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Abstract

A new numerical procedure (SVD-tail) is proposed for the reconstruction of the shape and
volume of unknown objects from measurements of their radiation in the far field. This efficient
procedure is a variant and the linear sampling method and has a very acceptable computational
load. At variance with previously published techniques where the solution is constructed as a
regularized solution of the far-field equations using a variant of the Tikhonov-Morozov type, the
new method uses a new eigenspace recovery method which exploits the combined presence of
error in the operator and of eigenvalue clusters. The performance of the new technique on a
battery of examples and its comparison with existing methods is shown to be promising.

Keywords: inverse scattering, linear sampling method, regularization heuristics, eigenspace recovery,

numerical algorithms.

1 Introduction

The past decade has seen the rapid development of the Linear Sampling Method (LSM) for inverse
scattering problems (see Arens, 2004, Cakoni, Colton and Haddar, 2002, Cakoni and Colton, 2003,
Colton, Haddar and Monk, 2002, Colton, Haddar and Piana, 2003, Haddar and Monk, 2002 or
Fares, Gratton and Toint, 2009, for instance). This interest is due to its effectiveness, especially
in treating three-dimensional inverse problems, but also to its large spectrum of applications. We
recall that this algorithm allows the reconstruction of the shape of an unknown obstacle (or a local
inhomogeneity) from multistatic data at a fixed frequency and has the clear advantage of requiring
no a priori knowledge on the physical properties of the scatterers. It is based on suitably solving a
linear system of equations, known as the far-field equations.

This paper has its origins in the difficulties met by the authors in their efforts to apply different
regularization methods to the far-field equations. While the Tikhonov-Morozov technique has been
analyzed and reasonably successfully applied to inverse scattering problems (see Colton, Piana and
Potthast, 1997, Collino, Fares and Haddar, 2003, Fares et al., 2009, for instance), other popular
methods for regularization, such as the L-curve method by Hansen (1997), appear to give globally
unsatisfactory results. It is suggested in this paper that this situation may be linked to the fact that
the Picard coefficients associated with the problem do not converge to zero in practice, although
this convergence is a recommended prerequisite for the successful application of the L-curve method
and other similar techniques. It turns out however that the inner products between the singular
vectors and the right-hand side of the far-field equations (which are normalized by the corresponding
singular values to define the Picard coefficents) behave very differently when considering points
interior or exterior to the object of interest. We first analyse a new characterization of these inner
products which explains this behaviour and, in turn, allows us to propose a new general eigenspace
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recovery technique. We then propose to apply this new technique to inverse scattering problems and
define a non-standard technique for LSM inversion, called SVD-tail, where the point-wise solution
of the far-field equation is never explicitly constructed. As a result, the method is computationally
very efficient. Moreover, the visual quality of the reconstructed images compares well with that
obtained using other existing inversion algorithms.

The paper is organized as follows. Section 2 gives a brief overlook of the LSM technique for
recovering objects from far-field measurements. The new eigenspace recovery technique and the
SVD-tail algorithm are then motivated and presented in Section 3, while numerical experiments are
discussed in Section 4. A numerically efficient variant of SVD-tail is also presented in Section 5.
Conclusions and perspectives are finally outlined in Section 6.

2 A brief description of the LSM

Suppose a bounded (sound-soft) domain D ⊂ IR3 of class C2 is given. This domain is illuminated by
a plane wave incident field uinc(x, d) = eikx·d, x ∈ IR3, for some d ∈ S, where S is the unit sphere.
The forward problem consist in finding a function us ∈ C2(IR3\D) ∩ C(IR3\D) that satisfies

∆us + k2us = 0 in IR3\D, (2.1)

u = uinc + us, (2.2)

u = 0 on ∂D, (2.3)

lim
r→∞

(

∂us

∂r
− ikus

)

= 0, (2.4)

where k > 0 is the wave number. The function us is called the scattered wave. In case of sound-hard
obstacle, the boundary condition (2.3) is replaced by

∂u

∂ν
= 0 on ∂D, (2.5)

where ν is the normal to ∂D directed towards the exterior of D. The condition (2.4) characterizes
outgoing waves and ensures uniqueness of the solution of the scattering problem. Any solution us

to the forward problem (2.1) is called radiating. It can be shown (Colton and Kress, 1998) that
every radiating solution u to the Helmholtz equation has the asymptotic behaviour of an outgoing
spherical wave

u(x, d) =
eik‖x‖

‖x‖

{

u∞(x̂, d) +O

(

1

‖x‖

)}

, ‖x‖ → ∞ (2.6)

uniformly in all directions x̂ = x/‖x‖, where u∞, defined on the unit sphere S is known as the
far-field pattern of u and ‖x‖ is the Euclidean norm of x.

