consider the case where
xi,k > φ and xi,k + si,k < −φ. The expansion (3.4) then shows that we may reason as
for xi,k < −φ and xi,k + si,k < −φ using a Taylor expansion at −xi (which we know by
symmetry) and the third line of (3.11). The case where xi,k < −φ and xi,k + si,k > φ is
similar, using the fourth line of (3.11). As a consequence, (4.8) and (4.9) hold for every
i ∈ Ok,φ with Lipschitz constant LH(φ). Moreover, using (4.2) and the definitions (4.7),

∑

i∈N∪Ok,φ

Li‖si‖
p+1 ≤ max [Lmax, LH(φ)]

∑

i∈N∪Ok,φ

‖si‖
p+1

from which (4.5) may in turn be derived from (4.9) and (4.2) with

L(φ)
def
= |M| ςp+1

max max [Lmax, LH(φ)] . (4.10)

✷

Note that there is no dependence on φ in L if H = ∅.
We now return to our statement that

ker(Ui) ∩ F 6= ∅ (4.11)

may be assumed without loss of generality for all i ∈ H. Indeed, assume that (4.11) fails for
j ∈ H. Then j ∈ Ok,ξj for all k ≥ 0, where ξj > 0 is the distance between ker(Uj) and F , and
we may transfer j from H to N (possibly modifying Lmax).

The definition of the model in (3.13) also implies a simple lower bound on model decrease.

Lemma 4.3 For all k ≥ 0,

δTk ≥
1

(p+ 1)!
σmin

∑

i∈N

‖si,k‖
p+1, (4.12)

sk 6= 0 and (3.18) is well-defined.

Proof. The bound directly follows from (3.17), the observation that the algorithm
enforces δmk > 0 and (3.23). Moreover, χm(xk, 0, ǫ) = χf (xk, ǫ) > ǫ. As a consequence,
(3.15) cannot hold for sk = 0 since termination would have then occured in Step 1 of
Algorithm 3.1. Hence at least one ‖si,k‖ is strictly positive because of (4.2) and (4.12)
therefore implies that (3.18) is well-defined. ✷

We now verify that the two-sided model (3.12) is an overestimate of the function |x|q for all
relevant xi and si.

Lemma 4.4 Suppose that AS.2 holds. Then, for i ∈ H and all xi, si ∈ IRn with xi 6=
0 6= xi + si, we have that

|xi + si|
q ≤ mi(xi, si). (4.13)
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Proof. Since i ∈ H by assumption, this implies that H 6= ∅, and thus, by AS.2, that p
is odd. From the mean-value theorem, we obtain that

|xi + si|
q = |xi|

q + q

p
∑

j=1

1

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

|xi|
q−jµ(xi, si)

j

+ 1
(p+ 1)!

[

p
∏

ℓ=1

(q − ℓ)

]

|Uiz|
q−p−1µ(xi, si)

p+1

(4.14)

for some z such that, using symmetry, z ∈ [x, x+s] if (Uix)(Ui(x+s)) > 0 or z ∈ [−x, x+s]
otherwise. As a consequence, we have that

|Uiz| ≥ min[ |xi|, |xi + si| ] > 0.

Remember now that p is odd. Then, using that q ∈ (0, 1), we have that

µ(xi, si)
p+1 ≥ 0 and

p
∏

ℓ=1

(q − ℓ) < 0.

The inequality

|xi + si|
q ≤ |xi|

q + q

p
∑

j=1

1

j!

[

j−1
∏

ℓ=1

(q − ℓ)

]

|xi|
q−jµ(xi, si)

j (4.15)

therefore immediately follows from (4.14), proving (4.13). ✷

We next investigate the consequences of the model’s definition (3.12) when the singularity at
the origin is approached and show that the two-sided model has to remain large along the
steps when xi,k is not too far from the singularity.

Lemma 4.5 Suppose that p ≥ 1 is odd, q ∈ (0, 1), i ∈ H, |xi| ∈ (ǫ, 1], and |xi + si| ≥ ǫ.
Then

|∇1
simi(xi, si)| > 1

2
q |∇1

simi(xi, 0)|. (4.16)

Proof. Following the argument in the proof of Lemma 4.2, it is sufficient to consider
that xi > 0 and xi + si > 0. From (3.11) (where µ(xi, si) = si), we have that

∇1
siTxq ,p(xi, si) = q

p
∑

j=1

1

(j − 1)!

[

j−1
∏

ℓ=1

(q − ℓ)

]

xq−j
i sj−1

i . (4.17)

Define si = βxi. This gives that (4.17) now reads

∇1
siTxq ,p(xi, βxi) = q

p
∑

j=1

1

(j − 1)!

[

j−1
∏

ℓ=1

(q − ℓ)

]

xq−1
i βj−1, (4.18)
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from which we deduce that

∇1
simi(xi, 0) = ∇

1
siTxq ,p(xi, 0) = qxq−1

i . (4.19)

Suppose first that si < 0, i.e. β ∈ (−1, 0), and observe that sj−1
i < 0 exactly whenever

j−1
∏

ℓ=1

(q − ℓ) < 0, and thus, using xi ≤ 1 and (4.19), that

∇1
simi(xi, si) > qxq−1

i = ∇1
simi(xi, 0) for β ∈ (−1, 0). (4.20)

Suppose now that β ∈ (0, 1
3
). Then (4.18) implies that

∇1
siTxq ,p(xi, βxi) ≥ qxq−1

i − q

p
∑

j=2

∣

∣

∣

∣

∣

1

(j − 1)!

