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Abstract

It is shown that the steepest descent and Newton’s method for unconstrained
nonconvex optimization under standard assumptions may be both require a number
of iterations and function evaluations arbitrarily close to O(ǫ−2) to drive the norm
of the gradient below ǫ. This shows that the upper bound of O(ǫ−2) evaluations
known for the steepest descent is tight, and that Newton’s method may be as slow
as steepest descent in the worst case. The improved evaluation complexity bound of
O(ǫ−3/2) evaluations known for cubically-regularised Newton methods is also shown
to be tight.

1 Introduction

We consider the numerical solution of the unconstrained (possibly nonconvex) optimization
problem

min
x
f(x) (1.1)

where we assume that f : IRn → IR is twice continuously differentiable and bounded below.
All practical methods for the solution of (1.1) are iterative and generate a sequence {xk}
of iterates approximating a local minimizer of f . A variety of algorithms of this form exist,
amongst which the steepest-descent and Newton method are preeminent.

At iteration k, the steepest descent method chooses the new iterate xk+1 by minimiz-
ing (typically inexactly) f(xk − tgk), for t ≥ 0, where gk = ∇xf(xk). This first-order
method has the merit of simplicity and a theoretical guarantee of convergence under weak
conditions (see Dennis and Schnabel, 1983, for instance). The number of iterations re-
quired in the worst case to generate an iterate xk such that ‖gk‖ ≤ ǫ (for ǫ > 0 arbitrarily
small) is known to be at most O(ǫ−2) (see Nesterov, 2004, page 29), but the question of
whether this latter bound is tight has remained open. The practical behaviour of steep-
est descent may be poor on ill-conditioned problems, and it is not often used for solving
general unconstrained optimization problems.

By contrast, Newton’s method and its variants are popular and effective. At iteration
k, this method (in its simplest and standard form) chooses the next iterate by minimizing
the quadratic model

mk(xk + s) = f(xk) + gT
k s+ 1

2
sT

kHksk, (1.2)

where Hk
def
= ∇xxf(xk) is assumed to be positive definite. This algorithm to known

to converge locally and quadratically to strict local minimizers of the objective function
f , but in general convergence from arbtrary starting points cannot be guaranteed, in
particular because the Hessian Hk may be singular or indefinite, making the minimization
of the quadratic model (1.2) irrelevant. However, Newton’s method works surpringly
often without this guarantee, and, when it does, is usually remarkably effective. We
again refer the reader to classics in optimization like Dennis and Schnabel (1983) and
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Nocedal and Wright (1999) for a more extensive discussion of this method. To the best
of our knowledge, no worst-case analysis is available for this standard algorithm applied
on possibly nonconvex problems (a complexity analysis is however available for the case
where the objective function is convex, see Nesterov, 2004, for instance).

Globally convergent variants of Newton’s method have been known and used for a
long time, in the linesearch, trust-region or filter frameworks descriptions may be found in
Dennis and Schnabel (1983), of which Conn, Gould and Toint (2000) and Gould, Sainvitu
and Toint (2005), respectively. Although theoretically convergent and effective in practice,
the complexity of most of these variants applied on general nonconvex problems has not yet
been investigated. The authors are only aware of the analysis by Gratton, Sartenaer and
Toint (2008), (Corollary 4.10) where a bound on the complexity of an inexact variant of the
trust-region method is shown to be of the same order as that of steepest descent, and of the
analysis by Ueda and Yamashita (2008, 2009) and Ueda (2009), which essentially proves
the same result for a variant of Newton’s method using Levenberg-Morrison-Marquardt
regularization.

Another particular globally convergent variant of Newton’s method for the solution of
nonconvex unconstrained problems of the form (1.1) is of special interest, because it is
covered by a better worst-case complexity analysis. Independently proposed by Griewank
(1981), Weiser, Deuflhard and Erdmann (2007) and Nesterov and Polyak (2006) and
subsequently adapted in Cartis, Gould and Toint (2009a), this method uses a cubic regu-
larization of the quadratic model (1.2) in that the new iterate is found at iteration k by
globally minimizing the cubic model

mk(xk + s) = f(xk) + gT
k s+ 1

2
sT

kHksk + 1

3
σk‖sk‖3, (1.3)

where σk ≥ 0 is a suitably chosen regularization parameters (the various cited authors
differ in how this choice is made). This method, which we call the Adaptive Regularization
with Cubics (ARC) algorithm, has been shown to require at most O(ǫ−3/2) iterations
to produce an iterate xk such that ‖gk‖ ≤ ǫ, provided the objective function is twice
continuously differentiable, bounded below and provided ∇xxf(x) is globally Lipschitz
continuous on each segment [xk, xk+1] of the piecewise linear path defined by the iterates.
This result, due to Nesterov and Polyak (2006) when the model minimization is global and
exact and to Cartis, Gould and Toint (2007) for the case where this minimization is only
performed locally and approximately, is obviously considerably better than that for the
steepest-descent method. We note here that even better complexity results in the convex
case are discussed for ARC by Nesterov (2008) and Cartis, Gould and Toint (2009b), and
for other regularized Newton’s methods by Polyak (2009) and Ueda (2009).

