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Abstract

We consider an implementation of the recursive multilevel trust-region algorithm
proposed by Gratton, Mouffe, Toint and Weber-Mendonça (2008) for bound-constrained
nonlinear problems, and provide numerical experience on multilevel test problems. A
suitable choice of the algorithm’s parameters is identified on these problems, yielding
a satisfactory compromise between reliability and efficiency. The resulting default
algorithm is then compared to alternative optimization techniques such as mesh re-
finement and direct solution of the fine-level problem.
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1 Introduction

The optimization of finite-dimensional discretizations of problems in infinite dimensional
spaces has become a very important area for numerical computations in the last years.
New interest in surface design, data assimilation for weather forecasting (Fisher, 1998)
or in optimal control of systems described by partial-differential equations have been the
main motivation of this challenging research trend, but other applications such as multi-
dimensional scaling (Bronstein, Bronstein, Kimmel and Yavneh, 2005) or quantization
schemes (Emilianenko, 2005) also give rise to similar questions. In such problems, one
typically considers a fine discretization of the infinite-dimensional problem which pro-
vides a sufficiently good approximation for the solution of the discretized problem to be
of interest. But coarser discretizations are often available that still describe the prob-
lem reasonably well, and can therefore be used to improve the efficiency of the numerical
solution on the fine discretization. This observation has been widely used for linear prob-
lems and has spawned the important field of multigrid methods (see Briggs, Henson and
McCormick, 2000, for an introduction to this field).

In a recent paper, Gratton et al. (2008) discuss preliminary experimental efficiency
and convergence properties of a new recursive multilevel trust-region algorithm for uncon-
strained and bound-constrained optimization, which is partly inspired by multigrid tech-
niques, and by similar ideas in linesearch-based optimization methods by Fisher (1998)
or Nash (2000) and Lewis and Nash (2005). The main feature of the new method is to
allow the exploitation, in a trust-region framework, of the fact that many large-scale op-
timization problems have a hierarchy of different descriptions, possibly involving different
number of variables. The considered algorithm differs from the earlier proposal by Grat-
ton, Sartenaer and Toint (2007) in that the infinity-norm is used to define the recursive
trust regions, which results in substantial algorithmic simplifications when compared to
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the earlier algorithm using the Euclidean norm(1). It also allows the incorporation of
bound constraints into the problem, a feature missing in the earlier version.

The purpose of our paper is to present the numerical experience gained so far with
a particular implementation of this algorithm applied to a small collection of significant
test problems. We determine suitable default values for the parameters of the method,
compare it to other competing methods in this area and illustrate what we believe is the
strong potential of methods of this type.

2 A recursive multilevel trust-region method

We consider the bound-constrained optimization problem

min
x∈F

f(x), (2.1)

where f is a twice-continuously differentiable objective function which maps IRn into IR
and is bounded below, where F = {x ∈ IRn | l ≤ x ≤ u} is a set of bound constraints
and where l, u ∈ IRn and are possibly infinite. The trust-region method that we consider
here is iterative, in the sense that, given an initial point x0, it produces a sequence {xk}
of iterates. At each iterate, such a method builds a model of f(x) around xk which is
assumed to be adequate in a trust region centered at xk and defined by its radius ∆k > 0.
A step sk, feasible with respect to F , is then computed that induces a sufficient reduction
in the model inside the trust region. The objective function is calculated at the trial point,
xk + sk, and this trial point is accepted as the next iterate if and only if ρk, the ratio of
achieved reduction (in the objective function) to predicted reduction (in its local model),
is reasonable (typically larger than a small positive constant η1). The radius of the trust
region is finally updated: it is decreased if the trial point is rejected and left unchanged
or increased if ρk is sufficiently large. Algorithms of this type are known to be reliable
and efficient; we refer the reader to Conn, Gould and Toint (2000) for a comprehensive
coverage of this subject.

Many practical trust-region algorithms, including that presented here, use a quadratic
model

mk(xk + s) = f(xk) + 〈gk, s〉+ 1
2
〈s,Hks〉, (2.2)

where gk
def
= ∇f(xk), Hk is a symmetric n× n approximation of ∇2f(xk), and 〈·, ·〉 is the

Euclidean inner product. A sufficient decrease in this model inside the trust region is then
obtained by (approximately) solving

min
‖s‖∞ ≤ ∆k

xk + s ∈ F

mk(xk + s). (2.3)

The choice of the infinity norm in the trust-region description is natural in the context of
bound-constrained problems, because the feasible set for problem (2.3) can then be fully
represented by bound constraints.

As proposed in Gratton et al. (2007) and further explored in Gratton et al. (2008),
we consider exploiting the knowledge of a hierarchy of descriptions for problem (2.1), if
such a hierarchy is known. To be more specific, suppose that a collection of functions
{fi}ri=0 is available, each fi being a twice-continuously differentiable function from IRni to
IR (with ni ≥ ni−1). We assume that nr = n and fr(x) = f(x) for all x ∈ IRn, giving back
our original problem. We also make the assumption that fi is “more costly” to minimize
than fi−1 for each i = 1, . . . , r. This is typically the case if the fi represent increasingly
finer discretizations of the same infinite-dimensional objective. To fix terminology, we will
refer to a particular i as a level. We use the first subscript i in all subsequent subscripted
symbols to denote a quantity corresponding to the i-th level, ranging from coarsest (i = 0)

(1)We refer the reader to Gratton et al. (2008) for a more complete discussion of these advantages.
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to finest (i = r) (meaning in particular, if applied to a vector, that this vector belongs
to IRni). Some relation must exist between the variables of two successive functions of
the collection set {fi}ri=0. We thus assume that, for each i = 1, . . . , r, there exist a full-
rank linear operator Ri from IRni into IRni−1 (the restriction) and another full-rank linear
operator Pi from IRni−1 into IRni (the prolongation) such that

σiPi = RT
i , (2.4)

for some known constant σi > 0, where Pi and Ri are interpreted as restriction and
prolongation between a fine and a coarse grid (see, for instance, Briggs et al., 2000 for
an excellent introduction or to Trottenberg, Oosterlee and Schüller, 2001, for a more
extensive coverage). We assume that the restriction operators are normalized to ensure
that ‖Ri‖∞ = 1 and also that the entries of Ri and Pi are all non-negative.

The philosophy of our recursive algorithm is then to use the hierarchy of problem
descriptions {fi}r−1

i=0 to efficiently construct minimizations steps. More precisely, we build,
for each level i, a model leading to a local bound-constrained minimization subproblem at
the coarse level i − 1, and then compute a coarse step by solving this subproblem using
a trust-region algorithm. The resulting coarse move is then prolongated (using Pi) into a
trust-region step at level i. For this purpose, we first need to build an alternative local
lower-level model hi−1 representing at level i− 1 the function hi to be minimized at level
i (with hr = fr = f). We also need to define a set of bound constraints which represents
both the feasibility with respect to the original (finest level) bounds and the constraints
on the stepsize inherited from the trust regions at level i as well as at levels i+ 1, . . . , r.

Consider first the construction of the local lower-level model hi−1 of hi around xi,k,
the iterate at some iteration k at level i, say. If we restrict xi,k to level i − 1 and define
xi−1,0 = Rixi,k, the model hi−1 is then given by

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉, (2.5)

where vi−1 = Rigi,k−∇fi−1(xi−1,0) with gi,k
def
= ∇hi(xi,k). By convention, we set vr = 0,

such that, for all sr,

hr(xr,0 + sr) = fr(xr,0 + sr) = f(xr,0 + sr) and gr,k = ∇hr(xr,k) = ∇f(xr,k).

