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Abstract

A class of algorithms for unconstrained optimization is introduced, which sub-

sumes the classical trust-region algorithm and two of its newer variants, as well as

the cubic and quadratic regularization methods. A unified theory of global conver-

gence to first-order critical points is then described for this class.
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1 Introduction

Unconstrained minimization and nonlinear least-squares problems are important instances
of nonlinear programming, not only because of their own right, but also in view of the
many other optimization problems which are reformulated as a (sequence of) problems of
this type. As a consequence, algorithms which guarantee convergence to a local solution
of nonconvex problems from arbitrary starting points are central and subject to intensive
study. This “global” convergence property has traditionally been enforced by controlling
the distance between two successive iterates of variants of Newton’s method by either
linesearch or trust-region techniques (see Nocedal and Wright, 1999, for a recent introduc-
tion to these techniques). These techniques are however strongly intertwined, and Shultz,
Schnabel and Byrd (1985) and Toint (1988) independently observed that linesearch-based
methods can often be reinterpreted as special cases of trust-region methods. Moreover,
a common convergence theory can be derived that covers both classes (see Conn, Gould
and Toint, 2000, Section 10.3, for a more recent exposition of this idea).

It is only recently that a third class of methods has emerged which also guarantees
global convergence to local solutions for nonconvex problems. Elaborating on original
ideas by Griewank (1981), Nesterov and Polyak (2006) and Weiser, Deuflhard and Erd-
mann (2007), Cartis, Gould and Toint (2009a) derived a general class of optimization
methods where the distance between successive iterates is controlled by adaptive regu-
larization. In this technique, an iteration-dependent cubic penalization of the steplength
produces the desirable control. Remarkably, this class of algorithms enjoys all the good
global convergence properties of trust-region methods, as well as an interesting worst-case
complexity and, very crucially, a promising numerical efficiency. Unfortunately, this inter-
esting development broke the unified setting where all efficient methods could be covered
by a single convergence analysis. This situation deteriorated even further (from this spe-
cific point of view) when Nesterov (2007) proposed yet another (quadratic) regularization
algorithm for nonlinear systems of equations. This method was then extended to gen-
eral nonlinear least-squares problems by Bellavia, Cartis, Gould, Morini and Toint (2010),
who also provided an again independent proof of global convergence for this algorithm.
In parallel with this activity, new trust-region methods were also developed by Fan and
Yuan (2001) for general unconstrained optimization and by Zhang and Wang (2003) and
Fan (2006), Fan and Pan (2008a, 2008b) for the solution of nonlinear equations, where
the rules of the trust-region updates are modified so that the radius converges to zero.
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Because of this non-standard feature, each of these contributions again presents its own
version of global convergence.

It is the purpose of this note to reconstruct a unifying framework in which global
convergence can be proved for a class of methods, including standard and non-standard
trust-region algorithms (and their linesearch avatars) as well as cubic and quadratic reg-
ularization schemes. This unification is based on the exploitation of technical similarities
between the various existing proofs, but also has the advantage of providing a new poten-
tially useful mechanism for nonlinear step control.

The paper is organized as follows. Section 2 introduces the new nonlinear stepsize
control mechanism and the associated framework for unconstrained optimization algo-
rithms, whose global convergence to first-order critical points is proved in Section 3. Some
discussion of this result is finally provided in Section 4.

2 Nonlinear stepsize control

We first consider the general nonlinear and possibly nonconvex problem of unconstrained
optimization, where one seeks to solve

min
x∈IRn

f(x), (2.1)

for some objective function f from IRn into IR, which is assumed to be twice continuously
differentiable and bounded below. The resolution methods considered here construct, from
an arbitrary starting point x0 ∈ IRn, a sequence of iterates {xk} hopefully converging to
a local solution of (2.1). The step sk from the iterate xk to xk+1 is constructed by the
(possibly approximate) minimization of an iteration dependent model of the objective
function mk(xk + s) around xk, subject to method specific step restrictions on ‖s‖, where
‖·‖ is a norm on IRn. This model is typically a suitable modification of the local quadratic

qk(xk + s) = f(xk) + 〈s, gk〉+ 1
2
〈s,Hks〉 (2.2)

where gk denotes the gradient∇xf(xk) and whereHk is a symmetric matrix approximating
the second-order behaviour of f in the neighbourhood of xk. Depending on the choice of
model and the specific stepsize restriction, various sufficient decrease conditions may then
be imposed to facilitate convergence proofs. Typically, these conditions are derived from
the minimization of the chosen model along the steepest descent direction.

