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Abstract

We consider methods for regularising the least-squares solution of the linear sys-

tem Ax = b. In particular, we propose iterative methods for solving large problems

in which a trust-region bound ‖x‖ ≤ ∆ is imposed on the size of the solution, and

in which the least value of linear combinations of ‖Ax − b‖q
2 and a regularisation

term ‖x‖p
2 for various p and q = 1, 2 is sought. In each case, one of more “secular”

equations are derived, and fast Newton-like solution procedures are suggested. The

resulting algorithms are available as part of the GALAHAD optimization library.

1 Introduction.

1.1 Motivation.

Let A ∈ IRm×n and b ∈ IRm be given data, and let ‖ · ‖ denote the Euclidean `2 norm. We

are interested in finding x ∈ IRn so that both ‖Ax − b‖ and ‖x‖ are small. Traditionally

this has been achieved by minimizing

‖Ax− b‖2 + λ‖x‖2

for some suitable positive regularisation parameter λ—this is often known as Tikhonov

regularization or, in statistics, ridge regression. Many heuristics (for example, the dis-

crepancy principle, generalised cross validation, the L-curve method, and the unbiased

predictive risk estimator) [20, 33] have been proposed for selecting λ and, given λ, most

methods use the observation that the problem may then be reformulated as the weighted

least-squares problem

minimize
x∈IRn

∥

∥

∥

∥

∥

(

A

λ
1

2 I

)

x−

(

b

0

)∥

∥

∥

∥

∥

, (1.1)

where I is the appropriately-dimensioned identity matrix. In this paper, we consider both

generalisations and alternatives to this form of regularisation.

While there are many real applications for (regularised) linear least-squares [3, 33],

our main interests are in nonlinear problems for which linear least-squares problems arise
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as sub-problems. The best know example is nonlinear least-squares (fitting) in which

the least value of the `2-norm ‖F (x)‖ of a vector-valued function F : IRn → IRm is

sought [8, Chap.10]. Here F (xk + s) is often approximated locally about a current iterate

xk by F (xk) + J(xk)s, involving the Jacobian J of F . This leads to the Gauss-Newton

method in which the correction sk is chosen to minimize ‖F (xk) + J(xk)s‖. In order to

globalise such a scheme, Moré [29] proposed that the step be regularised to

minimize
s∈IRn

‖F (xk) + J(xk)s‖ subject to ‖s‖ ≤ ∆k

for some dynamically adjusted radius ∆k > 0, making rigourous earlier heuristics by

Levenberg, Morrison and Marquardt [25, 27, 30] in which the step was chosen to

minimize
s∈IRn

1

2
‖F (xk) + J(xk)s‖

2 +
1

2
σk‖s‖

2

for some regularisation parameter σk > 0. This trust-region approach has been extended

to the large-scale case by Lukšan [26]. More recently, Nesterov [31] suggested that choosing

the step to

minimize
s∈IRn

‖F (xk) + J(xk)s‖ +
1

2
σk‖s‖

2

leads to a good worst-case iteration complexity bound in some cases, while there are reasons

to believe [5, 32] that similar results are possible for steps chosen to approximately

minimize
s∈IRn

1

2
‖F (xk) + J(xk)s‖

2 +
1

3
σk‖s‖

3.

As a second example, in a number of current iterative methods for constrained opti-

mization [1, 16, 24, 35], a so-called normal step s is computed to try to improve constraint

infeasibility by approximately solving the subproblem

minimize
s∈IRn

‖J(xk)s+ c(xk)‖ subject to ‖s‖ ≤ ∆k.

Here J(xk)s+ c(xk) is a linearization of the nonlinear constraints c(x) = 0 about x = xk,

and the trust-region constraint ‖s‖ ≤ ∆k for a given radius ∆k > 0 is imposed to limit the

size of the step [7, §15.4]. Such algorithms often compute Lagrange multiplier estimates y

from the subproblem

minimize
y∈IRm

‖JT (xk)y − g(xk)‖ subject to ‖y‖ ≤ ηk,

where g(x) is the gradient of the objective function and where ηk is chosen to preclude

large multiplier estimates. Developing methods [17] replace the trust-region constraints in

these subproblems by adding appropriate regularisation as above.
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1.2 The problem.

