
On the oracle complexity of first-order and
derivative-free algorithms for smooth

nonconvex minimization

by C. Cartis, N. I. M. Gould and Ph. L. Toint

Report NAXYS-03-2010 18 October 2010

University of Namur
61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.fundp.ac.be/sciences/naxys

On the oracle complexity of first-order and derivative-free

algorithms for smooth nonconvex minimization

C. Cartis∗, N. I. M. Gould† and Ph. L. Toint‡

18 October 2010

Abstract

The (optimal) function/gradient evaluations worst-case complexity analysis available for the
Adaptive Regularizations algorithms with Cubics (ARC) for nonconvex smooth unconstrained opti-
mization is extended to finite-difference versions of this algorithm, yielding complexity bounds for
first-order and derivative free methods applied on the same problem class. A comparison with the re-
sults obtained for derivative-free methods by Vicente (2010) is also discussed, giving some theoretical
insight on the relative merits of various methods in this popular class of algorithms.

Keywords: oracle complexity, worst-case analysis, finite-differences, first-order methods, derivative
free optimization, nonconvex optimization.

1 Introduction

We consider algorithms for the solution of the unconstrained (possibly nonconvex) optimization problem

min
x
f(x) (1.1)

where we assume that f : IRn → IR is smooth (in a sense to be specified later) and bounded below. All
methods for the solution of (1.1) are iterative and, starting from some initial guess x0, generate a sequence
{xk} of iterates approximating a critical point of f . A variety of algorithms of this form exist, and they
are often classified according to their requirements in terms of computing derivatives of the objective
function. First-order methods are methods which use f(x) and its gradient ∇xf(x), and derivative-free
(or zero-th order) methods are those which only use f(x), without any gradient computation. This paper
is concerned with estimating worst-case bounds on the number of objective function and/or gradient calls
that are necessary for the specific methods in these two classes to compute approximate critical points
for (1.1), starting from arbitrary initial guesses x0. These bound in turn provide upper bounds on the
complexity of solving (1.1) with general algorithms in the first-order or derivative-free classes.

Worst-case complexity analysis for optimization methods probably really started with Nemirovski
and Yudin (1983), where the notion of oracle (or black-box) complexity was introduced. Instead of
expressing complexity in terms of simple operation counts, the complexity of an algorithm is measured
by the number of calls this algorithm makes, in the worst-case, to an oracle (the computation of the
objective function or the gradient values, for instance) in order to successfully terminate. Many results
of that nature have been derived since, mostly on the convex optimization problem (see, for instance,
Nesterov 2004, 2008, Nemirovski, 1994, Agarwal, Bartlett, Ravikummar and Wainwright, 2009), but also
for the nonconvex case (see Vavasis 1992b, 1992a, 1993, Nesterov and Polyak, 2006, Gratton, Sartenaer
and Toint, 2008, Cartis, Gould and Toint 2009a, 2010a, 2010b, 2010c, or Vicente, 2010). Of particular

∗School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK. Email:
coralia.cartis@ed.ac.uk
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire,

OX11 0QX, England, UK. Email: nick.gould@sftc.ac.uk
‡Namur Center for Complex Systems (NAXYS), FUNDP-University of Namur, 61, rue de Bruxelles, B-5000 Namur,

Belgium. Email: philippe.toint@fundp.ac.be

1

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 2

interest here is the Adaptive Regularizations with Cubics (ARC) algorithm independently proposed by
Griewank (1981), Weiser, Deuflhard and Erdmann (2007) and Nesterov and Polyak (2006), whose worst-
case iteration complexity(1) was shown in the last of these references to be of O(ε−3/2) for finding an
approximate solution x∗ such that the gradient at x∗ is smaller than ε in norm. This result was extended
by Cartis et al. (2010a) to an algorithm no longer requiring the computation of exact second-derivatives,
but merely of a suitably accurate approximation(2). Moreover, Cartis et al. (2010b, 2010c) showed that,
when exact second derivatives are used, this complexity bound is tight and is optimal within a large class
of second-order methods.

The purpose of the present paper is to use the freedom left in Cartis et al. (2010a) to approximate the
objective function’s Hessian to explore complexity bounds for finite-difference methods in exact arith-
metic, and thereby establish lower bounds on the oracle complexity of methods for solving unconstrained
nonconvex problems, where the oracle consists of evaluating objective-function and/or gradient values.
The ARC algorithm and the associated complexity bounds are recalled in Section 2. Section 3 investi-
gates the case of a first-order variant in which the objective-function’s Hessian is approximated by finite
differences in gradient values, while Section 4 considers a derivative-free variant where the gradient of
f is computed by central differences and its Hessian by forward differences. These results are finally
discussed and compared to existing complexity bounds by Vicente (2010) in Section 5.

2 The ARC algorithm and its oracle complexity

The Adaptive Regularization with Cubics (ARC) algorithm is based on the approximate minimization,
at iteration k, of (the possibly nonconvex) cubic model

mk(s) = 〈gk, s〉+ 1
2 〈s,Bks〉+ 1

3σk‖s‖3, (2.1)

were 〈·, ·〉 denotes the Euclidean inner product and ‖ · ‖ the Euclidean norm. Here Bk is a symmetric
n× n approximation of ∇xxf(xk), σk > 0 is a regularization weight and

gk = ∇xmk(0) = ∇xf(xk). (2.2)

By “approximate minimization”, we mean that a step sk is computed that satisfies

〈gk, sk〉+ 〈sk, Bksk〉+ σk‖sk‖3 ≤ 0, (2.3)

〈sk, Bksk〉+ σk‖sk‖3 ≥ 0 (2.4)

mk(sk) ≤ mk(sCk) (2.5)

with
sCk = −αC

kgk and αC

k = arg min
α≤0

mk(−αgk), (2.6)

and
‖∇xmk(sk)‖ = ‖gk +Bksk + σk‖sk‖sk‖ ≤ κθ min[1, ‖sk‖] ‖gk‖, (2.7)

for some given constant κθ ∈ (0, 1).
As noted in Cartis et al. (2010a), conditions (2.3) and (2.4) must hold if sk minimizes the model

along the direction sk/‖sk‖, while (2.7) holds by continuity if sk is sufficiently close to a first-order
critical point of mk. Moreover, (2.5)-(2.6) are nothing but the familiar Cauchy-point decrease condition.
Fortunately, these conditions can be ensured algorithmically. In particular, conditions (2.3)–(2.7) hold
is sk is a (computable) global minimizer of mk (see Griewank, 1981, Nesterov and Polyak, 2006, see also
Cartis, Gould and Toint, 2009c). Note that, since ∇xmk(0) = ∇xf(xk), (2.7) may be interpreted as
requiring a relative reduction in the nom of the model’s gradient at least equal to κθ min[1, ‖sk‖].