• In trust-region methods, the objective function f(x) is assumed to be twice continu-
ously differentiable and the model chosen is exactly (2.2), that is

mk(xk + s) = qk(xk + s) (2.3)

and the stepsize is restricted by the explicit constraint

‖sk‖ ≤ ∆k (2.4)

for some adaptive “radius” ∆k > 0. In this case, it is well-known that sufficient
decrease is guaranteed by the so-called Cauchy-point condition, stating that

mk(xk)−mk(x
+

k ) ≥ κTR‖gk‖min

[ ‖gk‖
1 + ‖Hk‖

,∆k

]

(2.5)

for some constant κTR ∈ (0, 1) and where x+k = xk + sk (see Conn et al., 2000,
Section 6.3, for a detailed derivation of this inequality originally due to Powell,
1970).
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• The cubic regularization method assumes that f(x) has Lipschitz continuous gradi-
ents and chooses an indirect way to control the stepsize, in that the step (approxi-
mately) minimizes the model

mk(xk + s) = qk(xk + s) + 1
3
σk‖s‖3 (2.6)

on the whole of IRn, where σk is an adaptive regularization parameter and ‖ · ‖ an
ellipsoidal norm. For such steps, Cartis et al. (2009a) show that “sufficient decrease”
is given by

mk(xk)−mk(x
+

k ) ≥ κCR‖gk‖min





‖gk‖
1 + ‖Hk‖

,

√

‖gk‖
σk



 (2.7)

for some constant κCR ∈ (0, 1), while the stepsize resulting from the unconstrained
minimization of (2.6) satisfies the bound

‖sk‖ ≤ 3max





‖Hk‖
σk

,

√

‖gk‖
σk



 . (2.8)

• The quadratic regularization method of Nesterov (2007) (as extended by Bellavia et
al., 2010) only applies to nonlinear least-squares problems where

f(x) = ‖F (x)‖ (2.9)

for some smooth function F from IRn to IRm with locally Lipschitz continuous Ja-
cobian, and where ‖ · ‖ is the Euclidean norm. In this method, the model which is
minimized to calculate the step is given by

mk(xk + s) = ‖F (xk) + J(xk)s‖+ σk‖s‖2, (2.10)

where J(x) is the Jacobian of F at x and where σk is again an adaptive regularization
parameter. Note that this model is non-differentiable, but Cartis, Gould and Toint
(2009b) show that the problem of minimizing (2.10) on IRn can be reformulated as
a smooth constrained problem. In this framework, the ensured “sufficient decrease”
turns out to be given by

mk(xk)−mk(x
+

k ) ≥ κQR

‖JT
k Fk‖
‖Fk‖

min

[ ‖JT
k Fk‖

1 + ‖Hk‖
,
‖JT

k Fk‖
σk‖Fk‖

]

(2.11)

for some constant κQR ∈ (0, 1), where

Hk = JT
k Jk. (2.12)

The restriction that (2.10) imposes on the stepsize is also indirect, as it can be proved
that

‖sk‖ ≤ 2
‖JT

k Fk‖
σk‖Fk‖

. (2.13)

The reader is referred to Bellavia et al. (2010) for further details on the derivation
of (2.11) and (2.13).

• The unconstrained optimization method by Fan and Yuan (2001) considers problem
(2.1) and is similar to the classical trust-region method in that its step is computed
by minimizing the model (2.2) inside a trust region of radius ∆k. However, this
radius takes the form

∆k = µk‖gk‖ (2.14)
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for some parameter µk which is then updated in a manner similar to the classical
trust-region radius update. In this algorithm, the sufficient decrease condition is
given by

mk(xk)−mk(x
+

k ) ≥ κFY‖gk‖min

[ ‖gk‖
1 + ‖Hk‖

, µk‖gk‖
]

(2.15)

for some constant κFY > 0.