In this paper, we consider the generic linear least-squares trust-region problem

minimize
x∈IRn

‖Ax− b‖ subject to ‖x‖ ≤ ∆ (1.2)

for given ∆ > 0, the regularised linear least-squares problem

minimize
x∈IRn

1

2
‖Ax− b‖2 +

σ

p
‖x‖p (1.3)

and the regularised linear least `2-norm problem

minimize
x∈IRn

‖Ax− b‖ +
σ

p
‖x‖p (1.4)

for given σ > 0 and p ≥ 2; we shall be especially interested in methods appropriate when

n is large. As the two example in Section 1.1 indicate, we shall make no assumption

concerning the size of m relative to n, and thus whether the un-regularised problem is

under-, well- or over-determined.

1.3 Organisation.

The paper is organised as follows. In Sections 2–4 we propose iterative methods for find-

ing approximate solutions to problems (1.2)–(1.4) respectively. Some details of software

implementations of these ideas is reported in Section 5. We make further comments and

draw conclusions in Section 6.

2 Solving the least-squares trust-region problem.

We first consider the trust-region problem (1.2). There is a long history of work on this

topic [6, 11, 13, 37, 38, 40, 41] which we will review as we proceed.

2.1 Solution characteristics.

It is straightforward to derive [11, 40] usable optimality conditions for (1.2). Specifically,

let λ ≥ 0 and define x(λ) so that

(ATA+ λI)x(λ) = AT b (2.1)

or equivalently that x(λ) solves the weighted least-squares problem (1.1). Then so long as

‖x(0)‖ ≤ ∆, x(0) is the desired solution to (1.2). Otherwise the solution is x(λ∗), where

λ∗ is the positive root of the so-called “secular” equation

‖x(λ)‖ − ∆ = 0. (2.2)
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If it is feasible to factorize ATA+λI (either explicitly using Cholesky or possibly-truncated

SVD or implicitly by bi-diagonalising A, see e.g., [9]), a simple univariate root finding

method may be used to determine the appropriate root of (2.2)—this might require the

derivative of π(λ) = ‖x(λ)‖, but it is easy to show that

π′(λ) =
xT (λ)x′(λ)

‖x(λ)‖
, where (ATA+ λI)x′(λ) = −x(λ). (2.3)

We give general details in Section 2.3.3. Our interest, however, is in the case for which a

factorization of ATA + λI is either impossible, through lack of memory, or too expensive

to contemplate—applications such as three-dimensional PDE-constrained optimization [2]

and those for which A has a significant number of non-sparse rows spring to mind. We

resort in this case to iterative methods. We note that although we describe an approach

using LSQR, there is at least one alternative based on a parametric eigenvalue formulation

[40, 41].

2.2 The unconstrained problem and LSQR.

We now describe how we aim to solve (1.2). The basis of what we shall use is the LSQR

method of Paige and Saunders [37, 38]. LSQR is designed to minimize the function

f(x) = 1

2
‖Ax− b‖2

or its regularisation

fλ(x) = 1

2
‖Ax− b‖2 + 1

2
λ‖x‖2

for some given λ > 0. It is to be preferred in practice to the theoretically-equivalent

conjugate-gradient method in many cases since numerical properties are better for the

former [38] and more accurately reflect the conditioning of the problem [3, Thm.1.4.6

et.seq.].

We follow in the most part the notation in [38], and for completeness fill in some of the

details of the slightly more terse aspects of Paige and Saunders’ description.

2.2.1 Lower bi-diagonalisation of A.

The iterative bi-diagonalisation algorithm due to Golub and Kahan [12] is a core component

of LSQR. A sequence of unit vectors {uk ∈ IRm} and {vk ∈ IRn} are constructed as follows:

Initialization: β1u1 = b and α1v1 = ATu1

Iteration: βk+1uk+1 = Avk − αkuk and αk+1vk+1 = ATuk+1 − βk+1vk for k ≥ 1.
(2.4)

This leads directly to the relationships

AVk = Uk+1Bk and b = β1Uk+1e1, (2.5)
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where β1 = ||b||, ei denotes the ith column of the identity matrix, Uk = (u1 u2 . . . uk),

UT
k Uk = I, Vk = (v1 v2 . . . vk), V

T
k Vk = I and

Bk =





















α1

β2 α2

. . .
. . .