The ARC algorithm may then be stated as presented on the following page.

(1)That is its oracle complexity for a choice of the oracle corresponding to the computation of the objective function and
its first and second derivatives.
(2)This method also abandonned global optimization of the underlying cubic model and avoided an a priori knowledge

of the objective function’s Hessian’s Lipschitz constant, two assumptions made by Nesterov and Polyak (2006).

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 3

Algorithm 2.1: ARC

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy threshold ε ∈ (0, 1).
Set k = 0.

Step 1: If ‖∇xf(xk)‖ ≤ ε, terminate with approximate solution xk.

Step 2: Compute any Hessian approximation Bk.

Step 3: Compute a step sk satisfying (2.3)–(2.7).

Step 4: Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

−mk(sk)
. (2.8)

Step 5: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise.

Step 6: Set

σk+1 ∈

 (0, σk] if ρk > η2, [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.9)

Step 7: Increment k by one and return to Step 1.

In this algorithm, we assume that the constants satisfy γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0 and σ0 > 0.
We denote by

S = {k ≥ 0 | iteration k is successful or very successful in the sense of (2.9)}

the set of successful iterations, and

Sj = {k ∈ S | k ≤ j} and Uj = {0, . . . , j} \ Sj , (2.10)

the sets of successful and unsuccessful iterations up to iteration j.
It is not the purpose of the present paper to discuss implementation issues or convergence theory for

the ARC algorithm, but we need to recall the main complexity results for this method, as well as the
assumptions under which these hold.

We first restate our assumptions.

A.1: The objective function f is twice continuously differentiable on IRn and its gradient and Hessian
are Lipschitz continuous on the path of iterates with Lispchitz constant Lg and LH , respectively,
i.e., for all k ≥ 0 and all α ∈ [0, 1],

‖∇xf(xk)−∇xf(xk + αsk)‖ ≤ Lgα‖sk‖ (2.11)

and
‖∇xxf(xk)−∇xxf(xk + αsk)‖ ≤ LHα‖sk‖. (2.12)

A.2: The objective function f is bounded below, that is there exists a constant flow such that

f(x) ≥ flow

for all x ∈ IRn

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 4

A.3: For all k ≥ 0, the Hessian approximation Bk satisfies

‖Bk‖ ≤ κB (2.13)

and
‖(∇xxf(xk)−Bk)sk‖ ≤ κBH‖sk‖2 (2.14)

for some constants κB > 0 and κBH > 0.

We start by noting that the form of the cubic model (2.1) ensures a remarkable bound on the the
stepnorm and model decrease.

Lemma 2.1 Suppose that (2.3), (2.4) and (2.5) hold. Then

‖sk‖ ≤
3

σk
max

[
‖Bk‖,

√
σk‖gk‖

]
(2.15)

and
mk(sk) ≤ − 1

6σk‖sk‖3. (2.16)

Proof. See Lemma 2.2 in Cartis et al. (2009a) for the proof of (2.15) and Lemma 4.2 in Cartis, Gould
and Toint (2009b) for that of (2.16). 2

For our purposes it is also useful to consider the following bounds on the value of the regularization
parameter.

Lemma 2.2 Suppose that A.1 and that (2.13) hold. Then there exists a constant κσ > 0 independent
of n such that, for all k ≥ 0

σk ≤ max
[
σ0,

κσ
ε

]
. (2.17)

If, in addition, (2.14) also holds, then there exists a constant σmax > 0 independent of n and ε such that,
for all k ≥ 0

σk ≤ σmax. (2.18)

Proof. See Lemmas 3.2 and 3.3 in Cartis et al. (2010a) for the proof of (2.17) and Lemma 5.2 in
Cartis et al. (2009a) for that of (2.18). Note that both of these proofs crucially depends on the identity
(2.2), which means they have to be revisted if this equality fails. 2

Without loss of generality, we assume in what follows that ε is small enough for the second term in the
max of (2.17) to dominate, and thus that (2.17) may be rewritten to state that, for all k ≥ 0

σk ≤
κσ
ε
. (2.19)

If (2.18) holds, then, crucially, the step sk can then be proved to be sufficiently long compared to the
gradient’s norm at iteration k + 1.

Lemma 2.3 Suppose that A.1 and A.3 hold. Then, for all k ≥ 0, one has that, for some κg > 0
independent of n,

‖sk‖ ≥ κg
√
‖∇xf(xk + sk)‖. (2.20)

Proof. See Lemma 5.2 in Cartis et al. (2010a). 2

The final important observation in the complexity analysis is that the total number of iterations required
by the ARC algorithm to terminate may be bounded in terms of the number of successful iterations
needed.

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 5

Lemma 2.4 Suppose that A.1 and A.3 hold and, for any fixed j ≥ 0, let Sj and Uj be defined in (2.10).
Assume also that

σ ≥ σmin (2.21)

for some σmin > 0. Then one has that

|Uj | ≤
⌈

(|Sj |+ 1)
1

log γ1
log

(
σmax

σmin

)⌉
. (2.22)

Proof. See Theorem 2.1 in Cartis et al. (2010a). Observe that this proof uniquely depends on the
mechanism used in the algorithm for updating σk, and its independent of the values of gk or Bk. 2

Combining those results and using A.2 then yields the following oracle complexity theorem.

Theorem 2.5 Suppose that A.1–A.3 hold, that ε ∈ (0, 1) is given and that (2.21) holds. Then the ARC
algorithm terminates after at most

Ns
1

def
= 1 +

⌈
κsSε
−3/2

⌉
, (2.23)

successful iterations and at most

N1
def
=
⌈
κSε
−3/2

⌉
(2.24)

iterations in total, where

κsS
def
= (f(x0)− flow)/(η1αS), αS

def
= (σminκ

3
g)/6 (2.25)

and
κS

def
= (1 + κuS)(2 + κsS), κuS

def
= log(σmax/σmin)/ log γ1, (2.26)

with κg and σ defined in (2.20) and (2.18), respectively. As a consequence, the ARC algorithm terminates
after at most Ns

1 gradient evaluations and at most N1 objective function evaluations.