• As was the case for the quadratic regularization method, the algorithm by Zhang
and Wang (2003) and Fan (2006) addresses the solution of nonlinear systems in the
least-squares sense and considers (at variance with (2.9)), an objective function of
the form

f(x) = 1
2
‖F (x)‖2.

The step sk is then computed by minimizing the Gauss-Newton model

mk(xk + s) = 1
2
‖F (xk) + J(xk)s‖2, (2.16)

within a trust-region of radius ∆k, which is chosen as

∆k = νj‖F (xk)‖γ (2.17)

for some ν ∈ (0, 1) and γ ∈ ( 1
2
, 1), and where j is reset to zero on successful iterations

(i.e., when a new iterate is accepted) and incremented by one otherwise1. This
mechanism is therefore close to a “backtracking trust region”, whose initial size is
chosen as some power of ‖F (xk)‖. For this algorithm, sufficient reduction is described
by the usual Cauchy condition for nonlinear least-squares problems, which then gives
that

mk(xk)−mk(x
+

k ) ≥ κZW‖JT
k Fk‖min

[ ‖JT
k Fk‖

1 + ‖Hk‖
, νj‖Fk‖γ

]

(2.18)

for some constant κZW ∈ (0, 1) (where Hk is defined by (2.12)). This method was
extended by Fan and Pan (2008b) to include the case γ = 1, and a variant was
analyzed in Fan and Pan (2008a) where the model is now given, instead of (2.16),
by

mk(xk + s) = 1
2
‖F (xk) + J(xk)s‖2 + θ‖Fk‖2 ‖s‖2,

for some θ > 0. The model reduction is then again given by (2.18) with Hk now
being defined as JT

k Jk + θ‖Fk‖2.

In all cases, the ratio of achieved vs. predicted reduction

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
(2.19)

is computed and the (method dependent) adaptive parameter is modified to reduce the
stepsize if this ratio is below some small η1 ∈ (0, 1), or left unchanged or modified to allow
an increase in the stepsize otherwise.

As is implied by the above description of these methods, it is obvious that they share
much in structure. In particular, the sufficient decrease condition features in all five cases
the minimum between two quantities, the first of which corresponding to the case where
the minimization of qk dominates the step definition and the second to the case where the
stepsize is explicitly or implicitly limited. One may therefore expect something similar
for all techniques which mix these two potentially conflicting objectives, and providing
a single framework with the aim of unifying the convergence theory therefore seems a
natural objective.

1The update described here is that proposed by Zhang and Wang (2003). Fan (2006) uses a very
similar update, which is closer to that of Fan and Yuan (2001).
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Our proposal is to do so by defining, in (2.22) below, a function ∆ whose purpose is to
provide an explicit bound on the step (therefore mimicking trust-region methods), but at
the same time avoiding to identify the value of this bound automatically with the adaptive
parameter used in the method (now in contrast with classical trust-region methods). More
specifically, our function ∆ will be assumed to be nonnegative and to depend on two
variables. The first is a nonnegative adaptive parameter, which we will denote by δ,
the second essentially reduces to some measure of first-order criticality computed at the
current iterate. However, this description is not sufficient to cover the various forms of
Cauchy conditions given by (2.5), (2.7), (2.11), (2.15) and (2.18). In order to cover all
cases, we introduce four functions satisfying the following conditions.

A.1 There exists a continuous, bounded and nonnegative function ω(x) such that ω(x) = 0
only if x is a first order critical point.

A.2 There exist three continuous nonnegative functions φ(x), ψ(x) and χ(x), possibly
undefined at roots of ω(x), such that, provided ω(x) > 0, then min[φ(x), ψ(x), χ(x)]
is zero at x only if x is a first order critical point.

A.3 The function χ(x) is bounded, in the sense that

χ(x) ≤ κχ for all x. (2.20)

Note that φ, ψ and χ need not be different. By convention, we use the notation

φk = φ(xk), ψk = ψ(xk), χk = χ(xk) and ωk = ω(xk).

Using these functions, we may then state our sufficient-decrease and steplength conditions.