But obvious questions remain. For one, whether the steepest descent method may
actually require O(ǫ−2) functions evaluations on functions with Lipschitz continuous gra-
dients is of interest. The first purpose of this paper is to show that this is so. The lack
of complexity analysis for the standard Newton’s method also raises the possibility that,
despite its considerably better performance on problems met in practice, its worst-case
behaviour could be as slow as that of steepest descent. A second objective of this paper is
to show that this is the case, even if the objective function is assumed to be bounded below
and twice-continuously differentiable with Lipschitz continuous Hessian on each segment
of the piecewise linear path defined by the iterates. This establishes a clear distinction
between Newton’s method and its ARC variant, for which a substantially more favourable
analysis exists. The question then immediately arises to decide whether this better bound
for ARC is actually the best that can be achieved. The third aim of the paper is to
demonstrate that it is indeed the best.

The paper is organized as follows. Section 2 introduces an example for which the
steepest descent method is as slow as its worst-case analysis suggests. Section 3 then
exploits the technique of Section 2 for constructing examples for which slow convergence
of Newton method can be shown, while Section 4 further discusses the implications of
these examples (and the interpretation of of worst-case complexity bounds in general).
Section 5 then again exploits the same technique for constructing an example where the
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ARC algorithm is as slow as is implied by the aforementioned complexity analysis. Some
conclusions are finally drawn in Section 6.

2 Slow convergence of the steepest descent method

Consider using the steepest descent method for solving (1.1). We would like to construct
an example on which this algorithm converges at a rate which corresponds to its worst-
case on general nonconvex objective functions, i.e. such that one has to perform O(ǫ−2)
iterations to ensure that

‖gk+1‖ ≤ ǫ. (2.1)

In order to achieve this goal, a suitable condition is to require that, for all k ≥ 0,

‖gk‖ ≥
(

1

k + 1

)
1

2

. (2.2)

An arbitrarily close approximation can considered by requiring that, for any τ > 0, New-
ton’s method needs O(ǫ−2+τ ) iterations to achieve (2.1), which leads to the condition that,
for all k ≥ 0,

‖gk‖ ≥
(

1

k + 1

)
1

2−τ

. (2.3)

Our objective is therefore to construct sequences {xk}, {gk}, {Hk} and {fk} such that
(2.3) holds and which may be generated by the steepest descent algorithm, together with
a twice continuously differentiable function f1(x) such that

fk = f1(xk), and gk = ∇xf1(xk) (2.4)

In addition, f1 must be bounded below and Hk must be positive definite for the algorithm
to be well-defined. We also would like f1 to be as smooth as possible; we are aiming at

AS.0 f is twice continuously differentiable, bounded below, and has bounded Lipschitz
continuous gradient,

since these are the standard assumptions under which globalized steepest descent is prov-
ably convergent (see Dennis and Schnabel, 1983, Theorem 6.3.3).

Our example is unidimensional and we define, for all k ≥ 0,

x0 = 0, xk+1 = xk + αk

(

1

k + 1

)
1

2
+η

, (2.5)

for some steplength αk > 0 such that, for constant α and α,

0 < α ≤ αk ≤ α < 2, (2.6)

giving the step

sk
def
= xk+1 − xk = αk

(

1

k + 1

)
1

2
+η

. (2.7)

We also set

f0 =
1

2
ζ(1 + 2η), fk+1 = fk − αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, (2.8)

gk = −
(

1

k + 1

)
1

2
+η

, and Hk = 1, (2.9)

where

η = η(τ)
def
=

1

2 − τ
− 1

2
=

τ

4 − 2τ
> 0 (2.10)
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and ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann ζ function, which is finite for all t > 1 and thus

for t = 1 + 2η. Immediately note that the first part of (2.9) gives (2.3) by construction.
In what follow the choice of αk is arbitrary in the interval [α, α], but we observe that the
selected value of αk can be seen as resulting from a Goldstein-Armijo linesearch enforcing,
for some α, β ∈ (0, 1) with α < β,

f(xk) − f(xk+1) ≥ −αsT
k gk = ααk‖gk‖2 and f(xk) − f(xk+1) ≤ −βsT

k gk = βαk‖gk‖2,

since (2.8) ensures that 2(1 − α) < αk < 2(1 − β) and thus that (2.6) holds.
We now exhibit function f1(x) which satisfies AS.0 and (2.4)-(2.9). For this purpose,

we use polynomial Hermite interpolation on the interval [0, xk+1 − xk], which we will
subsequently translate. We are thus seeking a polynomial of the form

pk(t)
def
= c0,k + c1,kt+ c2,kt

2 + c3,kt
3 + c4,kt

4 + c5,kt
5 (2.11)

on the interval [0, µk] (where µk = sk) such that

pk(0) = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, pk(µk) = 0, (2.12)

p′k(0) = −
(

1

k + 1

)
1

2
+η

p′k(µk) = −
(

1

k + 2

)
1

2
+η

, (2.13)

and we also impose that p′′k(0) = p′′k(µk) = 1. These conditions immediately give that

c0,k = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, c1,k = −
(

1

k + 1

)
1

2
+η

and c2,k =
1

2
.

