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Abstract

We consider Hessian approximation schemes for large-scale multilevel unconstrained opti-
mization problems, which typically present a sparsity and partial separability structure. This
allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-
difference methods and updating schemes based on the secant equation are presented and com-
pared numerically inside the multilevel trust-region algorithm proposed by Gratton, Mouffe,
Toint and Weber-Mendonca (2008b).

Keywords: unconstrained optimization, multilevel problems, sparsity, partial separability, numerical
experiences.

1 Introduction

Many optimization problems are formulated in infinite-dimensional spaces or represent such a prob-
lem in a large-scale finite-dimensional space. This is for instance the case in optimal control of
dynamical systems, where problems are typically described by discretizations of either ordinary or
partial differential equations, but also in the field of data assimilation in areas like meteorology,
nuclear energy or hydrology (Fisher, 1998). A structure common to these problems is that they are
posed not only in a single (typically infinite dimensional) space, but also in a hierarchy of nested
spaces corresponding to different levels of discretization, from coarsest to finest. We consider here
the following framework, where we are interested in solving an unconstrained optimization problem
described, at the finest level, by

min_f(z), (1.1)
where the objective function f is assumed to be twice continuously differentiable and bounded
below. As is typical for functions arising in the context of discretization problems, f is assumed to
be partially separable, in the sense that there exists a decomposition of the form

f@) =" fil=), (1.2)
i=1
where each element function f; : R™ — IR (i = 1,...,m) depends only on a few variables, say

those in some subset Z; C {1,...,n} with |Z;] = n; < n. The concept of partial separability was
introduced by Griewank and Toint (1982a) and has been successfully used in existing algorithms to
significantly reduce the cost of approximating second derivatives (see Griewank and Toint, 1982,
Nocedal and Wright, 1999, and also Conn, Gould and Toint, 1992, for an example of practical
implementation). The original concepts is slightly more general, but we will focus our attention on
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this case in what follows. As a consequence of (1.2), we immediately deduce that
i=1 i=1

where the vectors V. f;(x) and matrices V., fi(z) have only a small number of potentially nonzero
components: those corresponding to the variables indexed by Z;.

Our objective is then to solve problem (1.1) by applying efficient variants of Newton method.
These variants are characterized by their globalization strategy (linesearch or, in our case, trust
region), by the nature of the approximations made to the derivatives (1.3) and also by the use of
the hierarchy of discretization levels in a “multigrid-like” algorithm. Methods of this type have
been proposed by Fisher (1998), Nash (2000), Oh, Milstein, Bouman and Webb (2003), and Wen
and Goldfarb (2007) in the linesearch context, and by Gratton, Sartenaer and Toint (2008¢) and
Gratton et al. (2008b) for the case where a trust region is used to enforce global convergence. In all
of these cases, these methods require the computation of the exact Hessian V., f(xy) at an iterate
x) or an approximation of this matrix. This part of the algorithms is costly both in processing time
and (if structure is not preserved) in memory. The associated algorithmic choices are therefore
crucial for the design of numerically efficient methods. The purpose of this paper is to review
and compare strategies for computing such Hessian approximations while preserving the partially
separable structure of the problem. This comparison is proposed in the context of the trust-region
based multilevel variant by Gratton et al. (2008b).

Two main classes of numerical procedures are used to approximate second derivatives: finite-
difference methods, which use gradient differences, and quasi-Newton methods, which are based on
more specific secant equations. Finite-difference methods normally preserve the sparsity pattern
of the Hessian. While the basic algorithm requires a number of gradient evaluations equal to the
size of the problem (which makes this approach practically unaffordable), Powell and Toint (1979),
inspired by Curtis, Powell and Reid (1974), propose to use the sparse structure present in the
considered problems to drastically reduce this number of evaluations. We also refer to Coleman and
Moré (1984) and Coleman, Garbow and Moré (1985). The use of these specialized finite-difference
schemes is therefore attractive in our context and will therefore be included in our comparison.

In quasi-Newton methods, the Hessian is updated by some low-rank correction, rather than
reevaluated, the update taking the curvature information collected between two successive iterates
into account. More precisely, the current Hessian approximation H is updated to Ht to enforce
the secant equation

HY (2" —2) =V, f(a¥) = Vi f(a), (1.4)

where x and T are two successive iterates in the minimization process. However, standard updating
procedures like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (Broyden, 1970, Fletcher,
1970, Goldfarb, 1970, and Shanno, 1970), or the symmetric-rank-one (SR1) formula (see Davidon,
1959) usually destroy Hessian structure, which is not acceptable for the considered class of problems.
This deficiency may be addressed in several ways.

The first is to construct a Hessian approximation H* subject to the secant equation (1.4) but
preserving the sparsity pattern of H. This can be achieved by applying the sparse Powell-symmetric-
Broyden (PSB) update derived by Marwil (1978) and Toint (1977), in which the new approximation
is chosen to minimize the size of the correction H+ — H expressed in the Frobenius norm.

A second possibility is to consider the use of partitioned updating for partially separable prob-
lems, as proposed by Griewank and Toint (1982a). In this technique, the classical updating process
is not applied on the Hessian of the objective function, but on that of each of its element func-
tions. However this requires the knowledge of the element functions’ gradients V, f;(z), which is
not always realistic. Consider, for instance, a discretized problem arising from partial differential
equations whose gradient is computed by solving an adjoint equation. In this case, the system
solution provides the full gradient vector, but does not allow the distinction between gradients
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of the involved element functions, which makes the direct exploitation of the problem’s partially
separable structure impossible. One of the purposes of this paper is to show how the partially
separable nature of the objective function can nevertheless be used, even if only the full gradient
is available. Variational properties are used to recover the element gradients from the full gradient
and the previously computed element Hessian matrices. Interestingly, this can be integrated in the
construction of the complete Hessian approximation, the element gradients and Hessians remaining
implicit in the calculation. The resulting algorithm, elaborated in Section 2.3, turns out to be very
similar (up to the choice of the weighting norm) to the sparse PSB method. This connection is
detailed in Appendix A.

However, neither the sparse PSB nor the new partially separable updating scheme maintain
positive-definite Hessian approximations. This may be considered as a drawback, especially in the
context of multilevel methods, whose efficiency is best on convex problems. We therefore complete
our panel of Hessian approximation methods with a new attempt to obtain a positive-definite
partitioned updating method (Section 2.4), whose performance is then included in our comparison.

The paper is organized as follows. We first review the contending Hessian approximation meth-
ods in Section 2. We then compare them on a battery of multilevel test problems in Section 3, and
finally present some perspectives in Section 4.

2 Structure preserving Hessian approximation schemes

We first review the techniques we have considered for computing a Hessian approximation for our
problem at the finest level.