A.4: The step sk produces a decrease in the model which is sufficient in the sense that

mk(xk)−mk(x
+

k ) ≥ κCψk min

[

φk
1 + ‖Hk‖

,∆(δk, χk)

]

(2.21)

for some κC ∈ (0, 1), where we define

∆(δ, χ) = δαχβ (2.22)

for some powers α ∈ (0, 1] and β ∈ [0, 1], and where Hk is the Hessian of the model
at xk.

A.5: The step sk satisfies the bound

‖sk‖ ≤ κs∆(δk, χk) whenever δk ≤ κδχk

for some κs ≥ 1 and κδ > 0.

We complete our set of assumptions by requiring that the model approximates the
objective function sufficiently well at the trial point.

A.6: We have that, for all k ≥ 0,

f(xk) = mk(xk) and f(xk + s)−mk(xk + s) ≤ κm‖s‖2 (2.23)

for some constant κm > 0.

Note that this assumption may require additional smoothness properties of the objective
function to hold.
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For future reference, we state a few immediate properties of the function ∆(δ, χ) defined
by (2.22).

Theorem 2.1

1. The function ∆(δ, χ) is concave for δ, χ ≥ 0.

2. As a function of δ, ∆(δ, χ) is continuously differentiable and strictly increasing for
δ > 0.

3. For all χ ≥ 0, ∆(0, χ) = 0.

4. ∆(δ, χ) is a non-decreasing function of χ for χ ≥ 0.

We are now in position to describe our algorithmic framework explicitly, as Algo-
rithm 2.1 on this page. Note that the model choice at Step 1 of Algorithm 2.1 is relatively
general in that it does not imply a particular choice of Hk in (2.2), nor does it impose the
explicit use of regularization. As in a trust-region algorithm, we will say that iteration k
is successful whenever ρk ≥ η1 and very successful whenever ρk ≥ η2.

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization. An initial point x0 ∈ IRn and an initial stepsize parameter
δ0 are given, as well as constants 0 < γ1 < γ2 < 1 and 0 < η1 ≤ η2 < 1. Set
k = 0.

Step 1: Step computation. Choose a model mk(xk + s) satisfying A.6 and find a
step sk which sufficiently reduces the model in the sense of A.4 and for which
‖sk‖ satisfies A.5.

Step 2: Step acceptance. Compute f(xk + sk) and the ratio ρk given by (2.19).
Set xk+1 = xk + sk if ρk ≥ η1, and xk+1 = xk otherwise.

Step 3: Stepsize parameter update. Choose

δk+1 ∈







[γ1δk, γ2δk] if ρk < η1,
[γ2δk, δk] if ρk ∈ [η1, η2),
[δk,+∞] if ρk ≥ η2.

(2.24)

Increment k by one and go to Step 1.

We now verify that the algorithm class we have defined covers the cases of interest
which we have mentioned before,

• Consider the trust-region method first. In this case, it is easy to verify that the
choices

ω(x) = 1, ψ(x) = φ(x) = χ(x) = ‖∇xf(x)‖,
δ = ∆, α = 1, β = 0.

are adequate, and Taylor’s theorem implies that

f(xk + sk)− qk(xk + sk) ≤ κH‖sk‖2, (2.25)

for κH, an upper bound on the norms of Hk and ∇xxf(x) (see Theorem 6.4.1, p.
133, in Conn et al., 2000). A.6 thus immediately follows with κm = κH. Moreover,
(2.5) then implies A.4 with κC = κTR, and A.5 with κs = 1 directly follows from
(2.4).
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• The case of the cubic regularization algorithm can be similarly handled, with the
choices

ω(x) = 1, ψ(x) = φ(x) = χ(x) = ‖∇xf(x)‖,

δ =
1

σ
, α = 1

2
, β = 1

2
.

Note that the condition that δk ≤ χk/κ
2
H
, where κH is again an upper bound on

‖Hk‖ and ‖∇xxf(x)‖, implies that
√

δkκH ≤ √
χk

and hence

‖Hk‖
σk

≤ δkκH ≤
√

δkχk = ∆(δk, χk) =

√

‖gk‖
σk

,

which in turn ensures that (2.8) implies A.5 with κδ = 1

κ2
H

and κs = 3. A.4 imme-

diately follows from (2.7) with κC = κCR. The bound (2.25) and (2.6) also imply
that

f(xk + sk)−mk(xk + sk) ≤ κH‖sk‖2 − 1
3
σk‖sk‖3 ≤ κH‖sk‖2,

and hence A.6 again follows with κm = κH.