One then verifies that the remaining interpolation conditions may be written in the form





µ3
k µ4

k µ5
k

3µ2
k 4µ3

k 5µ4
k

6µk 12µ2
k 20µ3

k









c3
c4
c5



 =





0
p′k(µk)

0



 ,

whose solution turns out to be





c3,k

c4,k

c5,k



 =















−4
φk
µk

7
φk

µ2
k

−3
φk

µ3
k















(2.14)

where

φk =
1

αk
(1 − αk − ψk) with ψk

def
=

(

k + 1

k + 2

)
1

2
+η

. (2.15)

The definition of ψk implies that |ψk| ∈ (0, 1) for all k ≥ 0, The function f1 is then
recursively defined on the nonnegative reals(1) by

f1(x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0. (2.16)

The graph of this function and its first three derivatives are given on the first 16 intervals
and for η = 10−4 and αk = 1 by Figure 2.1.

(1)It can be easily smoothly extended to the negative reals while maintaining its boundedness and the
bounded nature of its second derivatives.
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Figure 2.1: The function f1 and its first three derivatives (from top to bottom and left to
right) on the first 16 intervals

This figure confirms the properties inherited from the construction of the function f1,
namely that it is twice continuoulsy differentiable with bounded second derivatives. This
last observation results from the bound

|p′′(t)| = 2c2,k + 6c3,kt+ 12c4,kt
2 + 20c5,kt

3

≤ 2|c2,k| + 6|c3,k|µk + 12|c4,k|µ2
k + 20|c5,k|µ3

k

≤ 1 + 150|φk|
≤ 1 + 150max[1, α]/α

(2.17)

for all k ≥ 0 and all t ∈ [0, µk], where we used (2.14) and the inequality |φk| ≤ 1.
The gradient of f1 is therefore Lipschitz continuous, but it is not the case for its second
derivative, as it can be seen in Figure 2.1 where one observes a linear increase in the third
derivative peaks with k. The fact that f1 is bounded below by zero finally results from
the bound

fk − fk+1 = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

≤ 1

2

(

1

k + 1

)1+2η

and the definition of the Riemann ζ function (note that ζ(1.0002) ≈ 50000.6).
This example thus implies that, for any τ > 0, the steepest descent method (with a

Goldstein-Armijo linesearch) may require, for any ǫ ∈ (0, 1), at least

⌊ 1

ǫ2−τ
⌋

iterations for producing an iterate xk such that ‖gk‖ ≤ ǫ. This bound is arbitrarily close
to the upper bound of O(ǫ−2), which proves that this latter bound is essentially sharp.
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3 Slow convergence of Newton’s method

Now consider using Newton’s method for solving (1.1). We now would like to construct an
example on which this algorithm converges at a rate which corresponds to the worst-case
known for the steepest descent method on general nonconvex objective functions, i.e. such
that one has to perform O(ǫ−2) iterations to ensure (2.1). As above, a suitable condition
for achieving this goal is to require that (2.2) holds for all k ≥ 0, and an arbitrarily close
approximation can considered by requiring that, for any τ > 0, Newton’s method needs
O(ǫ−2+τ ) iterations to achieve (2.1), leading to the requirement that (2.3) holds for all
k ≥ 0. Our current objective is therefore to construct sequences {xk}, {gk}, {Hk} and
{fk} such that this latter condition holds and which may now be generated by Newton’s
algorithm, together with a twice continuously differentiable function f2(x) such that

fk = f2(xk), gk = ∇xf2(xk) and Hk = ∇xxf2(xk). (3.1)

In addition, f2 must be bounded below and Hk must be positive definite for the algorithm
to be well-defined. We also would like f2 to be as smooth as possible; we are aiming at

AS.1 f is twice continuously differentiable, bounded below, and had bounded and Lips-
chitz continuous second derivatives along each segment [xk, xk+1],

since these are the standard assumptions under which globalized Newton’s method is
provably convergent (see Dennis and Schnabel, 1983, Theorem 6.3.3, Fletcher, 1987, The-
orem 2.5.1, or Nocedal and Wright, 1999, Theorem 3.2).

Our example is bidimensional and we define, for all k ≥ 0,

x0 = (0, 0)T , xk+1 = xk +





(

1
k+1

)
1

2
+η

1



 , (3.2)

f0 =
1

2
[ζ(1 + 2η) + ζ(2)] , fk+1 = fk − 1

2

[

(

1

k + 1

)1+2η

+

(

1

k + 1

)2
]

, (3.3)

gk = −







(

1
k+1

)
1

2
+η

(

1
k+1

)2






, and Hk =

(

1 0

0
(

1
k+1

)2

)

(3.4)

where, as in (2.10), η = τ/(4 − 2τ) > 0 and ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann ζ function.