The model hi−1 thus results from a modification of fi−1 by a linear term that enforces
the relation gi−1,0 = ∇hi−1(xi−1,0) = Rigi,k. This first-order modification(2) ensures that
the first-order behaviours of hi and hi−1 are similar in a neighbourhood of xi,k and xi−1,0,
respectively. Indeed, if si and si−1 satisfy si = Pisi−1, we then have that

〈gi,k, si〉 = 〈gi,k, Pisi−1〉 =
1

σi

〈Rigi,k, si−1〉 =
1

σi

〈gi−1,0, si−1〉, (2.6)

where we have also used (2.4).
We next need to represent, at level i − 1, feasibility with respect to the bound con-

straints. Because we aim at a description which is coherent across levels and because
we wish to avoid general linear constraints, we choose this representation as a bound-
constrained domain Fi−1 defined recursively such that, for i = 1, . . . , r,

xi,k + Pisi−1 ∈ Fi for all xi−1,0 + si−1 ∈ Fi−1, (2.7)

with Fr = F , thereby ensuring that all iterates at the finest level remain feasible for the
original bounds. In our algorithm, the specific choice of Fi−1 is done using a Gelman-
Mandel-like formula (see Gelman and Mandel, 1990, or Gratton et al., 2008), stating
that

Fi−1 = {xi−1 ∈ IRni−1 | li−1 ≤ xi−1 ≤ ui−1}, (2.8)

(2)The first-order modification (2.5) is usual in multigrid applications in the context of the “full approx-
imation scheme”, where it is usually called the “tau correction” (see, for instance, Chapter 3 of Briggs et
al., 2000, or Hemker and Johnson, 1987).
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where the bound vectors li−1 and ui−1 are recursively defined componentwise by

[li−1]j = [xi−1,0]j +
1

‖Pi‖∞
max

t=1,...,ni

[li − xi,k]t (2.9)

and

[ui−1]j = [xi−1,0]j +
1

‖Pi‖∞
min

t=1,...,ni

[ui − xi,k]t, (2.10)

for j = 1, . . . , ni−1, with lr = l and ur = u. We refer the reader to Lemma 4.3 in Gratton
et al. (2008) for a proof of (2.7).

We then need to represent at the coarser level i − 1 the constraints on the stepsize
resulting from the trust region at level i,

Bi,k = {xi,k + si ∈ IRni | ‖si‖∞ ≤ ∆i,k},

associated with xi,k, and also from the trust regions at levels higher than i. Let us denote
by Ai the box representing these stepsize constraints inherited from higher levels. Then
Bi,k ∩ Ai is also a box of the form {xi | vi ≤ xi ≤ wi}, where vi, wi ∈ IRni . The set Ai−1

is then defined by

Ai−1 = {xi−1 ∈ IRni−1 | Rivi ≤ xi−1 ≤ Riwi}. (2.11)

For consistency, we set Ar = IRn. This definition is less restrictive than the Gelman-
Mandel procedure used to define Fi−1, but does not imply that xi,k + Pisi−1 ∈ Bi,k ∩ Ai

for all xi−1,0+si−1 ∈ Ai−1. This remains acceptable because the trust-region bounds need
only be satisfied up to a constant factor to ensure global convergence (again see Gratton
et al., 2008).

At level i− 1, we finally consider the intersection of the domain corresponding to the
original bounds on the problem and that resulting from the trust-region restrictions at

higher level (if any). This intersection is given by Li
def
= Fi ∩ Ai for i = 0, . . . , r. The

local subproblem to be solved at level i− 1 is then given by

min
xi−1,0 + si−1 ∈ Li−1

hi−1(xi−1,0 + si−1).

As indicated above, we solve this subproblem using a trust-region method starting from
xi−1,0, whose ℓ-th iteration then involves the computation of

min
‖si−1‖∞ ≤ ∆i−1,ℓ

xi−1,ℓ + si−1 ∈ Li−1

hi−1(xi−1,ℓ + si−1). (2.12)

In addition to the features already discussed, our recursive multilevel trust-region al-
gorithm (see Algorithm RMTR∞ on page 6) crucially considers whether recurring to the
local lower-level model is useful. This decision is made by comparing criticality measures
at the current and lower levels. At level i, the criticality measure is computed as

χi,k
def
= χ(xi,k) = | min

xi,k + d ∈ Li

‖d‖∞ ≤ 1

〈gi,k, d〉|, (2.13)

which can be interpreted as the maximal decrease of the linearized problem that can be
achieved in the intersection of Li and a box of radius one (see Conn, Gould, Sartenaer and
Toint, 1993, for instance). We declare that recurring to the lower level is useful whenever
this decrease at level i− 1 is significant compared to that achievable at level i, which we
formalize by the condition that

χi−1,0

σi

≥ κχχi,k, (2.14)
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where κχ ∈ (0, 1). The factor σi in the left-hand side results from (2.6) and the fact that
the criticality measure (2.13) is a linear approximation of the decrease that can be achieved
from xi,k. If (2.14) does not hold, then the algorithm resorts to using the quadratic model
(2.2) at level i, which we denote by mi,k(xi,k + si). Otherwise, the choice between the two
models remains open, allowing, as we discuss below, the efficient exploitation of multigrid
techniques such as smoothing iterations.

We now turn to the more formal description of our algorithm and assume that the
prolongations Pi and the restrictions Ri are known, as well as the functions {fi}r−1

i=0 . We
use the constants κχ, η1, η2, γ1 and γ2 satisfying the conditions κχ ∈ (0, 1), 0 < η1 ≤ η2 <
1, and 0 < γ1 ≤ γ2 < 1. An initial trust-region radius for each level, ∆i,0 > 0, is also
defined. The algorithm’s initial data consists of the level index i (0 ≤ i ≤ r), a starting
point xi,0, the gradient gi,0 at this point and the corresponding criticality measure χi,0,
the description of the feasible sets Fi and Ai, and a criticality tolerance ǫχi ∈ (0, 1).

Further motivation for this algorithm can be found in Gratton et al. (2008), together
with a proof that, under reasonable assumptions, every limit point of the sequence of
produced iterates must be a first-order critical point in the sense that limk→∞ χr,k = 0.
In particular, the functions fi must have uniformly bounded Hessians for i = 0, . . . , r. We
produce a few additional useful comments :

1. The minimization of f(x) = fr(xr) = hr(xr) (up to the critical tolerance ǫχr < χr,0)
is achieved by calling RMTR∞(r, xr,0, gr,0, χr,0, F , IRn, ǫχr ), for some starting point
xr,0. For coherence of notations, we thus view this call as being made from some
(virtual) iteration 0 at level r + 1.

2. The test for the value of i at the beginning of Step 1 is designed to identify the
lowest level, at which no further recursion is possible. In this case, a Taylor’s (i.e.,
non-recursive) iteration is the only possibility.

3. The set Wi,k represents the feasible domain of subproblem (2.12).

4. The formula for δi,k in Step 2 results from (2.5) and (2.6).

5. The “sufficient decrease” in the model (2.15) imposed in Step 3 means, as usual
for trust-region methods, that the step si,k must satisfy a specific condition (see
Chapter 12 of Conn et al., 2000), known as the Cauchy point condition, and which
imposes sufficient decrease relative to the local first-order behaviour of the objective
function. It requires that

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ κredχi,k min

[

χi,k

1 + ‖Hi,k‖∞
, ∆i,k, 1

]

(2.18)

for some constant κred ∈ (0, 1).

6. Iteration k at level i is said to be successful if ρi,k ≥ η1.

3 A practical algorithm

Our algorithm description so far leaves a number of practical choices unspecified. It is
the purpose of this section to provide the missing details for the particular implementa-
tions whose numerical performance is reported in this paper. These details are of course
influenced by our focus on discretized problems, where the different levels correspond to
different discretization grids, from coarser to finer.
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Algorithm 2.1: RMTR∞(i, xi,0, gi,0, χi,0,Fi,Ai, ǫ
χ
i )

Step 0: Initialization. Compute fi(xi,0). Set k = 0 and

Li = Fi ∩ Ai and Wi,0 = Li ∩ Bi,0,

where Bi,0 = {xi,0 + si ∈ IRni | ‖si‖∞ ≤ ∆i,0}.