• Consider now the quadratic regularization method. In this case, we may choose

ω(x) = ‖F (x)‖, ψ(x) = χ(x) =
‖J(x)TF (x)‖

‖F (x)‖ , φ(x) = ‖J(x)TF (x)‖

δ =
1

σ
, α = 1, β = 1.

These identifications give that

∆(δk, χk) =
‖JT

k Fk‖
σk‖Fk‖

.

The condition (2.11) gives A.4 with κC = κQR, while (2.13) gives A.5 with κS = 2.
A.6 (with κm = L/2) also follows from the mean-value theorem and the Lipschitz
continuity (with constant L) assumption on the Jacobian (see Lemma 3.5 in Bellavia
et al., 2010). Note that, in this case, the gradient of the objective function and the
model do not coincide, but are merely collinear.

• If we now turn to the method by Fan and Yuan (2001), we see that the choices

ω(x) = 1, ψ(x) = φ(x) = χ(x) = ‖∇xf(x)‖,
δ = µ α = 1, β = 1

are adequate to cover this case and give (2.14) back. As for the trust-region method,
A.4 with κC = κFY is ensured by (2.15), and A.6 (with κm = κH) follows from
Taylor’s theorem. The step bound in A.5 (with κs = 1) is guaranteed by the explicit
trust-region constraint.

• Finally, the method by Zhang and Wang (2003) and Fan (2006) is covered by the
choices

ω(x) = 1, ψ(x) = φ(x) = ‖J(x)TF (x)‖, χ(x) = ‖F (x)‖γ ,
δ = νj α = 1, β = 1.

Condition (2.18) gives A.4 with κC = κZW and A.5 (with κs = 1) follows from (2.17).
In this case, we use the flexibility left in (2.24) to reset δ to 1 at every successful
iteration and we choose γ1 = γ2 = α. A.6 (with κm = κH) directly follows from
Taylor’s theorem. The case where γ = 1 is not special in our context.

We note that the sequence {ωk} is non-increasing in all four cases.
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3 Global convergence to first-order critical points

As a consequence of A.1 and A.2, proving global convergence to first-order critical points
can be reduced to proving that ωk or one of ψk, φk and χk approaches zero asymptotically.
It is the objective of this section to prove this result.

Since our general class of algorithms involves an explicit constraint on the stepsize,
it is not surprising that the necessary convergence theory borrows its basic organisation
and a number of the technicalities to that available for trust-region methods (we refer the
reader to Chapter 6 of Conn et al. (2000) for a detailed exposition of this topic).

We start by the obvious observation that, if

lim inf
k→∞

ωk = 0, (3.1)

then we obtain our desired convergence result from A.1. In particular, there must be a
first-order critical limit point of the sequence of iterates {xk} if this sequence is bounded.
Moreover, we may replace the limit inferior by a true limit (and all limit points, if any,
must be first-order critical) if the sequence {ωk} is non-increasing. We therefore focus, in
the remaining of our analysis, on the case where

ωk ≥ ǫω (k ≥ 0), (3.2)

for some ǫω ∈ (0, 1]. In this case, A.2 ensures that ψ(x), φ(x) and χ(x) are all proper
criticality measures.

As in the trust-region case, global convergence depends on the additional assumption
that the Hessians of the model and objective function are uniformly bounded.

A.7: There exists a constant κH ≥ 1 such that, for all k, 1 + ‖Hk‖ ≤ κH.

Note that we assume, without loss of generality, that

κm ≤ κH. (3.3)

Also note that the method by Fan and Pan (2008a) is then covered by our analysis as
well, because the Hessian of the model is, in this case, only modified by a diagonal matrix
whose norm is bounded by θ‖Fk‖2 ≤ θ‖F0‖2, which does not affect A.7.

We now prove that iteration k must be very successful if the stepsize parameter and
the step bound ∆(δk, χk) are small enough compared to a criticality measure at xk.

Lemma 3.1 If

∆(δk, χk) ≤
κC(1− η2)

κHκ2s
min[φk, ψk] and δk ≤ κδχk, (3.4)

then iteration k is very successful and δk+1 ≥ δk.