Proof. See Corollary 5.3 in Cartis et al. (2010a). 2

The bound given by (2.23) is is known to be qualitatively(3)tight and optimal for a wide class of second-
order methods (see Cartis et al. 2010b, 2010c). Also note that the constants in (2.25) and (2.26) do not
depend on n.

3 A first-order finite-difference ARC variant

The objective of this section is to extend the ARC algorithm to a version using finite differences in
gradients to compute the Hessian approximation Bk. If the accuracy of the finite-difference scheme is
high enough to ensure that (2.14) holds, then one might expect that a worst-case iteration complexity
similar to (2.23)-(2.24) would hold, thereby providing a first worst-case oracle complexity estimate for
first-order methods applied on nonconvex unconstrained problems.

For defining this algorithm, which we will refer to as Algorithm ARC-FDH, we only need to specify the
details of the estimation of Bk. If we compute this latter matrix by using n forward gradient differences
at xk with stepsize hk of the form

∇xf(xk)−∇xf((xk + hkej)

hk
(3.1)

(where ej is the j-th vector of the canonical basis) and symmetrize the result, it is well known (see
Nocedal and Wright, 1999, Section 7.1) that

‖∇xxf(xk)−Bk‖ ≤ κeHghk (3.2)

(3)The constants may not be optimal.

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 6

for some constant κeHg ∈ [0, LH]. The only remaining issue is therefore to define a procedure guaranteeing
that

hk ≤ κhs‖sk‖. (3.3)

for some κhs > 0 and all k ≥ 0. As we show below, this can be achieved if we consider Algorithm
ARC-FDH on the current page, where γ3 ∈ (0, 1) and κhs ≥ 1.

Algorithm 3.1: ARC-FDH

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy threshold ε ∈ (0, 1).
If ‖∇xf(x0)‖ ≤ ε, terminate. Otherwise, set k = 0, j = 0 and choose an initial stepsize
h0,0 ∈ (0, 1].

Step 1: Estimate Bk,j using n gradient differences of the form (3.1), using the stepsize hk,j .

Step 2: Compute a step sk,j satisfying (2.3)–(2.7).

Step 3: Compute ∇xf(xk + sk,j). If ‖∇xf(xk + sk,j)‖ ≤ ε, terminate with approximate solution
xk + sk,j .

Step 4: If
hk,j > κhs‖sk,j‖, (3.4)

set hk,j+1 = γ3hk,j , increment j by one and return to Step 1. Otherwise, set sk = sk,j and
hk = hk,j .

Step 5: Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

−mk(sk)
. (3.5)

Step 6: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise.

Step 7: Set

σk+1 ∈

 (0, σk] if ρk > η2, [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(3.6)

Step 8: Set hk+1,0 = hk and j = 0. Increment k by one and return to Step 1 if ρk ≥ η1, or to
Step 2 otherwise.

By convention and analogously to our notation for sk and hk, we denote by Bk the approximation Bk,j
obtained at the end of the loop between Steps 1 and 4. Clearly, the test (3.4) in Step 4 ensures that
(3.3) holds, as requested. Observe that, because the norm of the step is a monotonically decreasing
function as a function of σk (see Lemma 3.1 in Cartis et al., 2009c), it decreases at an unsuccessful
iteration, which might then possibly require a new evaluation of the approximate Hessian in order to
preserve (3.3). Observe also that the mechanism of the algorithm implies that the positive sequence {hk}
is monotonically decreasing and bounded above by h0,0 ≤ 1.

It now remains to show that this algorithm is well defined, which we do under the additional assump-
tion that the (true) gradients remain bounded at all iterates. Since the sequence {f(xk} is monotonically
decreasing, this condition can for instance be ensured by assuming bounded gradients of the level set
{x ∈ IRn | f(x) ≤ f(x0)}.

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 7

A.4: There exists a constant κubg ≥ 0 such that, for all k ≥ 0

‖∇xf(xk)‖ ≤ κubg.

Lemma 3.1 Suppose that A.1, A.4 and (2.21) hold, Then (2.13) holds with

κB

def
= max[κeHg + Lg,

√
κσκubg] ≥ √κσκubg

and, for all k ≥ 0,

‖sk‖ ≥
(1− κθ) ε

max
[

4κB, κB + 3
√
σkκubg

] . (3.7)

Proof. We first note that (2.11) ensures that ‖∇xxf(xk)‖ ≤ Lg for all k ≥ 0 and therefore that

‖Bk,j‖ ≤ ‖Bk,j −∇xxf(xk)‖+ ‖∇xxf(xk)‖ ≤ κeHg + Lg ≤ max[κeHg + Lg,
√
κσκubg], (3.8)

where we used the triangle inequality, the bound hk,j ≤ h0,0 ≤ 1 and (3.2). Hence (2.13) holds. Observe
now that (2.2) and the mechanism of the algorithm then implies that, as long as the algorithm hasn’t
terminated,

‖gk‖ > ε. (3.9)

We know from (2.7) and (2.2) that, for all k ≥ 0,

κθ min[1, ‖sk‖] ‖gk‖ ≥ ‖∇xmk(0) +Bksk + σk‖sk‖sk‖ ≥ ‖gk‖ − ‖Bksk + σk‖sk‖sk‖,

and thus, using (3.9), that

‖Bksk + σk‖sk‖sk‖ ≥ (1− κθ)‖gk‖ > (1− κθ)ε.

Taking this bound, (2.13), (2.15), (2.2) and A.4 into account, we deduce that

(1− κθ)ε < κB‖sk‖+ σk‖sk‖2

≤
{
κB + 3 max

[
‖Bk‖,

√
σk‖gk‖

]}
‖sk‖

≤
{
κB + 3 max

[
κB,
√
σkκubg

]}
‖sk‖,

proving (3.7). 2

We are now able to deduce that the inner loop of Algorithm ARC-FDH terminates in a bounded number
of iterations and hence that the desired accuracy on the Hessian approximation is obtained.

Lemma 3.2 Suppose that A.1, A.4 and (2.21) hold. Then the total number of times where a return
from Step 4 to Step 1 is executed in Algorithm ARC-FDH is bounded above by⌈

log κh + 3
2 log ε

log γ3

⌉
+

(3.10)

where κh > 0 is a constant independent of n and where dαe+ denotes the maximum of zero and the first
integer larger or equal to α. Moreover A.3 holds.

Proof. The inequality (3.7) and (2.19) give that

(1− κθ)ε ≤ max

[
4κB, κB + 3

√
κσκubg

ε

]
‖sk‖ ≤

4κB

ε1/2
‖sk‖, (3.11)

where we have used the bound κB ≥
√
κσκubg and the inclusion ε ∈ (0, 1) to deduce the last inequality.