We are now interested in the inverse problem consisting of the reconstruction of the domain
D from the knowledge of u∞(x̂, d̂) for all (x̂, d̂) ∈ S × S for a fixed, known wave number k. The
far-field pattern u∞(x̂, d̂) defines the far-field operator F : L2(S)→ L2(S) by

(Fg)(x̂) =

∫

S

u∞(x̂, d)g(d)ds(d). (2.7)

The linear sampling method chooses a position z ∈ IR3 and then looks for the solution g =
g(·, z) ∈ L2(S) of the far-field equation

(Fg)(x̂) = Φ∞(x̂, z) = e−ikx̂·z/4π (2.8)
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where Φ∞(x̂, z) is the far-field pattern associated with plane wave eikx̂·z. Notice first that since F
is compact, equation (2.8) is ill posed. Even if this equation does not have any solution in general
(Colton, 2003), it turns out that one can prove the existence of a nearby solution gε(·, z) ∈ L

2(S),
in the sense that it satisfies the inequality ‖Fgε(·, z)− u

∞(·, z)‖ ≤ ε, where ε is a small parameter
independent of z. This solution is such that

lim
z→∂D
z∈D

‖gε(·, z)‖L2(S) =∞. (2.9)

Furthermore, (formally) ‖gε(·, z)‖ =∞ for z ∈ IR3\D (again, see Colton, 2003). Consequently the
L2-norm of gε(·, z) can be used as an indicator of the domain D that we want to reconstruct. This
is the central observation on which the LSM is based.

3 The new method

3.1 The discretized far-field equations

Following Colton, Giebermann and Monk (2000), we discretize the far-field equation (2.8) by con-
sidering a triangular meshing of the unit sphere S containing N vertices (di)1≤i≤N . These vertices
serve as directions for the plane incident waves as well as degrees of freedom for the discrete solution
of the far-field equation. As an empirical rule, we take N ≃ (kR + 2 log(kR + π))2 where R is the
radius of a sphere containing the object. This rule can be inferred by studying the spectrum of the
far field as functions of the object size.

For the numerical realization of the LSM, we construct a continuous approximation of the
solution g(·, z) linear at each triangle, whose degrees of freedom are its values at the nodes (dℓ)1≤ℓ≤N .
The nodal values are denoted by (gj(z))1≤j≤N .

Assume now that an approximate far-field pattern F∞
ℓ,j ≃ u∞(dℓ, dj), ℓ, j = 1, · · · , N is known

for N incident plane wave with directions dℓ and mesured in the same directions. The integral
equation (2.8) can then be transformed at the discrete level into the following linear system of N
equations in N unknowns (gj):

N
∑

j=1

ωjFℓ,jgj = e−ikzdℓ·z, ℓ = 1, · · ·N, (3.1)

where the weights ωj depend on the quadrature formulae used in evaluating the integrals over the
mesh triangles.

For each z, the system (3.1) is then a discretized N ×N linear system of the form

Fg(z) = b∞(z)
def
=

(

e−ikd1·z, · · · , e−ikzdN ·z
)T

(3.2)

where F is N × N matrix independent of z, g(z) = (g1(z), . . . , gN (z))T is the unknown vector
whose ℓ2 norm is expected to be large when z is outside D and finally b∞(z) is the right-hand side
constructed from the far field of the plane waves uinc(z, dj) for j = 1, . . . , N . Unfortunately, this
system is ill-posed and its numerical solution requires the introduction of a suitable regularization
scheme. A good example of such a scheme is given by the Tikhonov-Morozov technique, where one
computes gη(z) solution of

(F ∗F + η(z)I)gη(z) = F ∗b∞(z). (3.3)
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The regularization parameter η(z) depending on z is then determined using the Morozov discrepancy
principle (Colton et al., 1997), that is as the root of the discrepency function