Step 1: Model choice. If i = 0, go to Step 3. Else, compute Rixi,k, Rigi,k, Fi−1

from (2.8)-(2.10), Ai−1 from (2.11) and χi−1,0. If (2.14) fails, go to Step 3.
Otherwise, choose to go to Step 2 or to Step 3.

Step 2: Recursive step computation. Call Algorithm

RMTR∞(i− 1, Rixi,k, Rigi,k, χi−1,0,Fi−1,Ai−1, ǫ
χ
i−1),

yielding an approximate solution xi−1,∗ of (2.12). Then define si,k = Pi(xi−1,∗−
Rixi,k), set δi,k = 1

σi

[

hi−1(Rixi,k)− hi−1(xi−1,∗)
]

and go to Step 4.

Step 3: Taylor step computation. Choose Hi,k and compute a step si,k ∈ IRni

that sufficiently reduces the model

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉+ 1
2
〈si, Hi,ksi〉 (2.15)

and such that xi,k + si,k ∈ Wi,k. Set δi,k = mi,k(xi,k)−mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point. Compute hi(xi,k + si,k) and

ρi,k =
[

hi(xi,k)− hi(xi,k + si,k)
]

/δi,k. (2.16)

If ρi,k ≥ η1, then define xi,k+1 = xi,k + si,k; otherwise, define xi,k+1 = xi,k.

Step 5: Termination. Compute gi,k+1 and χi,k+1. If χi,k+1 ≤ ǫχi or xi,k+1 6∈ Ai,
then return with the approximate solution xi,∗ = xi,k+1.

Step 6: Trust-Region Update. Set

∆i,k+1 ∈







[∆i,k,+∞) if ρi,k ≥ η2,
[γ2∆i,k,∆i,k] if ρi,k ∈ [η1, η2),
[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(2.17)

and Wi,k+1 = Li ∩ Bi,k+1 where

Bi,k+1 = {xi,k+1 + si ∈ IRni | ‖si‖∞ ≤ ∆i,k+1}.

Increment k by one and go to Step 1.
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3.1 Taylor iterations: smoothing and solving

The most important issue is how to enforce sufficient decrease at Taylor iterations, that
is, when Step 3 is executed. At the coarsest level (i = 0), the cost of fully minimizing
(2.15) inside the trust region remains small, since the subproblem is of low dimension. We
thus solve the subproblem using the PTCG (Projected Truncated Conjugate-Gradient)
algorithm designed for the standard trust-region algorithm (see Conn, Gould and Toint,
1988, or Conn, Gould and Toint, 1992).

At finer levels (i > 0), we use an adaptation of multigrid smoothing techniques. The
main characteristics of multigrid algorithms (see Briggs et al., 2000) are based on the
observation that different frequencies are present in the initial error on the solution of the
finest grid problem (or even of the infinite-dimensional one), and become only progressively
visible in the hierarchy from coarse to fine grids. Low frequencies are visible from coarse
grids and up, but higher ones can only be distinguished when the mesh-size of the grid
becomes comparable to the frequency in question. In multigrid strategies, some algorithms,
called smoothers, are known to very efficiently reduce the high frequency components of the
error on a grid (that is, in most cases, the components whose “wavelength” is comparable
to the grid’s mesh-size). But these algorithms have little effect on the low frequency error
components. It is observed however that such components on a fine grid appear more
oscillatory on a coarser grid. They may thus be viewed as high frequency components on
some coarser grid and be in turn reduced by a smoother. Moreover, this is done at a lower
cost since computations on coarser grids are typically much cheaper than on finer ones.
The multigrid strategy consists therefore in alternating between solving the problem on
coarse grids, essentially annihilating low frequency components of the error, and on fine
grids, where high frequency components are reduced (at a higher cost). This last operation
is often called smoothing because the effect of reducing high frequency components without
altering much the low frequency ones has a smoothing effect of the error’s behaviour. We
next adapt, in what follows, the multigrid smoothing technique to the computation of a
Taylor step satisfying the requirements of Step 3 of Algorithm RMTR∞.

A very well-known multigrid smoothing technique is the Gauss-Seidel method, in which
each equation of the Newton system is solved in succession(3). To extend this procedure to
our case, rather than successively solving equations, we perform successive one-dimensional
bound-constrained minimizations of the model (2.15) along the coordinate axes, provided
the curvature of this model along each axis is positive. More precisely, consider the
minimization of (2.15) at level i along the j-th axis (starting each minimization from s

such that ∇mi,k(xi,k + s)
def
= g). Then, provided that the j-th diagonal entry of Hi,k is

positive, the j-th one-dimensional minimization then results in the updates

αj = PrWi,k
(−[g]j/[Hi,k]jj), [s]j ← [s]j + αj and g ← g + αjHi,kei,j, (3.19)

where PrWi,k
(.) is the orthogonal projection on the intersection of all the constraints at

level i, that is on Wi,k = Fi ∩ Ai ∩ Bi,k, where we denote by [v]j the j-th component
of the vector v and by [M ]jj the j-th diagonal entry of the matrix M , and where ei,j

is the j-th vector of the canonical basis of IRni . If, on the other hand, [Hi,k]jj ≤ 0,
then a descent step is made along the j-th coordinate axis until the boundary of Wi,k is
reached and the model gradient is updated accordingly. This process is the well-known
Sequential Coordinate Minimization (SCM) (see, for instance, Ortega and Rheinboldt
(1970), Section 14.6), which we adapted to handle bound constraints. In what follows, we
refer to a set of ni successive unidimensional minimizations as a smoothing cycle. A SCM
smoothing iteration then consists of one or more of these cycles.

In order to enforce convergence to first-order points, we still have to ensure that a
sufficient model decrease (2.18) has been obtained within the trust region after one or
more complete smoothing cycles. To do so, we start the first smoothing cycle by selecting

(3)See Briggs et al., 2000, page 10, or Golub and Van Loan, 1989, page 510, or Ortega and Rheinboldt,
1970, page 214, amongst many others.
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the axis corresponding to the index jm such that

jm = argmin [gi,k]j [di,k]j ,
j

(3.20)

where
di,k = argmin 〈gi,k, d〉.

xi,k + d ∈ Li

‖d‖∞ ≤ 1
(3.21)

Indeed in this case the minimization of the model mi,k along [di,k]jm
within the trust

region is guaranteed to yield a Generalized Cauchy step αjm
[di,k]jm

such that (2.18) holds
(as is shown in Appendix A). Since the remaining minimizations in the first smoothing
cycle (and the following ones, if any) only decrease the value of the model further, (2.18)
thus also holds for the complete step si,k.

3.2 Linesearch

The implementation whose numerical performance is discussed in Section 4 uses a version
that combines the traditional trust-region techniques with a linesearch, in the spirit of
Toint (1983, 1987), Nocedal and Yuan (1998) and Gertz (1999) (see Conn et al., 2000,
Section 10.3.2). More precisely, if ρi,k < η1 in Step 4 of Algorithm RMTR∞ and the step
is gradient related in the sense that

|〈gi,k, si,k〉| ≥ ǫgr‖gi,k‖2 ‖si,k‖2

for some ǫgr ∈ (0, 1), the step corresponding to a new iteration and a smaller trust-region
radius can be computed by backtracking along si,k, instead of recomputing a new one using
SCM smoothing. On the other hand, if some iteration at the topmost level is successful
and the minimizer of the quadratic model in the direction sr,k lies sufficiently far beyond
the trust-region boundary, then a single doubling of the step is attempted to obtain further
descent, a strategy reminiscent of the internal doubling procedure of Dennis and Schnabel
(1983) (see Conn et al., 2000, Section 10.5.2), or the magical step technique of Conn,
Vicente and Visweswariah (1999) and Conn et al. (2000), Section 10.4.1. The theoretical
arguments developed in these references guarantee that global convergence of the modified
algorithm to first-order critical points is not altered.

3.3 Second-order and Galerkin models

The gradient correction vi−1 in (2.5) ensures that hi and hi−1 coincide at first order (up
to the constant σi) in the range of the prolongation operator, since

〈gi,k, Pisi−1〉 =
1

σi

〈Rigi,k, si−1〉 =
1

σi

〈gi−1,0, si−1〉.