2.1 Structured finite differences

Finite-differences can be used to approximate (second) derivatives of the objective function. Yet it
would be inefficient to compute many zero values in a Hessian known to be sparse. This observation
is at the basis of the CPR algorithm developed (for Jacobian matrices) by Curtis et al. (1974). In
absence of sparsity, each column of the Jacobian is computed by taking a finite difference in the
corresponding direction of the canonical basis of R". Instead, their idea is to combine as many as
possible of these directions into one, such that the differences can be untangled (the sparsity patterns
of the assembled columns do not overlap). This procedure has been refined for (symmetric) Hessian
matrices by Powell and Toint (1979). In the most economical variant (the substitution method),
only the matrix lower or upper triangular part is computed. This method does not directly provide
the values of the Hessian elements, but these are given as the solution of a triangular system of
linear equations. The procedure computes the column grouping by applying the CPR algorithm on
the lower triangular part of the Hessian.

Algorithm 2.1: Lower triangular substitution (LTS) method

Step 1. Apply the CPR algorithm to the lower triangular sparsity pattern of H.
Step 2. Estimate the corresponding gradient differences.

Step 3. Reconstruct the entries of the estimated H by solving a triangular system of equa-
tions.
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Even if counterexamples can be found, this method is often nearly optimal in terms of the
necessary number of gradient evaluations per Hessian approximation. On the other hand, Goldfarb
and Toint (1984) described optimal grouping based on computational molecules or stencils typically
arising from the discretization of differential equations.

2.2 Sparse Powell-symmetric-Broyden updating

In the domain of quasi-Newton Hessian approximations, Marwil (1978) and Toint (1977) developed
a sparse Hessian updating process for which a global and superlinear local convergence theory is
established when combined with trust-region techniques (see Toint, 1979). In this method, the
updated Hessian H™ is required to satisfy a symmetry condition and a sparsity pattern defined by

H*=HT" and P(H") = HT, (2.5)

where P is the gangster operator that zeroes all elements of a matrix that are prescribed to be zero
by its sparsity structure; we also require the secant equation

Hts=y, (2.6)

to be verified, where s def -+ _ 2 is the iteration step and y def g+ — g is the corresponding variation
in the gradient of the objective function (we use the notation g = V, f(z) and g7 = V, f(z1)). As
these conditions do not fully determine the updating process, a standard technique (see Dennis and
Schnabel, 1983) consists in choosing the smallest correction matrix (in an appropriate norm) such
that the updated Hessian satisfies (2.5) and (2.6). We consider here the weighted Frobenius norm
defined by

n
2 def
1Al = > 4%,
j,0=1

for some n x n weight matrix  with positive elements. These considerations lead to Algorithm 2.2,
in which e denotes the entrywise Hadamard product and A% is the inverse of matrix A for that
product, i.e. [A%];; = Ai_jl.

Algorithm 2.2: Sparse PSB Update

Step 1. Define S = P(ssT) @ QF + diag(P(QF)(s e 5)).
Step 2. Solve SA =y — Hs for A.
Step 3. Compute H* = H + P(s\T + \sT) ¢ %,

2.3 Partially separable PSB update

Assume now that the objective function is partially separable. Now denote by I; the n x n identity
matrix with zeros at diagonal elements indexed by Z& = {1,...,n} \ Z;, denote by J the n x n
matrix whose elements are all equal to 1 and define J; to be the n x n matrix with zero entries
everywhere except in positions Z; x Z; where they are equal to 1. Observe that J is the neutral
element for the Hadamard product.
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The partitioned updating technique by Griewank and Toint (1982a) then updates every element

Hessian H; separately, using the element secant equation
Hs;=y; o 95 — g (2.7)

where HZ+ is the updated approximation of V. fi(zT), s; € R" is the step vector s whose compo-
nents in Z& have been zeroed, g; = V. fi(x) and g = V. fi(xT). However, as we indicated in the
introduction, assuming the knowledge of the element gradients g; and gj and their difference y; may
be unrealistic, and we are therefore interested in a technique that would avoid this requirement.

As in the previous section, we use variational properties to elaborate our new update and each
matrix H. j is chosen as close as possible to the current approximation H;, under suitable conditions.
More precisely, we propose to compute a correction to H = Y., H; and a set of element gradient
differences y; which together minimize some (possibly) weighted sum (with weights w; > 0) of the
squared distances between H;™ and H; (in the Frobenius norm)

by wi|HF — Hilly (2:8)
=1

under the structure constraints on the element gradients and Hessians
Lyi=y; and JieH =H}' (i=1,...,m), (2.9)

the symmetry of the Hessian corrections F; def

H" — H;, that is
E;=EF, (i=1,...,m) (2.10)

and the constraint that the (unknown) element gradients differences y; sum up to the full gradient

difference y, that is
Su=u. (2.11)
i=1

Obviously, we also require that the element secant equation (2.7) holds for all ¢ = 1,...,m. We
stress that no assumption is here made on the positive semi-definiteness of the element Hessians
H;.

The solution of this variational problem (2.7)—(2.11) is obtained by a Lagrangian technique.
The Lagrangian function of this problem, which depends on multiplicators v; € R"™ and x; € R™*"
(i =1,...m) for constraints (2.9), u € R"™ for the constraint (2.11) and 2X; € R" (i = 1,...m) for
constraints (2.7), can be written as

L(Ela'"aE’mayh"'ay’m7l/17"'aym7X17"'aXm7/j/a)‘1)"'a)"m)

— i {%m IEi1% — (i, (Ii — Dys) — (xi, (Ji — J) o (H; + E)) — (u, i)
— (2 (B + B ) y” (2.12)

where (A, B) = tr(AT B) is the usual inner product for matrices 4, B € R"*"™. Note that there
is no multiplicators for the symmetry constraints (2.10) on the correction E;, because the contri-
bution of secant equations to the Lagrangian is expressed in such a way that these constraints are
automatically fulfilled.
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At optimal solutions, the derivative of the Lagrangian with respect to each variable y; must be
zero, that is
—(IZ—I)Z/l—,U,—f—Q)\Z:O, (221,,7’71) (213)

Focusing now on the components indexed by Z;, we observe that the first term of (2.13) disappears,
yielding to 2\ = fi;, where fi;, X € R™ is the part of 1 and A;, respectively, corresponding to
the components indexed by Z;. Clearly, these equations imply that every \; is in fact a (maybe

. . def
overlapping) piece of vector A = pu/2.
The derivatives of the Lagrangian with respect to variables F; also have to be zero, which means
that the directional derivative of L with respect to F; is zero in every (matrix) direction K; € R™*™:

Dp,L-K; = LtwDptr(BIE) K;— (xi,(J; — J) ¢ K;) — Ni(K + K7T)s;
= wittKI'E; — (xi, (Ji = J) ¢ K;) — \i(K; + K)s; = 0, (2.14)

where Dg, L - K; is the derivative of L with respect to E; in direction K;. In particular, we may
choose K; as any matrix with the same structure as H;, that for which the only potentially nonzero
entries are in the submatrix indexed by Z; x Z;. We denote this n; x n; submatrix by f(i. For this
choice of K, the second term of equation (2.14) disappears when considering only entries indexed
by Z; x Z;, and we obtain that

where E; € R™*™ is formed with the elements of E; indexed by Z; x Z;. Developing this expression,
we find that

> Kl ([Ei]jl —w! ([S‘i]j [8il1 + [S‘i]l[gi]j)) =0, VK;eR"*",

which implies that

B =wi! (XigiT + 515\?) . (2.15)

On the other hand, the element Hessian matrices H; have to fulfil the secant equation (2.7), i.e

y; = H;s; + E;s;, yielding to p; def y; — H;s; = E;s;. Focusing again on the components indexed by
Z;, and using (2.15), we have that

~ o~ — Y ~T ~ ~ T~ — ~ N2 F ~ ~ 5 —

Pi = Eisi = w; 1 ()\15?81 =+ 81)\;1151) = w; 1( ||Sz|| IZ + Ssz)Az = W; ISiAi,
where p; € R™ is the subvector of p; indexed by Z;. From the small matrix S; € R™*™ we
construct the matrix S; € R™*" by adding zero rows and columns in such a way that S; has the

same structure as H;. Consequently, p; = w; 18;\ and, using the decomposition of the gradient
difference y into element gradient differences y;, we obtain that

:e i =y — Hs = <iwi15i>)\def;§)\
i—1 i=1

Therefore, we just need to solve the system p = S\, then substitute its solution A in (2.15) to find
the corrections F; and finally, determine the updated element Hessians H j = H; + FE; and the full
Hessian HF = H+ > | E;

Note that this updating procedure requires explicitly neither the element gradients gf or g;, nor
their differences y;, despite that the latter appear as variables in our variational problem. There is
thus no reason to compute them at each iteration, leading to Algorithm 2.3.
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Algorithm 2.3: Partially Separable PSB Update

Step 1. Decompose vector s into {s;}.-, and define S = >"1", w7 (|Isill? I + s4sT).
Step 2. Solve system SA =y — Hs for A and decompose it into {A;}." ;.
Step 3. Update Hessian: HT = H + > | w; "(\is? + s:A7).

This algorithm is very similar to Algorithm 2.2, but differ by the choice of weighted norm, the
partially-separable version giving more weight to the parts of the Hessian belonging to overlapping
elements. It may nevertheless be interpreted as a “PSB-type” update where one minimizes a
(weighted) Frobenius norm of the matrix updates subject to linear conditions. The links between
Algorithms 2.2 and 2.3 are explicited in Appendix A.

2.4 Positive-definite Hessian update

In the previous subsections, positive definiteness of the updated Hessian was not imposed. But as
we aim to design Hessian updating procedure in the framework of multilevel methods, this property
could be advantageous since multigrid methods are known to perform well on convex problems.
However Sorensen (1981) exhibited a counterexample which shows that it may be impossible to
require at the same time the preservation of a sparsity pattern for the updated Hessian, its positive
definiteness and the secant equation (2.6) (Toint (1981) gave sufficient conditions for the existence
of such updates).

In this paragraph we present an attempt to design such a positive definite Hessian updating pro-
cess in the specific context of partially separable unconstrained optimization, but without assuming
the knowledge of the individual element gradients. We start from the observation that, if these
individual gradients were available, then we could apply the partitioned updating of Griewank and
Toint (1982a) and perform the BFGS update on each block of the Hessian matrix. Hence, the idea
is to re-create a collection of “element gradients” whose sum equals the full gradient. These vectors
are then used in the partially separable BFGS update. However, as each elemental secant equation
automatically holds for each elemental BFGS correction, the global secant equation then also holds,
which we know is impossible in general. Our proposal is then to relax the summation condition
(2.11) whenever necessary, in which case our element gradients may differ from their analytical
values and the global secant equation no longer holds exactly.

In addition, the BFGS formula

H;sisTH;,  ywyl

T T,
s; H;s; 87 Yi

Hf = H, — (2.16)

provides a positive definite update (if and) only if the inner product (s;,y;) is positive (and if
H; is already positive definite). Splitting the gradient, and thus y, blindly could consequently be
inappropriate. We thus aim to split the gradient variation y into elemental gradient variations y;
such that their sum is (not too different of) y and that some elemental “curvature” is maintained
in the sense that

e = () def <(.Suyi>. > %i (5jayj>. (2.17)

for some fixed € > 0. Note that we assume that each H; have been kept positive definite such that
(siy His;) > 0. Remark also that due to the structure of y; and H;, the inner products (s;,y;) and
(s, H;s;) can equivalently be written as (s,y;) and (s, H;s).
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Uniform splitting. The simplest splitting procedure is to split the vector y uniformly, in the
following sense. Consider the /-th component of y and consider the collection {¥;};cic(¢) Where
K(¢) = {i | ¢ € Z;} (this collection gathers the particular y; whose ¢-th component is possibly
nonzero). Then the ¢-th component of each y; in this collection is defined as the ¢-th component
of y divided by |K(¢)|. Although this procedure may be judged simplistic, we still add to our
algorithms test in the following form.

Algorithm 2.4: Uniformly Partitioned BFGS Update

Step 1. Decompose vector s into {s;}.—, and split uniformly y into {y;}.",

Step 2. Perform the BFGS update (2.16) on each H; for which (s;,v;) > 1075 (s;, H;si).

A curvature flow problem. Unfortunately, the vectors y; resulting from the uniform splitting
do not necessarily satisfy the curvature constraints (2.17). We then attempt to modify this initial
split of y by considering a feasible flow problem. We define a network whose nodes represent the
element of the partially-separable structure, and such that each pair of nodes corresponding to
elements sharing at least one variable is connected by an arc. Each of these arcs is directed to start
at the node of the pair with largest value of the curvature measure p; and terminate at the node
of the pair with the smallest p;. Each node ¢ for which (2.17) is then considered as a source of
(curvature) flow in the network and, symmetrically, each node for which (2.17) fails is considered
as a sink.