The first part of (3.4) then immediately gives (2.3) by construction, since the norm of that
vector is at least equal to the absolute value of its first component.

We now verify that, provided (3.1) holds, the sequences given by (3.2)–(3.4) may be
generated by Newton’s method. Defining

sk
def
= xk+1 − xk =





(

1
k+1

)
1

2
+η

1





def
=

(

µk

1

)

(3.5)

and remembering (1.2), this amounts to verifying that

gT
k sk + sT

kHksk = 0, (3.6)

Hk is positive definite (3.7)

and that
f(xk + sk) = mk(xk + sk) (3.8)
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for all k ≥ 1. Note that, by definition µk ∈ (0, 1]. The first two of these conditions say
that the quadratic model (1.2) is globally minimized exactly. In our case, (3.6) becomes,
using (3.5), (3.2) and (3.4),

gT
k sk + sT

kHksk = −
(

1

k + 1

)1+2η

−
(

1

k + 1

)2

+

(

1

k + 1

)1+2η

+

(

1

k + 1

)2

= 0,

as desired, while (3.7) also follows from (3.4). Using (3.3) and (3.4), we also obtain that

mk(xk + sk) = f(xk) + gT
k sk + 1

2
sT

kHksk

= f(xk) − 1
2

(

1
k + 1

)1+2η

− 1
2

(

1
k + 1

)2

= f(xk+1),

which in turn yields (3.8).
We now have to exhibit a function f2(x) which satisfies AS.1 and (3.1)-(3.4). The

above equations suggest a function of the form

f2(x) = f2,1([x]1) + f2,2([x]2)

where [x]i is the i-th component of the vector x and where the univariate f2,1 and f2,2 are
computed separately. Since our conditions involve, for both functions, fixed values of the
function

f2,1(0) =
1

2
ζ(1 + 2η), f2,1([xk+1]1) = f2,1([xk]1) −

1

2

(

1

k + 1

)1+2η

, (3.9)

f2,2(0) = 1/2ζ(2), f2,2([xk+1]2) = f2,2([xk]2) −
1

2

(

1

k + 1

)2

, (3.10)

and of its first and second derivatives at the endpoints of the interval [xk, xk+1], we again
consider applying polynomial Hermite interpolation on the interval [0, xk+1−xk], which we
will subsequently translate. Considering f2,1 first, we note that it has to satsify conditions
that are identical to those stated for f1 in Section 2 for the case where αk = 1 for all k.
We may then choose

f2,1([x]1) = f1([x]1).

Let us now consider f2,2. Again, we seek a polynomial

qk(t)
def
= d0,k + d1,kt+ d2,kt

2 + d3,kt
3 + d4,kt

4 + d5,kt
5

on the interval [0, 1] such that

qk(0) =
1

2

(

1

k + 1

)2

, qk(1) = 0,

q′k(0) = −
(

1

k + 1

)2

q′k(1) = −
(

1

k + 2

)2

,

q′′k (0) =

(

1

k + 1

)2

and q′′k (1) =

(

1

k + 2

)2

,

These conditions immediately give that

d0,k =
1

2

(

1

k + 1

)2

, d1,k = −
(

1

k + 1

)2

and d2,k =
1

2

(

1

k + 1

)2

.
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Applying the same interpolation technique as above, one verifies that





d3,k

d4,k

d5,k



 =
1

2















9
(

1
k+2

)2

−
(

1
k+1

)2

−16
(

1
k+2

)2

+ 2
(

1
k+1

)2

7
(

1
k+2

)2

−
(

1
k+1

)2















,

yielding in turn that

f2,2([x]2) = qk([x2 − xk]2) + f2,2([xk+1]2) for [x]2 ∈
[

[xk]2, [xk+1]2
]

and k ≥ 0,

and that
|q′′(t)| = 2d2,k + 6d3,kt+ 12d4,kt

2 + 20d5,kt
3

≤ 2|d2,k| + 6|d3,k| + 12|d4,k| + 20|d5,k|
≤ 1 + 6 × 5 + 12 × 9 + 20 × 4
= 219

for all k ≥ 0 and all t ∈ [0, 1].
The graph of this function and its first three derivatives are given on the first 16 inter-

vals and for η = 10−4 by Figure 3.2. As for f2,1 = f1, this figure confirms the properties
inherited from the construction of the function f(x), namely that it is twice continuous
differentiable and has uniformly bounded second derivative. Its second derivative is now
globally Lipschitz continuous, as it can be seen in Figure 3.2 where one observes that the
third derivative is bounded above in norm for all k. The fact that f2 is bounded below by
zero results from (3.10) and the fact that ζ(2) = π2/6.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16
−3

−2

−1

0

1

2

3

4

Figure 3.2: The function f2 and its first three derivatives (from top to bottom and left to
right) on the first 16 intervals
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Figure 3.3: The third derivative of the function f2(x) along the path [xo, . . . , x16], and
this path on the level curves of f2.