Now the loop between Steps 1 and 4 of Algorithm ARC-FDH terminates as soon as (3.4) is violated,
which must happen if j is large enough to ensure that

hk,j = γj3hk,0 ≤ γ
j
3 ≤

κhs(1− κθ)
4κB

ε3/2 ≤ κhs‖sk,j‖, (3.12)

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 8

where we have successively used the mechanism of the algorithm, and (3.11). The second inequality in
(3.12) and the decreasing nature of the sequence {hk} then ensures that (3.3) must hold for all k after
at most (3.10) (with κh = κhs(1− κθ)/4κB) reductions of the stepsize by γ3, which proves the first part
of the lemma. Finally, (3.3) and (3.2) imply also that (2.14) holds for Bk. This with (2.13) ensures that
A.3 is satisfied. 2

We may then conclude with our main result for this section.

Theorem 3.3 Suppose that A.1, A.2 and A.4 hold, that ε ∈ (0, 1) is given and that (2.21) holds. Then
Algorithm ARC-FDH terminates after at most

Ns
1

def
= 1 +

⌈
κsSε
−3/2

⌉
, (3.13)

successful iterations and at most

N1
def
=
⌈
κSε
−3/2

⌉
(3.14)

iterations in total, where κsS and κS are given by (2.25) and (2.26), respectively. As a consequence, the
ARC-FDH algorithm terminates after at most

(n+ 1)Ns
1 + n

⌈
log κh + 3

2 log ε

log γ3

⌉
+

(3.15)

gradient evaluations and at most N1 objective function evaluations.

Proof. Lemma 3.2 ensures that A.3 holds. Theorem 2.5 is thus applicable and the number of
successful iterations is therefore bounded by (2.23), while the total number of iterations is bounded
by (2.24). The bound (3.15) and the bound of the number of function evaluations then follows from
Lemma 3.2 and the observation that, in addition to the computation of ∇xf(xk) (at successful iterations
only) and f(xk), each successful iteration involves an estimation of the Hessian by finite differences, each
of which requires n gradient evaluations, plus possibly at most (3.10) aditional Hessian estimations at
the same cost. 2

Very broadly speaking, we therefore require that at most

O

(
n

[⌈
1

ε3/2

⌉
+ d| log ε|e

])
(3.16)

gradient and

O

(⌈
1

ε3/2

⌉)
function evaluations in the worst-case. This is qualitatively very similar to the bound (2.24) for the
original ARC algorithm.

We close this section by observing that better bounds may be obtained if we assume that the Hessian
has a known sparsity pattern. The finite-difference scheme my then be adapted (see Powell and Toint,
1979, or Goldfarb and Toint, 1984) to require much less than n gradient differences to obtain a Hessian
approximation, in which case the factor n in (3.16) may often be replaced by a small constant. Similar
gains can be obtained if f is partially separable (Griewank and Toint, 1982). Finally, parallel evaluations
of the gradient in Step 1 may also result in substantial computational savings.

4 A derivative-free ARC variant

We are now interested in pursuing the same idea further and considering a derivative-free variant of the
ARC algorithm, where both gradients and Hessians are approximated by finite differences. However, this
introduces two additional difficulties: the approximation techniques used for the gradient and Hessian
should be clarified and balanced, and some results we relied on in the previous section (in particular

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 9

Lemmas 2.2 and 2.3) have to be revisited because they depend on the true gradient of the objective
function, which is no longer available.

Consider the approximation of gradients and Hessians first. From the discussion above, we see that
preserving (2.14) is necessary for using results for the original ARC algorithm. It is then natural to seek
a higher degre of accuracy for the gradient itself, since this is the quantity that the algorithm drives to
zero. We therefore suggest using a central difference scheme for the gradient, in which a quotient of the
form

f(xk + tkei)− f(xk − tkei)
2tk

(4.1)

for some stepsize tk > 0 is used to approximate the i-th component of the gradient at xk. It is well-known
(see Nocedal and Wright, 1999, Section 7.1) that such a scheme ensures the bound

‖∇xf(xk)− gk‖ ≤ κegtt
2
k (4.2)

for some constant κegt ∈ [0, LH], where gk is now the vector approximating ∇xf(xk), i.e. whose i-th
component is given by (4.1). Similarly, we may approximate the (i, j)-th entry of the Hessian at xk by
a quotient of the form

f(xk + tkei + tkej)− f(xk + tkei)− f(xk + tkej) + f(xk)

t2k
, (4.3)

(see Nocedal and Wright, 1999, Section 7.1), yielding the error bound

‖∇xxf(xk)−Bk‖ ≤ κeHttk (4.4)

for some constant κeHt ∈ [0, LH], where Bk is the symmetric matrix whose (i, j)-th entry (for i ≥ j) is
given by the quotient (4.3). Note that (4.4) give the same type of error bound as (3.2) above, and we
are again interested in an algorithm which guarantees (2.14) from (4.4), i.e. such that

tk ≤ κts‖sk‖ (4.5)

for all k ≥ 0 and some constant κts > 0.
The gradient approximation scheme also raises the question of proper termination of any algorithm

using gk rather than ∇xf(xk). Since this latter quantity is unavailable by assumption, it is impossible to
test its norm against the threshold ε. The next best thing is to test ‖gk‖ for a sufficiently small difference
stepsize tk. More specifically, if

‖gk‖ ≤ 1
2ε and tk ≤

√
ε

2κegt

def
= tε (4.6)

then (4.2) and the triangle inequality ensure that ‖∇xf(xk)‖ ≤ ε, as requested. In what follows, we
assume that we know a suitable value for κegt or, equivalently, of tε, and then use (4.6) for detecting
an approximate first-order critical point. The worst-case complexity is therefore to be understood as the
maximum number of function evaluations necessary for the test (4.6) to hold.

Using these ideas, we may now state the ARC-DFO variant of the ARC algorithm on the following
page.

As was the convention for Algorithm ARC-FDH above, we denote by Bk, gk and g+k the quantities Bk,j ,
gk,j and g+k,j obtained at the end of the loop between Steps 3 and 7 (we show below that this loop
terminates finitely). It is also clear that the stepsizes tk are monotonically decreasing. We also see that
Step 7 ensures (4.5). We next verify that the Hessian approximations remains bounded and that loop
between Steps 3 and 7 always terminates after a finite number of iterations.

