
Inexact range-space Krylov solvers for

linear systems arising from inverse problems

by S. Gratton1, Ph. L. Toint2 and J. Tshimanga Ilunga3

Report 09/20 16 December 2009

1 ENSEEIHT,
2, rue Camichel, 31000 Toulouse, France.

Email: serge.gratton@enseeiht.fr

2 Department of Mathematics,
FUNDP-University of Namur,

61, rue de Bruxelles, B-5000 Namur, Belgium.
Email: philippe.toint@fundp.ac.be

3 CERFACS,
42, avenue Coriolis, 31057 Toulouse, France.

Email: ilungatshimanga@yahoo.fr



Inexact range-space Krylov solvers for linear systems

arising from inverse problems

S. Gratton Ph. L. Toint J. Tshimanga Ilunga

16 December 2009

Abstract

The object of this paper is twofold. Firstly, range-space variants of standard

Krylov iterative solvers are introduced for unsymmetric and symmetric linear sys-

tems. These are characterized by possibly much lower storage and computational

costs than their full-space counterparts, which is crucial in data assimilation appli-

cations and other inverse problems. Secondly, it is shown that the computational

cost may be further reduced by using inexact matrix-vector products: formal error

bounds are derived on the size of the residuals obtained under two different accuracy

models, and it is shown why a model controlling forward error on the product result

is often preferable to one controlling backward error on the operator. Numerical

examples finally illustrate the developed concepts and methods.

Keywords: Krylov methods, linear systems, inexact matrix products, data assimila-
tion.

1 Introduction and motivation

Inverse problems in the natural sciences and elsewhere often give rise to very large under-
determined parameter identification problems. In these problems, one typically tries to
identify system parameters by fitting a model’s output to a number of observations which
is very often much smaller than that of the parameters. The resulting under-determined
fitting problem is then regularized by selecting parameter sets that are as close as possible
to values known from a previous case study (see Gratton, Lawless and Nichols, 2007). As
we discuss below, problems of this type often lead, possibly after preconditioning, to solving
variational formulations for which one considers the iterative solution of (potentially very
large) linear systems of the form

(γIn + KT L)s = b, (1.1)

where both K and L are m × n matrices (possibly identical) with m ≪ n, In is the
identity matrix of size n and b is a general right-hand side. The objective of this paper is
to propose and analyze iterative methods whose storage requirements and linear algebra
costs (beyond that of the products of vectors by KT and L) are essentially dependent on
m (at variance with standard approaches where they vary with n), and which produce
monotonically decreasing values of the underlying variational objective. Moreover, their
computational cost is further reduced by considering that the product of a vector by KT

or L may be only approximate (see Simoncini and Szyld, 2003, van den Eshof and Sleijpen,
2004, van den Eshof, Sleijpen and van Gijzen, 2005).

The motivation for investigating problem (1.1) and methods of the type we just men-
tioned finds its origin in (but is not limited by) the data assimilation problem for oceanog-
raphy and weather forecasting (see Rabier, 2005, for instance). In this important appli-
cation, the model is that of a discretized Navier-Stokes formulation (or a variant thereof)
for describing the ocean or atmosphere and the observations are given by temperature,
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current, pressure and altimetry measurements collected from satellites, ocean-bound or
ground stations. The most commonly studied problem is then to determine a complete
set of initial conditions from which the Navier-Stokes model can be integrated to provide
predictions, with the difficulty that they are much less observations (despite today’s large
data collection capabilities) than variables to determine in this initial condition, thereby
suggesting regularization techniques. In daily practice (2009), the number of such vari-
ables is of the order of 108 while the number of available observations is only of the order
of 105 (see Rabier, 2005 again), and the ratio of the first to the second is furthermore ex-
pected to increase significantly with the advent of more complex procedures (see Trémolet,
2006a, 2006b). The previously known state from which deviation is minimized (for the
purpose of regularization) is called the background state and often selected as the values
of the unknown parameters at the current time derived from a model validated in the
past. As explained in Gratton et al. (2007), one is then interested in solving the nonlinear
least-squares problem given by

min
x

1

2
(x− xb)

T B−1(x− xb) + 1

2

p
∑

j=0

{

Hj [x(tj)]− yo
j

}T
R−1

j

{

Hj [x(tj)]− yo
j

}

, (1.2)

where xb is the background state, Hj is the operator modelling the observed quantities at
time tj yo

j is the vector of observations, and x(tj) the state at this time, and the matrices
B and R represent correlations between the background variables and the observations,
respectively. Problem (1.2) is typically solved by a standard truncated Gauss-Newton
method (known in the oceanography and weather-forecasting communities under the name
of incremental 4D-Var (Courtier, Thépaut and Hollingsworth, 1994), an acronym for four
dimensional variational assimilation). The linearized subproblem arising at iteration k of
this Gauss-Newton procedure, where we have concatenated the observations and model
predictions over time into a single vector (see Gratton and Tshimanga, 2009 for details)
is then given by

min
s∈IRn

1

2
(xk + s− xb)

T B−1(xk + s− xb) + 1

2
(Hs− d)T (Hs− d), (1.3)

where xk, xb and s belong to IRn with n being the dimension of the unknown initial
state, B is a positive-definite n× n symmetric matrix, d ∈ IRm is the concatenated misfit
vector at xk multiplied by the square root of the inverse of R, where R = diag(R0, . . . , Rp)
is m ×m and symmetric positive-definite(1), and H is a m × n matrix representing the
concatenated linearized model also multiplied by the square root of the inverse of R. The
minimization of the convex quadratic given by (1.3) would seem a reasonably well-mastered
problem, if it were not for the sizes involved (recall that we aim at n ≈ 109 and m ≈ 105).
As for smaller problems, today’s standard method for the solution of (1.3) is to apply a
conjugate-gradient algorithm, which may be viewed as an iterative solver for the system

(B−1 + HT H)s = HT d + B−1(xb − xk). (1.4)

As is typical for conjugate-gradient method, preconditioning is crucial for numerical per-
formance, and we consider here two distinct possibilities. The first technique, which is
closer to current practice, is two-sided and symmetric, and gives the system

(In + B1/2HT HB1/2)z = B1/2HT d + B−1/2(xb − xk) where s = B1/2z. (1.5)

Interestingly, the cost of the products with H is so high in practical applications that every
effort is made to reduce the number of such products beyond the effect of preconditioning,
including the use of reorthogonalization within the considered iterative solvers, which
often implies large storage requirements. As a result, the interest of maintaining a purely

(1)A more elaborate way to handle the correlation matrix R is of course used in practice, but we choose
this implicit formulation here for the sake of simplicity.
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symmetric formulation becomes less clear. This makes a second preconditiong technique
attractive, where one uses a simple right-sided product by B, yielding the system

(In + HT HB−1)z = HT d + B−1(xb − xk) where s = Bz. (1.6)

This approach furthermore opens the door to simpler techniques for handling the obser-
vation correlation matrix R than that suggested above.