βk αk

βk+1





















≡

(

Bk−1 αkek

0 βk+1

)

(2.6)

is (k + 1) by k and lower bi-diagonal. A further useful property is that

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1. (2.7)

2.2.2 Reduction to upper bi-diagonal form.

To approximately minimize f(x), we find the sequence of minimizers of f(Vky) in the

expanding subspace x = Vky, k = 1, 2, . . . Thus we pick xk = Vkyk, where

yk = arg min
y∈IRk

‖Bky − β1e1‖; (2.8)

formally yk satisfies the normal equations

BT
k Bkyk = β1B

T
k e1. (2.9)

To find yk, Bk is reduced to upper triangular form by pre-multiplying it by a product of

plane rotations Qk = Qk,k+1 · · ·Q1,2, where the plane rotation Qj,j+1 operates solely on

rows j and j + 1 to eliminate the sub-diagonal entry in row j. This leads to

Qk(Bk β1e1) =

(

Rk fk

φ̄k+1

)

, (2.10)

where

Rk =















ρ1 θ2
. . .

. . .

ρk−1 θk

ρk















≡

(

Rk−1 θkek−1

0 ρk

)

(2.11)

is k by k and upper bi-diagonal and

fk =

(

fk−1

φk

)

∈ IRk. (2.12)

To be specific, the nature of Qk, (2.6) and (2.10) imply that
(

Qk−1 0

0 1

)

(Bk β1e1) =

(

Qk−1Bk−1 Qk−1,kαkek Qk−1,kβ1e1
0 βk+1 0

)

=









Rk−1 θkek−1 fk−1

0 ρ̄k φ̄k

0 βk+1 0









.



6 C. Cartis, N. I. M. Gould and Ph. L. Toint

Thus if the plane rotation Qk,k+1 has non-trivial elements ck and sk, we have

(

ck sk

−sk ck

)(

ρ̄k φ̄k

βk+1 0

)

=

(

ρk φk

0 φ̄k+1

)

;

to prepare for the next step we also need Qk,k+1αk+1ek+1 for which the non-zero components

are
(

ck sk

−sk ck

)(

0

αk+1

)

=

(

θk+1

ρ̄k+1

)

.

Initial values ρ̄1 = α1 and φ̄1 = β1 are needed.

2.2.3 Solution of the problem in the subspace Vky.

It follows from (2.10) and QT
kQk = I that the required solution to (2.8) satisfies

Rkyk = fk (2.13)

and thus xk = VkR
−1
k fk = Dkfk, where

VkR
−1
k = Dk = (d1 d2 . . . dk) (2.14)

Hence

xk = Dk−1fk−1 + dkφk = xk−1 + φkdk

with x0 = 0. Fortunately the precise (upper-bi-diagonal) form of Rk in (2.11) along with

(2.14) imply that

(Vk−1 vk) = Vk = (Dk−1 dk)

(

Rk−1 θkek−1

0 ρk

)

= (Dk−1Rk−1 θkDk−1ek−1 + ρkdk)

= (Dk−1Rk−1 θkdk−1 + ρkdk)

and hence

dk = (vk − θkdk−1)/ρk,

enabling us to recur dk from dk−1 and vk starting from d0 = 0. A small saving can be made

by using ρk from (2.11) and defining wk = ρkdk in which case

xk = xk−1 + (φk/ρk)wk and

wk+1 = vk+1 − (θk+1/ρk)wk

(2.15)

with w1 = v1.

2.2.4 Norms of required terms.

It is important to monitor ∇xf(xk) = AT (Axk − b) to decide when to stop the iteration.

Fortunately, it follows directly from (2.5) and (2.7) that

∇xf(xk) = ATUk+1(Bkyk − β1e1) = V T
k B

T
k (Bkyk − β1e1) + αk+1vk+1e

T
k+1(Bkyk − β1e1);

(2.16)
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the first term vanishes because of the normal equations (2.9), and thus

∇xf(xk) = αk+1vk+1e
T
k+1(Bkyk − β1e1). (2.17)

But (2.10), (2.13) and the precise form of Qk together show that

eT
k+1(Bkyk − β1e1) = eT

k+1Q
T
kQk(Bkyk − β1e1) = φ̄k+1e

T
k+1Q

T
k ek+1 = φ̄k+1ck,

and hence from (2.17) that

‖∇xf(xk)‖ = φ̄k+1αk+1|ck|

using known quantities [38, $5.1]. Thus ‖∇xf(xk)‖ is available without the expense of

computing ∇xf(xk). It is also useful to monitor ‖Axk − b‖ and again [38, $5.1] this is

readily available since (2.5) and (2.10) give

Axk − b = AVkyk − b = Uk+1(Bkyk − β1e1) = Uk+1Q
T
k

(

Rkyk − fk

−φ̄k+1

)

= −φ̄k+1Uk+1Q
T
k ek+1

(2.18)

and hence

‖Axk − b‖ = φ̄k+1.