One may also compute the third derivative of f2 along the step, which is given, in the
k-th interval, by

1
‖sk‖3 [p′′′k (t)(sk)31 + q′′′k (t)] < p′′′k (t)(sk)31 + q′′′k (t)

≤ (6c3,k + 24c4,kt+ 60c5,kt
2)µ3

k

+6d3,k + 24d4,kt+ 60d5,kt
2

< 6|c3,k|µk + 24|c4,k|µ2
k + 60|c5,k|µ3

k

+6|d3,k| + 24|d4,k| + 60|d5,k|
≤ 6 × 4 + 24 × 7 + 60 × 3 + 6 × 5 + 24 × 9 + 60 × 4
= 858,

where we used the inequalities ‖sk‖ > 1 and t ≤ 1 and hence, because of the mean-value
theorem, f2(x) has Lipschitz continuous second derivatives in each segment of the piecewise
linear path ∪∞

k=0[xk, xk+1]. The actual value of the third derivative on the first segments
of this path is shown on the left side of Figure 3.3, while the path itself is illustrated on
the right side, superposed on the levels curves of f . As a consequence, f2(x) satisfies AS.1,
as desired.

If we are now ready to give up smoothness of the objective function beyond continuous
differentiability, it is then possible to construct an example with τ = η = 0, thereby
guaranteeing that Newton’s method takes precisely ǫ−2 iterations to generate ‖gk−1‖ ≤ ǫ
when applied to f3, with a certain x0 and for any ǫ > 0. Thus we relax our asumptions to

AS.2 f is twice continuously differentiable and bounded below.

This second example is unidimensional and satisfies the conditions

x0 = 0, xk+1 = xk − gk

hk

def
= xk + sk,

for k ≥ 0, where

gk = −
(

1

k + 1

)
1

2

, Hk = k + 1

and

f3(0) =
1

2
ζ(2), f3(xk + sk) = mk(xk + sk).

One easily checks that

f3(xk) −mk(xk + sk) = f3(xk) − f3(xk+1) =
1

2

(

1

k + 1

)2

.
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We may now contruct a twice continuously differentiable univariate function from IR+ into
IR by constructing, on each interval [xk, xk+1], a polynomial of the type (2.11) such that

pk(0) =
1

2

(

1

k + 1

)2

, pk(sk) = 0,

p′(0) = −
(

1

k + 1

)
1

2

, p′(sk) = −
(

1

k + 2

)
1

2

,

as well as p′′k(0) = k + 1 and p′′k(sk) = k + 2. Writing the interpolation conditions, one
finds that





s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k









c3
c4
c5



 =





0
p′k(sk)

1



 ,

whose solution is given by

c0,k =
1

2

(

1

k + 1

)2

, c1,k = −
(

1

k + 1

)
1

2

, c2,k = 1

2
(k + 1),

and




c3
c4
c5



 =





s−1
k ( 1

2
− 4φk)

s−2
k (−1 + 7φk)
s−3

k ( 1

2
− 3φk),





where now

φk =
p′k(sk)

sk
= −(k + 1)

(

k + 1

k + 2

)
1

2

.

To complete this example, we may then set

f3(x) = pk(x− xk) + f3(xx+1) for x ∈ [xk, xk+1].

Observe, as above that we may extend f3(x) to the negative reals by defining f3(x) =
f3(0)+xf ′3(0)+1/2x2f ′′3 (0) for x < 0, and beyond x∗ =

∑∞
k=0 sk = ζ(3/2) by symmetrizing

it with respect to this point, i.e.

f3(x+ ζ(3/2)) = f3(ζ(3/2) − x) for x > 0.

The resulting function is bounded below (by zero), continuously differentiable on IR (as
thus satisfies AS.2) and twice continuously differentiable everywhere except at ζ(3/2),
where both left and right second derivatives are infinite (it is therefore not Lipschitz
continuous either). It also has a unique minimizer in ζ(3/2). The graph of this function
and its first three derivatives on the first 16 intervals are shown in Figure 3.4.

It is unclear whether an example with τ = η = 0 can be found without weakening
the smoothness assumptions made at the start of this section, as we have just done.
Interestingly, yet another example of Θ(ǫ−2) convergence for Newton’s method may be
constructed along the lines of the one just presented, by defining Hk, the Hessian at xk,
to be

√
k + 1 instead of k + 1. The minimum of the function f is then at infinity, but

continuous second derivatives are preserved although they remain unbounded.

4 How slow is slow?

Having shown an example where the performance of Newton’s method is arbitrarily close
to the worst case known for steepest descent, we now wish to comment on the degree of
pessimism of this bound.

Returning to multidimensional case, let us assume that (2.2) holds for some sequence of
iterates {xk} ⊂ IRn generated by Newton’s method on a twice continuously differentiable
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Figure 3.4: The function f3 and its first three derivatives (from top to bottom and left to
right) on the first 16 intervals

objective function from IRn into IR which is also bounded below and has uniformly bounded
Hessian. Assume also that Hk is positive definite for all k and that the unit step is taken at
every iteration of this process. Assume finally that the quadratic model (1.2) is minimized
accurately enough to guarantee a model reduction at least as large as a fraction κ of that
obtained at the Cauchy point, which is defined as the solution of the (strictly convex)
problem

min
t≥0

mk(xk − tgk).