‖Fgη(z)− b
∞(z)‖2 − δ2‖gη(z)‖

2 (3.4)

where δ is an estimate of the error on the matrix F . This technique has been advocated by Colton
et al. (1997) and since then successfully applied by a number of authors (see Collino et al., 2003
or Fares et al., 2009, amongst others). In practice, a box B of IR3 containing the object (more or
less at its centre) is discretized using a regular cubic mesh and we denote by Z the set of all these
discretized points. The system (3.2) is then solved for each z ∈ Z, using the singular-value (SVD)
decomposition of the matrix F given by

F = UΣV ∗ (3.5)

where U and V are unitary and Σ is real diagonal with Σj,j = σj , 1 ≤ j ≤ N . This decomposition
is possibly truncated to ignore all singular values and vectors of index larger than p ≤ N . The set
of solutions {gη(z)}z∈B is then computed from

gp(z) = Vp [Σp + η(z)I]−1 U∗
p b

∞(z),

(where the quantities subscipted by p only contain the information related to the p largest singular
values). A graphical tool is used to plot the level surfaces of the function ‖gη(z)‖

−1 for some suitably
chosen level value, yielding a hopefully satisfactory represention of the unknown object.

3.2 Truncated singular values, L-curve and Picard coefficients

While regularization algorithms based on the Tikhonov-Morozov method have been successfully
used for solving the system (3.2), their computational cost remains somewhat high, and it was
argued in Fares et al., 2009 that a subtantial fraction of this cost is caused by the need to compute
a regularization parameter η(z) which depends on the chosen point z ∈ B. We are therefore
interested in techniques where this dependence does not arise.

A first class of methods which would satisfy this requirement is that of truncated SVD schemes
where the truncation level (i.e., the number p of singular vectors and values used for representing
the signal) is kept constant for all values of z ∈ B and η(z) = 0 for all z. Determining this
truncation level in an efficient manner which is also robust across a variety of examples is not an
easy task. Inspiration can nevertheless be obtained from the existing literature on inverse problem
regularization, such as Hansen, 1997. More sepcifically this book advocates the L-curve technique,
which may be seen as a graphical tool where one exploits a plot of the value of ‖gp(z)‖ versus
‖Fgp(z)−b

∞(z)‖ for all values of the regularization parameter p and a given z. This curve starts (for
large p) with high values of the solution norm and small residual norm, and subsequently decreases
with p until the solution norm is small and the residual norm large. Very often, this curve shows a
sharp L-shaped corner for some value of the parameter. The L-curve regularization technique then
amounts to choosing the value of p corresponding to the corner for regularizing the problem. It
is based on the idea that this corresponds to the particular level of regularization where the noise
(corresponding to small singular values) start dominating the signal. This observation is embodied
in the so-called discrete Picard condition, which assumes that, for the numerically nonzero singular
values σℓ (taken in decreasing order), the corresponding sequence of Picard coefficients given by

u∗ℓb
∞(z)

σℓ
(3.6)
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(for a particular value of z ∈ Z) also decreases to zero, where the uℓ are the left singular vectors of
the matrix F . This popular technique has been used in a number of contexts.

Unfortunately, our experience1 with this regularization in inverse scattering problems has been
mixed, and we observed in practice that the corner of the L-curve for our problem is commonly
poorly determined, that it may significantly depend on z and that, even after hand-picking the
most ’corner-like’ point on the curve for selecting a regularization parameter, the quality of the
representation obtained for the unknown objet leaves much to be desired: the selection of a suitable
p⋄ is therefore typically far from obvious. As an alternative, we attempted to use the general cross-
validation (GCV) technique2, which is also related to the discrete Picard condition, without much
more success.

Since neither of these methods seems to perform well, it is natural to consider whether the
discrete Picard condition holds in our context. We therefore plotted the sequence of Picard coeffi-
cients for our application and obtained the topmost curves shown in Figure 1 for an exterior and
an interior point: instead of decreasing, the sequence of Picard coefficients starts by increasing be-
fore its approximately stabilizes at a signficantly nonzero level. Thus the discrete Picard condition
cannot be assumed, which may explain at least partly the poor behaviour of the L-curve and GCV
methods.
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Figure 1: The values of u∗ℓb
∞(z)/σℓ (top curve), u∗ℓb

∞(z) (median curve) and σℓ (bottom curve), as
a function of ℓ for a point internal (left) or external (right) with respect to the considered object.