It is now clear that both (1.6) and (1.5) are examples of systems of the form (1.1),
and that their practical solution by efficient iterative methods correspond to the declared
objective of this paper. It should be stressed however that the numerically efficient algo-
rithms for the solution of (1.1) are of interest much more broadly, as this framework covers
a large class of (mostly inverse) problems considered in a variational setting and where the
“action” is limited to a small subspace of the original formulation. The standard Tikhonov
regularization scheme for rank-deficient or ill-posed problems also leads to systems of the
form (1.1) (see Hansen, 1997).

As can be seen from the minimization context introduced, it is also highly desirable for
the design of realistic termination criteria that iterates produced by the solution algorithms
ensure an iteration-wise decrease of the underlying objective function in (1.3), in the
symmetric case, or of the associated residual norm otherwise. Unfortunately, a simple
solution consisting in using the Sherman-Morrison-Woodbury formula (see Conn, Gould
and Toint, 2000, page 57, for instance) on the linear system and then applying an Krylov-
space iterative method on the resulting m × m linear system (or variants thereof such
as the PSAS method (Amodei, 1995, Da Silva, Pfaendtner, Guo, Sienkiewicz and Cohn,
1995, Cohn, Da Silva, Guo, Sienkiewicz and Lamich, 1998) or the equivalent “representer”
technique of Bennett and Thornburn, 1992) may often be problematic (see El Akkroui,
Gauthier, Pellerin and Buis, 2008, or Gratton and Tshimanga, 2009).

Our developments originate in the recent proposal by Gratton and Tshimanga (2009),
where a variant of the conjugate-gradient method, called RPCG, was proposed for the
exact symmetric case, i.e. the case where L = K and the products by K are carried
out exactly. As for the variants discussed below, RPCG’s storage requirement and linear
algebra costs (beyond that of the products by K and KT ) vary with m rather than
n. However, and although initial numerical experiments were promising, no stability
analysis was provided for this earlier method, that would cope with errors generated by
computer arithmetic or by inexact matrix products. This is especially crucial since the
geometric foundation of the method is to restrict operations to the range space of KT , and
perturbations of this matrix could therefore potentially generate significant instability. We
show below that this unfortunate behaviour may indeed appear in specific cases, but we
also show that the new variants proposed in this paper are, by contrast, stable for such
perturbations.

The paper is organized as follows. The new range-space Krylov methods are derived for
the symmetric and unsymmetric cases in Section 2. The effect of inexact matrix products
on the convergence of these new algorithms is then investigated in Section 3, and the
concepts are numerically illustrated in Section 4. Some conclusions and perspectives are
finally presented in Section 5.

2 Range-space Krylov methods

We start by considering the standard GMRES (Saad and Schultz, 1986) method for the
system (1.1) for a possibly rank deficient matrix

A = γIn + KT L.

Although this method is well-known, we briefly review its main features and concepts to
establish a basis for later developments. The main idea of the method is to minimize the
Euclidean norm of residual (γIn + KT L)s − b on the successive nested Krylov subspaces
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generated by the sequence

b, (γIn + KT L)b, (γIn + KT L)2b, (γIn + KT L)3b, . . . (2.1)

or, equivalently, by
b, (KT L)b, (KT L)2b, (KT L)3b, . . . (2.2)

This is achieved by using the Arnoldi process (see Saad, 1996, page 154, or Kelley, 1995,
page 37) to generate an orthonormal basis of each of the these subspaces, i.e. a set of
vectors {vi}k+1

i=1 with v1 = b/‖b‖ (where ‖ · ‖ stands for the Euclidean norm) such that,
after k steps,

KT LVk = Vk+1Hk, (2.3)

where the columns of Vk
def
= [v1, . . . , vk] form an orthonormal basis of the k-th Krylov

subspace
Kk = span[ b, . . . , (KT L)k−1b ],

and where Hk is a (k + 1)× k upper-Hessenberg matrix. The linear least-squares

min
y
‖Hky − β1e1‖ (2.4)

(where the symbol ei denotes the i-th vector of the canonical basis) is then explicitly solved
(in Kk, which is the subspace spanned by the columns of Vk), yielding the GMRES(2)

algorithm on this page.

Algorithm 2.1: s = GMRES( K, L, b )

1. Define β1 = ‖b‖ and v1 = b/β1.

2. For k = 1, . . . ,m,

(a) wk = KT Lvk

(b) for i = 1, . . . , k,

i. Hi,k = vT
i wk

ii. wk ← wk −Hi,kvi

(c) Hk,k ← Hk,k + γ,

(d) βk+1 = Hk+1,k = ‖wk‖,
(e) vk+1 = wk/βk+1,

(f) yk = arg miny ‖Hy − β1e1‖,
(g) if ‖Hyk − β1e1‖ < ǫr, break.

3. Return s = Vkyk.

In this statement of GMRES, one recognizes the construction of the Krylov sequence
in Steps 1 and 2(a), its orthogonalization in Steps 2(b,d,e), the shift corresponding to the
equivalence between (2.1) and (2.2) in Step 2(c) and the solution of the restricted linear
least-squares (2.4) in Step 2(f). The convergence test of Step 2(g) is there to detect early
termination, but one knows that the Krylov residual qk = Hyk − β1e1 must decrease in
norm at every iteration since qk is nothing but the representation in Kk of the projection
of the right-hand side onto the orthogonal to Kk. Note that the k-th column of upper-
Hessenberg matrix H is constructed at iteration k, and this allows us to drop the index

(2)Not to be confused with GMRES(m), a version which is restarted every m iterations.
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of H indicating the iteration number from now on, since it can easily be recovered from
the number of columns. Note that the matrix Vk must be stored for Steps 2(b)i and 3.

If b does not belong to the range of A, there is no reason for qk to converge to zero.
Moreover it may happen in this case that “breakdown” occurs in the very unlikely circum-
stance where Akb turns out to be, for some k, an exact linear combination of {Aib}k−1

i=1 ,
and the vector wk may then be identically zero at the end of Step 2(b), thereby yielding
βk+1 = 0 and making Step 2(e) undefined. The most obvious strategy to cope with this
(mostly theoretical) situation is a simple restart of the process with a slightly perturbed
right-hand side. Another interesting possibility is described in Reichel and Ye (2005).

Importantly, variants of the GMRES algorithm can be derived easily. First, the solution
of a linear least-squares in Kk of Step 2(f) may be replaced by the solution of the linear
system

H2yk = β1e1 (2.5)

where e1 ∈ IRk and H2 is the leading k×k submatrix of H, in which case one replaces the
condition tested in Step 2(g) by ‖H2yk − β1e1‖ ≤ ǫr. This gives a method known under
the acronym of FOM (for Full Orthogonalization Method). We may also consider the
symmetric case where L = KT , in which case it is possible to restrict the loop of Step 2(b)
to i = max[1, k−1] and i = k, resulting in a tridiagonal H. If yk is derived from Step 2(f),
this generates the same iterates as the MINRES (Minimum Residuals) method, while we
obtain the well-known Conjugate-Gradient (CG) algorithm if (2.5) is used instead. All
these variants preserve some important monotonicity properties: the norms of the Krylov
residuals qk for GMRES and MINRES and the values of the implied quadratic form

1

2
yT

k V T
k (γI + KT K)Vkyk − bT Vkyk (2.6)

for FOM and CG are both decreasing (in exact arithmetic) as the iterations proceed.
Unfortunately, this is not the case for the norms of the full-space residuals

rk = (γI + KT K)Vkyk − b (2.7)

in the symmetric case case, as ‖rk‖ may exhibit a distinct nonmonotonic behaviour. Obvi-
ously, the comments we made regarding breakdown in GMRES also apply to its variants,
but there is the additional (and equally unlikely) possibility for a breakdown in FOM
where βk+1 6= 0 but H2 turns out to be exactly singular. Fortunately, this last difficulty
may be resolved by replacing the problematic FOM iteration by a (well-defined) GMRES
iteration without stopping the process.