It is known (see Conn et al., 2000, Section 6.3.2, for instance) that the solution tCk of this
last problem and the associated model reduction satisfy

f(xk) −mk(xk − tCk gk) ≥ ‖gk‖4

2gT
k Hkgk

.

Thus our assumption yields that

f(xk) −mk(xk + sk) ≥ κ‖gk‖4

2gT
k Hkgk

≥ κ‖gk‖2

2‖Hk‖
≥ κ

2κH
‖gk‖2, (4.1)

where we used the Cauchy-Schwartz inequality to deduce the penultimate inequality and
where κH is an upper bound on the Hessian norms. Because unit steps are taken, we
obtain from (2.2) and (4.1) that

f(x0) − flow ≥ κ
∞
∑

k=0

f(xk) −mk(xk + sk) ≥ κ

2κH

∞
∑

k=0

1

k + 1
, (4.2)
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where flow is a lower bound on f(x). But this last inequality is impossible because the
harmonic series diverges. Hence we conclude that (2.2) cannot hold for our sequence of
iterates. Thus a gradient sequence satisfying (2.3) is essentially as close to (2.2) as possible
if the example is to be valid for all ǫ sufficiently small.

We may even pursue the analysis a little further. Let K denote the subset of the
integers such that (2.2) holds. Then (4.2) implies that

∑

k∈K

1

k + 1
< +∞.

We then know from Behforooz (1995) that, in this case,

lim
ℓ→∞

| K ∩ Nℓ |
10ℓ − |K ∩ Nℓ |

= 0, (4.3)

where Nℓ
def
= {p ∈ IN | 0 ≤ p ≤ 10ℓ}. But

| K ∩ (Nℓ \ Nℓ−1) |
10ℓ − 10ℓ−1

≤ 10| K ∩ Nℓ |
9 × 10ℓ

≤ 10

9

| K ∩ Nℓ |
10ℓ − |K ∩ Nℓ |

and therefore, using (4.3),

lim
ℓ→∞

| K ∩ (Nℓ \ Nℓ−1) |
| Nℓ \ Nℓ−1 |

= lim
ℓ→∞

| K ∩ (Nℓ \ Nℓ−1) |
10ℓ − 10ℓ−1

= 0.

Thus, if ℓ(k) is defined k such that k ∈ Nℓ(k) \ Nℓ(k)−1, we have that limk→∞ ℓ(k) = ∞
and therefore that

lim
k→∞

Probk

[

‖gk‖ ≥ (k + 1)−2
]

= lim
k→∞

Probk[ k + 1 ∈ K ]

= lim
k→∞

Probk[ k + 1 ∈ K ∩ (Nℓ(k) \ Nℓ(k)−1) ]

= 0

where Probk[·] is the probability with uniform density on {10ℓ(k)−1 + 1, . . . , 10ℓ(k)}. As a
consequence, the probability that the termination test (2.1) is satisfied for an arbitrary k

in the range [ 10ℓ(⌊ǫ−1/2⌋−1) + 1, 10ℓ(⌊ǫ−1/2⌋) ] tends to one when ǫ tends to zero.
How do we interpret these results? What we have shown is that, under the conditions

stated before, the statement

there exists θ > 0 such that, for all k arbitrarily large, ||gk|| ≥ θ

(

1

k + 1

)2

is false. This is to say that

for all θ > 0 there exists k arbitrarily large such that ||gk|| < θ

(

1

k + 1

)2

.

In fact, we have proved that the proportion of “good” k’s for which this last inequality
holds (for a given θ) grows asymptotically. But it is important to notice that this last
statement doe not contradicts the worst-case bound of O(ǫ−2) mentioned above, which is

there exists θ > 0 such that, for all ǫ > 0 and k ≥ θ

ǫ2
, ‖gk‖ ≤ ǫ.

Indeed, if ǫ is given, there is no guarantee that the particular k such that k = θ(k + 1)−2

belongs to the set of “good” k’s. As a consequence, we see that the worst-case analysis is
increasingly pessimistic for ǫ tending to zero.

We conclude this section by noting that the arguments developped for Newton’s method
also turn out to apply for the steepest descent method, as it can also be shown for this
case that

f(xk) −mk(xk − tCk gk) ≥ κSD‖gk‖2,

for some κSD > 0 depending on the maximal curvature of the objective function (see, for
instance, Conn et al., 2000, Theorem 6.3.3 with ∆k sufficiently large, or Nesterov, 2004,
relation (1.2.13) page 27). This inequality then replaces (4.1) in the above reasoning.
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5 Less slow convergence for ARC

Now consider using the ARC algorithm for solving (1.1), using exact second-order informa-
tion. As above, we would like to construct an example on which ARC converges at a rate
which corresponds to its worst-case behaviour for general nonconvex objective functions,
i.e. such that one has to perform O(ǫ−

3

2 ) iterations to ensure (2.1). In order to achieve
this goal, a suitable condition is now to require that

‖gk‖ ≥
(

1

k + 1

)
2

3

.