3.3 Operator perturbation and clustered eigenspace recovery

It is however the case that the information provided by the Picard coefficients can be exploited,
although in a non-standard manner. A detailed analysis of the numerator in (3.6),

θℓ(z)
def
= u∗ℓb

∞(z),

indeed shows an interesting behaviour. While this sequence also stabilizes for large ℓ (i.e. for small
singular values in the tail of their distribution), the level at which this stabilization occurs differs
significantly depending on the position of the considered point z with respect to the object: this

1Using Hansen’s toolbox of regularization tools (Hansen, 1994).
2Also from Hansen’s toolbox.
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level is very close to zero for interior points but is significantly larger as soon as z is on the outside
of the object. This behaviour is very noticeable in Figure 1. This phenomenon can be explained as
follows.

Consider a general Hermitian matrix A and its eigenvalue decomposition A = Q∗ΛQ, where Q
is the unitary matrix whose columns are the eigenvectors of A and where

Λ = diag(λ1, . . . , λn).

If we now define Ã
def
= A+tE for some bounded perturbation matrix E and some (small) real param-

eter t. From classical perturbation analysis for eigenvectors, we know that, for small enough t, the
eigenvectors and eigenvalues of Ã are given by the matrices Q̃ and Λ̃ defined by Q̃ = [q1(t), . . . , qn(t)]
and Λ̃ = diag(λj(t)) with ÃQ̃ = Q̃Λ̃. Using the Landau little “o” notation, the first-order expansion
of the eigenvalues and eigenvectors of Ã in the direction E are given (see Stewart, 2001, page 45)
by

λℓ(t) = λℓ + t(q∗ℓEqℓ) + o(t) and Q̃ = Q+ ∆Q(t) + o(t),

where the ℓ-th column of ∆Q(t) is defined by

δqℓ(t) = tQ
ℓ
(λℓIn−1 − Λℓ)

−1Q∗
ℓ
Eqℓ, (3.7)

with In−1 being the (n − 1)-dimensional identity matrix, Q
ℓ

being the n × (n − 1) matrix whose

columns are those of Q, column ℓ excluded3, and Λℓ being the (n − 1) × (n − 1) diagonal matrix
diag(λj)j=1,...,n;j 6=ℓ. When λℓ belongs to a cluster of eigenvalues of A, the diagonal matrix (λℓIn−1−
Λℓ)

−1 has large diagonal terms corresponding to the positions of the clustered eigenvalues. In other
words, (3.7) shows that, in the basis defined by the columns of Q, the components of an eigenvector
of Ã along the eigenvectors associated with the cluster will dominate all other components. If we
now consider an arbitrary combination of the eigenvectors of A, say b =

∑n
j=1 αjqj , we then obtain

that, for small t,

q̃∗ℓ b ≈
n

∑

j=1

αj

[

qℓ + tQ
ℓ
(λℓIn−1 − Λℓ)

−1Q∗
ℓ
Eqℓ

]∗
qj

= αℓ + t
∑

j 6=ℓ

αjq
∗
ℓE

∗Q
ℓ
(λℓIn−1 − Λℓ)

−1ej,ℓ,
(3.8)

where, using the unitary nature of Q, ejℓ = Q∗
ℓ
qj is a column of In−1. Thus |q̃∗ℓ b| is expected to

be largest whenever t is small, ℓ is the index of an eigenvalue in the cluster and b has a significant
component along the eigenvectors of A corresponding to the cluster. As a result, we may thus use
relation (3.8) to recover an unknown eigenspace of A corresponding to an eigenvalue cluster by only
considering inner products with eigenvectors of the perturbed Ã. Remarkably, both the presence of
the perturbation E and the clustering of the eigenvalues are crucial for this recovery to be possible.