We can also achieve coherence of the models at second order by choosing

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉+ 1
2
〈si−1,Wi−1si−1〉, (3.22)

where Wi−1 = Ri∇2hi(xi,k)Pi −∇2fi−1(xi−1,0), since we then have that

〈Pisi−1,∇2hi(xi,k)Pisi−1,〉 =
1

σi

〈si−1,∇2hi−1(xi−1,0)si−1〉.

The second-order model (3.22) is of course more costly, as the matrix Wi−1 must be
computed when starting the minimization at level i− 1 and must also be used to update
the gradient of hi−1 at each successful iteration at level i− 1.

Another strategy consists to choose fi−1(xi−1,0 + si−1) = 0 for all si−1 in (3.22).
This strategy amounts to consider the lower-level model as the “restricted” version of the
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quadratic model at the upper level (this is known as the Galerkin approximation) and
is interesting in that no evaluation of fi−1 is required. In the unconstrained case, when
this model is strictly convex and the trust region is large enough, one minimization in
Algorithm RMTR∞ (without premature termination) corresponds to applying a Galerkin
multigrid linear solver on the associated Newton’s equation. Note that this choice is
allowed within the theory presented in Gratton et al. (2008), since the zero function is
obviously twice-continuously differentiable, bounded below and has uniformly bounded
Hessians.

3.4 Hessian of the models

Computing a model Hessian Hi,k is often one of the heaviest task in Algorithm RMTR∞.
Our choice in the experiments described in Section 4 is to use the exact second derivative
matrix of the objective functions fi. However, we have designed an automatic strategy
that avoids recomputing the Hessian at each iteration when the gradient variations are
still well predicted by the available Hi,k−1. More specifically, we choose to recompute the
Hessian at the beginning of iteration (i, k) (k > 0) whenever the preceding iteration not
successful enough (i.e. ρi,k−1 < ηH) or when

‖gi,k − gi,k−1 −Hi,k−1si,k−1‖2 > ǫH‖gi,k‖2,

where ǫH ∈ (0, 1) is a small user-defined constant. Otherwise, we use Hi,k = Hi,k−1.
Default value of ǫH = 0.15 and ηH = 0.5 appear to give satisfactory results in most cases.

3.5 Prolongations and restrictions

We have chosen to define the prolongation and restriction operators Pi and Ri as follows.
The prolongation is chosen as the linear interpolation operator, and the restriction is
its transpose normalized to ensure that ‖Ri‖∞ = 1 and σi = ‖Pi‖−1

∞ (see (2.4)). These
operators are never assembled, but are rather applied locally for improved efficiency. Cubic
interpolation could also be used in principle, but it produces denser Galerkin models and
is very restrictive in the context of Gelman-Mandel restrictions. Moreover our experience
is that the algorithm is computationally less efficient.

3.6 Free and fixed form recursions

An interesting feature of the RMTR∞ framework is that its convergence properties are
preserved if the minimization at lower levels (i = 0, . . . , r − 1) is stopped after the first
successful iteration. The flexibility of this allows to consider different recursion patterns,
namely fixed-form and free-form ones. In a fixed form recursion pattern, a maximum num-
ber of successful iterations at each level is specified (like in V- and W-cycles in multigrid
algorithms, see Briggs et al. (2000)). If no such premature termination is used but the
minimization at each level is carried out until one of the classical termination conditions
on the criticality measure and step size (see Step 5 of Algorithm RMTR∞) is satisfied,
then the actual recursion pattern is uniquely determined by the progress of minimization
at each level (hence yielding a free form recursion pattern).

In Section 4, we compare three recursion forms. In the first form, which we call V-
form, the minimization at the lower levels consists in one successful smoothing iteration,
followed by a successful recursive iteration, itself followed by a second successful smoothing
iteration(4). The second form is called W-form and is defined as a V-form to which is
added one successful recursive iteration, and a final smoothing iteration. The third form
is the free form recursion as explained above, in which we impose however that smoothing
iterations and recursive (successful) iterations alternate at all levels but the coarsest.
Indeed, during our experiments, we have found this alternance very fruitful (and rather

(4)A the coarsest level 0, smoothing iterations are skipped and recursion impossible.
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natural in the interpretation of the algorithm as an alternance of high frequency reductions
and low frequency removals).

Note that for each recursion form, any remaining iteration is skipped if one of the
termination conditions in Step 5 of Algorithm RMTR∞ is satisfied.

3.7 Computing the starting point at the fine level

We also take advantage of the multilevel recursion idea to compute the starting point xr,0

at the finest level by first restricting the user-supplied starting point to the lowest level and
then applying Algorithm RMTR∞ successively at levels 0 up to r− 1. In our experiments
based on regular meshes (see Section 4), the accuracy on the criticality measure that is
required for termination at level i < r is given by

ǫχi = ǫχi+1σi+1, (3.23)

where ǫχr is the user-supplied criticality requirement for the topmost level and σi+1 is due
to (2.6) and the definition (2.13) of the criticality measure. Once computed, the solution
at level i is then prolongated to level i + 1 using cubic interpolation. The criteria (3.23)
comes from the fact that we want that the prolongation of our step stay critical for the
upper level i + 1 excepted for the highest frequencies of the error that are not visible at
level i and only appear at level i+ 1 and finer levels.

3.8 Constants choice and recursive termination thresholds

We conclude the description of our practical algorithm by specifying our choice for the
constants and the level-dependent criticality thresholds ǫχi . We set

η1 = 0.01, η2 = 0.95, γ1 = 0.05 and γ2 = 1.00, (3.24)

as this choice appears most often appropriate. The value 1 is also often satisfactory for
the ∆i,0. We considered two possible expressions for the criticality thresholds. The first
is related to the descent condition (2.14) and is given by

ǫχi = κχχi,kσi+1. (3.25)

We also considered using (3.23), but this was found to be unsuitable for recursive iterations.
Indeed, it often prevented the effective use of coarse level computations because it was
satisfied at x0,i, resulting in an immediate return to the fine level. We thus considered an
adaptation of this rule given by

ǫχi = min{ǫχi+1, κχχi,k}σi+1. (3.26)

This adaptation was further motivated by the observation that the alternance between
SCM smoothing and recursive iterations is very efficient in practice and we want thus to
impose that at least one lower-level iteration is done if the descent condition (2.14) allows
it.

4 Numerical tests

The algorithm described above has been coded in FORTRAN 95 and all experiments below
were run on a 3.0 Ghz single-processor PC with 2 Gbytes of RAM.

4.1 Test problems

We have considered a suite of minimization problems in infinite-dimensional spaces, in-
volving differential operators. These problems are detailed in Appendix B. The differential
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operators are discretized on a hierarchy of regular grids such that the coarse grid at level
i − 1 is defined by taking every-other point in the grid at level i: the ratio between the
grid spacing of two consecutive levels in each coordinate direction is therefore 2. The
grid transfer operators Pi are defined as in classical geometric multigrid settings, using
interpolation operators. The restriction operators Ri are such that (2.4) holds.

All experiments discussed below consider the solution of the test problem on the finest
grid, whose size may be found in Table 4.1, together with other problems characteristics.
The algorithms were terminated when the criticality measure (2.13) at the finest level
was below 10−3 for all the test cases. Notice that requiring that χr,k ≤ ǫr = 10−3 is
approximately the same as requiring the scaled criticality measure

χr,k

nr
, whose value is

comparable, for example, with the infinity norm of the projected gradient ||PrF (xr,k −
gr,k)− xr,k||∞, to be such that

χr,k

nr
≤ ǫr

nr
. This last tolerance is, for instance, ǫr

nr
≈ 10−9

in the case where nr = 1046529 and ǫr

nr
≈ 10−8 if nr = 65025.