The next step follows Gratton and Tshimanga (2009) and assumes (for now) that

b ∈ range(KT ). (2.8)

We now observe that, in this case, the sequence (2.2) may be rewritten as

KT d, KT (LKT )d, KT (LKT )2d, KT (LKT )3d, . . . (2.9)

for some vector d ∈ IRm, and thus deduce that the Krylov spaces in IRn associated with
this sequence are the images by KT of other Krylov spaces generated now in IRm by the
sequence

d, (LKT )d, (LKT )2d, (LKT )3d, . . . (2.10)

We may therefore consider an Arnoldi process based on this sequence, leading now to the
relation

LKT V̂k
def
= LKT

[

v̂1, . . . , v̂k

]

= V̂k+1H (2.11)

instead of (2.3), where we use the x̂ notation to denote the pre-image by KT in IRm of
x ∈ range(KT ) ⊆ IRn, i.e. x = KT x̂. If we now rewrite the complete GMRES algorithm
in (the much smaller) IRm, we then obtain Algorithm RSGMR0(3) on the next page.

(3)For Range-Space GMRes.
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Algorithm 2.2: s = RSGMR0( K, L, d )

1. Define p1 = KT d, ẑ1 = Kp1,

2. Set β1 =
√

dT ẑ1, v̂1 = d/β1 ẑ1 ← ẑ1/β1 and p1 ← p0/β1.

3. For k = 1, . . . ,m,

(a) ŵk = Lpk

(b) for i = 1, . . . , k,

i. Hi,k = ẑT
i ŵk

ii. ŵk ← ŵk −Hi,kv̂i

(c) Hk,k ← Hk,k + γ,

(d) pk+1 = KT ŵk, ẑk+1 = Kpk, βk+1 = Hk+1,k =
√

ẑT
k+1ŵk,

(e) v̂k+1 ← ŵk/βk+1, ẑk+1 ← ẑk/βk+1,, pk+1 ← pk/Hk+1,k,

(f) yk = arg miny ‖Hy − β1e1‖,
(g) if ‖Hyk − β1e1‖ < ǫr, break.

4. Return s = KT V̂kyk.

Observe that we had to compute the product of pk by K, in order to evaluate the norms
(in Steps 1 and 2(d)) and the inner products (in Step 2(b.i)) in the correct metric (i.e. in
IRn). Thus we have replaced computation and storage of n-dimensional vectors by that of
m-dimensional ones for the price of an additional product by K at each iteration, with the
exception of pk which remains a “large” n-dimensional vector. RSGMR0 also requires the
storage of the v̂i and the ẑi, but these are now of dimension m. Hence our comment in the
introduction saying that work and storage depend essentially on m. Although the need
for an additional product does not sound ideal, it may make the difference between an
impractical method (where a collection of huge vectors is just too large for the computer
at hand) and a more CPU-intensive but practical one.

It is now easy again to obtain range-space variants of FOM, MINRES and CG, now
denoted by the acronyms RSFOM, RSMR and RSCG, exactly in the same manner as that
indicated for the full-space variants. Obviously, the additional product by K in Step 3(d)
is redundant with the product by L whenever K = L. In fact RSCG is identical (in exact
arithmetic) to the RPCG method of Gratton and Tshimanga (2009).

Observe finally that, since GMRES and RSGMR0 are mathematically equivalent, the
sequence ‖qk‖ generated by RSGMR0 is identical to that generated by GMRES for b =
KT d and therefore enjoys the same monotonicity property. The same argument ensures
that the values of (2.6) generated by RSFOM and RSCG (RPCG) are monotonically
decreasing since they are the same as those generated by FOM and CG.

The reader interested in the solution of symmetric problems (L = K) may wonder at
this point at the cost of storing an orthonormal basis of the successive Krylov spaces in
RSFOM, compared to the lower requirements of RSCG and RSMR. While we indicate
in Section 4 that the FOM setting provides better accuracy and is much better suited to
the use of inexact matrix-vector products (discussed in Section 3), we also note that this
cost is much lower for range-space methods than for full-space ones. Indeed, the Krylov
vectors now belong to IRm rather than IRn, which may make a considerable difference in
practical applications where m≪ n.

While we have derived Algorithms RSGMR0 under the condition (2.8), it is not difficult
to avoid this assumption and allow for a right-hand side which is not the range of KT .
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This simply achieved by considering the extended system

(γI + K
T
L)s = K

T
em+1, where K =

[

K
bT

]

and L =

[

L
0T

]

, (2.12)

since then
K

T
L = KT L and K

T
em+1 = b. (2.13)

It may however be inconvenient to augment K and L as in (2.12) explicitly, mainly because
the product by these matrices typically result from applying some potentially complicated
operator to a vector. We therefore need a version of the algorithm based on K and L
rather than K and L. After some tedious but elementary rewriting, in particular using
the identity

bT pk = bT [KT b ] ŵk = [ ûT ‖b‖2 ] ŵk,

for û = Kb, one may then reformulate the RSGMR0 algorithm in its final, more general
form (dubbed RSGMR) on this page.

Algorithm 2.3: s = RSGMR( K, L, b )

1. Define β1 = ‖b‖, p1 = b, û = Kb, ẑ1 = û/β1, and v̂1 = em+1/β1.

2. For k = 1, . . . ,m + 1,

(a) ŵT
k = [(Lpk)T 0], ŵk ← ŵk/βk,

(b) for i = 1, . . . , k,

i. Hi,k = [ẑT
i 0] ŵk

ii. ŵk ← ŵk −Hi,kv̂i

(c) Hk,k ← Hk,k + γ,

(d) pk+1 = [KT b] ŵk, ẑk+1 = Kpk+1, ζk+1 = [ûT β2
1 ] ŵk,

(e) βk+1 = Hk+1,k =
√

[ẑT
k+1 ζk+1] ŵk,

(f) v̂k+1 ← ŵk/βk+1, ẑk+1 ← ẑk/βk+1,

(g) yk = arg miny ‖Hy − β1e1‖,
(h) if ‖Hyk − β1e1‖ < ǫr, break.

3. Return s = [KT b]V̂kyk.

In this last formulation, pk is the only n-dimensional vector, ŵk and the v̂i are (m + 1)-
dimensional, u and the ẑi are m-dimensional and yk is k-dimensional. We may also
see from (2.13) that the Krylov subspaces generated in IRn by RSGMR are identical to
those generated by RSGMR0 in IRn, and therefore that the sequence of residuals norms
produced by these two algorithms are the same. Thus considering (2.12) does not alter
the variational properties of the original GMRES, as was already the case for RSGMR0.