We may now apply this technique to the far-field equations by identifying perturbed and un-
perturbed operators. We consider the unpertubed operator to be the matrix F∞(F∞)∗ where F∞

is the exact discretized far-field operator. This operator is itself an approximation of the infinite-
dimensional operator F , and admits a cluster of near-zero eigenvalues associated with the discretized
nullspace. However, F∞ is unavailable in practice, and the computed F is typically contaminated
by errors, because it results from physical measurements, themselves inaccurate, or is computed
by a process involving approximate quadratures (see Section 3.1). The theory developed above
therefore applies for the choices

Ã← FF ∗ and tE ← FF ∗ − F∞(F∞)∗,

3That is Q
ℓ

= [Q(:, j)]j=1,...,n;j 6=ℓ.
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which implies that
Q̃← U, and q̃∗ℓ b← θℓ(z).

Our reasoning then indicates that we may expect |θℓ(z)| to be significantly different from zero for
large j provided that the error ‖FF ∗ − F∞(F∞)∗‖ remains small and that b∞ has a significant
component along the (unknown) approximate nullspace of the far-field operator F∞. This is exactly
what we observe in Figure 1, where the values of θℓ (for large ℓ) are negligible for b∞(z) corresponding
to an internal z and significantly nonzero for b∞(z) corresponding to an external z.

3.4 The SVD-tail method

In view of these observations, we propose to use the level at which the θℓ(z) stabilize for large ℓ as
an indicator of the fact that z belongs to the unknown object. More specifically, our new technique,
baptized SVD-tail, depends on a parameter d and consists of the following steps:

Algorithm 3.1: The SVD-tail method

Step 1: Select the dimension d of a subspace T spanned (possibly approximately) by the d
left singular vectors corresponding to the smallest d singular values of F .

Step 2: Compute {wℓ}
d
ℓ=1 a basis of T , as well as

ϑℓ(z) = w∗
ℓ b

∞(z) for ℓ = 1, . . . , d. (3.9)

Step 3: Define

ψd(z)
def
= ‖(ϑ1(z), . . . , ϑd(z))

T ‖−1. (3.10)

This procedure provides the function ψd(z), whose values are expected to be small for z outside
the object and significantly positive for z in its interior. It therefore plays a role entirely similar to
that of ‖gη(z)‖

−1 in the more standard LSM approaches. In particular, a value ψ∗ can be chosen
such that the level curve

L
def
= {z ∈ Z | ψd(z) = ψ∗} (3.11)

is a suitable visual representation of the unknown object.
Observe that this technique makes use of the user-chosen dimension d and of the knowledge of

a basis for T . If the singular-value decomposition of F is known, then the choice wℓ = uN−ℓ+1

is obviously adequate. Other techniques are however possible which may provide the necessary
information at the fraction of the cost of the singular-value decomposition (as we discuss in Sec-
tion 5). Observe also that, because of (3.9)-(3.10), the cost of computing ψd(z) for a single z varies
essentially linearly with d. Small values of d are therefore particularly advantageous when ψd(z)
must be computed for a large number of vectors z, i.e. when the discretization of the domain B is
fine.

We conclude this section by noting again that it is very remarkable that the actual error intro-
duced in the discretized the far-field operator actually allows us to apply this inversion technique.
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3.5 A simple isovalue heuristic

For the SVD-tail approach to be practical, we also need to select a suitable value ψ∗ for the level
curve (3.11) to be a good representation of the object. While fine hand-tuning is very often best
for finalizing this representation, we tried, in line with our developments in Fares et al. (2009), to
provide heuristics that provide a good starting point for this tuning.

We have first considered the technique developed for the adapative Morozov regularization in
Fares et al. (2009). This technique is based on the detection of large values of the gradient of ψd(z),
which are expected on the boundary of the unknown object. However, a simpler scheme turned
out to be experimentally very efficient and is based on elementary statistics for the values of ψd(z).
Our choice of the isovalue is simply given by

ψ∗ = meanz∈Z [ψd(z)] + 2 stdz∈Z [ψd(z)] (3.12)

where ’mean’ and ’std’ stand for the average and standard deviation, respectively. We refer to this
technique as the Global Mean and Standard Deviation (GMSD) heuristic.

4 Preliminary numerical experience with SVD-tail

We now consider the performance of the SVD-tail method on a set of three-dimensional examples,
and compare it with that of the continuous Morozov regularisation (see Colton et al., 1997, and
Collino et al., 2003), its discrete variant (see Fares et al., 2009). In the notation of Section 3.1,
the first of these techniques uses p = N and varies η(z) according to the Morozov discrepancy
rule, while the second sets η(z) = 0 for all z but varies p with z according to a similar rule. A
truncated SVD technique is also included in the comparison, for which the truncation parameter
p is independent of z and is known a priori, thereby short-circuiting the difficulty to estimate it.
Our objective is not only to compare the quality of the obtained images, but also to measure the
sensitivity of the new method with respect to it parameter: the dimension d of the subspace T .
The adequacy of the isovalue heuristics is also of immediate interest.