Our aim is then to modify the values of the y;, which then results in corresponding modifications
of the pu;, such that (2.17) holds for all nodes. This is achieved by shifting curvature across the
network from the sources to the sinks. The shift of curvature along the arc ¢ — j is obtained by
considering only the variables shared by elements 7 and j, that is those in Z; NZ;, which is nonempty
by construction of the network. In what follows, we use the superscript “'” to restrict vectors to
the components indexed by this set Z; N Z; (i and j remain implicit), and the superscript “\ to
restrict them to the complementary set of variables, which is Z& U ch . To improve p;, we add to
y}' some subvector u such that (s”,u) > 0, which implies that

(s,yf) = (s\y)) + (7, yf +u) > {5\ y)) + (57,97 = (s,95),

such that ,u;' is larger than p; after this modification. The same subvector v is then symmetrically
subtracted from y!', with the effect that curvature is shifted from node i to node j. The amount
of shifted curvature is limited by the amount of positive curvature available in node i. We also
impose another bound whose purpose is to avoid a too large increase in the norm of the vectors
y; and y; (which in turn results in an increase in the norm and condition number of the Hessian
approximation), and require that the norms of y{' and y]m remain bounded above by some constant
M. This constraint defines the capacity of the arc i — j, that is the amount of “curvature” that
can be shifted along this arc.

Note that each arc capacity depends on the values of the elemental gradient variations corre-
sponding to the extremities of the arc. The arc capacities are thus likely to vary along the shifting
process. Our problem therefore departs from the classical flow problem in graph theory (where the
capacities are fixed independently of demand). Moreover, the total flow Y p; is not necessarily
conserved after a modification of the flow (due to the definition (2.17)). As a consequence, an
iterative process will be necessary, which involves updating the capacities and demand after one
round of flow modifications, which in turn results in an implicit update of the total flow. The flow
analogy is then used as a heuristic.



Malmedy, Toint: Approximating Hessians in multilevel unconstrained optimization 9

Solving the feasible flow problem. We next investigate methods designed to compute a max-
imal flow from a (possibly multiple) source to a (possibly multiple) sink on a network with fixed
capacities (see Ahuja, Magnanti and Orlin, 1993, or Ahuja, Kodialam, Mishra and Orlin, 1997, for
a survey). We decided to use the push-relabel algorithm introduced by Goldberg and Tarjan (1988),
and more practically described by Cherkassky and Goldberg (1997). This method attributes to each
node a (variable) distance label, which is, at the beginning, the distance to the sink node (that is
the least number of nodes on a path from that node to the sink); the source has by assumption the
maximal label. For each excess node (also called active node), the algorithm tries to reduce this
excess, by sending it to adjacent nodes (this constitutes the push operations), given that transfers
may occur only between nodes with consecutive distance label (from the highest to the lowest).
But it may also happen that no more adjacent node has the required label while the excess is still
not deleted. In this case, the label of the current node is updated (this is called a relabel operation)
so that an adequate node appears, allowing again a push to reduce the excess. This procedure is
repeated until every active node becomes inactive. There are several strategies to define in which
order the algorithm deals with the active nodes. Here, we consider the lowest-label variant of this
method, because it starts by considering the deficient nodes (that have the lowest labels), which
are, in our case, the only problematic ones. Moreover, Ahuja et al. (1997) and Cherkassky and
Goldberg (1997) seem to indicate that it could also give better results in practice.

Performing a push and updating arcs capacities. At each push step, § units of flow (in our
case, curvature) have to be transferred along the arc i« — j, with the aim of satisfying demand at
node j subject to capacity constraint on this arc. Consider the resulting modification of vectors y}'
and yf' with respect to their mean w = 1+ y}'). To preserve the summation condition (2.11),

Yt + y?"’ must be equal to yf' + ¥, and so w* = w, yielding that
yit =w—v and y?* =w+v, (2.18)

for some vector v = %(y? — i) +u.
As indicated, we require that the norms of these two vectors are bounded above by the constant
M. First consider the case where s and w are linearly independent. Given that

lw £ 0l* < flwl® + [0]|* + 2[{w, v)]

we choose v to zero the term (w,v) to limit the values of these norms. In this situation, consider a
fixed improvement in ;. The value of (s”,v) is then fixed, and the norm of y}'* (which is now the
same as that of y?*‘) is minimal if the vector v lies in the plane II spanned by s and w. Indeed,
consider the orthogonal decomposition of v as

PHU+(17PH)07
where Ppy is the orthogonal projection on II. Then, the squared norm
Iy 1% = llwll® + | Paol® + (1 = Pr)vl® (2.19)

has to be minimal with (s, v) fixed and (w,v) equal to zero (due to the orthogonality assumption
on v and w). But, (s",v) = (s, Pqv) and (w,v) = (w, Pyv) because s and w lie in II. So the
two constraints determine only (but completely) the component of v lying in the plane II. The
minimum of (2.19) is thus reached when (I — Pr)v is zero. We now give an explicit expression of
vector v, knowing that it lies in plane II and is perpendicular to w. Observe that these conditions
define a one-dimensional space and are fulfilled by (I — P,)s". Therefore,

v =3 (I - wa) s" (2.20)

wTw
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for some scalar 3.
Now consider the other case where s and w are collinear. Choosing v orthogonal to w (and
thus to s) prevents increasing p;. Then, we just set

v=3s", (2.21)

for some scalar 3, enabling a direct increase of (s, v), and thus of ;.
In both cases, the positive scalar 3 is determined such that

lyT Il < M and [y < A, (2.22)
and that <sm, y?+> is bounded above by what is needed to get the desired increase ¢ in p;:
<sm,y?+> < <sm, y]m> +6 (s, Hjs) . (2.23)
A lower bound is also imposed on <s”, y?+> to prevent it to become (too) negative:
(s, yi) > —<s\,yi\> + 7 (s, H;s), (2.24)
where 7 determines how negative uj may become. Obviously, we also impose that
> (2.25)

The updated vectors y;7 and y;r are then given by (2.18), and (2.20) or (2.21) with the maximal
value of [ satisfying the conditions (2.22) to (2.25) (if there are compatible).

Note that requiring v to be orthogonal to w can be a restrictive choice when M is sufficiently
large (more precisely, when the intersection of lines w + IRv and IRs" lies inside the ball of radius
M centred at the origin). We then turn back to (2.21) even if s and w are not collinear. This
completes the push operation description.

This process without condition (2.23) is also used to initialize the arcs capacities and to update
every arc adjacent after a push.

Balanced Partitioned BFGS Update. Practically, the curvature balancing process can stop
prematurely with nodes still deficient, because the constraints (2.22) to (2.25) become incompatible
and thus the arc capacities reduce to zero. Therefore, some additional heuristics were tested to
accept or refuse the generated set of element gradient differences. The first one was to keep the
new version of vector y; only if the corresponding u; was initially positive or was not decreased.
The second one was to monitor each element secant equation and to update the element gradient
difference y; only if the corresponding i-th element secant equation was not deteriorated with respect
to the initial set of vectors y;. The best results were obtained by combining these heuristics: each
y; was updated only if both rules were satisfied. This obviously generates a relaxation of the
summation condition (2.11), which is equivalent to relaxing the full secant equation.