An arbitrarily close approximation is again considered by requiring that, for any τ > 0,
the ARC method needs O(ǫ−

3

2
+τ ) iterations to achieve (2.1), which leads to the condition

that, for all k ≥ 0,

‖gk‖ =

(

1

k + 1

)
2

3−2τ

. (5.1)

Our new objective is therefore to construct sequences {xk}, {gk}, {Hk}, {σk} and {fk}
such that (5.1) holds and which may be generated by the ARC algorithm, together with
a function f4(x) satisfying AS.1 such that (3.1) holds, which is bounded below and whose
Hessian ∇xxf4(x) is Lipschitz continuous with global Lipschitz constant L ≥ 0.

Our example is now unidimensional and we define, for all k ≥ 0,

x0 = 0, xk+1 = xk +

(

1

k + 1

)
1

3
+η

, (5.2)

f4,0 =
2

3
ζ(1 + 3η), f4,k+1 = f4,k − 2

3

(

1

k + 1

)1+3η

, (5.3)

gk = −
(

1

k + 1

)
2

3
+2η

, Hk = 0 and σk = 1, (5.4)

where now

η = η(τ)
def
=

1

2

(

2

3 − 2τ
− 2

3

)

=
2τ

9 − 6τ
> 0.

Observe that (5.4) gives (5.1) by construction.
Let us verify that, provided (3.1) holds, the sequences given by (5.2)–(5.4) may be

generated by the ARC algorithm, whose every iteration is very successful. Using (1.3),
this amounts to verifying that

gT
k sk + sT

kHksk + σk‖sk‖3 = 0, (5.5)

sT
kHksk + σk‖sk‖3 ≥ 0, (5.6)

σk > 0, σk+1 ≤ σk (5.7)

and
f4(xk + sk) = mk(xk + sk) (5.8)

for all k ≥ 1. Because the model is unidimensional, the first two of these conditions says
that the cubic model is globally minimized exactly. Observe first that (5.7) immediately
results from (5.4). In our case, (5.5) becomes, using (5.2) and (5.4),

gT
k sk + sT

kHksk + σk‖sk‖3 = −
(

1

k + 1

)1+3η

+ 0 +

(

1

k + 1

)1+3η

= 0,



Cartis, Gould, Toint: Complexity of steepest descent, Newton’s and ARC methods 14

as desired, while inequality (5.6) also follows from (5.2) and (5.4). Using (5.3) and (5.4),
we also obtain that

mk(xk + sk) = f4(xk) + gT
k sk + 1

2
sT

kHksk + 1

3
σk‖sk‖3

= f4(xk) − 2
3

(

1
k+1

)1+3η

= f4(xk+1),

which in turn yields (5.8).
As was the case in the previous sections, the only remaining question is to exhibit

bounded below and twice continuously differentiable function f4(x) with a Lipschitz con-
tinuous Hessian (in each segment [xk, xk+1]) satisfying conditions (5.2)-(5.4), and we may
once more consider applying polynomial Hermite interpolation on the interval [0, xk+1 −
xk]. Thus we are seeking a polynomial of the form (2.11) on the interval [0, sk] such that

pk(0) =
2

3

(

1

k + 1

)1+3η

, pk(sk) = 0 (5.9)

p′k(0) = −
(

1

k + 1

)
2

3
+2η

, p′k(sk) = −
(

1

k + 2

)
2

3
+2η

and p′′k(0) = p′′k(sk) = 0. (5.10)

These conditions immediately give that

c0,k =
2

3

(

1

k + 1

)1+3η

, c1,k = −
(

1

k + 1

)
2

3
+2η

and c2,k = 0.

In this case, the remaining interpolation conditions may be written in the form





s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k









c3,k

c4,k

c5,k



 =





pk(sk) − pk(0) − p′k(0)sk

p′k(sk) − p′k(0)
0



 ,

whose solution is now given by





c3,k

c4,k

c5,k



 =









10
3 − 4φk

1
sk

[−5 + 7φk]

1
s2

k

[2 − 3φk]









(5.11)

with

φk
def
= (k + 1)µ

[(

1

k + 1

)µ

−
(

1

k + 2

)µ]

where µ
def
=

2

3
+ 2η.