The five objects used in our comparison are identical to those used in Fares et al. (2009): a
cross, a teapot, a rocket, a plane and a Σ-shaped object. For each of these examples, we discretized
the sphere in N = 2252 directions and discretized B using 50×50×50 points (|Z| = 125000). Other
parameters for these examples are given in Table 1, in which k is the wave number of the incident
wave, [x, x], [y, y], and [z, z] are the intervals (in x, y and z) defining the smallest box containing

the object, and [X,X], [Y , Y ] and [Z,Z] are the intervals defining the scanned domain B. The
objects themselves are pictured in Figure 2 on page 14.

example k [x, x] [y, y] [z, z] [X,X] [Y , Y ] [Z,Z]

cross 10 [−0.625, 0.625] [−0.625, 0.625] [−0.125, 0.125] [−1, 1] [−1, 1] [−0.5, 0.5]
teapot 31 [−0.3, 0.34] [−0.2, 0.2] [0, 0.315] [−0.5, 0.5] [−0.5, 0.5] [−0.1, 0.4]
rocket 20 [−0.165, 0] [−0.241, 0.241] [−0.241, 0.241] [−2, 0.5] [−0.5, 0.5] [−0.5, 0.5]
plane 12 [−0.101, 0.101] [−0.129, 0.75] [−0.188, 0.416] [−1.3, 1.3] [−1.6, 1] [−0.5, 0.5]
Σ 30 [−1, 0.8] [−0.9, 0.9] [−0.5, 0] [−1.3, 1.1] [−1.2, 1; 2] [−0.8, 0.3]

Table 1: Geometric parameters for the tested examples

In all our experiments, the measurements were generated using CASC, a solver for acoustic
scattering problems developed at CERFACS. In this package, the sound-soft case is treated by
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solving the integral equation,

Sϕ(x) =

∫

∂D

Φ(x, y)ϕ(y)ds(y) x ∈ ∂D

whose unknown is ϕ := [∂nϕ] := ∂nϕ
+−∂nϕ

− and where Φ(x, y) is the fundamental solution to the
Helmholtz equation. The numerical procedure is based upon a triangular meshing of the surface
and uses finite elements of lowest degree. It leads to solving for ϕh such that,











∫

∂Dh

∫

∂Dh

Φ(x, y)
(

ϕh(y) · ϕtest
h (x)

)

ds(y)ds(x) = −

∫

∂Dh

uinc(x)ϕtest
h (x)ds(x),

for all ϕtest
h (x)

The numerical computation amounts to solving a set of linear systems with a dense symetric non-
hermitian matrix whose size is the number of nodes of the mesh. There are as many right-hand
sides as the number of incident directions. Special attention has been paid to properly taking into
account the singularity of the Green kernel during the assembly process. The LU decomposition
of the matrix is then performed by means of a set of ScaLAPACK parallel routines. Once ϕh has
been obtained, the associated far fields are easily deduced by applying the integral representation
formulae

u(x) = uinc(x) + Sϕ(x) x /∈ ∂D.

For improved accuracy, care is taken to ensure that the length of the longest edge in the discretization
does not exceed a tenth of the wavelength. Once the matrix F was generated, it was then perturbed
by random noise of relative magnitude 0.01.

We now consider applying the SVD-tail method in its most immediate form (that is when the
SVD-decomposition (3.5) is computed and one chooses wq = uN−q+1 for q = 1, . . . , d), and investi-
gate the sensitivity of the results to the choice of d, the dimension of the subspace T corresponding
to small singular values. We illustrate this sensitivity by considering the plane object and applying
SVD-tail (with the GMSD heuristic) for values of d = 5, 20, 35, 50, 65 and 80. The results are shown
in Figure 3 on page 15. Examining this figure (and similar ones obtained for the other objects,
not shown here), we see that increasing the dimension d is globally beneficial for the quality of the
reconstructed image, but also that very low values of d can give very reasonable representations. In
particular, choosing d = 5 does not give the best image, but, for a computing cost4 approximately
10 times smaller than for d = 50, the corresponding image remains broadly comparable with this
latter case. The value d = 50 appears to be an adequate default value, and will be used in the rest
of our study. The very limited sensisitivity of the method on its parameter is clearly an advantage
compared to other techniques.