Problem name nr r Comment
DNT 511 8 1-D, quadratic
P2D 1046529 9 2-D, quadratic
P3D 250047 5 3-D, quadratic
DEPT 1046529 9 2-D, quadratic, (Minpack 2)
DPJB 1046529 9 2-D, quadratic, with bound constraints, (Minpack 2)
DODC 65025 7 2-D, convex, (Minpack 2)
MINS-SB 1046529 9 2-D, convex, smooth boundary conds.
MINS-OB 65025 7 2-D, convex, oscillatory boundary conds.
MINS-DMSA 65025 7 2-D, convex, (Minpack 2)
IGNISC 65025 7 2-D, convex
DSSC 1046529 9 2-D, convex, (Minpack 2)
BRATU 1046529 9 2-D, convex, (Minpack 2)
MINS-BC 65025 7 2-D, convex, with bound constraints
MEMBR 393984 9 2-D, convex, free boundary, with bound constraints
NCCS 130050 7 2-D, nonconvex, smooth boundary conds.
NCCO 130050 7 2-D, nonconvex, oscillatory boundary conds.
MOREBV 1046529 9 2-D, nonconvex

Table 4.1: Test problem characteristics

Our testing strategy, which is discussed in the next paragraphs, is first to establish a
good default value for the algorithmic parameters, and, in a second step, to compare the
resulting method with other competing approaches.

4.2 In search of efficient default parameters

Given the relatively large number of parameters in our method, a complete discussion of
all possible combinations is outside the scope of this paper. We have therefore adopted
the following approach. We first fixed the parameters for which a reasonable consensus
already exists, namely the trust-region parameters η1, η2, γ1 and γ2, which are set as
in (3.24), in accordance with Conn et al. (2000) and Gould, Orban, Sartenaer and Toint
(2005). The initial trust-region radii ∆i,0 are set to 1, as suggested in Section 17.2 of
the first of these references. A second class of parameters was then isolated, containing
algorithmic options with very marginal effect on the computational results. These are the
choice of activating the linesearch mechanism (we allow for backtracking if the initial step
is unsuccessful and at most one extrapolation evaluation if it is successful and gradient-
related with ǫgr = 0.01), the parameters ǫH and ηH of the Hessian evaluation strategy (we
chose ηH = 0.5 and ǫH = 0.15), and the degree of the interpolation in the prolongation
operator (linear interpolation is used within recursive iterations, and cubic interpolation
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when prolongating the solution at a coarse level into a starting point at the next finer
one). The remaining algorithmic parameters were either central in the definition of our
method or found to alter the performance of the method significantly, and we focus the
rest of our discussion on their choice.

We begin by determining the optimal combination of these paramaters. For this pur-
pose, we ran a large number (192) of possible combinations of these options on our set of
17 test problems and report all results of the 3264 runs on a comet-shape graph represent-
ing a measure of the effort spent in function evaluations as a function of CPU-time. More
precisely, we have first scaled, separately for each test problem, the number of function
evaluations and CPU-time by dividing them by the best obtained for this problem by all
algorithmic variants. We then plotted the averages of these scaled measures on all test
problems for each algorithmic variant separately, after removing the variants for which the
CPU limit of 1000 seconds was reached on at least one problem. In the first of these plots
(Figures 4.1 and 4.2), we have used triangles for variants where the coarse Galerkin model
is chosen at recursive iterations and stars for variants where the second-order model (3.22)
is chosen instead(5).
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Figure 4.1: Average scaled function evaluations versus average scaled CPU-time for all
algorithmic variants, distinguishing the type of model used.

We note a substantial spread of the results, with some options being up to fifteen times
worse than others. The worst cases (in the top right corner) correspond to combinations
of the quadratic model (3.22) with a single smoothing cycle and small values of κχ. On the
other hand, the choice of the Galerkin model is very clearly the best. This is mainly due
to the numerical cost of the alternative because it requires a function/Hessian evaluation
and a matrix update for each model in (3.22). Even on the testcases for which this choice
proves superior in number of iterations, the advantage is then lost in CPU-time. In view
of this conclusion, we therefore select the the Galerkin model as our default and restrict
further analysis to this case.

We now consider the number of smoothing cycles performed at each Taylor iteration
(at a level i > 0) and illustrate our results in Figure 4.3. All algorithmic variants (with

(5)Notice that we did not represent the tests where the coarse model is defined as in (2.5) because
preliminary tests showed that performing only a first-order correction is indisputably not competitive.
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Figure 4.2: Detail of the lower left-hand corner of Figure 4.1.

the coarse Galerkin model) are again represented in a picture similar to Figure 4.1, where
different symbols are used to isolate variants using different number of smoothing cycles.
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Figure 4.3: Average scaled function evaluations versus average scaled CPU-time for all
algorithmic variants, distinguishing the number of smoothing cycles per Taylor iteration.

An important property of this option is that the number of function evaluations de-
creases as the number of cycles increases, because a single evaluation is exploited to a fuller
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extent if more cycles are performed consecutively. This correlation is maintained up to a
level (probably depending on the quadraticity of the objective function) beyond which the
work of additional cycles is no longer effective. The correlation is much less clear when
considering CPU-time, even if our result indicate that too few smoothing cycles is seldom
the best option. Good choices seem to range between 2 and 7 cycles.

Choosing between the values for κχ is not easy. We have considered four possible
values (1/2, 1/4, 1/8, 1/16). We first note that choosing κχ to be significantly larger that
1/2 results in a poor exploitation of the multilevel nature of the problem, since recursive
iterations become much less frequent. On the other hand, values much smaller than 1/16
are also problematic because recursive iterations are then initiated for a too marginal
benefit in optimality, although this strategy is closer to the unconditional recursive nature
of multigrid algorithms for linear systems. In our tests the best threshold has been obtained
for κχ = 1/4 (see Figure 4.4, which is built on the same principle as the previous ones).
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Figure 4.4: Average scaled function evaluations versus average scaled CPU-time for all
algorithmic variants, distinguishing the values of κχ.

We now turn to the impact of the cycle types on performance, which is illustrated in
Figure 4.5.

Remarkably, an excellent performance can be obtained with the three considered cycle
styles, quite independently of the other algorithmic parameters. In particular, this in-
dicates that the strategy for automatically adapting the cycle type to the problem at
run-time is reasonably efficient. It is however slightly more complicated and the simpler
V-form may often be prefered in practice.

Finally, Figure 4.6 shows the effect of the coarse criticality threshold choice between
(3.25) (nomin) and (3.26) (min). It indicates that (3.26) is generally preferable, although
the performance remains mixed.

As a conclusion of this analysis, we decided to select the defaults as the use of the
Galerkin model, 7 smoothing cycles per Taylor iteration, a value of κχ = 1/4, V-form
iterations and the (3.26) termination rule.
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Figure 4.5: Average scaled function evaluations versus average scaled CPU-time for all
algorithmic variants, distinguishing the type of recursive cycles.
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Figure 4.6: Average scaled function evaluations versus average scaled CPU-time for all
algorithmic variants, distinguishing the type of lower level criticality threshold.
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4.3 Performance of RMTR
∞

We now analyse the performance of the resulting recursive trust-region algorithm in com-
parison with other approaches on our battery of 17 test problems. This analysis is con-
ducted by comparing four algorithms:

• the all on finest (AF) algorithm, which is a standard Newton trust-region algorithm
(with PTCG as subproblem solver) applied at the finest level, without recourse to
coarse-level computations;

• the mesh refinement technique (MR), where the discretized problems are solved
from the coarsest level (level 0) to the finest one (level r) successively, using the
same standard Newton trust-region method, and where the starting point at level
i+ 1 is obtained by prolongating (using Pi+1) the solution obtained at level i;

• the multilevel on finest (MF) method, where Algorithm RMTR∞ is applied directly
on the finest level;

• the full multilevel (FM) algorithm where Algorithm RMTR∞ is applied successively
on progressively finer discretizations (from coarsest to finest) and where the starting
point at level i + 1 is obtained by prolongating (using Pi+1) the solution obtained
at level i.