[

j−1
∏

ℓ=1

(q − ℓ)

]∣

∣

∣

∣

∣

xq−1
i ( 1

3
)j−1

= qxq−1
i



1−

p
∑

j=2

∣

∣

∣

∣

∣

1

(j − 1)!

[

j−1
∏

ℓ=1

(q − ℓ)

]∣

∣

∣

∣

∣

( 1
3
)j−1



 .

Observe now that
∣

∣

∣

∣

∣

1

(j − 1)!

[

j−1
∏

ℓ=1

(q − ℓ)

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j−1
∏

ℓ=1

q − ℓ

ℓ

∣

∣

∣

∣

∣

≤ 1, (4.21)

and therefore

∇1
siTxq ,p(xi, βxi) ≥ qxq−1

i



1−

p
∑

j=2

( 1
3
)j−1





> qxq−1
i



1−
∞
∑

j=2

( 1
3
)j−1





= qxq−1
i

(

1−
1
3

1− 1
3

)

.

Using (4.19), this implies that

∇1
siTxq ,p(xi, βxi) ≥

1

2
∇1

siTxq ,p(xi, 0) for β ∈ [0, 1
3
]. (4.22)

Suppose therefore that
β > 1

3
. (4.23)

We note that (4.18) gives that

∇1
siTxq ,1(xi, si) = qxq−1

i and ∇1
siTxq ,t+2(xi, si) = ∇

1
siTxq ,t(xi, si) + qxq−1

i ht(β)

for t ∈ {1, . . . , p− 2} odd, where

ht(β)
def
= 1

t!

[

t
∏

ℓ=1

(q − ℓ)

]

βt + 1
(t+ 1)!

[

t+1
∏

ℓ=1

(q − ℓ)

]

βt+1

= 1
t!

[

t
∏

ℓ=1

(q − ℓ)

]

βt

(

1 +
q − (t+ 1)

t+ 1 β

)

.

(4.24)
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It is easy to verify that ht(β) has a root of multiplicity t at zero and another root

β0,t =
t+ 1

t+ 1− q
∈

(

1 ,
2

2− q

)

,

where the last inclusion follows from the fact that q ∈ (0, 1). We also observe that ht(β)
is a polynomial of even degree (since t is odd). Thus

ht(β) ≥ 0 for all β ≥
t+ 1

t+ 1− q
and t ∈ {1, . . . , p} odd. (4.25)

Now
∇1

siTxq ,p(xi, βxi)

qxq−1
i

=
∇1

siTxq ,p−2(xi, βxi)

qxq−1
i

+ hp−2(β)

=
∇1

siTxq ,1(xi, βxi)

qxq−1
i

+

p−2
∑

j=1, j odd

hj(β)

= 1 +

p−2
∑

j=1, j odd
hj(β)<0

hj(β) +

p−2
∑

j=1, j odd
hj(β)≥0

hj(β)

≥ 1 +

p−2
∑

j=1, j odd
hj(β)<0

hj(β)

(4.26)

where we used (4.18) to derive the third equality. Observe now that, because of (4.25),

{j ∈ {1, . . . , p− 2} odd | hj(β) < 0} =
{

j ∈ {1, . . . , p− 2} odd | β < t+1
t+1−q

}

def
= {j ∈ {1, . . . , t0}| | j odd}

(4.27)
for some odd integer t0 ∈ {1, . . . , p− 2}. Hence we deduce from (4.24) and (4.26) that

∇1
siTxq ,p(xi, βxi)

qxq−1
i

≥ 1 +

t0+1
∑

j=1

1

j!

[

j
∏

ℓ=1

(q − ℓ)

]

βj . (4.28)

Moreover, since ht(β) < 0 for t ∈ {1, . . . , t0} odd and observing that the second term in
the first right-hand side of (4.24) is always positive for t odd, we deduce that the terms
in the summation of (4.28) alternate in sign. We also note that they are decreasing in
absolute value since

1

(t+ 1)!

∣

∣

∣

∣

∣

t+1
∏

ℓ=1

(q − ℓ)

∣

∣

∣

∣

∣

βt+1 −
1

t!

∣

∣

∣

∣

∣

t
∏

ℓ=1

(q − ℓ)

∣

∣

∣

∣

∣

βt =
1

t!

∣

∣

∣

∣

∣

t
∏

ℓ=1

(q − ℓ)

∣

∣

∣

∣

∣

βt

(

t+ 1− q

t+ 1
β − 1

)

and (4.25) ensures that the term in brackets in the right-hand side is always negative for
q ∈ (0, 1) and t ∈ {1, . . . , t0} odd. Thus, keeping the first (most negative) term in (4.28),
we obtain that

∇1
siTxq ,p(xi, βxi) ≥ qxq−1

i (1+ (q− 1)β) ≥
q

2− q
∇1

siTxq ,p(xi, 0) >
q

2
∇1

siTxq ,p(xi, 0). (4.29)
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where we used (4.18) to deduce the second inequality. Combining (4.20), (4.22) and (4.29)
then yields that (4.16) holds for all β ∈ (−1,∞), which completes the proof since si = βxi.
✷

Our next step is to verify that the regularization parameters {σi,k}i∈N cannot grow un-
bounded.

Lemma 4.6 Suppose that AS.2 and AS.3 hold. Then, for all i ∈ N and all k ≥ 0,

σi,k ∈ [σmin, σmax], (4.30)

where σmax
def
= γ2(p+ 1)Lmax.