In what will follow, it is also vital to monitor ‖xk‖. This is not immediately available,

but may be found with a modest amount of extra work [38, $5.2]. To be specific, since Rk

is upper bi-diagonal, it may be reduced to lower bi-diagonal form by post-multiplying by

a product of plane rotations Wk = W1,2 · · ·Wk−1,k. This produces

RkWk = L̄k =





















λ1

γ2 λ2

. . .
. . .

γk−1 λk−1

γk λ̄k





















≡

(

Lk−1

γke
T
k−1 λ̄k

)

(2.19)

which is k by k lower bi-diagonal. Note that the leading (k− 1) by (k− 1) sub-block Lk−1

of L̄k is not altered in subsequent iterations, but that the trailing diagonal entry λ̄k of L̄k

will become λk on iteration k + 1.

Now let zk and z̄k satisfy Lkzk = fk and L̄kz̄k = fk respectively. Since Lk and L̄k share

the leading k by (k − 1) sub-block,

zk ≡

(

zk−1

ζk

)

and z̄k ≡

(

zk−1

ζ̄k

)

, where ζ̄k =
λk

λ̄k

ζk. (2.20)

In this case

xk = VkR
−1
k fk = VkWkL̄

−1
k fk = VkWkz̄k

and thus

‖xk‖ = ‖z̄k‖
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since Wk is orthogonal and V T
k Vk = I. But (2.12)–(2.20) give that

L̄kz̄k =

(

Lk−1

γke
T
k−1 λ̄k

)(

zk−1

ζ̄k

)

=

(

fk−1

φk

)

= fk,

in which case

ζ̄k = (φk − γkζk−1)/λ̄k. (2.21)

Thus

‖xk‖
2 = ‖z̄k‖

2 = ‖zk−1‖
2 + ζ̄2

k and ‖zk‖
2 = ‖zk−1‖

2 + ζ2
k

may be recurred as the iteration proceeds in terms of ζ̄k from (2.21) which needs ζk−1 =

ζ̄k−1λ̄k−1/λk−1 from (2.20). Moreover the decomposition (2.19) may be calculated step by

step. For, given L̄k−1,

(

Rk−1 θkek−1

ρk

)(

Wk−1 0

0 1

)

=

(

L̄k−1 θkek−1

ρk

)

=









Lk−2

γk−1e
T
k−2 λ̄k−1 θk

ρk









.

Thus if the plane rotation Wk−1,k operating on columns k−1 and k has non-trivial elements

cwk−1 and sw
k−1, we have

(

λ̄k−1 θk

0 ρk

)(

cwk−1 −sw
k−1

sw
k−1 cwk−1

)

=

(

λk−1 0

γk λ̄k

)

,

which gives λk−1, γk, λ̄k and hence L̄k, The initial value λ̄1 = ρ1 is needed.

2.3 Adding a trust region.

It is well known [38, $7] that the iterates generated by LSQR are mathematically equivalent

to those generated by applying the conjugate gradient method to minimize f(x). Moreover

the columns of the matrix Vk span precisely the Krylov space {(ATA)iAT b}k−1
i=1 . This has

the important consequence [42] that the norms ‖xk‖, k = 0, 1, 2, . . . are monotonically

increasing (see also [26]). Thus if we apply LSQR to the problem (1.2) and we find

‖xk−1‖ ≤ ∆ < ‖xk‖, (2.22)

immediately we may deduce that the solution to (1.2) lies on the boundary of the trust

region.