A CPU-time performance profile (see Dolan and Moré, 2002) is presented in Figure 4.7
for all our test problems and these four variants. The first conclusion is that the full mul-
tilevel variant (FM) clearly outperforms all other variants. The second observation is that
the AF variant is, as expected, by far the worst. The remaining two variants are surpris-
ingly close, and the use of recursive iterations on the fine level appears to have an efficiency
similar to that of optimizing on successively finer grids. These observations are confirmed
by a detailed analysis of the complete numerical results presented in Appendix C.
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Figure 4.7: Performance profile for CPU time with variants AF, MF, MR and FM (17 test
problems).
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4.3.1 Unconstrained problems

We now turn to a more detailed comparison of the MR and FM variants on three specific
unconstrained test problems (P2D, MINS-SB and NCCS), which we consider representa-
tive of the various problem classes mentioned in Table 4.1.

The performance of the algorithms is illustrated for each of these problems by a figure
showing the history of the scaled criticality measure defined in Section 4.1 when the MR
(thin line) and the FM (bold line) algorithms are used. In these figures, the dashed line
represents the increase of the scaled criticality measure when a solution is prolongated
during the application of a mesh refinement process. Moreover, and because iterations
at coarse levels are considerably cheaper than those at higher ones, we have chosen to
represent these histories as a function of the equivalent number of finest iterations, given
by

q =
r

∑

i=0

qi

(

ni

nr

)

, (4.27)

where qi is the number of iterations at level i.
We first consider the quadratic minimization problem P2D in Figure 4.8. Because

this problem is equivalent to solving a linear system of equations, we expect algorithm
FM to exhibit a multigrid-type behaviour. Looking at Figure 4.8, we see that this is
effectively the case. We note that FM is considerably more efficient than MR (by a factor
approaching 100). This last result confirms that our trust-region globalization is not
hindering the known efficiency of the multigrid methods for this type of problems. Note
that the significant increase of the scaled criticality measure when a lower level solution is
prolongated to an upper level starting point is due to the fact that oscillatory components
of the error cannot be represented on the coarser levels and therefore could not have been
reduced at these levels.
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Figure 4.8: History of the scaled criticality measure on P2D. A small circle surrounds the
iterations where the trust region is active. Note that both axis are logarithmic.

The same conclusions seem to apply when we consider Figures 4.9(6) and 4.10, where
the same algorithms are tested on MINS-SB and NCCS, respectivelyx This is remarkable
because the problems are now more general and do not correspond anymore to linear sys-
tems of equations (MINS-SB is nonquadratic) or elliptic problems (NCCS is non-convex).

An important feature of the classical trust-region algorithm is that its convergence is
speeded up when the trust-region becomes inactive (because the algorithm then reduces to
Newton’s method and thus achieves quadratic convergence under the assumption that the

(6)Observe that the MR variant had to be stopped after 1 hour of computing on this problem.
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Figure 4.9: History of the scaled criticality measure on MINS-SB. A small circle surrounds
the iterations where the trust region is active. As above, both axis are logarithmic.
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Figure 4.10: History of the scaled criticality measure on NCCS. A small circle surrounds
the iterations trust region is active.As above, both axis are logarithmic.

second-order Taylor model (2.2) is chosen). Iterations where the trust-region is active have
been indicated, in the above figures, by a small circle (observe that they often correspond
to non-monotonic decrease of the scaled criticality). We note that no such iteration occurs
for MR and FM on P2D, and also that convergence speeds up for all methods as soon
as the trust region becomes inactive, even if the rate is at most linear for the multilevel
methods.

4.3.2 Bound-constrained problems

We finally evaluate the RMTR∞ algorithm on the bound-constrained problems DPJB,
MINS-BC and MEMBR. The results for these problems are presented in Figures 4.11 to
4.12.

We first note that the relative performance of the considered algorithms is very similar
to that already analyzed for unconstrained problems, at least for DPJB(7) and MEMBR.

(7)We should note here that the Hessian of this quadratic problem is not supplied by the MINPACK
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On this last problem, the figure indicates that further efficiency gains could be obtained
by a finer tuning of the termination accuracy at levels 5, 6 and 7. On all three problems,
a gain in CPU time of a factor exceeding 10 is typically obtained when considering the
multilevel variant. Again, the trust-region constraint is mostly inactive on these examples.
This is in sharp contrast with MINS-BC, where it plays an important role, except in the
asymptotics (as expected from trust-region convergence theory).
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Figure 4.11: History of the scaled criticality measure on DPJB. As above, 3both axis are
logarithmic.
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Figure 4.12: History of the scaled criticality measure on MINS-BC. A small circle sur-
rounds the iterations where the trust region is active. As above, both axis are logarithmic.

5 Conclusion and perspectives

We have presented an implementation of the recursive multilevel trust-region algorithm
for bound-constrained problems proposed by Gratton et al. (2008), as well as numerical

code and has been obtained once and for all at the beginning of the calculation by applying an optimized
finite-difference scheme (see Powell and Toint, 1979).
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Figure 4.13: History of the scaled criticality measure on MEMBR. As above, both axis are
logarithmic.

experience on multilevel test problems. A suitable choice of the algorithm’s parameters has
been identified on these problems, yielding a good compromise between reliability and effi-
ciency. The resulting default algorithm has then be compared to alternative optimization
techniques, such as mesh refinement and direct solution of the fine-level problem.

The authors are well aware that continued experimentation is needed on a larger spec-
trum of applications, but the numerical experience gained so far is very encouraging.
Further comparison with other proposals, such as those by Kornhuber (1994,1996), is also
desirable.

The extension of the method beyond geometric multigrid applications is also currently
considered in conjunction with algebraic multigrid techniques. A more ambitious devel-
opment involving the inclusion of constraints into the problem formulation is the object
of ongoing research.
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A The generalized Cauchy point

We give a proof of the generalized Cauchy condition mentioned in Section 3.1.

Lemma A.1 Assume that the first unidimensional minimization in the first smoothing
cycle at iteration (i, k) is performed along the jm-th coordinate axis, where jm is determined
by (3.20) and (3.21), and results in a stepsize αjm

. Then (2.18) holds for si,k = αjm
ei,jm

.

Proof. We drop the indexes i and k for simplicity. First note that

|gjm
| ≥ |gjm

djm
| = |min

j
gjdj | ≥

1

n

∣

∣

∣

∣

∣

∣

∑

j

gjdj

∣

∣

∣

∣

∣

∣

=
1

n
χ, (1.28)

where we have used (3.21) to derive the first inequality, (3.20) to derive the first equality
and the fact that (3.21) implies that gjdj ≤ 0 for all j to deduce the second inequality.
Next observe that the line minimization along the jm-th coordinate axis may terminate
in three different situations. The first is when the minimum of the quadratic model is
interior to W , in which case we obtain that Hjm,jm

> 0, that αjm
= |gjm

|/Hjm,jm
and

also that

m(x) −m(x+ αjm
ejm

) =
|gjm
|2

2Hjm,jm

.
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Using now the bound Hjm,jm
≤ 1 + ‖H‖∞ and (1.28), we deduce that

m(x)−m(x+ αjm
ejm

) ≥ χ2

2n2(1 + ‖H‖∞)
. (1.29)

The second situation is when the line minimizer is on the boundary of B, in which case
αjm

= ∆ and thus

m(x)−m(x+ αjm
ejm

) ≥ 1

2
|gjm
|∆ ≥ 1

2n
χ∆, (1.30)

where we used (1.28) to obtain the last inequality. The third possibility is when the
line minimizer is on the boundary of L. In this case, we have that |αjm

| ≥ |djm
|, where

d is given by (3.21), and therefore, using (1.28) again, that

m(x)−m(x + αjm
ejm

) ≥ 1

2
|gjm

αjm
| ≥ 1

2
|gjm

djm
| ≥ 1

2n
χ.