Proof. Assume that, for some i ∈ N and k ≥ 0, σi,k ≥ (p+1)Li. Then (4.4) gives that
(3.19) must fail, ensuring (4.30) because of the mechanism of the algorithm. ✷

We next investigate the consequences of the model’s definition (3.12) when the singularity at
the origin is approached.

Lemma 4.7 Suppose that AS.2 and AS.5 (and thus (4.1)) hold and that H 6= ∅. Let

ω
def
= min






1,





4
[

p κN + |N |
p! ς

pσmax

]

q2





1
q−1






, (4.31)

and suppose, in addition, that
‖sk‖ ≤ 1 (4.32)

and that, for some i ∈ H,
|xi,k| ∈ (0, ω). (4.33)

Then

‖PR{i}[∇
1
sm(xk, sk)]‖ ≥ 1

4
q2ωq−1 and sgn

(

PR{i}[∇
1
sm(xk, sk)]

)

= sgn(xi,k + si,k)
(4.34)

where R{i}
def
= span{UT

i }.

Proof. Consider i ∈ H. Suppose, for the sake of simplicity, that

xi,k > 0 and xi,k + si,k > 0. (4.35)

We first observe that Lemma 4.5 implies that

∇1
simi(xi,k, si) ≥ 1

2
q∇1

simi(xi,k, 0) for all si 6= −xi,k. (4.36)
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Moreover,

∇1
smN (xk, sk) = ∇

1
xfN (xk) +

p
∑

j=2

1

(j − 1)!
∇j

xfN (xk)[sk]
j−1 +

1

p!

∑

ℓ∈N

σℓ,ksℓ,k‖sℓ,k‖
p−1

and thus, using the contractive property of orthogonal projections,(4.32), (4.1) and (4.2),
that

‖PR{i}[∇
1
smN (xk, sk)]‖ ≤ ‖∇1

smN (xk, sk)‖

≤ κN [1 + (p− 1)] +
|N |
p!

ςpσmax

= p κN +
|N |
p!

ςpσmax.

(4.37)

We next successively use the linearity of PR{i}[·], the triangle inequality, (4.36), the facts
that

‖UT
i ‖ = 1 and |∇1

simi(xk, sk)| = q|xi,k|
q−1 ≥ qωq−1,

the bound (4.37), and (4.31) to deduce that

‖PR{i}[∇
1
sm(xk, sk)]‖ = ‖PR{i}[∇

1
smN (xk, sk) +∇

1
s

∑

j∈H

mj(xk, sk)]‖

= ‖PR{i}[∇
1
smN (xk, sk) +

∑

j∈H

UT
j ∇

1
sjmj(xk, sk)]‖

= ‖PR{i}[∇
1
smN (xk, sk)] + UT

i ∇
1
simi(xk, sk)‖

≥
∣

∣

∣
‖UT

i ∇
1
simi(xk, sk)‖ − ‖PR{i}[∇

1
smN (xk, sk)]‖

∣

∣

∣

≥ 1
2
q2ωq−1 −

[

p κN +
|N |
p!

ςpσmax

]

≥ 1
4
q2ωq−1,

which proves the first part of (4.34) and, because of (4.36), implies the second, for the
case where (4.35) holds. The proof for the cases where

[

xi,k < 0 and xi,k + si,k < 0
]

or xi,k(xi,k + si,k) < 0

are identical when making use of the symmetry mi(xi) with respect to the origin. ✷

Note that, like σmax, ω and β only depend on problem data. In particular, they are indepen-
dent of ǫ. Lemma 4.7 has the following crucial consequence.

Lemma 4.8 Suppose that AS.2, AS.5 and the assumptions (4.32)–(4.33) of Lemma 4.7
hold and that H 6= ∅. Suppose in addition that (3.15) holds at xk, sk. Then, either

|xi,k + si,k| ≤ ǫ or |xi,k + si,k| ≥ ω (i ∈ H). (4.38)

Proof. If j ∈ H ∩ C(xk + sk, ǫ), then clearly |xj,k + sj,k| ≤ ǫ, and there is nothing more
to prove. Consider therefore any j ∈ H\C+k ⊆ W

+
k and observe that the separable nature
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of the linear optimization problem in (3.16) implies that

∣

∣

∣

∣

∣

∣

∣

min
xk+sk+d∈F
d∈R{j},‖d‖≤1

PR{j}
[∇1

sm(xk, sk)]
Td

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

min
xk+sk+d∈F
d∈R{j},‖d‖≤1

∇1
smW+

k
(xk, sk)

Td

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

min
xk+sk+d∈F
d∈R+

k
,‖d‖≤1

∇1
smW+

k
(xk, sk)

Td

∣

∣

∣

∣

∣

∣

∣

∣

= χm(xk, sk, ǫ)

≤ 1
4
q2|xj,k + sj,k|

r.

(4.39)

Observe now that, because of the second part of (4.34) and the fact that nj = 1 because
of (1.2), the optimal value for the convex optimization problem in the left-hand side of
this relation is given by

|PR{j}
[∇1

sm(xk, sk)]| |d∗|

where d∗ is the problem solution and d∗ has the opposite sign of PR{j}
[∇1

sm(xk, sk)].
Moreover, the facts that j ∈ H and (1.3) ensure that xj,k + sj,k + dj = 0 is feasible for the
optimization problem on the left-hand side of (4.39), and hence that |d∗| ≥ |xj,k + sj,k|.
Hence, we obtain that

1
4
q2ωq−1|xj,k + sj,k| ≤ 1

4
q2|xj,k + sj,k|

r,

and thus, since ω ≤ 1, that

|xj,k + sj,k| ≥ ω
q−1
r−1 ≥ ω,

and the second alternative in (4.38) holds. ✷

The rest of our complexity analysis depends on the following partitioning of the set of itera-
tions. Let the index set of the “successful” and “unsuccessful” iterations be given by

S
def
= {k ≥ 0 | ρk ≥ η} and U

def
= {k ≥ 0 | ρk < η}.