2.3.1 The Steihaug-Toint point.

The Steihaug-Toint [42, 43] proposal is to generate iterates using the CG method—in

our case, using LSQR—until an iterate for which (2.22) occurs, and then to replace xk

by the so-called Steihaug-Toint point xST

k = xk−1 + σwk, where σ is determined so that
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‖xk−1 + σwk‖ = ∆. This may be achieved by finding σ as the larger root of the quadratic

equation

‖xk−1‖
2 − ∆2 + 2xT

k−1wkσ + ‖wk‖
2 = 0. (2.23)

Such a Steihaug-Toint approach was first proposed in the least-squares context, using

LSQR, by Lukšan [26]. While the required coefficients in (2.23) may be found directly

as inner products, savings may be made by noting that ‖xk−1‖ is already being recurred.

Furthermore (2.15) implies that

‖wk+1‖
2 = ‖vk+1‖

2 − (θk+1/ρk)v
T
k+1wk + (θk+1/ρk)

2‖wk‖
2

= 1 + (θk+1/ρk)
2‖wk‖

2 (2.24)

since vk is a unit vector and vT
k+1wk = ρkv

T
k+1dk = ρkv

T
k+1VkR

−1
k ek = 0 because vk+1 is

orthogonal to Vk, and thus ‖wk‖ may also be cheaply recurred. Finally, since ‖xk+1‖ has

been computed (and found to be too large), it follows immediately from (2.15) that

2xT
k−1wk =

‖xk‖
2 − ‖xk−1‖

2 − (φk/ρk)
2‖wk‖

2

(φk/ρk)

using available data.

Given σ, it is also useful to know ‖AxST

k − b‖ without computing xST

k . It follows from

(2.5), (2.10) and (2.14) that

Awk = ρkAdk = ρkAVkR
−1
k ek = ρkUk+1BkR

−1
k ek = ρkUk+1Q

T
k

(

I

0

)

ek

= ρkUk+1Q
T
k ek.

(2.25)

But since

QT
k ek =

(

QT
k−1 0

0 1

)

QT
k,k+1ek =

(

QT
k−1 0

0 1

)(

ckek

sk

)

=

(

ckQ
T
k−1ek

sk

)

,

it immediately follows from (2.25) that

Awk = ρkckUkQ
T
k−1ek + ρkskuk+1

and thus from (2.18)

A(xk−1 + σwk) − b = (σρkck − φ̄k)UkQ
T
k−1ek + σρkskuk+1

As uk+1 and Uk are orthogonal, we then have the relationship

‖AxST

k − b‖2 = ‖A(xk−1 + σwk) − b‖2 = (σρkck − φ̄k)
2 + (σρksk)

2

in terms of known (scalar) quantities.

There is an important result [44] concerning the application of the conjugate gradient

method to minimize a strictly convex quadratic function within a spherical trust region,

which has subsequently been extended [7, Thm.7.5.9] to cover the convex case as is needed
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here. The result is that if xST is the Steihaug-Toint point and x∗ is the solution of (1.2)

then

‖b‖2 − ‖Ax∗ − b‖2 ≤ 2(‖b‖2 − ‖AxST − b‖2),

that is that the optimal decrease will be no more than twice that achieved at the Steihaug-

Toint point. Thus it may become apparent at xST whether it is impossible to reduce

‖Ax− b‖ to zero within the trust region since

‖Ax∗ − b‖2 ≥ 2‖AxST − b‖2 − ‖b‖2,

which will be nonzero whenever ‖AxST−b‖ > 1
√

2
‖b‖. In view of this result, it is questionable

whether it is really beneficial to try to improve upon the Steihaug-Toint point, but for

completeness and for what follows in Section 3 and 4 we now show how this may be

achieved.

2.3.2 Beyond the Steihaug-Toint point.

Once it is known that the solution lies on the trust-region boundary, problem (1.2) is

equivalent to

minimize
x∈IRn

‖Ax− b‖ subject to ‖x‖ = ∆. (2.26)

More particularly, from (2.8), the problem in the subspace x = Vky becomes

minimize
y∈IRk

‖Bky − β1e1‖ subject to ‖y‖ = ∆

or equivalently

minimize
y∈IRk

1

2
‖Bky − β1e1‖

2 subject to 1

2
‖y‖2 = 1

2
∆2 (2.27)

since ‖Vky‖ = ‖y‖ as Vk has orthogonal columns.