Proof. On one hand, we know from the second part of A.6 that

f(xk + sk)−mk(xk + sk) ≤ κm‖sk‖2 ≤ κHκ
2
s
∆(δk, χk)

2 (3.5)

where we used A.5 and (3.3) to derive the last inequality. On the other hand, the first
part of (3.4) and the bounds 1− η2 ∈ (0, 1), A.7, κs ≥ 1 and κC ∈ (0, 1) imply that

∆(δk, χk) ≤
φk

1 + ‖Hk‖

and hence A.4 gives that

mk(xk)−mk(x
+

k ) ≥ κCψk∆(δk, χk). (3.6)



Toint: nonlinear stepsize control for optimization 9

Combining this inequality with (3.5), we obtain, using the first part of A.6 and the
first part of (3.4), that

1− ρk =
f(xk + sk)−mk(xk + sk)

mk(xk)−mk(xk + sk)
≤ κHκ

2
s
∆(δk, χk)

κCψk
≤ 1− η2.

As a consequence, ρk ≥ η2, the iteration is very successful and δk+1 ≥ δk. 2

We next show that the stepsize bound cannot shrink to zero unless the current iterate
is first-order critical.

Lemma 3.2 Assume now that (3.2) holds and that, for some ǫ > 0,

min[ψk, φk, χk] ≥ ǫ for all k ≥ 0. (3.7)

Then there exists a constant ∆min(ǫ) > 0 such that

∆(δk, χk) ≥ ∆min(ǫ) for all k ≥ 0. (3.8)

Proof. Suppose that iteration k > 0 is such that

∆(δk, χk) <

[

1 + κ∆

(

1

γ1
+
κχ
ǫ

)]−1
κC(1− η2)ǫ

κHκ2s

def
= ∆(ǫ) (3.9)

where κ∆ = max[α, β, and

δk ≤ γ1 min



κδǫ,

[

∆(ǫ)

κβχ

]1/α




def
= δ(ǫ), (3.10)

Assume now, for the purpose of deriving a contradiction, that iteration k − 1 is not
very successful. Then (2.24) implies that

γ1δk−1 ≤ δk ≤ δk−1. (3.11)

This then gives that
δk−1 ≤ κδǫ ≤ κδχk−1, (3.12)

where we used (3.11), (3.10) and (3.7) successively. We also verify that

∆(δk−1, χk−1) ≤ ∆(δk, χk) + (δk−1 − δk)
∂∆
∂δ

(δk, χk) + (χk−1 − χk)
∂∆
∂χ

(δk, χk)

≤ ∆(δk, χk) +
1− γ1
γ1 δk

∂∆
∂δ

(δk, χk) +
1− (ǫ/κχ)
(ǫ/κχ)

χk
∂∆
∂χ

(δk, χk)

≤
[

1 + κ∆

(

1
γ1 +

κχ
ǫ

)]

∆(δk, χk)

<
κCǫ (1− η2)

κHκ
2
s

≤ κC(1− η2)
κHκ

2
s

min[ψk−1, φk−1]

where we used the concave nature of ∆ to deduce the first inequality, (3.11) and the
inequality

χk

χk−1

≥ ǫ

κχ

(itself resulting from A.3 and (3.7)) to deduce the second, (2.22) and (3.9) to obtain
the third and (3.10) to obtain the fourth. The last equality finally results from (3.7).
Hence, Lemma 3.1 and (3.12) ensure that iteration k − 1 is very successful. But this
contradicts our assumption and thus iteration k− 1 must be very successful, implying
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that δk ≥ δk−1 as soon as (3.9) and (3.10) hold. Therefore, the first iteration k such
that (3.10) occurs must be such that (3.9) fails at iteration k − 1. But, using (2.22),
this implies that

δk−1 ≥
[

∆(ǫ)

χβ
k−1

]1/α

The mechanism of the algorithm then implies that

δk ≥ γ1

[

∆(ǫ)

χβ
k−1

]1/α

≥ γ1

[

∆(ǫ)

κβχ

]1/α

.