Lemma 4.1 Suppose that A.1 and A.4 hold. Then there exists constants κB > 1 and κng > 0 such
that, if Bk,j is estimated at Step 3, then

‖gk‖ ≤ κng and ‖Bk‖ ≤ κB. (4.10)

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 10

Algorithm 4.1: ARC-DFO

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy threshold ε ∈ (0, 1).
Choose a stepsize t0,0 ≤ tε. Set k = 0 and j = 0.

Step 1: Estimate g0,0 using (4.1) with stepsize t0,j .

Step 2: If ‖g0,j‖ ≤ 1
2ε, terminate with approximate solution x0.

Step 3: Estimate Bk,j using (4.3) with stepsize tk,j .

Step 4: Compute a step sk,j satisfying (2.3)–(2.7).

Step 5: Estimate g+k,j using (4.1) with xk replaced by xk + sk,j and the stepsize tk,j .

Step 6: If ‖g+k,j‖ ≤ 1
2ε, terminate with approximate solution xk + sk,j .

Step 7: If
tk,j > κts min[‖sk,j‖, ‖gk,j‖] (4.7)

set tk,j+1 = γ3tk,j , increment j by one and return to Step 3. Otherwise, set sk = sk,j and
tk = tk,j .

Step 8: Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

−mk(sk)
. (4.8)

Step 9: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise,

and gk+1,0 =

{
g+k,j if ρk ≥ η1,
gk,j otherwise.

Step 10: Set

σk+1 ∈

 (0, σk] if ρk > η2, [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(4.9)

Step 11: Set tk+1,0 = tk and j = 0. Increment k by one and return to Step 3 if ρk ≥ η1 or to
Step 4 otherwise.

for all k ≥ 0. Moreover, we have that

‖sk‖ ≥
(1− κθ) ε

max
[

4κB, κB + 3
√
σkκubg

] (4.11)

and there exists a κ(σk) > 0 such that, at iteration k of Algorithm ARC-DFO, the loop between Steps 3
and 7 terminates in at most ⌈

log κ(σk) + log ε

log γ3

⌉
+

(4.12)

iterations. Finally, the inequalities

‖gk −∇xf(xk)‖ ≤ κegtκts‖sk‖2, (4.13)

‖g+k −∇xf(xk + sk)‖ ≤ κegtκts‖sk‖2 (4.14)

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 11

and
‖Bk −∇xxf(xk)‖ ≤ κeHtκts‖sk‖. (4.15)

hold for each k ≥ 0.

Proof. Consider iteration k. As in Lemma 3.2, we obtain that ‖Bk,j‖ ≤ κB and therefore that the
second inequality in (4.10) holds. The proof of the first is similar in spirit:

‖gk‖ ≤ ‖gk −∇xf(xk)‖+ ‖∇xf(xk)‖ ≤ κegt + κubg

def
= κng,

where we used (4.2), the inequality tk,j ≤ t0,0 ≤ 1 and A.4. Observe now that the mechanism of the
algorithm implies that, as long as the algorithm isn’t terminated,

‖gk‖ ≥ 1
2ε. (4.16)

As in the proof of Lemma 3.1 (using (4.16) instead of (3.9)), we may now derive that (4.11) holds for all
k. Defining

µ(σk)
def
=

1− κθ
max

[
4κB, κB + 3

√
σkκubg

]
this lower bound may then be used to deduce that the loop between Steps 3 and 7 terminates as soon
as (4.7) is violated, which must happen if j is large enough to ensure that

tk,j = γj3tk,0 ≤ γ
j
3 ≤ κts min [µ(σk), 1

2] ε ≤ κts min[‖sk‖, ‖gk‖], (4.17)

where we used (4.16) to derive the last inequality. This implies that j never exceeds⌈
log {[κts min [µ(σk), 1

2]}+ log ε

log γ3

⌉
+

,

which in turn yields (4.12) with κ(σk)
def
= κts min [µ(σk), 1

2]. Since the loop between Steps 3 and 7 always
terminates finitely, (4.5) holds for all k ≥ 0 and the inequalities (4.13)–(4.15) then follow from (4.2) and
(4.4). 2

Unfortunately, several of the basic properties of the ARC algorithm mentioned in Section 2 can no longer
be deduced from existing theory. This is the case of (2.19), (2.18) and (2.20), which we thus need to
reconsider.

The proof of (2.19) is involved and needs to be restarted from the Cauchy condition (2.5)-(2.6). This
condition is known to imply the inequality

f(xk)−mk(sk) ≥ κC‖gk‖min

 ‖gk‖
1 + ‖Bk‖

,

√
‖gk‖
σk

 (4.18)

for some constant κC ∈ (0, 1) (see Lemma 1.1 in Cartis et al., 2009a). We may then build on this relation
in the next two useful lemmas inspired from Cartis et al. (2009a).

Lemma 4.2 [See Lemmas 3.2 in Cartis et al., 2009a] Suppose that A.1 and A.4 hold, and that

√
σk‖sk‖ ≥

108
√

2

1− η2
(Lg + κegtκ

2
ts(κubg + κegt) + κB)

def
= κHB. (4.19)

Then iteration k of Algorithm ARC-DFO is very successful and

σk+1 ≤ σk. (4.20)

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 12

Proof. From (4.19), we have that gk 6= 0, and thus (4.18) implies that f(xk) > mk(sk). It then
follows from (4.8) that

ρk > η2 ⇔ νk
def
= f(xk + sk)− f(xk)− η2[mk(sk)− f(xk)] < 0.

We immediately note that, for k ≥ 0,

νk = f(xk + sk)−mk(xk) + (1− η2)[mk(sk)− f(xk)].