Once more, range-space variants of FOM, MINRES and CG handling general right-
hand sides may be derived from Algorithm RSGMR. Because it is of special interest below
and in practical data assimilation applications, we state the final range-space symmetric
variant of FOM, namely Algorithm RSFOM on the next page.

Observe that, as for RSGMR, the sequence of Krylov subspaces generated by RSFOM are
identical to those generated by the full-space CG (in exact arithmetic) and hence that the
sequence of objective function’s values (2.6) are also the same, preserving the desirable
monotonicity property of full-space CG.
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Algorithm 2.4: s = RSFOM( K, b )

1. Define β1 = ‖b‖, u = Kb, ẑ1 = u/β1 and v̂1 = em+1/β1.

2. For k = 1, . . . ,m + 1,

(a) ŵT
k = [ẑT

k 0]

(b) for i = 1, . . . , k,

i. Hi,k = [ẑT
i 0] ŵk

ii. ŵk ← ŵk −Hi,kv̂i

(c) Hk,k ← Hk,k + γ,

(d) ẑk+1 = [KKT u] ŵk+1, ζk+1 = [uT β2
1 ] ŵk,

(e) βk+1 = Hk+1,k =
√

[ẑT
k+1 ζk+1] ŵk,

(f) v̂k+1 ← ŵk/βk+1, ẑk+1 ← ẑk/βk+1,

(g) solve H2y = β1e1 for yk,

(h) if ‖Hyk − β1e1‖ < ǫr, break.

3. Return s = [KT b]V̂kyk.

The numerical efficiency of our range-space algorithms may clearly be further improved
(at the price of a severe loss in readability) by introducing the standard Givens rotations
to solve (2.4) or (2.5). The idea is to update a QR factorization of the matrix H as the
iterations proceed, factorization from which the solution of either problem can then be
derived efficiently. Because our focus in this paper is not on implementation issues and
also because the improvements obtained are marginal compared to the cost of the matrix
products, we choose not to develop this technique further here, but refer the interested
reader to Kelley (1995), Section 3.5, or to Björck, 1996, page 53, for instance.

In the quest for efficient range-space iterative method for the symmetric problem, the
authors have also derived RSLSQR, a range-space variant of LSQR (Paige and Saunders,
1982), whose most elaborate formulation is given in Appendix. It is based on applying
the LSQR method to the problem

min
s

∥

∥

∥

∥

[

In

K

]

s−
[

0
d

]∥

∥

∥

∥

2

(2.14)

whose normal equation is identical to (1.1) with γ = 1 and L = K. However, the con-
straint to operate on vectors in IRm implies that it has to use products with KKT and
therefore looses the decoupling between K and KT which is an inherent advantage of
the original (full-space) LSQR. As it then turns out, the performance of this algorithm
remains disappointing on (even moderately) ill-conditioned problems, which can be ex-
plained as follows. At variance with the techniques described so far, the algorithm builds
an orthonormal basis both in IRn+m (implicitly) and in IRm. The metric in IRn+m is then
of the form

(

I 0
0 KKT

)

and numerical difficulties arise as soon as the diagonal blocks of this metric become sub-
stantially different in size. We therefore do not consider RSLSQR further here.

This discussion has however another consequence: because range-space methods are
constrained to use the products by LKT or KKT , their numerical performance should not
be expected to compare with that of “square root” methods (like the full-space LSQR)
on severely ill-conditioned problems. While this is not a strong restriction for data as-
similation applications (where the condition number of In + HT H rarely exceeds 104, see
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Tshimanga, Gratton, Weaver and Sartenaer, 2008), this certainly reflects that substan-
tially cheaper algorithms also come at a price. . . Fortunately, we show below that the
accuracy obtained with RSGMR and RSFOM remains very acceptable in many cases(4).

We conclude this section by a brief comparison of the computational and storage costs
associated with full- and range-space GMRES and FOM. Table 2.1 reports the storage
and computational costs(5) at iteration k of these algorithms, where the computational
cost is divided in operations internal to the algorithm and the products which have to
be computed (very often using external software). In this table, the terms k(k + 3)/2 in
the storage costs correspond to storing the Hessenberg matrix H and yk, while the first
terms in the internal flops counts correspond to the cost of the relevant orthogonalization
process. The symbol [sol] represents the cost of solving the linear least-squares (2.4) or
the system (2.5) in the k-dimensional Krylov subspace.

GMRES RSGMR
storage n(k + 1) + k(k + 3)/2 n + (2m + 1)k + k(k + 3)/2
internal flops 4nk + 3n + [sol] 4mk + 7m + [sol]
products by KT , L KT , K, L

FOM RSFOM
storage n(k + 1) + k(k + 3)/2 (2m + 1)k + k(k + 3)/2
internal flops 4nk + 3n + [sol] 4mk + 6m + [sol]
products by KT , K KT , K

Table 2.1: Comparative storage, floating point operations and matrix vector products at
iteration k for full- and range-space Krylov solvers

We also give in Table 2.2 the initialization and termination computational costs, assuming
that termination occurs at iteration k.

GMRES, FOM RSGMR, RSFOM
initialization 3n 2n + 2m + prod(K)
termination (k) 2nk 2(m + 1)k + prod(KT )

Table 2.2: Comparative initialization and termination computational costs for full- and
range-space Krylov solvers

The comparative advantages and drawbacks of the range-space methods appear clearly in
the above tables: range-space methods are preferable when m ≪ n and, for the unsym-
metric case, when the cost of an additional product by K per iteration is not prohibitive
compared to that of reduced storage. Note that this last restriction does not apply to the
symmetric case.

3 Stability and convergence with inexact products

After deriving RSGMR and RSFOM, we now propose an analysis of the behaviour of these
algorithms in the case where the products by KT and L are performed inexactly. There
are two main reasons to consider this question. First of all, the inexact nature of computer
arithmetic implies that such errors on the products are inevitable. As a consequence, the
ideal version of the methods considered so far may be considerably perturbed because the
computed quantities may no longer be restricted the the range of the (ideal but unknown)
KT . It is therefore important to verify that this deviation from our assumption does
note cause numerical instability. The second reason to consider inexact matrix products

(4)Extensive numerical experiments not reported here show that the best achievable accuracy for RSGMR
and RSFOM is comparable to that obtained with normal-equations approaches.

(5)We ignore the constants in this evaluation.
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is clearly to allow them in an inexact but cheaper form. This is especially crucial in the
context of data assimilation as discussed in Section 1 where the products constitute by
far the most costly part of the computation. In particular, inexact products allow us
to consider, in this context, inexact solves with B−1 or R−1 as well as the use of less
expensive, degraded versions of the operators H and HT . Similar considerations, albeit
in different contexts, were also used for motivating the analysis proposed by van den
Eshof and Sleijpen (2004) and by Simoncini and Szyld (2003) for the full-space versions
of iterative Krylov solvers.