The last algorithm (Algorithm 2.5 on the following page) which we propose to test therefore
consists in uniformly splitting the gradient difference y and then applying the elemental BFGS
updates on the basis of the element gradient differences y; balanced using the heuristics described
above.

3 Numerical experiments

We performed our numerical experiments inside the Recursive Multilevel Trust-Region (RMTR)
method of Gratton et al. (2008¢). More precisely, we used the Fortran 95 code written by D. Tomanos
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Algorithm 2.5: Balanced Partitioned BFGS Update

Step 1. Decompose vector s into {s;}.-, and split uniformly y into {y;}.",

Step 2. Apply the push-relabel heuristic on the curvature flow network described above, in
order to balance the vectors y;.

Step 3. For each element ¢, check for initial positivity or improvement of p;, and non-
deterioration of the i-th element secant equation. If these conditions fail, use the initial
vector y;.

Step 4. Perform the BFGS update (2.16) on each H; for which (s;,y;) > 1075 (s;, H;si).

and implementing the infinite-norm version of that algorithm (see Gratton et al., 2008b). All codes
were written in Fortran 95 and experiments were conducted on a 3.40 GHz Intel dual-core processor
computer with 2 Gbytes of RAM.

We used the RMTR code with the parameters values advised by Gratton, Mouffe, Sartenaer,
Toint and Tomanos (2008a)). Our modifications to this code intent to deal with approximate
Hessians. So, instead of reevaluating the Hessian when needed, it was updated using one of the
compared updating procedure:

e the lower triangular substitution method (LTS, see Algorithm 2.1);

e the lower triangular substitution method (LTS-O) using the optimal columns groups from
Goldfarb and Toint (1984);

e the sparse PSB update (S-PSB, see Algorithm 2.2);
e the partially separable PSB update (PS-PSB, see Algorithm 2.3);

e the partitioned BFGS update with the uniform splitting of the gradient differences (UP-BFGS,
see Algorithm 2.4);

e the partitioned BFGS update with the balanced splitting of the gradient differences (BP-
BFGS, see Algorithm 2.5).

Observe that the element gradients and Hessians need to be stored for the UP-BFGS and BP-BFGS
choices, at variance with the PS-PSB option.

Except for the LTS and LTS-O methods, the initial Hessian at each level of the algorithm has
to be estimated rather than evaluated. For the UP-BFGS and BP-BFGS options, we choose to set
every element Hessian H; to the identity matrix, the full initial Hessian being thus defined as the
sum of these element Hessians. The same matrix is chosen for S-PSB and PS-PSB (without the
need to initialize the H; explicitely).

Practicalities. In the LTS-based algorithms, we fixed the increment for the finite difference
computation at 1078, For LTS-O, the covering molecules are described in Appendix B. The linear
systems in the S-PSB and the PS-PSB algorithms are solved by a preconditioned conjugate gradient
method. The chosen preconditioner is given by the diagonal term diag(P(Q¥)(s e 5)) for S-PSB,
and ), 7 wit ||s4]|* I; for PS-PSB. The required precision on the solution A was set to 1076, In
the BP-BFGS algorithm, our implementation of the push-relabel algorithm is mainly inspired of
the highest-label push-relabel (HIPR) code of A. V. Goldberg. The bound M on the norms was set
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to ||lyll, € to 0.1 and 7 to 0. Finally, except for the LTS and LTS-O algorithms, the i-th element
Hessian H; was not updated if the norm of the corresponding element step s; was smaller than
1075 times the norm of the step s. This is to prevent bad conditioning of the linear system for
the PSB-like updates, and numerical errors in the partitioned BFGS updates. Besides, as nearly
no information can be collected in the directions given by these s;, it does not hurt much to forget
them.

Test problems. We have considered minimization problems posed in infinite-dimensional spaces
and involving differential operators. We refer to Gratton et al. (2008a) for a detailed description.

Problem name Sizes | Comment
P2D 261121, 1046529, 4190209 | 2-D, quadratic
P3D 29791, 250047 | 3-D, quadratic
DEPT 261121, 1046529, 4190209 | 2-D, quadratic, (Minpack 2)
DPJB 261121, 1046529, 4190209 | 2-D, quadratic, with bound constraints (Minpack 2)
DODC 261121, 1046529, 4190209 | 2-D, convex, (Minpack 2)
MINS-SB 65025, 261121, 1046529 | 2-D, convex, smooth boundary conditions
MINS-OB 65025, 261121, 1046529 | 2-D, convex, oscillatory boundary conditions
MINS-DMSA 65025, 261121, 1046529 | 2-D, convex, (Minpack 2)
IGNISC 261121, 1046529 | 2-D, convex
DSSC 261121, 1046529, 4190209 | 2-D, convex, (Minpack 2)
BRATU 65025, 261121, 1046529 | 2-D, convex
MEMBR 261121, 1046529, 4190209 | 2-D, convex, free boundary, with bound constraints
NCCS 7938, 32258, 130050 | 2-D, nonconvex, smooth boundary conditions
NCCO 32258, 130050, 522242 | 2-D, nonconvex, oscillatory boundary conditions
MOREBV 65025, 261121, 1046529 | 2-D, nonconvex
Table 3.1: Test problems characteristics
Results. As function and gradient evaluations do not cost the same at each level, we defined an
equivalent number of evaluations (see Gratton et al., 2008a) given by
e
q= qe—
n

level £

where ¢, and n, are respectively the number of evaluations and the size of the problem at level
£. The results of the numerical experience are given in Appendix C. For a better readability, we
display these results as performance profiles (see Dolan and Moré, 2002). In Figure 1, we take the
number of function evaluations plus five times the number of gradient evaluations as comparison
criterion; this ratio seems appropriate in view of Griewank (1989). In Figures 2 and 3, we compare
the CPU time and the equivalent number of Hessian updates, respectively.

The graphs shows that the two LTS-based methods and the two PSB-type updates are clearly
more efficient and robust than the partitioned BFGS updating procedures.

We observe that if an optimal column grouping is available, it is worth exploiting it, because it
allows an important reduction of the number of gradient evaluations. A reduction of the cpu time
is also observed, but it corresponds mainly to the smaller number of gradient evaluations. Indeed,
as both methods give a relatively accurate approximation of the Hessian, the number of iterations
requiring an Hessian update are quite similar.

In term of robustness, the LTS-based methods and the PSB-type updates give similar results,
with a small advantage for the LTS-based methods. Remember that the LTS-based methods re-
quire more gradient evaluations than the PSB-type updates at each iteration where the Hessian is
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Number of function evaluations + 5 * number of gradient evaluations
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Figure 1: Performance profiles based on the number of function evaluations plus five times the
number of gradient evaluations.