We conclude this section with a comparison between SVD-tail(50), the adaptive the discrete and
continuous Tikhonov-Morozov regularizations (DTM and CTM, respectively), and the truncated
SVD method (TSVD) with a priori known truncation level p = 150. The level noise was set to 0.02
for the two Tikhonov-Morozov techniques, in accordance with the level noise added on our synthetic
measurements. Figures 4 to 6 show that SVD-tail provides excellent images and compares well with
TSVD5, DTM and even with CTM, albeit yielding slightly less smooth images.

We now turn to the computational cost of the methods discussed in this paragraph, which we
split into two successive tasks:

4For computing {ψd(z)}z∈Z .
5In Figure 6, the isovalue for plotting the result of the TSVD method had to be tuned manually, the GMSD

heuristic producing very poor results.
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1. the time required for computing the necessary parts of the singular value decomposition,

2. the time required for evaluating ψ(z) for all z ∈ Z,

We report these times in Tables 2 to 4 for a Fortran 90 implementation of Algorithms CTM, DTM
and TSVD(150) (see Fares et al., 2009, for details) and SVD-tail(50). They were obtained on a single
1.6 GHz “Itanium 2” processor of a Bull Novascale 3045 machine, using the MKL 64 library for
linear algebra kernels. The time necessary for the operations other than described above, including
computing the isovalue heuristic, was negligible (below 0.005 sec).

cross teapot
CTM DTM TSVD SVD-tail(50) CTM DTM TSVD SVD-tail(50)

SVD 1138.61 43.99 43.99 1138.61 1094.29 47.30 47.30 1094.29
eval. ψ 2084.44 100.66 130.92 59.60 1986.09 92.60 128.43 56.86

total 3223.05 144.65 174.91 1198.21 3080.38 139.90 175.73 1151.15
percent. 100.00% 4.5% 5.4% 37.2% 100.00% 4.5% 5.7% 37.4%

Table 2: CPU times (in secs.) for the different computational tasks and the four algorithms, applied
on the cross and the teapot

rocket plane
CTM DTM TSVD SVD-tail(50) CTM DTM TSVD SVD-tail(50)

SVD 1092.77 48.39 43.39 1092.77 1147.75 44.30 44.30 1147.75
eval. ψ 1970.75 80.07 128.06 58.30 1950.52 95.45 127.36 56.15

total 3063.52 128.46 171.45 1151.07 3098.27 139.75 171.66 1203.90
percent. 100.00% 4.2% 5.6% 37.6% 100.00% 4.5% 5.5% 38.9%

Table 3: CPU times (in secs.) for the different computational tasks and the four algorithms, applied
on the rocket and the plane

Σ
CTM DTM TSVD SVD-tail(50)

SVD 1033.19 241.95 241.95 1033.19
eval. ψ 1944.66 92.00 127.54 57.61

total 2977.85 333.95 369.49 1090.80
percent. 100.00% 11.2% 12.4% 36.6%

Table 4: CPU times (in secs.) for the different computational tasks and the four algorithms, applied
on the Σ

Because SVD-tail (in this form) still relies on the SVD decomposition, we should not expect
substantial reduction in CPU-time with respect to methods that do not use the full SVD, and this is
apparent in the table. On the other hand, the relatively low dimension of the subspace T makes the
computation of the values of ψ substantially faster than for other methods who use more singular
vectors, because the computational effort needed in SVD-tail to obtain ψd(z) of each z ∈ Z is linear
in d = dim(T ). Moreover, the gains are expected to be even more substantial if larger problems are
considered and finer space discretizations can thus be accomodated without excessive cost.

The next section presents a variant of SVD-tail which does not use the SVD decomposition,
and is therefore globally more efficient.
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5 ISVD-tail: a SVD-tail variant without SVD

As we have indicated in Section 3.4, any basis of T is suitable, and there is no need to choose
wq = uN−q+1 as we have done so far. We thus propose to use subspace iteration (see Chapter 6 in
Stewart, 1998) to compute a basis of T . The method now depends on two parameters (d and nT )
and is stated as Algorithm 5.1 below.