Combining this bound with (1.29) and (1.30), we thus obtain that (2.18) holds with
κred = 1/2n2. 2

B Test problems

We have build a suite of test problems as extensive as we could, from a variety of sources.
We have kept the problems already discussed in Gratton, Sartenaer and Toint (2006) and
have also used Lewis and Nash (2005) and the Minpack-2 collection (Averick and Moré,
1991) extensively. In what follows, we denote by S2 and S3 respectively the unit square
and cube

S2 = [0, 1]× [0, 1] = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
and

S3 = [0, 1]× [0, 1]× [0, 1] = {(x, y, z), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.
We also denote by H1(D) the Hilbert space of all functions with compact support in the
domain D such that v and ||∇v||2 belong to L2(D), and by H1

0(D) its subspace consisting
of all function vanishing on the domain’s boundary. For all problems, the starting value
of the unknown function is chosen to be equal to one (at the finest level).

B.1 DNT: a Dirichlet-to-Neumann transfer problem

Let S be the square [0, π]× [0, π] and let Γ be its lower edge defined by {(x, y), 0 ≤ x ≤
π, y = 0}. The Dirichlet-to-Neumann transfer problem (Lewis and Nash, 2005) consists
in finding the function a(x) defined on [0, π], that minimizes

∫ π

0

(

∂u

∂y
(x, 0)− f(x)

)2

,

where u(x, y) is the solution of the boundary value problem

∆u = 0 in S,
u(x, y) = a(x) on Γ,
u(x, y) = 0 on ∂S\Γ,

where ∆ is the Laplacian operator. The problem is a 1D minimization problem, but the
computations of the objective function, gradient and Hessian involve a partial differential
equation in 2D. To introduce oscillatory components in the solution, we define f(x) =
∑15

i=1 sin(i x)+sin(40 x). The discretization of the problem is performed by finite differences
with the same grid spacing in the two directions. The discretized problem is a linear least-
squares problem.
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B.2 P2D and P3D: two quadratic examples

We consider here the two-dimensional Poisson model problem P2D for multigrid solvers
defined in S2

−∆u(x) = f(x) in S2

u(x) = 0 on ∂S2,

where f(x) is such that the analytical solution to this problem is u(x) = 2x2(1 − x2) +
2x1(1 − x1). This problem is discretized using a 5-point finite-difference scheme. We
consider the variational formulation of this problem, given by

min
x∈IRnr

1
2
xTAx − xT b, (2.31)

which is obviously equivalent to the linear system Ax = b, where A and b are the dis-
cretizations of the Laplacian and the right-hand side f , respectively. The main purpose
of this example is to illustrate that our multilevel algorithm exhibits performances similar
to traditional linear multigrid solvers on a quadratic model problem.

Problem P3D is a more nonlinear 3D version of P2D. We consider the differential
equation

−(1 + sin2(3πx1))∆u(x) = f(x) in S3,
u(x) = 0 on ∂S3.

The right-hand side f(x) is chosen such that u(x) = x1(1− x1)x2(1− x2)x3(1− x3) is the
desired solution. The Laplacian is discretized using the standard 7-point finite-difference
approximation on a uniform 3D mesh. As for P2D, the solution algorithms are applied to
the variational formulation (2.31).

B.3 MINS-SB, MINS-OB, MINS-BC and MINS-DMSA: four min-
imum surface problems

The domain of calculus of variation consists in finding stationary values v of integrals of the

form
∫ b

a
f(v, v̇, x) dx, where v̇ is the first-order derivative of v. The multilevel trust-region

algorithm can be applied to discretized versions of problems of this type. As representative
of these, we consider several variants of the minimum surface problem

min
v∈K

∫

S2

√

1 + ‖∇xv‖22

where K =
{

v ∈ H1(S2) | v(x) = v0(x) on ∂S2

}

. This convex problem is discretized using
a finite-element basis defined using a uniform triangulation of S2, with same grid spacing
h along the two coordinate directions. The basis functions are the classical P1 functions
which are linear on each triangle and take value 0 or 1 at each vertex. The boundary
condition v0(x) is chosen as

v0(x) =















f(x1), x2 = 0, 0 ≤ x1 ≤ 1,
0, x1 = 0, 0 ≤ x2 ≤ 1,
f(x1), x2 = 1, 0 ≤ x1 ≤ 1,
0, x1 = 1, 0 ≤ x2 ≤ 1,

where f(x1) = x1(1−x1) (for MINS-SB) or f(x1) = sin(4πx1)+ 1
10

sin(120πx1) (for MINS-
OB). To define problem MINS-BC, we introduce, in MINS-SB, the following lower bound
constraint:

v(x) ≥
√

2 whenever
4

9
≤ x1, x2 ≤

5

9
,

thereby creating an obstacle problem where the surface is constrained in the middle of the
domain. The fourth variant of the minimum surface problem, MINS-DMSA, is the Enneper
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problem proposed in Minpack-2, where the domain is now given by D = (− 1
2
, 1

2
)× (− 1

2
, 1

2
).

The boundary condition is chosen on ∂D as

vD(x) = u2 − v2,

where u and v are the unique solutions to the equations

x1 = u+ uv2 − 1

3
u3, x2 = −v − u2v +

1

3
v3.

B.4 MEMBR: a membrane problem

We consider the problem suggested by Domorádová and Dostál (2007) given by

min
u∈K

∫

S2

(

||∇u(x)||22 + u(x)
)

where the boundary of S2 is composed of three parts: Γu = {0}×[0, 1], Γl = {1}×[0, 1] and
Γf = [0, 1]× {0, 1} and where K = {u ∈ H1(S2) | u(x) = 0 on Γu and l ≤ u(x) on Γl}.
The obstacle l on the boundary Γl is defined by the upper part of the circle with the radius
one and center S = (1; 0.5;−1.3).

The solution of this problem can be interpreted as the displacement of the membrane
under the traction defined by the unit density. The membrane is fixed on Γu and is not
allowed to penetrate the obstacle on Γl. We discretized the problem by piecewise linear
finite elements using a regular triangular grid.

B.5 IGNISC, DSSC and BRATU: three combustion/Bratu prob-
lems

We first consider the following optimal-control problem (IGNISC), introduced by Borzi
and Kunisch (2006), and related to the solid-ignition model:

min
u∈H1

0
(S2)

[
∫

S2

(

u(x)− z
)2

+
β

2

∫

S2

(

eu(x) − ez
)2

+
ν

2

∫

S2

‖∆u(x)− δeu(x)‖22
]

.

For the numerical tests, we chose ν = 10−5, δ = 6.8, β = 6.8 and z = 1
π2 .

The second problem of this type is the steady-state combustion problem DSSC of
Minpack 2, stated as the infinite-dimensional optimization problem

min
u∈H1

0
(S2)

∫

S2

(

1
2
||∇u(x)||22 − λeu(x)

)

and λ = 5 is a parameter. This problem is the variational formulation of the boundary
value problem

−∆u(x) = λeu(x), x ∈ S2,
u(x) = 0, x ∈ ∂S2.

The third variant is a simple least-squares formulation of the same problem, where we
solve

min
u∈H1

0
(S2)

∫

S2

‖∆u(x) + λeu(x)‖22,

where λ = 6.8. For all these convex problems, we use standard 5-point finite differences
on a uniform grid.
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B.6 NCCS and NCCO: two nonconvex optimal control problems

We introduce the nonlinear least-squares problem

min
u,v∈H1

0
(S2)

[
∫

S2

(u(x) − u0(x))
2 +

∫

S2

(v(x) − v0(x))2 +

∫

S2

‖∆u(x)− v(x)u(x) + f0(x)‖22
]

.

We distinguish two variants: the first with relatively smooth target functions and the
second with more oscillatory ones. Theses functions v0(x) and u0(x) are defined on S2 by

v0(x) = u0(x) = sin(6πx1) sin(2πx2) (for NCCS)

v0(x) = u0(x) = sin(128πx1) sin(32πx2) (for NCCO) .