CPU Time
T T T T

Figure 2: Performance profiles based on the CPU time.

Number of Hessian updates
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Figure 3: Performance profiles based on the number of Hessian updates.
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(approximately) recomputed. This should be a disadvantage, but as shown in Figure 3, the better
accuracy obtained with the LTS-based methods reduces the number of iterations where the Hessian
needs to be recomputed in RMTR. We obtain similar results in term of function and gradient eval-
uations (and in fact, better results for the LTS-O variant as it requires less gradient evaluations).
If we now consider Figure 2, we observe that the LTS-based methods are faster than the PSB-type
updates. This seems to correspond to the additional iterations for the PSB-type updates and to
the fact that the LTS-based methods solve a sparse triangular linear system instead of a sparse
general linear system. A small advantage is also observed for the partially separable PSB update
with respect to the sparse one.

Regarding the two partitioned BFGS updating process, we note that, surprisingly, the unbal-
anced version is a little more efficient and robust. Clearly, the balancing procedure is also too
expensive to produce good results in CPU time. This initially interesting idea thus appears not to
give the associated advantages.

4 Conclusion and perspectives

We have reviewed existing methods and presented new methods to update the Hessian of structured
large-scale functions present in multilevel optimization. A numerical comparison has been reported
and it indicates that the LTS methods is a good choice in term of effectiveness and robustness.

Our test problems set is still rather small and new problems are sought. In particular, problems
with different structures than the current ones (e.g. denser) could allow a finer comparison of the
methods.
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A Link between sparse and partially separable PSB updates

Algorithm 2.2 and 2.3 turns out to differ only by the choice of the norm used in the variational
problem. More precisely, they produce the same update if we defined the weigh matrix Q in
Algorithm 2.2 such that

O* = "w (1.26)
1=1

Indeed, for the particular choice of €2, the matrix S is identical for both considered algorithms:

P <ssT o iw;lJl) + diag <7) <iw;1Ji> (se s))

P <Z w;'(ssT e Jl)> + Zw{ldiag (Ji(ses))

m m m
SowitsisT + > witdiag (Jlsil*ei) = Yo (sisT + lsill* 1)
=1 =1 =1

where e; = diag([l;) is a vector with value 1 for components indexed by Z; and value 0 elsewhere.

S

It now remains to show that the correction E/ def H™T — H is the same in both cases:

E=P <(s)\T +xsT) e Zw[lJZ) =P (Zwi_l(s)\T +AsT) e Jz-) = Zwi_l (siA] + N\is?) .
i=1 i=1 i=1

As a consequence of this result, the convergence theory presented by Toint (1979) (in the un-
weighted case) immediately adapt to provide global and local convergence with superlinear speed
for Algorithm 2.3 embedded inside a trust-region method.
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B Covering molecules for LTS-O

The multi-diagonal structure of the Hessian in our problems can be represented with computational
molecules, whose size could be reduced by taking into account the symmetry of the Hessian. Gold-
farb and Toint (1984) define these reduced molecules (see details in their paper) and use them to
cover the discretization grid space (reduced molecules are shaded in the following pictures); each
(Hessian column) group then consists in all nodes of the grid covered by the same node of the
molecule.

Problems P2D, BRATU et MEMBR arise from a 5-point finite difference Laplacian operator;
this gives a 5-diagonal Hessian, whose cover is displayed in Figure 4 (left). The Hessian of the
3-dimensional Laplacian problem P3D consists in 7 diagonals and an horizontal layer of its cover
is represented in Figure 4 (center); the molecules are indeed tetrahedrons. In problems DEPT,
DPJB, DODC, MINS-SB, MINS-OB, MINS-DMSA and DSSC, the Hessian has also 7 diagonal and
its cover is displayed in Figure 4 (right).

Figure 4: Covers for a 5-diagonal Hessian (left), a 3-dimensional 7-diagonal Hessian (horizontal
layer, in the center) and a 7-diagonal Hessian (right).

For problems IGNISC and MOREBV, we have a 13-diagonal Hessian, whose cover is displayed
in Figure 5 (left). Finally, while Goldfarb and Toint (1984) present no cover for the two problems
NCCS and NCCO, we describe one in Figure 5. As these problems use two set of variables, the
cover is also defined on two layers, the first one corresponding to that of a 13-diagonal Hessian.

Figure 5: Covers for a 13-diagonal Hessian (left), and for NCCS/NNCO problems (first set of
variables on the left, second one on the right).
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C Complete numerical results

In the next table, we report the CPU time (cpu), the equivalent number of function (nf), gradient
(ng) and Hessian (nh) evaluations. The symbol “~” indicates that the iteration limit (fixed at
10,000) or the time limit (fixed at 1 hour) was exceeded.