Algorithm 5.1: Iterative SVD-tail algorithm (ISVD-tail)

Step 1: The dimension d of T and a number of iterations nT are given.
Choose a random N × d matrix W .

Step 2: Compute a LU factorization F = LU.

Step 3: Perform nT iterations of the following process:

Step 3.1: Solve the lower triangular system LY1 = W for Y1.

Step 3.2: Solve the upper triangular system UY2 = Y1 for Y2.

Step 3.3: Solve the lower triangular system U∗Y3 = Y2 for Y3.

Step 3.4: Solve the upper triangular system L∗Y4 = Y3 for Y4.

Step 3.5: Overwrite W using the orthogonal factorization Y4 = WR.

The columns of the final matrix W provide the desired approximate basis of T . Note that Steps 3.1
to 3.4 of Algorithm 5.1 amount to solving the system

FF ∗Y4 = W. (5.1)

Also observe that the cost of one execution of Step 3 remains modest, given that W and the Yq

(q = 1, . . . , 4) are N × d matrices, where d≪ N . If nT remains small, the overall cost is then much
smaller than that of computing the SVD decomposition (3.5).

In our experience, a value of nT as small as 10 is very often satisfactory, the obtained images
being visually undistinguishable from those obtained with SVD-tail which uses the more expensive
choice wq = uq (q = 1, . . . , d). As a consequence, all comments made above on the relative visual
performance of SVD-tail apply to ISVD-tail without modification. The cost of executing ISVD-
tail is however again considerably smaller than that of the previously described methods. This is
illustrated in Table 5, which should be compared to Tables 2-4 above.

cross teapot rocket plane Σ

T basis 12.92 15.41 16.62 16.85 15.41
eval. ψ 57.79 54.28 57.60 58.44 54.28

total 70.71 69.69 74.22 75.29 69.69
percent. 2.2% 2.3% 2.4% 2.4% 2.3%

Table 5: CPU times (in secs.) for ISVD-tail(50,10) (percentage computed w.r.t. CTM)
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This table shows how fast ISVD-tail can be compared to the other methods: a speed-up factor
of 50 with respect to CTM, of 2.5 with respect to DTM, of 2.8 with respect to TSVD(150) and
of 16 with respect to (the crude) SVD-tail are typical, without altering the quality of the visual
representation significantly.

6 Conclusion and perspectives

We have introduced a new technique for reconstructing images using the Linear Sampling Method,
whose computing cost is extremely modest and which produces visually satisfactory visual represen-
tations. This technique is based on identifying the value of the signal in a low-dimensional subspace
associated with small singular values of the measurement matrix. This identification is efficiently
conducted by exploiting a new eigenspace recovery technique, itself capitalizing on the combined
presence of error in the data and clustered eigenvalues. Two variants of the new approach have been
detailed, with varying computational requirements. We have also described a new heuristic for au-
tomatically determining an isovalue for the visual representation from which finer hand-tuning can
be initiated if necessary. The combination of these new proposals leads to a cheap and automatic
image reconstruction algorithm, hopefully paving the way for real-time image reconstruction.

The authors are well aware that several questions remain open at this point. In particular,
further applications of the new eigenspace recovery principle in other areas seems of interest. Con-
tinued experimentation with the SVD-tail methods on a wider battery of meaningful examples is
also necessary to assess their true potential. Further work on the automatic determination of the
isovalue is finally desirable and can be inspired by existing ideas in the field of computer graphics.
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Appendix : the figures

Figure 2: The five objects of the study
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Figure 3: The plane for d = 5, 20, 35, 50, 65, 80 (from top to bottom and left to right)
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Figure 4: The cross and the teapot reconstructed by SVD-tail(50) (top left), TSVD (top right),
DTM (bottom left) and CTM (bottom right)
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Figure 5: The rocket and the plane reconstructed by SVD-tail(50) (top left), TSVD (top right),
DTM (bottom left) and CTM (bottom right)
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Figure 6: The Σ reconstructed by SVD-tail(50) (top left), TSVD (top right, manually tuned), DTM
(bottom left) and CTM (bottom right)