We next focus on the case where H 6= ∅ and partition S into subsets depending on |xi,k| and
|xi,k + si,k| for i ∈ H. We first isolate the set of sucessful iterations which “deactivate” some
variable, that is

Sǫ
def
= {k ∈ S | |xi,k + si,k| ≤ ǫ for some i ∈ H},

as well as the set of successful iterations with large steps

S‖s‖
def
= {k ∈ S \ Sǫ | ‖sk‖ > 1}. (4.40)

Let us now choose a constant α ≥ 0 such that

α =

{

3
4
ω if H 6= ∅,

0 otherwise.
(4.41)
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Then, at iteration k ∈ S \ (Sǫ ∪ S‖s‖), we distinguish

I♥,k
def
=
{

i ∈ H \ Ck | |xi,k| ∈ [α,+∞) and |xi,k + si,k| ∈ [α,+∞)
}

,

I♦,k
def
=
{

i ∈ H \ Ck |
(

|xi,k| ∈ [ω,+∞) and |xi,k + si,k| ∈ (ǫ, α)
)

or
(

|xi,k| ∈ (ǫ, α) and |xi,k + si,k| ∈ [ω,+∞)
)}

,

I♣,k
def
=
{

i ∈ H \ Ck | |xi,k| ∈ (ǫ, ω) and |xi,k + si,k| ∈ (ǫ, ω)
}

.

Using these notations, we further define

S♥
def
= {k ∈ S \ (Sǫ ∪ S‖s‖) | I♥,k = H \ Ck}, S♦

def
= {k ∈ S \ (Sǫ ∪ S‖s‖) | I♦,k 6= ∅},

S♣
def
= {k ∈ S \ (Sǫ ∪ S‖s‖) | I♣,k 6= ∅}.

Figure (4.2) displays the various kinds of steps in S♥,k, S♦,k, S♣,k and Sǫ,k.

ǫ α ω 1

♥

♥

♥

♦

♣

♣

ǫ

♣

ǫ

♣

♣

ǫ

♦

♥

♥

Figure 4.2: The various steps in S \ S‖s‖ depending on intervals containing their origin |xi,k|
and end |xi,k + si,k| points. The vertical lines show, in increasing order, ǫ, α and ω. The
line type of the represented step indicates that it belongs to Sǫ,k (dotted), S♥,k (solid), S♦,k

(dashed) and S♣,k (dash-dotted).The vertical axis is meaningless.

It is important to observe that the mechanism of the algorithm ensures that, once an xi
falls in the interval [−ǫ, ǫ] at iteration k, it never leaves it (and essentially “drops out” of the
calculation). Thus there are no right-oriented dotted steps in Figure 4.2 and also

|Sǫ| ≤ |H|. (4.42)

Moreover Lemma 4.8 ensures that I♣,k = ∅ for all k ∈ S, and hence that

|S♣| = 0. (4.43)

As a consequence, one has that Sǫ, S‖s‖, S♥, and S♦ form a partition of S. It is also easy to
verify that, if k ∈ S♦ and i ∈ I♦,k, then

‖sk‖ ≥ ‖PR{i}
(sk)‖ = |si,k| ≥ ω − α = 1

4
ω > 0, (4.44)
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where we have used the contractive property of orthogonal projections.
We now show that the steps at iterations whose index is in S♥ are not too short.

Lemma 4.9 Suppose that AS.1-AS.3 and AS.5 hold, that

ǫ < α (4.45)

and consider k ∈ S♥ before termination. Then

‖sk‖ ≥ (κ♥ ǫ)
1
p , (4.46)

where

κ♥
def
=

[

2(L(α) + θ +
|N |

p!
ςp+1
max σmax)

]−1

. (4.47)

Proof. Observe first that, since k ∈ S♥ ⊆ S, we have that xk+1 = xk + sk and, because
ǫ ≤ α and C+k ⊆ Ck, we deduce that Ck = C+k = Ck+1 and Rk = R+

k = Rk+1. Moreover
the definition of S♥ ensures that, for all i ∈ H \ Ck,

min
[

|xi,k|, |xi,k + si,k|
]

≥ α. (4.48)

Hence
O∗

def
= Ok,α = H \ Ck = H \ C+k ,

and thus
R∗

def
= Rk = R+

k and W∗
def
= Wk =W+

k = N ∪O∗. (4.49)

As a consequence the step computation must have been completed because (3.15) holds,
which implies that

χm(xk, sk, ǫ) = χmW∗
(xk, sk, ǫ) =

∣

∣

∣

∣

∣

∣

∣

min
xk+sk+d∈F
d∈R∗,‖d‖≤1

∇smW∗(xk, sk)
Td

∣

∣

∣

∣

∣

∣

∣

≤ θ‖sk‖
p. (4.50)

Observe also that (4.49), (4.5) with φ = α (because k ∈ S♥) , (4.30) and (4.2) then imply
that

‖∇1
xfW∗(xk+1)−∇

1
smW∗(xk, sk)‖ = ‖∇1

xfN∪O∗(xk+1)−∇
1
smN∪O∗(xk, sk)‖

≤ L(α)‖sk‖
p + 1

(p+ 1)!
σmax

∑

i∈N

‖∇1
s‖si,k‖

p+1 ‖

≤ L(α)‖sk‖
p + 1

p!
σmax

∑

i∈N

‖si,k‖
p

≤ L(α)‖sk‖
p +
|N |
p!