Consider RSGMR0 and assume that the first products (corresponding to the scaling
of d) are already performed inexactly, that is

v̂1 = d/β1 = d/
√

dT (K + EK,1)(KT + EKT ,1)d (3.1)

for some error matrices EKT ,0 and EK,0. Assume also that each subsequent product by
KT , K or L is inexact in the sense that, at iteration i,

Li = L + EL,i+1, KT
i = KT + EKT ,i+1 and Ki = K + EK,i+1,

for some errors EL,i+1, EKT

i
+1 and EK,i+1. If we terminate at iteration k, the solution

sk = s is finally computed using an inexact product with KT in the formula

sk = (KT + EKT ,∗)Vkyk, (3.2)

for some error EKT ,∗.
We now propose two different models for describing the inaccuracy in the matrix-vector

products. In the first model, which we call the backward-error model, we assume that

‖EK,i+1‖ ≤ τK,i+1‖K‖, and ‖EKT ,i+1‖ ≤ τKT ,i+1‖K‖ for i = 0, . . . , k, (3.3)

‖EL,i+1‖ ≤ τL,i+1‖L‖ for i = 1, . . . , k

and
‖EKT ,∗‖ ≤ τ∗‖K‖

for some tolerances τK,i+1, τKT ,i+1, τL,i+1 and τ∗ belonging to the interval [0, 1).
The second error model for inexact products, called the forward-error model is stronger

and replaces bounds on the errors on the operators by bounds on the errors on the vector
resulting from the application of the operator. In this model, we replace the above bounds
by

‖EK,i+1 un‖ ≤ τK,i+1‖Kun‖, and ‖EKT ,i+1 um‖ ≤ τKT ,i+1‖Kum‖ for i = 0, . . . , k,
(3.4)

‖EL,i+1 un‖ ≤ τL,i+1‖Lun‖ for i = 1, . . . , k

and
‖EKT ,∗ um‖ ≤ τ∗‖Kum‖

where un and um are vectors of dimension n and m, respectively, to which the operators
K or L (for un) or KT (for um) are applied.

Which error model is preferable is unclear in general and might depend on context.
While the backward-error approach is more widespread in the literature (it used by van den
Eshof and Sleijpen, 2004, and Simoncini and Szyld, 2003), the forward-error approach may
be judged more realistic in situations where monitoring the output of a complex process
for a specific input is feasible, but impossible or too expensive for all possible inputs.

Our aim is then to bound ‖rk‖, the norm of the true residual at iteration k, where

rk = (γIn + KT L)sk −KT d,
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if possible by quantities which can be obtained or estimated in the course of the computa-
tion. We first conduct our analysis under the assumption that no breakdown occurs, that
is

ŵi 6= 0 for i = 1, . . . , k, (3.5)

(where ŵi is considered at the end of the normalization, that is after Step 2(b)), but will
comment on the situation where this condition fails at the end of the section.

We start by analyzing the perturbed Arnoldi process and prove a useful bound on the
residual norm, irrespective of the error model considered.

Lemma 3.1 Under the above assumptions, one has that

‖rk‖ ≤ ‖Qk‖ ‖Hyk−β1e1‖+ γ‖EKT ,∗V̂kyk‖+ ‖K‖
k

∑

i=1

|[yk]i| ‖(LKT
∗

v̂i−LiK
T
i )v̂i‖ (3.6)

where Qk
def
= KT V̂k+1.

Proof. By constuction, RSGMR0 ensures that the Arnoldi relation (2.11) holds
with perturbed matrices, that is

[

(γIn + L1K
T
1 )v̂1, . . . , (γIn + LkKT

k )v̂k

]

= V̂k+1H

and therefore

KT
[

(γIn + L1K
T
1 )v̂1, . . . , (γIn + LkKT

k )v̂k

]

yk = KT V̂k+1Hyk. (3.7)

Observe now that, because of (3.1),

KT d = β1K
T v̂1 = β1K

T V̂k+1e1.

Substracting this quantity from both sides of (3.7), we obtain that

KT
[

(γIn + L1K
T
1 )v̂1, . . . , (γIn + LkKT

k )v̂k

]

yk −KT d = KT V̂k+1(Hyk − β1e1).

Remembering now that sk is given by (3.2), we see that

‖rk‖ = ‖KT LKT
∗

V̂kyk −KT d + γKT
∗

V̂kyk‖
= ‖KT LKT

∗
V̂kyk + KT V̂k+1(Hyk − β1e1)

−KT
[

(γIn + L1K
T
1 )v̂1, . . . , (γIn + LkKT

k )v̂k

]

yk + γKT
∗

V̂kyk‖
= ‖KT LKT

∗
V̂kyk + Qk(Hyk − β1e1) + γ(KT

∗
−KT )V̂kyk

−KT
[

L1K
T
1 v̂1, . . . , LkKT

k v̂k

]

yk‖
≤ ‖Qk‖ ‖Hyk − β1e1‖+ γ‖EKT ,∗V̂kyk‖

+‖K‖ ‖LKT
∗

V̂kyk −
[

L1K
T
1 v̂1, . . . , LkKT

k v̂k

]

yk‖
(3.8)

But we have, using the triangle inequality, that

‖LKT
∗

V̂kyk −
[

L1K
T
1 v̂1, . . . , LkKT

k v̂k

]

yk‖ ≤
k

∑

i=1

|[yk]i| ‖LKT
∗

v̂i − LiK
T
i v̂i‖

and (3.6) follows. 2

After this general result, we now focus on the backward-error model.
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Lemma 3.2 Under the above assumptions and assuming the backward-error model, one
has that

‖rk‖ ≤ ‖Qk‖ ‖Hyk − β1e1‖+ ‖K‖πk

[

τkT ,∗γ
√

k‖yk‖+ 4G2
k

∑

i=1

|[yk]i| τi

]

, (3.9)

where πk
def
= maxi=1,...,k ‖v̂i‖, G

def
= max[‖K‖, ‖L‖] and τi

def
= max[τ∗, τKT ,i, τK,i, τL,i].

Proof. We first obtain, using the triangle inequality and the definition of πk, that

∑k
i=1 |[yk]i| ‖(LKT

∗
− LiK

T
i )v̂i‖ ≤

∑k
i=1 |[yk]i| ‖LKT

∗
− LiK

T
i ‖ ‖v̂i‖

≤ πk

∑k
i=1 |[yk]i| ‖LKT

∗
− LiK

T
i ‖.

Again using the triangle inequality and (3.3), we now deduce that

‖LKT
∗
− LiK

T
i ‖ = ‖LEKT ,∗ − LEKT ,i − EL,iK

T − EL,iEKT ,i‖
≤ 3τiG

2 + τ2
i G2

≤ 4τiG
2,

(3.10)

where we used the bound τi ≤ 1 to derive the last inequality, and therefore that

k
∑

i=1

|[yk]i| ‖(LKT
∗
− LiK

T
i )v̂i‖ ≤ 4πkG2

k
∑

i=1

|[yk]i| τi.