We then develop the first term in the right-hand side of this expression using a Taylor expansion of
f(xk + sk), giving that, for k ≥ 0,

f(xk + sk)−mk(sk) = 〈∇xf(ξk)− gk, sk〉 − 1
2 〈sk, Bksk〉 − 1

3σk‖sk‖3 (4.21)

for some ξk in the segment (xk, xk + sk). But we observe that

‖∇xf(ξk)− gk‖ ≤ ‖∇xf(ξk)−∇xf(xk)‖+ ‖∇xf(xk)− gk‖
≤ Lg‖sk‖+ κegtt

2
k

≤ Lg‖sk‖+ κegtκ
2
ts‖sk‖ ‖gk‖

≤ [Lg + κegtκ
2
ts(‖∇xf(xk)‖+ ‖∇xf(xk)− gk‖]‖sk‖

≤ [Lg + κegtκ
2
ts(κubg + κegt)]‖sk‖,

where we successively used the triangle inequality, (2.11), (4.2), the negation of (4.7), A.4 and the
inequality tk ≤ 1. Thus the Cauchy-Schwartz inequality, (4.21) and the second inequality of (4.10) give
that, for k ≥ 0,

f(xk + sk)−mk(sk) ≤ [Lg + κegtκ
2
ts(κubg + κegt) + κB] ‖sk‖2. (4.22)

The proof of the lemma then follows exactly as in Lemma 3.2 in Cartis et al. (2009a), using (4.18), with
(4.22) playing the role of inequality (3.9) and Lg + κegtκts(κubg + κegt) playing the role of κH. 2

We may then recover boundedness of the regularization parameters.

Lemma 4.3 Suppose that A.1 and A.4 hold. Then there exists a κσ > 0 such that (2.17) holds for all
k ≥ 0.

Proof. The proof is identical to that of Lemma 3.3 in Cartis et al. (2009a), giving κσ
def
= γ2κ

2
HB. 2

Again, we replace (2.17) by (2.19) and, since κσ does not depend on κB, possibly increase κB to ensure
that κB ≥ κσκubg without loss of generality. Armed with these results, we may return to Lemma 4.1
above and obtain stronger conclusions.

Lemma 4.4 Suppose that A.1 and A.4 hold. Then these exists a constant κt > 0 such that the return
from Step 7 to Step 3 of Algorithm ARC-DFO can only be executed at most⌈

log κt + 3
2 log ε

log γ3

⌉
+

(4.23)

times during the entire run of the algorithm.

Proof. Replacing (2.17) into (4.11), we obtain that, for all k ≥ 0

‖sk‖ ≥
(1− κθ) ε

max
[

4κB, κB + 3
√
κσκubg/ε

] ≥ (1− κθ) ε3/2

4κB

def
= κsεε

3/2,

Thus no return from Step 7 to Step 3 of Algorithm ARC-DFO is possible as soon as j ≥ 0, the total
number of times this return is executed, is large enough to ensure that

tk,j = γj3t0,0 ≤ γ
j
3 ≤ κts min

[
κsεε

3/2, 1
2ε
]
≤ κts min [‖sk,j‖, ‖gk,j‖] ,

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 13

where we have derived the last inequality using the fact that ‖gk,j‖ ≥ 1
2ε as long as the algorithm has

not terminated. This imposes that

j ≤ 1

log γ3
min [log (κtsκsε) + 3

2 log ε, log (1
2κts) + log ε] ,

and the desired bound on j follows with κt = κts min[κsε, 1
2]. 2

We may also revisit the second part of Lemma 2.2 in the derivative-free context. Our proof is directly
inspired by Lemma 5.2 in Cartis et al. (2009a).

Lemma 4.5 Suppose that A.1 and A.4 hold. Then there exists a σmax > 0 independent of ε such that
(2.18) holds for all k ≥ 0.

Proof. Using (2.1), the Cauchy-Schwarz and the triangle inequalities, (4.13), (2.12) and (4.15), we
know that

f(xk + sk)−mk(sk) ≤ ‖∇xf(xk)− gk‖ ‖sk‖
+ 1

2 [‖∇xxf(ξk)−∇xxf(xk)‖+ ‖∇xxf(xk)−Bk‖] ‖sk‖2

− 1
3σk‖sk‖3

≤ [κegtκts + 1
2 (LH + κeHtκts)− 1

3σk] ‖sk‖3

for some ξk ∈ [xk, xk + sk]. Thus, using (4.8) and (2.16),

ρk − 1 =
f(xk + sk)−mk(sk)

−mk(sk)
≤ κegtκts + 1

2 (LH + κeHtκts)− 1
3σk

1
6σk

≤ 1− η2

as soon as

σk ≥
2κegtκts + LH + κeHtκts

1− 1
3η2

.

As a consequence, iteration k is then very successful and σk+1 ≤ σk. It then follows that (2.18) holds
with

σmax = max

[
σ0,

γ2(2κegtκts + LH + κeHtκts)

1− 1
3η2

]
.

2

It then remains to show that, under (4.13)–(4.15), an analog of Lemma 2.3 holds for the derivative-free
case.

Lemma 4.6 Suppose that A.1 and A.4 hold. Then there exists a constant κg > 0 such that, for all
k ≥ 0,

‖sk‖ ≥ κg
√
‖g+k ‖. (4.24)

Proof. We first observe, using the triangle inequality, (4.14) and (2.7), that

‖g+k ‖ ≤ ‖g+k −∇xf(xk + sk)‖+ ‖∇xf(xk + sk)−∇xmk(sk)‖+ ‖∇xmk(sk)‖
≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)−∇xmk(sk)‖+ κθ min[1, ‖sk‖] ‖gk‖.

(4.25)

for all k ≥ 0. The second term on this last right-hand side may then be bounded for all k ≥ 0 by

‖∇xf(xk + sk)−∇xmk(sk)‖ ≤ ‖∇xf(xk)− gk‖+ ‖
∫ 1

0

[∇xx(xk + αsk)−Bk] sk dα‖+ σk‖sk‖2

≤ ‖
∫ 1

0

{[∇xx(xk + αsk)−∇xxf(xk)] + [∇xxf(xk)−Bk]} sk dα‖

+‖∇xf(xk)− gk‖+ σk‖sk‖2

≤ maxα∈[0,1] ‖∇xx(xk + αsk)−∇xxf(xk)‖ ‖sk‖

+(κeHt + κegt)κts‖sk‖2 + σmax‖sk‖2

≤ [LH + (κeHt + κegt)κts + σmax]‖sk‖2,
(4.26)

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 14

where we successively used the mean-value theorem, (2.1), the triangle inequality, (2.12), (4.13), (4.15)
and (2.18). We also have, using the triangle inequality, (4.13), (2.11) and (4.14), that

‖gk‖ ≤ ‖gk −∇xf(xk)‖+ ‖∇xf(xk)‖
≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)‖+ Lg‖sk‖
≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)− g+k ‖+ ‖g+k ‖+ Lg‖sk‖
≤ 2κegtκts‖sk‖2 + ‖g+k ‖+ Lg‖sk‖.

which implies that, for all k ≥ 0,

κθ min[1, ‖sk‖] ‖gk‖ ≤ (2κθκegtκts + κθLg)‖sk‖2 + κθ‖g+k ‖. (4.27)

Therefore, substituting (4.26) and (4.27) into (4.25), we obtain that, for all k ≥ 0,

‖g+k ‖ ≤ κegtκts‖sk‖2 + [LH + (κeHt + κegt)κts + σmax]‖sk‖2 + (2κθκegtκts + κθLg)‖sk‖2 + κθ‖g+k ‖.

and thus
(1− κθ)‖g+k ‖ ≤ [κθLg + LH + κts(κeHt + 2κegt(1 + κθ)) + σmax] ‖sk‖2

for all k ≥ 0. This gives (4.24) with

κg
def
=

√
1− κθ

κθLg(1 + κθ) + LH + κts(κeHt + 2κegt(1 + κθ)) + σmax
.