P2D (261121) CPU nf ng nh DEPT (261121) CPU nf ng nh
LTS 0.88 1.88 2.47 0.08 LTS 0.58 1.67 2.15 0.08
LTS-O 0.80 1.88 1.96 0.08 LTS-O 0.55 1.67 1.90 0.08
S-PSB 2.43 5.24 3.55 1.07 S-PSB 1.18 3.91 2.49 0.54
P-PSB 2.71 5.32 3.76 1.17 P-PSB 1.38 4.28 2.81 0.70
UP-BFGS 12.90 22.96 15.50 7.04 UP-BFGS 10.41 27.58 16.91 7.78
BP-BFGS 127.24 22.87 15.44 7.01 BP-BFGS 74.94 27.85 17.24 7.91
P2D (1046529) CPU nf ng nh DEPT (1046529) CPU nf ng nh
LTS 3.69 1.70 2.35 0.08 LTS 2.07 T.47 1.57 0.02
LTS-O 3.32 1.70 1.84 0.08 LTS-O 2.04 1.47 1.51 0.02
S-PSB 5.83 2.48 2.09 0.34 S-PSB 3.55 2.20 1.81 0.23
P-PSB 6.28 2.60 2.19 0.39 P-PSB 3.73 2.19 1.81 0.23
UP-BFGS 34.17 12.46 8.67 3.63 UP-BFGS 27.96 11.06 7.07 2.86
BP-BFGS 243.75 12.29 8.52 3.55 BP-BFGS 134.64 12.65 7.79 3.22
P2D (4190209) CPU nf ng nh DEPT (4190209) CPU nf ng nh
LTS 13.33 1.43 1.59 0.02 LTS 8.21 1.38 1.52 0.02
LTS-O 11.54 1.43 1.46 0.02 LTS-O 7.80 1.38 1.46 0.02
S-PSB 17.70 1.70 1.59 0.12 S-PSB 13.39 2.04 1.60 0.12
P-PSB 19.19 1.71 1.59 0.12 P-PSB 15.85 2.55 1.86 0.19
UP-BFGS - - - - UP-BFGS 93.50 5.32 3.58 1.11
BP-BFGS — - - - BP-BFGS - - - -
DPJB (261121) CPU nf ng nh DODC (261121) CPU nf ng nh
LTS 0.69 1.87 2.48 0.08 LTS 2.41 4.54 13.68 1.13
LTS-O 0.62 1.87 2.05 0.08 LTS-O 14.39 42.78 90.04 15.01
S-PSB 2.47 6.77 4.65 1.62 S-PSB 4.68 13.63 6.91 2.71
P-PSB 2.38 6.17 4.13 1.36 P-PSB 4.68 14.11 6.46 2.40
UP-BFGS 6.56 13.99 9.22 3.90 UP-BFGS 68.43 165.18 94.23  46.30
BP-BFGS 84.27 15.74 10.31 4.45 BP-BFGS 668.77  255.94 137.65  68.17
DPJB (1046529) CPU nf ng nh DODC (1046529) CPU nf ng nh
LTS 2.73 1.63 2.31 0.08 LTS 6.33 2.40 5.75 0.40
LTS-O 2.57 1.63 1.89 0.08 LTS-O 65.05 34.87 88.18 14.57
S-PSB 7.56 4.91 3.08 0.83 S-PSB 16.18 7.54 5.65 2.21
P-PSB 8.45 5.31 3.35 0.97 P-PSB 13.98 6.35 4.56 1.69
UP-BFGS 25.65 11.30 7.63 3.11 UP-BFGS 537.42  315.22 166.44  82.52
BP-BFGS 234.51 11.37 7.77 3.18 BP-BFGS - - - -
DPJB (4190209) CPU nf ng nh DODC (4190209) CPU nf ng nh
LTS 11.28 1.46 T.61 0.02 LTS 24.72 2.23 1.45 0.29
LTS-O 10.11 1.46 1.50 0.02 LTS-O 186.52 18.71 40.99 6.65
S-PSB 31.38 2.86 2.25 0.45 S-PSB 38.18 4.16 2.81 0.81
P-PSB 22.73 2.52 1.95 0.30 P-PSB 42.76 4.46 2.77 0.80
UP-BFGS - - - - UP-BFGS B - - -
BP-BFGS — - - - BP-BFGS - - - -
MINS-SB (65025) CPU nf ng nh MINS-OB (65025) CPU nf ng nh
LTS 10.70 86.05 295.36 24.28 LTS 3.96 29.22 T11.59 10.10
LTS-O 9.43 99.05 202.89 28.28 LTS-O 2.93 29.22 61.04 10.10
S-PSB 45.65 914.76 518.48 45.93 S-PSB 13.33 141.54 82.13  39.73
P-PSB 31.61 555.84 362.48 39.45 P-PSB 15.85 173.29 98.77  48.06
UP-BFGS 84.65 653.59 582.71 199.22 UP-BFGS 22.37  178.39 117.47  57.41
BP-BFGS 947.50 840.55 781.92 338.50 BP-BFGS 347.34 187.87 122.08  59.71
MINS-SB (261121) CPU nf ng nh MINS-OB (261121) CPU nf ng nh
LTS 53.04 99.15 364.73 28.70 LTS 51.16 90.12  398.27  33.65
LTS-O 41.01 104.52 205.17 27.70 LTS-O 28.13 60.37  156.01 26.15
S-PSB 234.72 987.57 617.88 68.79 S-PSB 57.59 154.79 86.25  41.79
P-PSB 201.77 894.33 539.26 55.88 P-PSB 58.44 151.90 87.12  42.23
UP-BFGS 2191.21 3359.43  3306.73 1579.73 UP-BFGS 79.25 149.86 100.29  48.81
BP-BFGS - - - - BP-BFGS 1454.49 164.08 108.05 52.69
MINS-SB (1046529) CPU nf ng nh MINS-OB (1046529) CPU nf ng nh
LTS 227.83 99.26 375.90 29.42 LTS 184.29 75.51  352.23  29.47
LTS-O 173.90 102.67 209.02 30.86 LTS-O 114.60 71.76 158.60  26.47
S-PSB 1429.00 1589.16 912.60 99.64 S-PSB 174.74 113.10 63.72  30.53
P-PSB 1279.08 1382.69 804.51 96.06 P-PSB 213.70 160.04 83.40  40.37
UP-BFGS 3108.23 1117.39 1074.15 525.82 UP-BFGS 482.94  276.23 162.65 79.99
BP-BFGS B - B - BP-BFGS - - - -
MINS-DMSA (65025) CPU nf ng nh DSSC (261121) CPU nf ng nh
LTS 3.08 27.09 98.37 8.01 LTS 0.80 1.68 2.33 0.08
LTS-O 21.19 195.10 522.04 87.02 LTS-O 0.71 1.68 1.90 0.08
S-PSB 11.79 103.27 70.95 34.15 S-PSB 1.77 3.79 2.84 0.71
P-PSB 10.60 97.58 61.29 29.31 P-PSB 1.81 3.49 2.74 0.66
UP-BFGS 34.71 277.40 179.19 88.27 UP-BFGS 10.51 19.99 12.32 5.45
BP-BFGS 463.76 279.24 180.39 88.86 BP-BFGS 77.21 20.38 12.42 5.50
MINS-DMSA (261121) CPU nf ng nh DSSC (1046529) CPU nf ng nh
LTS 30.89 50.43 204.22 18.56 LTS 2.87 1.48 1.62 0.02
LTS-O 95.51 207.78 562.36 93.73 LTS-O 2.83 1.48 1.51 0.02
S-PSB 40.61 105.21 60.13 28.73 S-PSB 4.55 2.08 1.84 0.24
P-PSB 33.50 87.02 51.99 24.66 P-PSB 4.88 2.08 1.86 0.25