Necessary and sufficient conditions for yk to solve (2.27) are that

BT
k (Bkyk − β1e1) + λkyk = 0 and ‖yk‖ = ∆ (2.28)

for some Lagrange multiplier λk ≥ 0. A more useful interpretation is that given λ = λk,

one could find yk = yk(λ) from the equation

[BT
k Bk + λI]yk(λ) − β1B

T
k e1 = 0, (2.29)

and the required λ satisfies the scalar secular equation

‖yk(λ)‖ − ∆ = 0. (2.30)

Vitally, (2.29) are the stationarity conditions for the convex function

1

2
‖Bky − β1e1‖

2 + 1

2
λ‖y‖2,
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and as we observed in Section 1.1 we can thus find yk(λ) as the solution to the weighted

linear least-squares problem

minimize
y∈IRk

1

2

∥

∥

∥

∥

∥

(

Bk

λ
1

2 I

)

y −

(

βe1
0

)∥

∥

∥

∥

∥

. (2.31)

Thus we seek the positive root of the secular equation (2.29) where y(λ) is defined implicitly

as the solution of (2.31).

To solve (2.31), we simply use the method proposed by Paige and Saunders [37], but

recognise that a new factorization will be required every time λ changes. To fill in the

details, we proceed just as in (2.10) by reducing

(

Bk

λ
1

2 I

)

to upper bi-diagonal form using plane rotations. In particular, we apply the product1 of

plane rotations Q2k(λ) = Qk,k+1(λ)Qk,2k+1(λ) · · ·Q2,3(λ)Q2,k+3(λ)Q1,2(λ)Q1,k+2(λ) to form

Q2k(λ)

(

Bk β1e1
λ

1

2 I 0

)

=









Rk(λ) fk(λ)

φ̄k+1(λ)

pk(λ)









, (2.32)

where pk(λ) ∈ IRk. Once the upper bi-diagonal Rk(λ) is known, the required solution yk(λ)

to (2.31) may simply be recovered by back-substitution from

Rk(λ)yk(λ) = fk(λ). (2.33)

Note that (2.32) shows that

BT
k Bk + λI = RT

k (λ)Rk(λ) (2.34)

since Q2k(λ) is orthogonal.

The seeds of this idea of expanding subspace minimization was first proposed, in the

more general context of minimizing quadratic functions within spherical trust regions, by

Gould, Lucidi, Roma and Toint [14], and forms the basis of the GLTR package within the

GALAHAD optimization library [15]. In the least-squares case, Golub and von Matt [13]

considered similar ideas for equality-constrained problems.

2.3.3 The secular equation and its solution.

We now consider the secular equation (2.29)–(2.30) in a more general context. Namely, we

aim to find the positive root, λ∗, of the secular equation

φ(λ)
def
= ‖y(λ)‖ − ∆ = 0, (2.35)

1As Paige and Saunders note, the rotations may be applied in other orders, but their experience suggests

this order gives marginally more accurate results.
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where y(λ) satisfies

[BTB + λI]y(λ) − BTg = 0, (2.36)

for a given (rectangular) matrix B, vector g and scalar ∆ > 0. We shall suppose that, as

was the case in the previous section, (2.35)–(2.36) has a positive root—this need not be

the case if ∆ is too large. We shall also presume, as was the case in (2.34), that

H(λ)
def
= BTB + λI = RT (λ)R(λ) (2.37)

for some upper-triangular (for (2.34), upper bi-diagonal) matrix R(λ).

To find the required root it is vital to understand how ‖y(λ)‖ behaves. To this end,

here and later we shall use the following general result.

Lemma 2.1. Given scalars β, ai and bi, i = 1, . . . , p, with bi > 0 and ‖a‖ 6= 0, let

χ(λ)
def
=

√

√

√

√

p
∑

i=1

(

ai

bi + λ

)2

and

ψ(λ)
def
= [χ(λ)]β.

Then ψ(λ) is a strictly decreasing and strictly convex on [0,∞) when β > 0, and

strictly increasing and concave on [0,∞) when β ∈ [−1, 0).

Proof. Differentiation gives

ψ′(λ) = β[χ(λ)]β−1χ′(λ) and ψ′′(λ) = β[χ(λ)]β−2
[

χ(λ)χ′′(λ) + (β − 1)[χ′(λ)]2
]

,

and since

[χ(λ)]2 =
p
∑

i=1

(

ai

bi + λ

)2

it follows that

χ(λ)χ′(λ) = −
p
∑

i=1

a2
i

(bi + λ)3
and [χ′(λ)]2 + χ(λ)χ′′(λ) = 3

p
∑

i=1

a2
i

(bi + λ)4
.