2

We are thus in principle again in position to apply the oracle complexity results for the ARC algorithm.
Unfortunately, Theorem 2.5 may no longer be applied as such (as it requires the true gradient of the
objective function), but our final theorem is derived in a very similar manner.

Theorem 4.7 Suppose that A.1, A.2 and A.4 hold, that ε ∈ (0, 1) is given and that (2.21) holds. Then
Algorithm ARC-DFO terminates after at most

Ns
1

def
= 1 +

⌈
κsSε
−3/2

⌉
, (4.28)

successful iterations and at most

N1
def
=
⌈
κSε
−3/2

⌉
(4.29)

iterations in total, where κsS and κS are given by (2.25) and (2.26), respectively. As a consequence, the
ARC algorithm terminates after at most

(N1 −Ns
1)(1 + 2n) + Ns

1

[
n2 + 5n+ 2

2

]
+

[
n2 + 3n

2

] ⌈
log κt + 3

2 log ε

log γ3

⌉
+

. (4.30)

objective function evaluations.

Proof. Let
Kε = {k ≥ 0 | min[‖gk‖, ‖gk+1‖] ≥ 1

2ε}.

We the deduce from the definition of successful iterations, (2.16) and (4.24) that

f(xK)− f(xk+1) ≥ −η1mk(sk) ≥ 1

48
σminη1κ

3
gε

3/2 for all k ∈ Kε ∩ Sk+1.

The mechanism of Algorithm ARC-DFO ensures that the iterates remains unchanged at unsuccessful
iterations. If Algorithm ARC-DFO does not terminate before or at iteration k, we have that Kε∩Sk+1 =
Sk+1. Summing up to iteration k, we therefore obtain that

f(x0)− f(xk+1) ≥
∑
i∈Sj

[f(xi)− f(xi+1)] ≥ 1

48
σminη1κ

3
gε

3/2|Sk+1|

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 15

Using now AS.2, we conclude that

|Sk+1| ≤
48(f(x0)− flow)

σminη1κ3gε
3/2

,

from which (4.28) follows with

κsS =
48(f(x0)− flow)

σminη1κ3g
.

We then use Lemma 2.4 to deduce (4.29). In we ignore the estimations of Bk,j in Step 3 after a return
from Step 7, we now observe that each successful iteration involves up to

1 + 2n+

(
n(n+ 1)

2

)
function evaluations, while unsuccessful iterations involves 1+2n evaluations. Adding the two, we obtain
a number of

(N1 −Ns
1)(1 + 2n) + Ns

1

[
1 + 2n+

n(n+ 1)

2

]
evaluations at most, to which we have to add those needed in the loop between Steps 3 and 7, whose
number does not execeed [

n+
n(n+ 1)

2

] ⌈
log κt + 3

2 log ε

log γ3

⌉
+

.

The resulting grand total is then given by (4.30). 2

We may again considerably simplify this result (at the cost of a weaker bound). If we assume that the
terms in n2 and n dominate the constants, we obtain that, in the worst case, at most

O

(
n2 + 5n

2

[
1 + d| log ε|e+ +

⌈
1

ε3/2

⌉
+

])
(4.31)

function evaluations are needed by the ARC-DFO algorithm to achieve approximate criticality in the
sense of (4.6). Again, known sparsity of the Hessian or partial separability may reduce the factor n2 in
(4.31) to (typically) a small multiple of n, thereby bridging the gap between ARC-DFO and ARC itself.
The potential benefits of using parallel evaluations of the objective function are even more obvious here
that for Algorithm ARC-FDH. Finally notice that automatic differentiation may often be an alternative
to derivate-free technology when the source code for the evaluation of f is available, in which case
Algorithm ARC-FDH is the natural choice.

5 Discussion and conclusions

Comparing algorithms on the basis of their worst-case complexity is always an exercise whose interest is
mostly theoretical, but this is especially the case for what we have presented above. Indeed, several factors
limit the predictive nature of these results on the practical behaviour of the considered minimization
methods. The first is obviously the worst-case nature of the efficiency estimates, which (fortunately)
can be quite pessimistic in view of expected or observed efficiency. The second, which is specific to
the results presented here, is the intrinsic limitations induced by the use of finite-precision arithmetic.
In the context of actual computation, not only it is unrealistic to consider vanishingly small values
of ε, but the choice of arbitrarily small finite-differences stepsizes is also very questionable(4), even
if difficulties caused by finite precision may be attenuated by using multiple-precision packages. The
following comments should therefore be considered as interesting theoretical considerations throwing
some light on the fundamental differences between algorithms, even if their practical relevance to actual

(4)Recommended values for these stepsizes are bounded below by adequate roots of machine precision (see Section 8.4.3
in Conn, Gould and Toint, 2000 or Sections 5.4 and 5.6 in Dennis and Schnabel, 1983, for instance).

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 16

numerical performance is potentially remote. Designing and studying worst-case analysis in the presence
of round-off errors remains an interesting challenge.

We first note that the gap in worst-case performance between second-order (ARC), first-order (ARC-
FDH) and derivative-free (ARC-DFO) methods is remarkably small if one consider the associated bounds
in the asymptotic regime where ε tends to zero. The effect of finite-difference schemes is, up to constants,
limited to the occurence of a multiplicative factor of size 1 + | log ε|, which may be considered as modest.
The more significant effect is not depending on the ε-asymptotics, but rather depending on the dimension
n of the problem: as expected, derivative-free methods suffer most in this respect, with bounds depending
on n2 rather than n for first-order methods or a constant for second-order ones.