ςp+1
max σmax‖sk‖

p

=

[

L(α) +
|N |
p!

ςp+1
max σmax

]

‖sk‖
p,

(4.51)



Chen, Toint, Wang: Evaluation complexity of non-Lipschitzian optimization 24

and also that

χf (xk+1, ǫ) = |∇1
xfW∗(xk+1)[dk+1]|

≤ |∇1
xfW∗(xk+1)[dk+1]−∇

1
smW∗(xk, sk)[dk+1]|

+|∇1
smW∗(xk, sk)[dk+1]|,

(4.52)

where the first equality defines the vector dk+1 with

‖dk+1‖ ≤ 1. (4.53)

Assume now, for the purpose of deriving a contradiction, that

‖sk‖ <







χf (xk+1, ǫ)

2(L(α) + θ +
|N |
p!

ςp+1
max σmax)







1
p

(4.54)

at iteration k ∈ S♥. Using (4.53) and (4.51), we then obtain that

−∇1
xfW∗(xk+1)[dk+1] +∇

1
smW∗(xk, sk)[dk+1]

≤ |∇1
xfW∗(xk+1)[dk+1]−∇

1
smW∗(xk, sk)[dk+1]|

= |(∇1
xfW∗(xk+1)−∇

1
smW∗(xk, sk))[dk+1]|

≤ ‖∇1
xfW∗(xk+1)−∇

1
smW∗(xk, sk)‖ ‖dk+1‖

< (L(α) +
|N |
p!

ςp+1
max σmax)‖sk‖

p.

(4.55)

From (4.54) and the first part of (4.52), we have that

−∇1
xfW∗(xk+1)[dk+1] +∇

1
smW∗(xk, sk))[dk+1] < 1

2
χf (xk+1, ǫ)

= − 1
2
∇1

xfW∗(xk+1)[dk+1],

which in turn ensures that

∇1
smW∗(xk, sk)[dk+1] < 1

2
∇1

xfW∗(xk+1)[dk+1] < 0.

Moreover, by definition of χf (xk+1, ǫ),

xk+1 + dk+1 ∈ F and dk+1 ∈ Rk+1 = R
+
k .

Hence, using (3.16) and (4.53),

|∇1
smW∗(xk, sk)[dk+1]| ≤ χmW∗

(xk, sk, ǫ). (4.56)

We may then substitute this inequality in (4.52) to deduce as above that

χf (xk+1) ≤ |∇1
xfW∗(xk+1)[dk+1]−∇

1
smW∗(xk, sk)[dk+1]|+ χmW∗

(xk, sk, ǫ)

≤ (L(α) + θ +
|N |
p!

ςp+1
max σmax)‖sk‖

p
(4.57)

where the last inequality results from (4.55), the identity xk+1 = xk + sk and (4.50). But
this contradicts our assumption that (4.54) holds. Hence (4.54) must fail. The inequality
(4.46) then follows by combining this conclusion with the fact that χf (xk+1, ǫ) > ǫ before
termination. ✷
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We are now ready to consider our first complexity result, whose proof uses restrictions of the
successful and unsuccessful iteration index sets defined above to {0, . . . , k}, which are given
by

Sk
def
= {0, . . . , k} ∩ S, Uk

def
= {0, . . . , k} \ Sk, (4.58)

respectively.

Theorem 4.10 Suppose that AS.1-AS.5 hold and that

ǫ ≤

[

α,

(

1
4
ωκ

− 1
p+1

♥

)p]

if H 6= ∅. (4.59)

Then Algorithm 3.1 requires at most

κS(f(x0)− flow)ǫ
− p+1

p + |H| (4.60)

successful iterations to return a point xǫ ∈ F such that χf (xǫ, ǫ) ≤ ǫ, for

κS =
(p+ 1)!

η σmin ς
p+1
min

[

2(L(α) + θ +
|N |

p!
ςp+1
max γ2)

]
p+1
p
. (4.61)

Proof. Let k ∈ S be index of a successful iteration before termination, and suppose first
that H 6= ∅. Because the iteration is successful, we obtain, using AS.4 and Lemma 4.3,
that

f(x0)− flow ≥ f(x0)− f(xk+1) ≥
∑

ℓ∈Sk

[

f(xℓ)− f(xℓ + sℓ)
]

≥ η
∑

ℓ∈Sk

[

f(xℓ)− Tf,p(xℓ, sℓ)
]

.

(4.62)
In addition to (4.58), let us define

Sǫ,k
def
= {0, . . . , k} ∩ Sǫ, S‖s‖,k

def
= {0, . . . , k} ∩ S‖s‖, (4.63)

S♥,k
def
= {0, . . . , k} ∩ S♥, S♦,k

def
= {0, . . . , k} ∩ S♦.

We now use the fact that S‖s‖,k ∪ S♥,k ∪ S♦,k = Sk \ Sǫ,k ⊆ Sk, and (4.2) to deduce from
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(4.62) that

f(x0)− flow ≥ η







∑

ℓ∈S‖s‖,k

[

f(xℓ)− Tf,p(xℓ, sℓ)
]

+
∑

ℓ∈S♥,k

[

f(xℓ)− Tf,p(xℓ, sℓ)
]

+
∑

ℓ∈S♦,k

[

f(xℓ)− Tf,p(xℓ, sℓ)
]







≥ ησmin

(p+ 1)!