Substituting this bound in (3.6) and using the inequality

‖EKT ,∗V̂kyk‖ ≤ τ∗‖K‖πk

√
k‖yk‖ ≤ τi‖K‖πk

√
k‖yk‖

then gives (3.9). 2

Observe that the proof of this lemma does not use τK and that the error on the products by
K does not explicitly appear in the bound (3.9), but is present implicitly as the quantities
‖Qk‖ and πk crucially depend on the metric KKT and therefore, in our case, on these
errors EK,i (i = 1, . . . , k). We now bound these quantities, provided the error remains
sufficiently small compared to the condition number of K defined by

κ(K)
def
=

σmax(K)

σ0
min(K)

where σmax(K) is the largest singular value of K and σ0
min(K) is the smallest of the strictly

positive ones (Björck, 1996, page 28).

Lemma 3.3 Suppose that the backward-error model holds, that (3.5) is satisfied and that
τ is sufficiently small to ensure that, for all i,

τiκ(K) < 1

6
. (3.11)

Then

‖Qk‖ ≤
√

2(k + 1) and πk ≤
√

2

σ0
min(K)

. (3.12)

Proof. From the Cauchy-Schwarz inequality, the fact that v̂i ∈ range(KT ) by
construction and (3.3), we first verify that

|v̂T
i KEKT ,iv̂i|
v̂T

i KKT v̂i

≤ ‖EKT ,iv̂i‖
‖KT v̂i‖

≤ τKT ,i‖K‖ ‖v̂i‖
σ0

min(K)‖v̂i‖
≤ τi κ(K). (3.13)
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Similarly,

|v̂T
i EK,iK

T v̂i|
v̂T

i KKT v̂i
≤ τiκ(K) and

|v̂T
i EK,iEKT ,iv̂i|
v̂T

i KKT v̂i
≤ τ2

i κ(K)2. (3.14)

Thus we deduce from (3.11), (3.13) and (3.14) that

∣

∣

∣

∣

v̂T
i (KEKT ,i + EK,iK

T + EK,iEKT ,i)v̂i

v̂T
i KKT v̂i

∣

∣

∣

∣

≤ 3τiκ(K) ≤ 1

2
. (3.15)

As a consequence, since clearly

v̂T
i (K+EK,i)(K

T +EKT ,i)v̂i =

[

1 +
v̂T

i (KEKT ,i + EK,iK
T + EK,iEKT ,i)v̂i

v̂T
i KKT v̂i

]

v̂T
i KKT v̂i,

we thus obtain that

1

2
‖KT v̂i‖2 ≤ v̂T

i (K + EK,i)(K
T + EKT ,i)v̂i ≤

3

2
‖KT v̂i‖2 (3.16)

and the normalization (with respect to the inexact metric KiK
T
i ) performed by the

algorithm to ensure that

v̂T
i (K + EK,i)(K

T + EKT ,i)v̂i = 1 (3.17)

is legal because of (3.5) and because v̂i belongs to the range of KT by construction.
Inserting (3.17) in (3.16), we then deduce that

2

3
< v̂T

i KKT v̂i < 2. (3.18)

which in turn implies that

‖Qk‖ = ‖[KT v̂1, . . . ,K
T v̂k+1]‖ ≤

√

2(k + 1).

as requested. We finally prove the second part of (3.12) by observing that, for i =
1, . . . , k,

‖v̂i‖2 =
v̂T

i v̂i

v̂T
i KKT v̂i

v̂T
i KKT v̂i ≤

2

σ0
min(K)2

where we used (3.18) to deduce the last inequality. 2

While the bound on ‖Qk‖ given by (3.12) is formally correct and conceptually tight, it
is often very pessimistic in practice, as it does not take the typical random nature of the
error into account. In particular, it is not unusual for the residual error to be independent
of the factor

√
k + 1 in the bound expression.

We may then combine the two above lemmas and obtain a final set of bounds on ‖rk‖
for the case where the backward-error model is considered.

Theorem 3.4 Suppose that the backward-error model holds. Then

‖rk‖ ≤
√

2(k + 1) ‖Hyk − β1e1‖+ ‖K‖πk

[

τ∗γ
√

k‖yk‖+ 4G2
∑k

i=1 |[yk]i| τi

]

≤
√

2(k + 1) ‖Hyk − β1e1‖+ τmax

√
k‖K‖πk(γ + 4G2)‖yk‖

≤
√

2(k + 1)
[

‖Hyk − β1e1‖+ τmaxκ(K) (γ + 4G2)‖yk‖
]

.
(3.19)

where τmax
def
= max[τ1, . . . , τk].
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The first and sharpest of these three bounds allows the consideration of levels of inexactness
in the products that vary from iteration to iteration, in the spirit of Simoncini and Szyld
(2003) and van den Eshof and Sleijpen (2004). It only involves computable quantities, as
‖Hyk − β1e1‖ (the norm of the residual in Kk), ‖yk‖ and πk can be recurred within the
RSGMR0 iterations in O(max[m, k2]) operations(6). The second bound is most interesting
in the case where a constant bound on inexactness is selected. The third bound is similar,
but does not requires the computation of πk, at the cost of a (experimentally often severe)
overestimation.

We observe the specific role of τ∗ in the error bound, as it appears multiplied by
‖yk‖ rather than by one of the |[yk]i|, a phenomenon specific to the range-space setting.
The final product by KT to produce s in Step 4 should therefore be computed with a
potentially higher accuracy than any of the preceding products if the overall error bound
is to be preserved.

It is also interesting to note that there is little to be gained by controlling the errors of
the products of K, KT and L differently, as the error-bound analysis show their effects to
be intertwined (see e.g. (3.15)). This is also born out in our numerical experiments (see
Section 4).

Because our analysis is based on the (in this case inexact) Arnoldi process, it also
applies to the FOM context and similar conclusions therefore hold for the inexact variant
of RSFOM. However, the standard CG and MINRES methods are no longer equivalent
to FOM and GMRES in the context of unsymmetric perturbations (because the latter
methods consider an underlying symmetric tridiagonal matrix H), and the bounds (3.19)
therefore do not extend as such to these methods.

We now turn to deriving similar bounds for the case where the forward-error model
holds. We first derive the equivalent to Lemma 3.3.

Lemma 3.5 Suppose that the forward-error model holds, that (3.5) is satisfied and that
τ verifies

τ < 1

6
. (3.20)

Then
‖KT v̂i‖ ≤

√
2 and ‖Qk‖ ≤

√

2(k + 1). (3.21)

Proof. Inspired by (3.13), we verify that

|v̂T
i KEKT ,iv̂i|
v̂T

i KKT v̂i

≤ ‖EKT ,iv̂i‖
‖KT v̂i‖

≤ τKT ,i‖KT v̂i‖
‖KT v̂i‖

= τ (3.22)

where we successively used the Cauchy-Schwarz inequality and (3.4). Similarly,

|v̂T
i EK,iK

T v̂i|
v̂T

i KKT v̂i
≤ τ and

|v̂T
i EK,iEKT ,iv̂i|
v̂T

i KKT v̂i
≤ τ2. (3.23)

Thus we deduce from (3.20), (3.22) and (3.23) that

∣

∣

∣

∣

v̂T
i (KEKT ,i + EK,iK

T + EK,iEKT ,i)v̂i

v̂T
i KKT v̂i

∣

∣

∣

∣

≤ 3τ ≤ 1

2
.

We then continue the proof as in Lemma 3.3 and deduce the first bound of (3.21)
instead of (3.18). The second part of (3.21) then follows exactly as in Lemma 3.3. 2

We may then use the first of these bounds in a result similar in spirit to Lemma 3.2.