This clearly violates (3.10), which is also a contradiction. As a consequence, an iteration
satisfying (3.10) cannot exist, and we therefore obtain that, for all k > 0,

δk ≥ δ(ǫ).

The definition (2.22) and (3.7) then imply that, for k > 0,

∆(δk, χk) ≥ ∆(δ(ǫ), ǫ) > 0,

yielding in turn that, for all k ≥ 0,

∆(δk, χk) ≥ min [∆(δ(ǫ), ǫ),∆(δ0, ǫ)]
def
= ∆min(ǫ). (3.13)

2

This proof is the most significant deviation from the trust-region convergence analysis,
because the relation between the parameter δ and the radius ∆(δ, χ) is now indirect and
potentially nonlinear. From here on, the global first-order convergence analysis (for the
case where (3.2) holds) follows the trust-region theory closely, with the obvious substitution
of ∆(δk, χk) for ∆k and where ‖gk‖ is replaced by min[ψk, φk, χk], which is a proper
criticality measure when (3.2) holds (as ensured by A.2). We outline this analysis below.

Lemma 3.3 Suppose (3.2) holds and that there are only finitely many successful itera-
tions. Then xk = x∗ for all k sufficiently large and x∗ is first-order critical.

Proof. The mechanism of the algorithm implies that xk = xk0+1
def
= x∗ for all

k ≥ k0, where k0 is the index of the last successful iteration. Moreover, since all
iterations beyond k0 are unsuccessful, we have that the sequence {δk} converges to
zero. A.6 then implies that {∆k} also converges to zero, which, by Lemma 3.2, is
impossible unless {min[ψk, φk, χk]} converges to zero as well. But ψk = ψk0+1 = ψ(x∗)
for all k ≥ k0 and similarly φk = φ(x∗) and χk = χ(x∗). A.2 then ensures that x∗ is
first-order critical. 2

Theorem 3.4 We have that

lim inf
k→∞

ωk = 0 or lim inf
k→∞

min[ψk, φk, χk] = 0, (3.14)

and at least one limit point of the sequence {xk} (if any exists) is first-order critical.

Proof. If (3.1) holds, then the desired conclusion follows from A.1. Otherwise,
that is if (3.2) holds, then we distinguish two cases. If there are only finitely many
successful iterations, then Lemma 3.3 ensures the desired conclusion. Suppose therefore
that there are infinitely many successful iterations and that (3.7) holds. Then, A.4 and
A.7 give that, for each successful iteration,

f(xk)− f(xk+1) ≥ η1(mk(xk)−mk(xk + sk) ≥ κCη1ǫmin

[

ǫ

κH

,∆(δk, χk)

]

.
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Using now Lemma 3.2, we deduce that, for every such iteration,

f(xk)− f(xk+1) ≥ κCη1ǫmin

[

ǫ

κH

,∆min(ǫ)

]

> 0,

and the objective function then decreases at least by a positive constant. Since the
number of successful iterations is infinite, one concludes that {f(xk)}must tend to −∞,
which contradicts our assumption that f(x) is bounded below. Hence (3.7) cannot hold
and we deduce that the second limit in (3.14) holds. The conclusion then follows from
A.2 since it guarantees that min[ψ(x), φ(x), χ(x)] is a criticality measure under (3.2).
2

Theorem 3.5 Suppose that the sequence {ωk} is non-increasing. Then we have that

lim
k→∞

ωk = 0 or lim
k→∞

min[ψk, φk, χk] = 0. (3.15)

and all limit points of the sequence {xk} (if any) are first-order critical.

Proof. The desired conclusion immediately follows from monotonicity and A.1 if
(3.1) holds. Otherwise, an obvious extension of Theorems 6.4.6, p. 136-138, in Conn
et al. (2000), where the continuity of the criticality measure min[ψ(x), φ(x), χ(x)] here
replaces that of the objective function’s gradient, allows us to derive that the second
limit of (3.15) holds. Again, A.1 and A.2 allow us to conclude that every limit point
(if any) is first-order critical. 2

We conclude our discussion with the comment that our theory does not require the same
definition of ∆(δ, χ) to be used at every iteration. One could vary this definition as the
algorithm proceeds, as long as A.5–A.8 remain satisfied.