{

|S‖s‖,k| min
ℓ∈S‖s‖,k

[

∑

i∈N

‖si,ℓ‖
p+1

]

+ |S♥,k| min
ℓ∈S♥,k

[

∑

i∈N

‖si,ℓ‖
p+1

]

+ |S♦,k| min
ℓ∈S♦,k

[

∑

i∈N

‖si,ℓ‖
p+1

]}

≥
ησminς

p+1
min

(p+ 1)!

{

|S‖s‖,k| min
ℓ∈S‖s‖,k

‖sℓ‖
p+1 + |S♥,k| min

ℓ∈S♥,k

‖sℓ‖
p+1

+ |S♦,k| min
ℓ∈S♦,k

‖sℓ‖
p+1

}

.

Because of of (4.40), (4.63), Lemma 4.9 and (4.44), this now yields that

f(x0)− flow ≥
ησminς

p+1
min

(p+ 1)!

{

|S‖s‖,k|+ |S♥,k|(κ♥ǫ)
p+1
p + |S♦|,k(ω − α)p+1

}

≥
ησminς

p+1
min

(p+ 1)!

{

|S‖s‖,k|+ |S♥,k|+ |S♦,k|
}

min
[

(κ♥ǫ)
p+1
p , ( 1

4
ω)p+1

]

≥
ησminς

p+1
min

(p+ 1)!
|Sk \ Sǫ| (κ♥ǫ)

p+1
p

where we used (4.59), the partition of Sk \ Sǫ,k in S‖s‖,k ∪ S♥,k ∪ S♦,k and the inequality
1
4
ω < 1 to obtain the last inequality. Thus

|Sk| ≤ κS(f(x0)− flow)ǫ
− p+1

p + |Sǫ,k|, (4.64)

where κS is given by (4.61). The desired iteration complexity (4.60) then follows from
this bound, |Sǫ,k| ≤ |Sǫ| and (4.42). ✷

To complete our analysis in terms of evaluations rather than successful iterations, we need to
bound the total number of all (successful and unsuccessful) iterations.

Lemma 4.11 Assume that AS.2 and AS.3 hold. Then, for all k ≥ 0,

k ≤ κa|Sk|+ κb,

where

κa
def
= 1 +

|N | | log γ0|

log γ1
and κb

def
=
|N |

log γ1
log

(

σmax

σmin

)

.
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Proof. For i ∈ N , define

Ji,k
def
= {j ∈ {0, . . . , k} | (3.20) holds with k ← j},

(the set of iterations where σi,j is increased) and

Di,k
def
= {j ∈ {0, . . . , k} | (3.23) holds with k ← j} ⊆ Sk

(the set of iterations where σi,j in decreased), the final inclusion resulting from the con-
dition that ρk ≥ η in both (3.21) and (3.22). Observe also that the mechanism of the
algorithm, the fact that γ0 ∈ (0, 1) and Lemma 4.6 impose that, for each i ∈ N ,

σminγ
|Ji,k|
1 γ

|Sk|
0 ≤ σi,0γ

|Ji,k|
1 γ

|Di,k|
0 ≤ σi,k ≤ σmax.

Dividing by σmin > 0 and taking logarithms yields that, for all i ∈ N and all k > 0,

|Ji,k| log γ1 + |Sk| log γ0 ≤ log

(

σmax

σmin

)

. (4.65)

Note now that, if (3.19) fails for all i ∈ N and given that Lemma 4.4 ensures that
fi(xi + si) ≤ mi(xi, si) for i ∈ H \ C

+
k , then

δfk =
∑

i∈W+
k

δfi,k ≥
∑

i∈W+
k

δmi,k = δmk.

Thus, in view of (3.18), we have that ρk ≥ 1 > η and iteration k is successful. Thus, if
iteration k is unsuccessful, σi,k is increased with (3.20) for at least one i ∈ N . Hence we
deduce that

|Uk| ≤
∑

i∈N

|Ji,k| ≤ |N | max
i∈N
|Ji,k|. (4.66)

The desired bound follows from (4.65) and (4.66) by using the fact that k = |Sk|+|Uk|−1 ≤
|Sk|+ |Uk|, the term -1 in the equality accounting for iteration 0. ✷

We may now state our main evaluation complexity result.

Theorem 4.12 Suppose that AS.1, (1.3), AS.2-AS.5 and (4.59) hold. Then Algo-
rithm 3.1 using models (3.12) for i ∈ H requires at most

κa
[

κS(f(x0)− flow)ǫ
− p+1

p + |H|
]

+ κb + 1 (4.67)

iterations and evaluations of f and its first p derivatives to return a point xǫ ∈ F such
that χf (xǫ, ǫ) ≤ ǫ.

Proof. If termination occurs at iteration 0, the theorem obviously holds. Assume
therefore that termination occurs at iteration k + 1, in which case there must be at least
one successful iteration. We may therefore deduce the desired bound from Theorem 4.10,



Chen, Toint, Wang: Evaluation complexity of non-Lipschitzian optimization 28

Lemma 4.11 and the fact that each successful iteration involves the evaluation of f(xk)
and {∇i

xfWk
(xk)}

p
i=1, while each unsuccessful iteration only involves that of f(xk) and

∇1
xfWk

(xk). ✷

Note that we may count derivatives’ evaluations in Theorem 4.12 because only the deriva-
tives of fWk

are ever evaluated, and these are well-defined. For completeness, we state the
complexity bound of the important purely Lipschitzian case.