The function f0(x) is such that −∆u0(x)+v0(x)u0(x) = f0(x) on S2. This problem corre-
sponds to a penalized version of a constrained optimal control problem, and is discretized
using finite differences. The nonconvexity of the resulting discretized fine-grid problem
has been assessed by a direct eigenvalue computation on the Hessian of the problem.

B.7 DPJB: pressure distribution in a journal bearing

The journal bearing problem arises in the determination of the pressure distribution in a
thin film of lubricant between two circular cylinders. This problem is again proposed by
Minpack 2, and is of the form

min
v∈K

1
2

∫

D

(

wq(x)||∇v(x)||22 − 1
10
wl(x)v(x)

)

where
wq(x) = (1 + 1

10
cosx1)

3 and wl(x) = 1
10

sinx1

for some constant ǫ ∈ (0, 1) and D = (0, 2π) × (0, 20). The convex set K is defined by
K = {v ∈ H1

0(D) | v(x) ≥ 0 on D}. A finite-element approach of this problem is obtained
by minimizing over the space of piecewise linear functions v with values vi,j at zi,j ∈ IR2

which are the vertices of the regular triangulations of D.

B.8 DEPT: an elastic-plastic torsion problem

The elastic-plastic torsion problem DEPT from Minpack 2 arises from the determination
of the stress field on an infinitely long cylindric bar. The infinite-dimensional version of
this problem is of the form

min
v∈K

1
2

∫

S2

(

||∇v(x)||22 − 5v(x)
)

.

The convex set K is defined by K = {v ∈ H1
0(S2) | |v(x)| ≤ dist(x, ∂S2) on S2}, where

dist(., ∂S2) is the distance function to the boundary of S2. A finite-element approach of
this problem is obtained by minimizing over the space of piecewise linear functions v with
values vi,j at zi,j ∈ IR2 which are the vertices of the regular triangulations of S2.

B.9 DODC: an optimal design with composite materials

The Minpack 2 DODC optimal design problem is defined by

min
v∈H1

0
(S2)

∫

D

(

ψλ(||∇v(x)||2) + v(x)
)

where

ψλ(t) =











1
2
µ2t

2, 0 ≤ t ≤ t1,
µ2t(t− 1

2
t1), t1 ≤ t ≤ t2,

1
2
µ1(t

2 − t22) + µ2t1(t2 − 1
2
t1), t2 ≤ t,
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with the breakpoints t1 and t2 defined by

t1 =

√

2λ
µ1

µ2
and t2 =

√

2λ
µ2

µ1
,

and we choose λ = 0.008, µ1 = 1 and µ2 = 2. A finite-element approach of this problem
is obtained by minimizing over the space of piecewise linear functions v with values vi,j

at zi,j ∈ IR2 which are the vertices of the regular triangulations of S2.

B.10 MOREBV: a nonlinear boundary value problem

The MOREBV problem is adapted (in infinite dimensions) from Moré, Garbow and Hill-
strom (1981) and is described by

min
u∈H1

0
(S2)

∫

‖∆u(x)− 1
2
[u(x) + 〈e, x〉+ 1]3‖22,

where e is the vector of all ones. Once again, the problem is discretized by linear finite-
elements on regular triangular grids.

C Complete numerical results

We give here the complete numerical results for all test problems and all variants. The
columns of the following tables report CPU time (in seconds), the number of matrix-vector
products or smoothing cycles and the number of objective function/gradient/Hessian eval-
uations.
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P2D CPU Mv prods Eval f Eval g eval H DODC CPU Mv prods Eval f Eval g eval H
FM 26.05 13.52 4.66 3.38 1.33 FM 36.00 218.92 65.98 220.55 0.00
MR 569.72 1494.99 2.67 2.67 1.33 MR 184.23 4014.31 38.43 354.44 0.00
MF 72.85 52.93 10.00 10.00 1.00 MF 58.58 282.99 93.00 399.00 0.00
AF 1122.83 3022.00 4.00 4.00 1.00 AF 894.76 11472.00 493.00 4707.00 0.00
MINS-SB CPU Mv prods Eval f Eval g eval H MINS-OB CPU Mv prods Eval f Eval g eval H
FM 153.92 81.89 26.43 18.62 11.91 FM 27.49 305.67 84.99 61.42 21.33
MR 3600.00 - - - - MR 116.73 1807.44 26.93 18.43 25.60
MF 3600.00 - - - - MF 70.44 564.15 261.00 185.00 69.00
AF 3600.00 - - - - AF 1545.63 5955.00 475.00 388.00 460.00
NCCS CPU Mv prods Eval f Eval g eval H MINS-DMSA CPU Mv prods Eval f Eval g eval H
FM 331.89 69.57 69.77 1100.27 0.00 FM 18.23 88.74 26.89 138.65 0.00
MR 279.51 1342.26 2.68 57.50 0.00 MR 289.64 2860.34 26.31 242.01 0.00
MF 3600.00 - - - - MF 73.41 200.25 137.00 591.00 0.00
AF 3600.00 - - - - AF 1196.81 5677.00 428.00 4116.00 0.00
DPJB CPU Mv prods Eval f Eval g eval H IGNISC CPU Mv prods Eval f Eval g eval H
FM 83.61 11.17 16.98 28.98 0.00 FM 398.18 65.60 14.98 13.91 1.34
MR 247.71 341.66 5.02 17.02 0.00 MR 488.22 1882.86 2.69 2.69 1.36
MF 1390.02 297.00 297.00 306.00 0.00 MF 398.34 257.11 60.00 46.00 1.00
AF 3600.00 - - - - AF 2330.42 11572.00 6.00 6.00 5.00
MEMBR CPU Mv prods Eval f Eval g eval H DSSC CPU Mv prods Eval f Eval g eval H
FM 153.96 76.73 98.43 98.43 1.33 FM 12.11 3.41 1.93 4.85 0.00
MR 292.43 2103.35 3.00 3.00 1.33 MR 122.32 211.51 1.67 4.68 0.00
MF 335.25 413.97 203.00 183.00 1.00 MF 1051.56 760.65 165.00 134.00 0.00
AF 1082.05 7423.00 43.00 43.00 1.00 AF 3183.85 6012.00 6.00 42.00 0.00
MINS-BC CPU Mv prods Eval f Eval g eval H BRATU CPU Mv prods Eval f Eval g eval H
FM 140.02 402.25 551.00 540.88 31.64 FM 10.15 3.68 2.06 1.91 0.33
MR 524.61 4055.91 413.59 400.60 47.15 MR 91.71 203.00 1.67 1.67 0.33
MF 161.84 414.09 581.00 560.00 84.00 MF 236.82 184.41 43.00 32.00 1.00
AF 2706.41 3935.00 1105.00 1001.00 1103.00 AF 2314.11 5458.00 6.00 6.00 4.00
DNT CPU Mv prods Eval f Eval g eval H NCCO CPU Mv prods Eval f Eval g eval H
FM 6.73 33.62 9.33 7.33 1.33 FM 224.20 44.01 35.33 791.37 0.00
MR 4.58 246.40 2.66 2.66 1.33 MR 3589.62 17993.03 3.33 43.37 0.00
MF 24.41 131.82 37.00 28.00 1.00 MF 3600.00 - - - -
AF 5.20 299.00 3.00 3.00 1.00 AF 3600.00 - - - -
P3D CPU Mv prods Eval f Eval g eval H MOREBV CPU Mv prods Eval f Eval g eval H
FM 28.78 39.38 8.92 8.64 1.33 FM 41.73 12.83 4.54 3.60 0.33
MR 18.33 102.08 2.82 2.74 1.33 MR 3600.00 - - - -
MF 47.47 64.75 12.00 12.00 1.00 MF 704.88 301.01 55.00 44.00 1.00
AF 626.07 987.00 257.00 142.00 1.00 AF 3600.00 - - - -
DEPT CPU Mv prods Eval f Eval g eval H
FM 8.58 3.37 1.92 4.43 0.00
MR 95.44 206.38 1.66 4.25 0.00
MF 69.55 52.93 10.00 18.00 0.00
AF 1364.45 3019.00 4.00 12.00 0.00