(6)Assuming the use of Givens rotations to compute yk.
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Theorem 3.6 Under the above assumptions and assuming the forward-error model, one
has that

‖rk‖ ≤
√

2(k + 1) ‖Hyk − β1e1‖+
√

2

[

τ∗γ
√

k‖yk‖+ 4G ‖K‖∑k
i=1 |[yk]i| τi

]

≤
√

2(k + 1)

[

‖Hyk − β1e1‖+ τmax (γ + 4G ‖K‖)‖yk‖
]

.

(3.24)

Proof. We note that

‖LEKT ,∗v̂i‖ ≤ τ∗ ‖L‖ ‖KT v̂i‖ ≤
√

2 τ∗ ‖L‖,≤
√

2 τi ‖L‖,

where we used (3.4) qnd the first part of (3.21). Similarly,

‖LEKT ,iv̂i‖ ≤
√

2 τKT ,i‖L‖ ≤
√

2 τi‖L‖.

We also derive in the same manner that

‖EL,iK
T v̂i‖ ≤ τL,i‖LKT v̂i‖ ≤ τL,i‖L‖ ‖KT v̂i‖ ≤

√
2 τi‖L‖

and finally that

‖EL,iEKT ,iv̂i‖ ≤ τL,i‖LEKT ,iv̂i‖ ≤ τL,i‖L‖ τKT ,i‖KT v̂i‖ ≤
√

2 τi‖L‖.

Combining these bounds, we deduce that

‖(LKT
∗
− LiK

T
i )v̂i‖ = ‖LEKT ,∗v̂i − LEKT ,iv̂i − EL,iK

T v̂i − EL,iEKT ,iv̂i‖
≤ 4

√
2 τi G.

Substituting this last bound in (3.6) and using

‖EKT ,∗V̂kyk‖ ≤ τ∗ ‖KT V̂k‖ ‖yk‖ ≤ τ∗
√

2k ‖yk‖

then yields the first inequality in (3.24), from which the second easily follows using the
second part of (3.21). 2

A comparison of Theorems 3.4 and 3.6 shows that the second is considerably stronger,
in that the conditioning of K or the factor ‖K‖πk no longer appear. As a consequence,
possibly significantly more inexact products are possible in the forward-error model than
in the backward-error one, with the same final accuracy requirement.

We observe that breakdown may obviously occur in the inexact case just as with exact
products, and can be solved using the same strategies. In the context of inexact products,
a simpler method also consists in recomputing the last matrix-vector product with a
marginally different accuracy threshold, which then corresponds to a slightly different
error in the inexact product. This suppresses the breakdown (with probability one) and
allows the algorithm to proceed.

We finally note that, because it uses exact arithmetic, our analysis applies without
modification to mathematically equivalent variants of GMRES, including classical or iter-
ated Gram-Schmidt procedures, as well as Householder variants.

4 Numerical illustrations

We now illustrate some of the concepts and motivation numerically. Our first example is
in the symmetric case and aims at motivating the consideration of FOM besides CG for
inexact products. It has been noted in van den Eshof and Sleijpen (2004) and Simoncini
and Szyld (2003) that managing inexact products may be more difficult for CG than for
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FOM, mostly because the convergence of ‖Hyk − βe1‖ is uncertain in the first case, while
it is ensured in the second by the full orthogonalisation property. We now provide a simple
example where this phenomenon happens. We consider A to be a symmetric tridiagonal
matrix of dimension n = 100, whose main diagonal is given by n entries whose logarithms
are equally spaced between -1 and 5, and whose off-diagonal contain values equally spaced
between 0.08 and 1.5. This matrix is safely positive definite, with its minimum eigenvalue
around 0.05, and moderatly ill-conditioned (κ(A) ≈ 106). The right-hand side of the
system is then given by e1, the first vector of the canonical basis (note that ‖b‖ = 1).
Figure 4.1 shows the convergence of the normalized Krylov residual ‖qk‖/(‖A‖ ‖s∗‖) as
a function of k, where s∗ is the true solution of the system. The left-most graph shows
the convergence of the CG normalized residual as the top-most, mostly horizontal dotted
curve and that of the FOM normalized residual as the left-most, nearly vertical continuous
one, in the case where products by K = L are exact. The convergence of both methods is
reasonable in this case, although that of FOM is faster and less subject to rounding noise.
The graph on the right shows the same quantities for the case where products are inexact
in the sense that, at iteration k > 2, a small (τi = τ = 10−9) multiple of the normalized
Krylov basis vector computed at iteration k − 2 is added to the product vector. This
graph clearly demonstrates that inexact products barely affect FOM, but may have a very
negative effect on CG, for which the normalized residual is never decreased below the level
τ (we only illustrate the first 500 iterations).
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Figure 4.1: The effect of inexact products on FOM, CG with reorthogonalization and CG
(exact products on the left, inexact products on the right) on computed residual norm as
a function of k

However, one should remember that FOM has higher memory requirements than CG
due to its full orthogonalization procedure, making the previous comparison somewhat bi-
ased. For a more balanced view, it is therefore natural to consider applying a variant of CG
where reorthogonalization is performed at every iteration (thereby requiring similar stor-
age) to the same problem. The result of this test is illustrated by the middle dashed curve
in both graphs of Figure 4.1. While this variant of CG is nearly undistinguishable form
FOM on our example when products are computed exactly, significant differences reappear
for inexact products. It is clear in this case that reorthogonalization improves convergence
(which now happens in exactly n steps) for CG, but the performance of FOM remains
markedly superior. Other extensive tests (not reported here) indicate that, although not
always as extremely as in the example presented above, FOM globally outperforms CG
with reorthogonalization, which itself is very often more efficient than the standard CG.
This is especially true when inexact products are considered.

Our second numerical illustration aims at showing effect of using different strategies
for allowing inexactness in the products in applying RSGMR to the system (1.1). The
simplest technique is to decide of a product accuracy threshold in view of the desired
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final accuracy on the normalized true system residual, the latter being given (assuming
termination at iteration k) by

‖rk‖
‖A‖ ‖s∗‖

, (4.1)

where s∗ is again the true system’s solution. In the results presented below, we have
chosen this threshold τ according to the formula

τBEM =
40ǫ

√

2(m + 1)κ(K)
and τFEM = ǫ,

where BEM and FEM refer to the backward-error model and the forward-error model,
respectively. The formula for τBEM is inspired by the bound (3.19) (using the empirical
observations that γ + 4G2 ≈ 4G2 and ‖yk‖ = O(‖s∗‖) and a factor 10 to counteract the
loosesness of the bound). That for τFEM is directly derived from (3.24). The RSGMR
algorithm using these two strategies and associated error models are applied to an example
with γ = 1, n = 1000 and m = 100 whose matrices K and L are chosen randomly with
m nonzero singular values whose logarithms are equally spaced between 0.1 and 0.3. The
requested accuracy is chosen as ǫ = 10−5. The results are shown in Figure 4.2, in which
the true normalized residual norms (4.1) are represented by a solid line, normalized Krylov
residual norms