UP-BFGS 104.21 207.93 134.25 65.82 UP-BFGS 24.42 8.48 5.42 2.04
BP-BFGS 1460.76 227.11 146.39 71.86 BP-BFGS 126.81 8.38 5.32 1.98
MINS-DMSA (1046529) CPU nf ng nh DSSC (4190209) CPU nf ng nh
LTS 119.48 49.11 191.30 17.39 LTS 11.78 1.39 1.56 0.02
LTS-O 652.20 334.14 934.21 155.70 LTS-O 10.85 1.39 1.46 0.02
S-PSB 128.06 83.01 48.96 23.52 S-PSB 14.65 1.66 1.51 0.08
P-PSB 126.76 92.12 54.96 26.15 P-PSB 15.95 1.72 1.55 0.10
UP-BFGS 329.05 157.77 99.53 48.62 UP-BFGS - - - -
BP-BFGS - - - - BP-BFGS - - - -
P3D (29791) CPU nf ng nh IGNISC (261121) CPU nf ng nh
LTS 1.86 6.19 21.96 1.14 LTS 5.57 17.10 49.60 4.47
LTS-O 1.10 6.19 9.45 1.14 LTS-O 0.82 1.97 4.22 0.34
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S-PSB 12.36 88.61 53.73 25.74 S-PSB 7.02 17.25 11.63 5.41
P-PSB 12.67 92.79 51.12 24.43 P-PSB 6.02 14.94 9.36 3.90
UP-BFGS 11.30 74.84 48.45 23.11 UP-BFGS 6.33 14.17 9.12 3.79
BP-BFGS 152.70 78.63 51.04 24.47 BP-BFGS 123.64 14.30 8.86 3.63
P3D (250047) CPU nf ng nh IGNISC (1046529) CPU nf ng nh
LTS 18.31 6.03 21.87 1.14 LTS 35.55 22.88 80.71 767
LTS-O 10.52 6.03 9.31 1.14 LTS-O 3.63 1.99 4.22 0.33
S-PSB 143.50 119.03 59.15 28.44 S-PSB 29.84 21.04 11.69 4.53
P-PSB 184.30 139.67 84.77 41.24 P-PSB 24.18 14.48 8.19 3.59
UP-BFGS 130.35 90.27 57.34 27.53 UP-BFGS 35.11 17.43 10.26 4.40
BP-BFGS - - - - BP-BFGS 588.85 17.33 10.35 4.38
BRATU (65025) CPU nf ng nh MEMBR (261121) CPU nf ng nh
LTS 0.35 2.57 5.26 0.33 LTS 96.29 146.65  554.56  46.75
LTS-O 0.25 2.57 3.20 0.33 LTS-O 75.95 191.72 256.87  51.13
S-PSB 1.01 9.99 6.44 2.39 S-PSB 163.53  686.03  377.24  44.12
P-PSB 0.70 7.10 4.36 1.35 P-PSB 96.66  234.36 128.07  50.20
UP-BFGS 3.78 32.25 20.28 9.31 UP-BFGS 171.86  391.21 197.86  98.27
BP-BFGS 36.87 31.46 19.82 9.08 BP-BFGS 645.75  387.99 198.45  98.55
BRATU (261121) CPU nf ng nh MEMBR (1046529) CPU nf ng nh
LTS 0.85 1.73 2.36 0.08 LTS 163.75 45.57  166.86 14.16
LTS-O 0.78 1.73 1.84 0.08 LTS-O 152.82 54.98 71.55 14.06
S-PSB 2.05 4.25 3.31 0.95 S-PSB 661.63 644.41 330.95 12.74
P-PSB 1.92 3.84 2.91 0.75 P-PSB 242.78 159.23 79.63 13.75
UP-BFGS 10.31 21.68 12.50 5.54 UP-BFGS 351.39 107.60 54.81 26.71
BP-BFGS 73.41 15.99 9.85 4.22 BP-BFGS 1045.92 110.47 56.86  27.73
BRATU (1046529) CPU nf ng nh MEMBR (4190209) CPU nf ng nh
LTS 3.58 155 2.25 0.08 LTS 380.26 16.36 55.48 .70
LTS-O 3.25 1.55 1.75 0.08 LTS-O 452.74 16.15 20.61 3.86
S-PSB 5.79 2.67 2.12 0.35 S-PSB 1405.36  262.67 134.00 3.23
P-PSB 5.20 2.48 1.91 0.25 P-PSB 651.50 80.32 39.02 3.61
UP-BFGS 35.82 13.49 7.77 3.18 UP-BFGS - - - -
BP-BFGS 189.15 11.00 6.62 2.60 BP-BFGS - - - -
NCCS (7938) CPU nf ng nh NCCO (32258) CPU nf ng nh
LTS 0.29 11.52 60.82 1.34 LTS 0.05 1.34 1.37 0.00
LTS-O 0.13 11.52 26.88 1.34 LTS-O 0.04 1.34 1.37 0.00
S-PSB 0.14 6.28 4.12 3.00 S-PSB 0.16 2.57 2.03 0.75
P-PSB 0.24 10.33 5.94 5.54 P-PSB 0.40 3.58 2.49 1.39
UP-BFGS 0.04 2.15 1.88 0.61 UP-BFGS 0.08 1.58 1.47 0.15
BP-BFGS 51.26 309.39 166.18 85.42 BP-BFGS 0.09 1.58 1.47 0.15
NCCS (32258) CPU nf ng nh NCCO (130050) CPU nf ng nh
LTS 0.80 8.47 61.00 1.34 LTS 11.51 9.33  289.34 7.00
LTS-O 0.40 8.47 24.52 1.34 LTS-O 0.83 3.33 16.34 1.00
S-PSB 0.19 2.57 2.03 0.75 S-PSB 2.57 22.64 2.51 0.19
P-PSB 0.35 3.58 2.49 1.39 P-PSB 2.69 22.90 2.62 0.35
UP-BFGS 0.08 1.58 1.47 0.15 UP-BFGS 3.88 22.40 2.37 0.04
BP-BFGS 411.80 415.97 226.73 138.35 BP-BFGS 3.88 22.40 2.37 0.04
NCCS (130050) CPU nf ng nh NCCO (522242) CPU nf ng nh
LTS 11.37 12.02 264.70 6.33 LTS 12.03 3.33 73.34 1.75
LTS-O 1.53 7.02 23.58 1.33 LTS-O 1.38 1.83 5.09 0.25
S-PSB - - - - S-PSB - - - -
P-PSB - - - - P-PSB - — - -
UP-BFGS - - - - UP-BFGS - - - -
BP-BFGS - - - - BP-BFGS - - - -
MOREBV (65025) CPU nf ng nh MOREBV (1046529) CPU nf ng nh
LTS 9.74 94.71 55.30 0.33 LTS 137.13 19.41 12.20 0.08
LTS-O 8.76 94.71 51.07 0.33 LTS-O 121.24 19.41 11.06 0.08
S-PSB 20.06 264.23 197.74 11.71 S-PSB 450.78  459.46  236.22 2.76
P-PSB 7.91 36.80 28.55 12.72 P-PSB 68.21 14.34 11.33 3.95
UP-BFGS 84.49 465.10 253.53 128.27 UP-BFGS 463.23 100.26 52.25 25.57
BP-BFGS 620.03 361.73 211.12 105.11 BP-BFGS 2468.63 94.53 50.04  24.37
MOREBV (261121) CPU nf ng nh

LTS 29.62 43.44 24.25 0.08

LTS-O 28.87 43.44 23.20 0.08

S-PSB 46.17 145.85 101.13 6.03

P-PSB 26.19 26.23 22.09 8.51

UP-BFGS 271.05 362.46 187.63 93.71

BP-BFGS 1802.63 342.01 180.34 89.62