Corollary 4.13 Suppose that AS.1-AS.4 hold and H = ∅. Then Algorithm 3.1 requires
at most

κa
[

κS(f(x0)− flow)ǫ
− p+1

p

]

+ κb + 1

iterations and evaluations of f and its first p derivatives to return a point xǫ ∈ F such
that

χf (xǫ)
def
=

∣

∣

∣

∣

∣

∣

∣

min
x+d∈F
‖d‖≤1

∇1
xfW(x)(x)

Td

∣

∣

∣

∣

∣

∣

∣

≤ ǫ.

Proof. Directly follows from Theorem 4.12, H = ∅ and the obesrvation that R(x, ǫ) =
IRn for all x ∈ F since C(x, ǫ) = ∅. ✷

5 Evaluation complexity for general convex F

The two-sided model (3.12) has clear advantages, the main ones being that, except at the
origin where it is non-smooth, it is polynomial and has finite gradients (and higher derivatives)
over each of its two branches. It is not however without drawbacks. The first of these is that
its prediction for the gradient (and higher derivatives) is arbitrarily inaccurate as the origin
is approached, the second being its evaluation cost which is typically higher than evaluating
|x+s|q or its derivative directly. In particular, it is the first drawback that required the careful
analysis of Lemma 4.5, in turn leading, via Lemma 4.7, to the crucial Lemma 4.8. This is
significant because this last lemma, in addition to the use of (3.12) and the requirement that
p must be odd, also requires the ’kernel-centered’ assumption (1.3), a sometimes undesirable
restriction of the feasible domain geometry.

In the case where evaluating fN is very expensive and the convex F is not ’kernel-centered’,
it may sometimes be acceptable to push the difficulty of handling the non-Lipschitzian nature
of the ℓq norm regularization in the subproblem of computing sk, if evaluations of fN can be
saved. In this context, a simple alternative is then to use

mi(xi, si) = |xi + si|
q for i ∈ H (5.1)

that is mi(xi, si) = fi(xi + si) for i ∈ H. The cost of finding a suitable step satisfying
(3.15) may of course be increased, but, as we already noted, this cost is irrelevant for worst-
case evaluation analysis as long as only the evaluation of fN and its derivatives is taken
into account. The choice (5.1) clearly maintains the overestimation property of Lemma 4.4.
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Moreover, it is easy to verify (using AS.3 and (5.1)) that

‖∇xfW+
k
(xk+sk)−∇

1
smW+

k
(xk, sk)‖ = ‖∇xfN (xk+sk)−∇

1
smN (xk, sk)‖ ≤ Lmax‖sk‖

p. (5.2)

This in turn implies that the proof of Lemma 4.9 can be extended without requiring (4.48)
and using O∗ = H \ C+k . The derivation of (4.51) then simplifies because of (5.2) and holds
for all i ∈ H \ C+k with L(α) = Lmax, so that (4.46) holds for all k ∈ S, the assumption (4.45)
being now irrelevant. This result then implies that the distinction made between S♥, S♦,
S♣ and S‖s‖ is unecessary because (4.46) holds for all k ∈ S = S♥. Moreover, since we no
longer need Lemma 4.8 to prove that S♣ = ∅, we no longer need the restrictions that p is
odd and (1.3) either. As consequence, we deduce that Theorem 4.10 holds for arbitrary p ≥ 1
and for arbitrary convex, closed non-empty F , without the need to assume (4.59) and with
L(α) replaced by Lmax in (4.61). Without altering Lemma 4.11, we may therefore deduce the
following complexity result.

Theorem 5.1 Suppose that AS.1, AS.2 (without the restriction that p must be odd),
AS.3 and AS.4 hold. Then Algorithm 3.1 using the true models (5.1) for i ∈ H requires
at most

κa
[

κtrueS (f(x0)− flow)ǫ
− p+1

p + |H|
]

+ κb + 1

iterations and evaluations of fN and its first p derivatives to return a point xǫ ∈ F such
that χf (xǫ, ǫ) ≤ ǫ, where

κtrueS =
(p+ 1)!

η σmin ς
p+1
min

[

2|N |ςp+1

(

L+ θ +
γ2
p!

)

]
p+1
p
.

As indicated, the complexity is expressed in this theorem in terms of evaluations of fN and
its derivatives only. The evaluation count for the terms fi (i ∈ H) may be higher since these
terms are evaluated in computing the step sk using the models (5.1). Note that the difficulty
of handling infinite derivatives is passed on to the subproblem solver in this approach.

Moreover, it also results from the analysis in this section that one may consider objective
functions of the form

f(x) = fN (x) + fH(x)

and prove an O(ǫ
− p+1

p ) evaluation compexity bound if fN has Lipschitz continuous derivatives
of order p and if mH(xk, s) = fH(xk + s), passing all difficulties associated with fH to the
subproblem of computing the step sk.

As it turns out, an evaluation complexity bound may also be computed if one insist on
using the Taylor’s models (3.12) while allowing the feasible set to be an arbitrary convex,
closed and non-empty set. Not surprisingly, the bound is (significantly) worse than that
provided by Theorem 4.12, but has the merit of existing. Its derivation is based on the
observation that (4.14) in Lemma 4.4 and (4.21) imply that, for i ∈ H \ C+k ,

|∇1
si |xi+si|

q−∇1
simi(xi, si)| ≤ q

(

min
[

|xi|, |xi + si|
])q−p−1

|µ(xi, si)|
p ≤ qǫq−p−1|si|

p. (5.3)
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This bound can then be used in a variant of Lemma 4.9 just like (5.2) was in Section 5. In
the updated version of Lemma 4.9, we replace L(α) by

L∗
def
= |N | ςpmax Lmax + |H| ς

p
max q

and (4.51) now becomes

‖∇1
xfW+

k
(xk+1)−∇

1
smW+

k
(xk, sk)‖ ≤

[

L∗ǫ
q−p−1 +

|N |

p!
ςpσmax

]

‖sk‖
p.