‖qk‖
‖H‖ ‖yk‖

by a dashed line, final accuracy requirement by an horizontal dotted line and accuracy
threshold τ at iteration k by a dashed-dotted line. The left graph shows the effect of
applying the backward-error model (with τk = τBEM ) and the left graph that of applying
the forward-error model (with τk = τFEM ).
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Figure 4.2: Accuracy threshold, normalized true and Krylov residual norms as a function
of k when using the backward-error (left) and forward-error (right) accuracy models for
the products by K, KT and L (σmin(A) ≈ 2× 10−2, σmax(A) ≈ 4)

The differences between the two error strategies are small in this case. Being also interested
in variable accuracy thresholds strategies, we also applied a technique recommended by
Simoncini and Szyld (2003) (and adapted to (4.1)): we ran the same example with the
choice

τi = τSS =
σmin(A)

m

ǫ ‖s∗‖
‖qi‖

and τ∗ = τBEM (4.2)

within the backward-error accuracy model, which is consistent with assumptions used in
this reference. The result of this experiment is shown in Figure 4.3.
We see in this case a profile of the accuracy threshold similar to those reported by Si-
moncini and Szyld, but note that the variable theshold is significantly below the thesholds
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Figure 4.3: Accuracy threshold, normalized true and Krylov residual norms as a function
of k when using the variable backward accuracy requirements described by (4.2) for the
products by K, KT and L (σmin(A) ≈ 2× 10−2, σmax(A) ≈ 4)

illustrated in Figure 4.2 practically up to the point where the maximal accuracy has been
reached for the true residual.

We now apply the same algorithm on the same example modified so that the nonzero
singular values of K and L have their logarithm equally spaced between 1 and 3 (instead
of 0.1 and 0.3), significantly affecting both κ(K) and ‖K‖. The results are shown in
Figure 4.4.
As expected the accuracy threshold for the backward-error model decreases (to compen-
sate the change in conditioning and ‖K‖), but the forward-error-model threshold remains
unchanged. Unfortunately, the variable strategy now picks up a too severe accuracy thresh-
old because of the smaller σmin(A) and only allows a small error on the products, thereby
illustrating the difficulties of designing a robust and efficient variable accuracy scheme.

We finally conclude our numerical illustrations by verifying the claim made above that
manipulating the accuracy thresholds on K and L differently does not affect the algorithm
much. To this aim, we return to our second test case (for which the behaviour of RSGMR
is shown in Figure 4.2), and run the algorithm first allowing inexact products with L only,
and then with K and KT only. Figure 4.5 presents the results of these two runs (using the
backward-error model), and one checks that they do not differ significantly from the left
graph of Figure 4.2 (except maybe a marginally lower final true residual when the product
with KT is exact, probably resulting from a better accuracy in recovering the final s).

5 Conclusions and perspectives

Motivated by applications in inverse problems and, more specifically, by data assimilation
for oceanography and wheather forecasting, we have introduced range-space variants of
GMRES, FOM, CG and MINRES. These variants are characterized by significantly lower
storage requirements and inner computational costs than their full-space versions, at the
cost of an additional matrix vector product per iteration in the unsymmetric case.

With the aim of reducing the computational burden further, we have also consid-
ered how strategies involving inexact matrix-vector products could be applied in the new
methods, and have distinguished two distinct models to describe the inexactness allowed
in these products. The first of this model considers the backward error on the matrix itself,
while the second only controls the forward error on the vector resulting from the product.
Formal error bounds on the true system residual are derived in both cases, indicating that
the second strategy might allow looser accuracy requirements than the first.

We have finally provided numerical illustrations confirming these findings. Further-
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Figure 4.4: Accuracy threshold, normalized true and Krylov residual norms as a function of
k when using the backward-error (top-left) and forward-error (top-right) accuracy models
and the variable model (bottom) for the products by K, KT and L (σmin(A) ≈ 2× 10−4,
σmax(A) ≈ 5× 105)

more, numerical evidence is also presented that indicates that FOM-like methods might
be preferable to CG when products are computed inexactly, and that variable accuracy
strategies may be difficult to design.

The authors are well aware that a complete numerical evaluation of the new range-
space methods is necessary and that a number of issues raised in this paper merit further
development. These include, in particular, the design of an efficient and robust variable
accuracy scheme, clear stopping rules based on the formal error estimates, additional short
recurrences techniques beyond CG and MINRES, and several other implementations issues
such as the selection of the most suitable GMRES formulation amongst Gram-Schmidt
and Householder variants. The extension of the forward-error model to derive tighter
residual bounds for full-space methods may also be of interest. These topics are the object
of ongoing research.

It is of course especially worthwhile to apply the new methods in the context of the
motivating inverse problems in data assimilation, and also to specialize them further to
gracefully handle the correlation matrices B and R. Inexact products are especially ap-
pealing in this context, where iterative solutions of linear systems involving these matrices
may be truncated, or variable-fidelity techniques (like multigrid or simplified physics) ex-
ploited to alter the accuracy of the underlying models.
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Figure 4.5: Impact of different accuracy thresholds for the products by K and L: no error
on products by L on left and no error on products by K and KT on the right

References

L. Amodei. Solution approchée pour un problème d’assimilation de donnéees météo-
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Appendix: A range-space variant of LSQR

The range-space variant of LSQR is derived for the problem (2.14) and is stated as Al-
gorithm RSLSQR below. In this description, the GIVROT(ρ̄k, βk+1) algorithm computes
the parameters of a Givens rotation such that

(

κk σk

−σk κk

)(

ρ̄k

βK+1

)

=

(

ρk

0

)

,

(see Björck, 1996, page 54). The numerical difficulty reported at the end of Section 2
arises in the computation of βk+1 at Step 5(a), and is not specific to the formula used
(several variants have been tried with worse results).
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Algorithm .1: s = RSLSQR( K, d )

1. Define β1 = ‖d‖, ĥ1 = d/β1, v̂1 = ĥ1, ŝ1 = 0, ẑ1 = KKT v̂1,

2. α1 =
√

ẑT
1 v̂1, v̂1 ← v̂1/α1, ẑ1 ← ẑ1/α1,

3. ŵ1 = v̂1, φ̄1 = β1, ρ̄1 = α1,

4. For k = 1, . . . ,m,

(a) βk+1 =
√

α2
k + ẑT

k (v̂k + ẑk)− 2αkẑT
k ĥk,

(b) ĥk+1 = (v̂k + ẑk − αkĥk)/βk+1, v̂k+1 = ĥk+1 − βk+1v̂k,

(c) ẑk+1 = KKT v̂k+1,

(d) αk+1 =
√

ẑT
k+1v̂k+1, v̂k+1 ← v̂k+1/αk+1, ẑk+1 ← ẑk+1/αk+1,

(e) [κk, σk, ρk] = GIVROT(ρ̄k, βk+1),

(f) θk = σkαk+1, ρ̄k+1 = κkαk+1, φk+1 = κkφ̄k, φ̄k+1 = −σkφ̄k,

(g) ŝk = ŝk−1 + (φk/ρk)ŵk ŵk+1 = v̂k − (θk/ρk)ŵk

5. Return s = KT ŝk.