The definition of φk implies that φk ∈ (0, 1) for all k ≥ 0, and hence, using (5.11), that

|p′′′(t)| = 6c3,k + 24c4,kt+ 60c5,kt
2

≤ 6c3,k + 24c4,ksk + 60c5,ks
2
k

≤ 6 × 10
3 + 24 × 13 + 60 × 2

= 452

(5.12)

for all k ≥ 0 and all t ∈ [0, sk], and f has Lipschitz continuous second derivatives along the
path of iterates, which is IR+. The desired objective function for our final counterexample
is then recursively defined on the nonnegative reals(2) by

f4(x) = pk(x− xk) + f4(xk+1) for x∈[xk, xk+1] and k ≥ 0,

(2)Again, it can be easily smoothly extended to the negative reals while maintaining its boundedness
and the Lipschitz continuity of its second derivatives.
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and clearly satisfies AS.1. The graph of this function and its first three derivatives are
given on the first 16 intervals and for η = 10−4 by Figure 5.5. This figure confirms the
properties of the function f4(x), namely that it is twice continuous differentiable and
has uniformly bounded third derivative (in Figure 5.5, the maximum is achieved on each
interval by the first point in the interval, where (5.11) and (5.12) imply that |p′′′(0)| ≤ 20).
Thus its second derivative is globally Lipschitz continuous with constant L ≤ 452 (L = 20
for the function plotted). As in our first example, the figure reveals the nonconvexity
and monotonically decreasing nature of f(x). The fact that f(x) is bounded below by
zero finally results from (5.3) and the definition of the Riemann ζ function (note that
ζ(1.0003) ≈ 33333.9).
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Figure 5.5: The function f4 and its first three derivatives (from top to bottom and left to
right) on the first 16 intervals

6 Conclusions

We now summarize the result obtained in this paper. Considering the steepest method
first and assuming Lipzschitz continuity of the objective function’s gradient along the
path of iterates, we have, for any τ > 0, exhibited valid examples for which this algorithm
produces a sequence of slowly converging gradients. This in turn implies that, for any
ǫ ∈ (0, 1) at least

⌊

1

ǫ2−τ

⌋

iterations and function evaluations are necessary for this algorithm to produce an iterate
xk such that ‖gk‖ ≤ ǫ. This lower bound is arbitrarily close to the upper bound of
O(ǫ−2) known for this algorithm. Other examples have also been constructed showing
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that the same complexity can be achieved by Newton’s method for twice continuously
differentiable functions whose Hessian is Lipschitz continuous on the path defined by the
iterates, thereby proving that Newton’s method may be as (in)efficient as the steepest
descent method (in its worst-case). The fact that (3.8) and (5.8) hold ensures that our
conclusions are also valid if the standard Newton’s method is embedded in a trust-region
globalization framework (see Conn et al., 2000 for an extensive coverage of such methods),
since it guarantees that every iteration is very successful in that case, and that the initial
trust-region may then be chosen large enough to be irrelevant. The conclusions also
apply if a linesearch globalization is used (see Dennis and Schnabel, 1983, or Nocedal
and Wright, 1999), because the unit step is then acceptable at every iteration, or in the
filter context, because the gradient is monotonically converging to zero. We have also
provided an example where Newton’s method requires exactly 1/ǫ2 iterations to produce
an iterate xk such that ‖gk−1‖ ≤ ǫ, but had to give up boundedness of second derivatives
to obtain this sharper bound. In addition, we have provided some analysis in an attempt
to quantitfy how pessimistic the obtained worst-case bounds can be.

We have then extended the methodology to cover the Adaptive Regularization with Cu-
bics (ARC) algorithm, which can be viewed as a regularized version of Newton’s method.
For any τ > 0, we have exhibited a valid example for which the ARC algorithm produces
a sequence of gradients satisfying (5.1). This equality yields that, for any ǫ ∈ (0, 1) at
least

⌊

1

ǫ
3

2
−τ

⌋

iterations and function evaluations are necessary for this algorithm to produce an iterate
xk such that ‖gk‖ ≤ ǫ. This lower bound is arbitrarily close to the upper bound of O(ǫ−3/2)
thereby proving that this last bound is sharp.

In our examples for the Newton’s and ARC methods, exact global model minimization
is carried out, covering the “exact” variants of these algorithms. But the conditions used
((3.6)-(3.7) and (5.5)-(5.6)) only require this exact minimization to occur along the step
sk, which makes the conclusions presented in this paper applicable if one prefers using
approximate minimization where the global model minimum is only sought in subspaces,
as in the case for truncated conjugate-gradients (see Steihaug, 1983, and Toint, 1981),
GLTR (Gould, Lucidi, Roma and Toint, 1999, LSTR and LSRT (Cartis, Gould and Toint,
2009c), or for other subspace methods (Ni and Yuan, 1997, Hager, 2001, Erway, Gill
and Griffin, 2009). This is however less surprising, as one could expect approximate
minimization to deteriorate the global effiency of the minimization algorithm.

We have not been able to show that the steepest descent method may take at least
O(ǫ−2) evaluations to achieve a gradient accuracy of ǫ on functions with Lipschitz con-
tinuous second derivatives, thereby not exluding the (unlikely) possibility that steepest
descent could be better than Newton’s method on sufficiently smooth functions.

Our result that the ARC method is the best second-order algorithm available so far
(from the worst-case complexity point of view) suggests further research directions beyond
that of settling the open question mentoned in the previous paragraph. Is the associated
complexity bound in O(ǫ−3/2) the best that can be achieved by any second-order method
for general nonconvex objective functions? And how best to characterize the complexity
of an unconstrained minimization problem? These interesting issues remain challenging.
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