This results in replacing (4.57) by

χf (xk+1) ≤ (L∗ǫ
q−p−1+θ+

|N |

p!
ςp+1
max σmax)‖sk‖

p ≤ (L∗+θ+
|N |

p!
ςp+1
max σmax)ǫ

q−p−1‖sk‖
p (5.4)

and therefore (4.46) is replaced by

‖sk‖ ≥

[

2

(

L∗ + θ +
|N |

p!
ςp+1
max σmax

)]− 1
p

ǫ
p+2−q

p .

We may now follow the steps leading to Theorem 5.1 and deduce a new complexity bound.

Theorem 5.2 Suppose that AS.1–AS.4 hold. Then Algorithm 3.1 using the Taylor
models (3.12) for i ∈ H requires at most

κa
[

κ∗S(f(x0)− flow)ǫ
− (p+2−q)(p+1)

p + |H|

]

+ κb + 1

iterations and evaluations of f and its first p derivatives to return a point xǫ ∈ F such
that χf (xǫ, ǫ) ≤ ǫ, where

κ∗S =
(p+ 1)!

η σmin ς
p+1
min

[

2

(

L∗ + θ +
|N |

p!
ςp+1
max γ2

)

]
p+1
p
.

Observe that, due to the second inequality of (5.4), θ can be replaced in (3.15) by θ∗ = θǫq−p−1,
making the termination condition for the step computation very weak.

6 Further discussion

The above results suggest some additional comments.

• The complexity result in O(ǫ−(p+1)/p) evaluations obtained in Theorem 4.12 is iden-
tical in order to that presented in [3] for the unstructured unconstrained and in [9]
for the unstructured convexly constrained cases. It is remarkable that incorporating
non-Lipschitzian singularities in the objective function does not affect the worst-case
evaluation complexity of finding an ǫ-approximate first-order critical point.
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• Interestingly, Corollary 4.13 also shows that using partially separable structure does not
affect the evaluation complexity either, therefore allowing cost-effective use of problem
structure with high-order models.

• The algorithm(6) presented here is considerably simpler than that discussed in [16, 18]
in the context of structured trust-regions. In addition, the present assumptions are also
weaker. Indeed, an additional condition on long steps (see AA.1s in [18, p.364]) is no
longer needed.

• Can one use even order models with Taylor models in the present framework? The main
issue is that, when p is even, the two-sided model T|·|q ,p(xi, si) is no longer always an
overestimate of |xi + si|

q when |xi + si| > |xi|, as can be verified from (4.14). While
this can be taken care of by adding a regularization term to mi, the necessary size of
the regularization parameter may be unbounded when the iterates are sufficiently close
from the singularity. This in turn destroys the good complexity because it forces the
algorithm to take much too short steps.

An alternative is to use mixed-orders models, that is models of even order (p, say) for
the fi whose index is in N and odd order models for those with index in H. However,
this last (odd) order has to be at least as large as p, because it is the lowest order which
dominates in the crucial Lemma 4.9 where the length is bounded below away from the
singularity. The choice of a (p+ 1)-st order model for i ∈ H is then most natural.

• A variant of the algorithm can be stated where it is possible for a particular xi to leave
the ǫ-neighbourhood of zero, provided the associated step results in a significant (in
view of Theorem 4.10) objective function decrease, such as a multiple of ǫ(p+1)/p or
some ǫ-independent constant. These decreases can then be counted separately in the
argument of Theorem 4.10 and cycling is impossible since there can be only a finite
number of such decreases.

7 Conclusions

We have considered the problem of minimizing a partially-separable nonconvex objective
function f involving non-Lipschitzian q-norm regularization terms and subject to general
convex constraints. Problems of this type are important in many areas, including data com-
pression, image processing and bioinformatics. We have shown that the introduction of the
non-Lipschitzian singularities and the exploitation of problem structure do not affect the
worst-case evaluation complexity. More precisely, we have first defined ǫ-approximate first-
order critical points for the considered class of problems in a way that make the obtained
complexity bounds comparable to existing results for the purely Lipschitzian case. We have
then shown that, if p is the (odd) degree of the models used by the algorithm, if the feasible
set is ’kernel-centered’ and if Taylor models are used for the q-norm regularization terms, the

bound of O(ǫ
− p+1

p ) evaluations of f and its relevant derivatives (derived for the Lipschitzian
case in [9]) is preserved in the presence of non-Lipschitzian singularities. In addition, we have
shown that partially-separable structure present in the problem can be exploited (especially
for high degree derivative tensors) without affecting the evaluation complexity either. We

(6)And theory, if one restricts one’s attention to the case where H = ∅.
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have also shown that, if the difficulty of handling the non-Lipschitzian regularization terms
is passed to the subproblem (which can be meaningfull if evaluating the other parts of the
objective function is very expensive) in that non-Lipschitz models are used for these terms,
then the same bounds hold in terms of evaluation of the expensive part of the objective func-
tion, without the restriction that the feasible set be ‘kernel-centered’. A worse complexity
bound has finally been provided in the case where one uses Taylor models for the q-norm
regularization terms with a general convex feasible set.

These objectives have been attained by introducing a new first-order criticality measure as
well as the new two-sided model of the singularity given by (3.11), which exploits the inherent
symmetry and provides a useful overestimate of the |x|q if its order is chosen odd, without
the need for smoothing functions.
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