The bounds for derivative-free methods are also interesting to compare with those derived by Vicente
(2010), where direct-search type methods are shown to require at most O(ε−2) iterations to find a point xk
satisfying ‖∇xf(xk)‖ ≤ ε when applied to function with Lipschitz continuous gradients(5). At iteration
k, such methods compute the function values {f(xk +αkd | d ∈ Dk}, where Dk is a positive spanning set
for IRn and αk an iteration-dependent stepsize. If one of these value is (sufficiently) lower than f(xk) the
corresponding xk + αkd is chosen as the next iterate and a new iteration started. In the worst-case, an
algorithm of this type therefore requires n + 1(6) function evaluations, and thus its function-evaluation
complexity is

O

(
n

⌈
1

ε2

⌉)
Thus the ARC-DFO algorithm is more advantageous than such direct-search methods (in the worst-case
and up to a constant factor) if

(n2 + 5n)

⌈
1 + | log ε|

ε3/2

⌉
= O

(
n

⌈
1

ε2

⌉)
that is if

n = O

(
1

[1 + | log ε|]
√
ε

)
.

It is interesting to note that this inequality only holds for relatively small n, especially for values of ε that
are only moderately small, and for a more restrictive class of functions (A.1 vs. Lipschitz gradients).
Direct-search methods are thus very often more efficient (in this theoretical sense) than Algorithm ARC-
DFO, even if the latter dominates for small ε.

Finally notice that the central properties needed for proving the complexity result for the ARC-
DFO algorithm are the bounds (4.13)–(4.15). These could as well be guaranteed by more sophisticated
derivative-free techniques where multivariate interpolation is used to construct Hessian approximation
from past points in a suitable neighbourhood of the current iterate (see Conn, Scheinberg and Vicente,
2008, Fasano, Nocedal and Morales, 2009, or Scheinberg and Toint, 2010, for instance). This suggests that
a worst-case analysis of these methods might be quite close to that of Algorithm ARC-DFO. Indeed,
if gains in the number of function evaluations might be possible by the re-use of these past points
compared to using fresh evaluations for establishing a local quadratic model at every iteration, it is not
clear that these gains can always be achieved, in particular if every step is large compared the necessary
finite-difference stepsize.

Acknowledgements

The work of the second author is funded by EPSRC Grant EP/E053351/1. All three authors are grateful to the Royal

Society for its support through the International Joint Project 14265.

(5)Note that this inequality cannot be used as a stopping criterion, because ∇xf(xk) is unknown. The complexity result
in Vicente (2010) therefore does not directly indicate how many iterations will be performed by the algorithm before its
stopping criterion is activated.
(6)The minimal size of a positive spanning set in IRn.

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 17

References

A. Agarwal, P. L. Bartlett, P. Ravikummar, and M. J. Wainwright. Information-theoretic lower bounds
on the oracle complexity of convex optimization. in ‘Proceedings of the 23rd Annual Conference on
Neural Information Processing Systems’, 2009.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part I: motivation, convergence and numerical results. Mathematical Programming,
Series A, 2009a. DOI: 10.1007/s10107-009-0286-5, 51 pages.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. An adaptive cubic regularization algorithm for nonconvex
optimization with convex constraints and its function-evaluation complexity. Technical Report
08/05R, Department of Mathematics, FUNDP - University of Namur, Namur, Belgium, 2009b.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. Trust-region and other regularisation of linear least-squares
problems. BIT, 49(1), 21–53, 2009c.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part II: worst-case function-evaluation complexity. Mathematical Programming, Se-
ries A, 2010a. DOI: 10.1007/s10107-009-0337-y.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, Newton’s and regular-
ized Newton’s methods for nonconvex unconstrained optimization. SIAM Journal on Optimization,
20(6), 2833–2852, 2010b.

C. Cartis, N. I. M. Gould, and Ph. L. Toint. Worst-case complexity of second-order methods for uncon-
strained nonconvex optimization. Technical Report (in preparation), Department of Mathematics,
FUNDP - University of Namur, Namur, Belgium, 2010c.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in ‘MPS-SIAM Series
on Optimization’. SIAM, Philadelphia, USA, 2000.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-free Optimization. MPS-SIAM
Optimization series. SIAM, Philadelphia, USA, 2008.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Prentice-Hall, Englewood Cliffs, NJ, USA, 1983. Reprinted as Classics in Applied
Mathematics 16, SIAM, Philadelphia, USA, 1996.

G. Fasano, J. Nocedal, and J.-L. Morales. On the geometry phase in model-based algorithms for
derivative-free optimization. Optimization Methods and Software, (to appear), 2009.

D. Goldfarb and Ph. L. Toint. Optimal estimation of Jacobian and Hessian matrices that arise in finite
difference calculations. Mathematics of Computation, 43(167), 69–88, 1984.

S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM Journal on Optimization, 19(1), 414–444, 2008.

A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding cubic
terms. Technical Report NA/12, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, United Kingdom, 1981.

A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable functions. in
M. J. D. Powell, ed., ‘Nonlinear Optimization 1981’, pp. 301–312, London, 1982. Academic Press.

A. S. Nemirovski. Efficient methods in convex programming. Lectures notes (online) available on
http://www2.isye.gatech.edu/˜nemirovs/OPTI LectureNotes.pdf, 1994.

A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. J. Wiley
and Sons, Chichester, England, 1983.

Cartis, Gould, Toint: Complexity of first-order and DFO methods for minimization 18

Yu. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2004.

Yu. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems. Mathe-
matical Programming, Series A, 112(1), 159–181, 2008.

Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1), 177–205, 2006.

J. Nocedal and S. J. Wright. Numerical Optimization. Series in Operations Research. Springer Verlag,
Heidelberg, Berlin, New York, 1999.

M. J. D. Powell and Ph. L. Toint. On the estimation of sparse Hessian matrices. SIAM Journal on
Numerical Analysis, 16(6), 1060–1074, 1979.

K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algorithms for derivative-free
unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010.

S. A. Vavasis. Approximation algorithms for indefinite quadratic programming. Mathematical Program-
ming, 57(2), 279–311, 1992a.

S. A. Vavasis. Nonlinear Optimization: Complexity Issues. International Series of Monographs on
Computer Science. Oxford University Press, Oxford, England, 1992b.

S. A. Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimization, 3(1), 60–80,
1993.

L. N. Vicente. Worst case complexity of direct search. Technical report, Department of Mathematics,
University of Coimbra, Coimbra, Portugal, May 2010.

M. Weiser, P. Deuflhard, and B. Erdmann. Affine conjugate adaptive Newton methods for nonlinear
elastomechanics. Optimization Methods and Software, 22(3), 413–431, 2007.