4 Discussion

We have shown how a single framework can be used to prove global convergence to first-
order critical points for several methods for unconstrained optimization and nonlinear
least-squares, for which the analysis was so far distinct. This is achieved by defining a
variant of the trust-region radius which depends possibly nonlinearly on some stepsize
parameter which is updated from iteration to iteration.

While we have focussed in this paper on algorithms for unconstrained optimization,
the same ideas can be applied more widely. For instance, projection-based trust-region
algorithms for optimization of a (possibly nonconvex) objective function f(x) over a convex
set C (see Conn, Gould and Toint, 1988, Burke, Moré and Toraldo, 1990, Conn, Gould,
Sartenaer and Toint, 1993, or Chapter 12 in Conn et al., 2000) also involve a trust-region
mechanism and a Cauchy condition of the form

mk(xk)−mk(x
+

k ) ≥ κCTRτk min

[

τk
1 + ‖Hk‖

,∆k, 1

]

(4.1)

where κCTR ∈ (0, 1) and where the continuous criticality measure τ(x) is defined, for some
norm ‖ · ‖n, by

τ(x) = | min
x+d∈C,‖d‖n≤1

〈∇xf(x), d〉|.

Algorithms of this type therefore fit in our framework with the choices

ω(x) = χ(x) = 1, ψ(x) = φ(x) = min[τ(x), 1], δ = ∆,

α = 1, β = 0, κ∆ = 1, κδ = +∞,
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thereby demonstrating that our approach is not limited to unconstrained problems.
Interestingly, the unified framework can be used to design new unconstrained opti-

mization methods. For instance, one can define a nonlinear trust-region algorithm where
the model (2.3) is minimized under the constraint (2.4) (which ensures (2.5)), but where
the radius is now determined by the choice

ψ(x) = φ(x) = χ(x) = ‖∇xf(x)‖, ω(x) = 1, α = 1
2
, β = 1

2
, κ∆ =

1

2
, and κδ = +∞.

Such a method can be viewed as a hybrid between the standard trust-region algorithm and
the cubic overestimation/regularization method, but this is only one example. The nu-
merical exploration of the algorithmic possibilities within the new framework is potentially
interesting, but is beyond the scope of this note.

We also observe that, although a convergence theory has been obtained for a large class
of algorithms, it does not, at this stage, provide a useful handle for analyzing the worst-case
function-evaluation complexity of the algorithms in the class. Indeed, relations (3.9) and
(3.13) coupled with A.4 suggest that the model decrease at the Cauchy point might be as
small as a multiple of ǫ3, which is in turn likely to yield a worst-case complexity of O(ǫ−3)
iterations to achieve first-order criticality within ǫ. This is worse than the known bounds
for the trust-region and cubic-regularization methods, which is known2 to be of O(ǫ−2)
(see Cartis, Gould and Toint, 2010a, and Cartis, Gould and Toint, 2010b). Whether our
analysis can be refined to yield less pessimistic complexity estimates is unclear, and it may
be that this is the price to pay for increased generality.

The convergence theory for standard trust-region algorithms admits itself a large num-
ber of useful generalizations. The author expects that many of them can be adapted to
the more general context discussed here. In particular, one may think of extensions in
the spirit of the retrospective trust-region algorithm by Bastin, Malmedy, Mouffe, Toint
and Tomanos (2010), or to multilevel frameworks presented by Gratton, Sartenaer and
Toint (2008). It is also of interest to see whether the same type of idea can be applied
more widely, for instance to the theory of convergence to second-order critical points, or
to algorithms for equality- or inequality-constrained problems beyond projection-based
methods.

Acknowledgements

The author is indebted to B. Morini, D. Tomanos and M. Porcelli for their suggestions on the manuscript,

and to two anonymous referees whose comments on a first draft of this paper led to the present (tardy)

revision.

References

F. Bastin, V. Malmedy, M. Mouffe, Ph. L. Toint, and D. Tomanos. A retrospective trust-
region method for unconstrained optimization. Mathematical Programming, Series A,
123(2), 395–418, 2010.

S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini, and Ph. L. Toint. Convergence of a
regularized euclidean residual algorithm for nonlinear least-squares. SIAM Journal
on Numerical Analysis, 48(1), 1–29, 2010.
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