Hence ψ′(λ) has the opposite sign to β. Moreover, direct substitution and the Cauchy-
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Schwarz inequality gives

χ(λ)χ′′(λ)+ (β − 1)[χ′(λ)]2

=

3

(

p
∑

i=1

a2
i

(bi + λ)4

)(

p
∑

i=1

a2
i

(bi + λ)2

)

+ (β − 2)

(

p
∑

i=1

a2
i

(bi + λ)3

)2

p
∑

i=1

a2
i

(bi + λ)2

≥ (β + 1)

(

p
∑

i=1

a2
i

(bi + λ)3

)2

p
∑

i=1

a2
i

(bi + λ)2

.

Thus if β > 0, ψ′′(λ) > 0, while if β ∈ [−1, 0], ψ′′(λ) ≤ 0 as required. 2

Lemma 2.2. Let

π(λ)
def
= ‖y(λ)‖ ≡

[

yT (λ)y(λ)
]

1

2 , (2.38)

where y(λ) satisfies (2.36). Then π(λ) is strictly convex on [0,∞) and decays mono-

tonically to zero as λ increases from zero.

Proof. Briefly, suppose that B has the singular-value decomposition B = PSY ,

involving appropriately-dimensioned orthogonal matrices P and Y as well as the rect-

angular S, whose only nonzero entries are the “diagonals” Sii ≡ σi > 0, i = 1, . . . , p.

Then (STS + λI)Y y(λ) = STP Tg, and hence

[π(λ)]2 ≡ ‖y(λ)‖2 ≡ ‖Y y(λ)‖2 =
p
∑

i=1

σ2
i r

2
i

(σ2
i + λ)2

, (2.39)

where r = P Tg. Here p is no larger than the smaller of the row and column dimensions

of B. Thus the result follows directly from Lemma 2.1 for the case when χ(λ) = π(λ)

and β = 1. 2

This has an immediate vital consequence.

Theorem 2.3. Newton’s method applied to (2.35) will converge monotonically, glob-

ally Q-linearly and ultimately Q-superlinearly to the positive root λ∗ of (2.35) for

any initial estimate λ0 ∈ (0, λ∗]. The same is true for the secant method for initial

estimates 0 ≤ λ0 < λ1 ≤ λ∗.
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Proof. This follows directly from Lemma 2.2 because of the known convergence prop-

erties of Newton-like methods applied to univariate convex functions. See Lemma A.1

for details. 2

We return to this, albeit in more generality, shortly. We comment that although in

many cases λ0 = 0 might also be permitted, we avoid this here and hereafter since, at least

in the under-determined case, the derivatives of π(λ) at 0 may be infinite.

In practice, instead of seeking the positive root of (2.35), one might equally seek the

same root of

ψ(λ)
def
= Ψ(‖y(λ)‖) − Ψ(∆) = 0 (2.40)

for some “suitable” differentiable function Ψ; the choice Ψ(t) = 1/t has strong advantages

since this removes the poles present in (2.36) and produces a virtually linear function

within a large neighbourhood of the required root [6, 21, 39].

In the special case in which

Ψ(t) = tα (2.41)

for a given scalar α, we may generalise Lemma 2.2.

Lemma 2.4. For given real α, let

ψ(λ;α)
def
= [π(λ)]α,

where π(λ) satisfies (2.38), and suppose that λ ≥ 0. Then ψ(λ;α) is strictly convex

and decreasing for all α > 0 and concave and increasing for all α ∈ [−1, 0).

Proof. The result follows directly from (2.39) and Lemma 2.1 with χ(λ) = π(λ). 2

The situation when α < −1 is less clear, although the identity

ψ′′(λ;α) = α[π(λ)]α−4
(

3‖y(λ)‖2‖y′(λ)‖2 − (2 − α)[yT (λ)y′(λ)]2
)

(2.42)

may be rewritten as

ψ′′(λ;α) = α[π(λ)]α−2‖y′(λ)‖2

(

3 − (2 − α)
y′T (λ)H(λ)y′(λ)

‖y′(λ)‖2

yT (λ)H−1(λ)y(λ)

‖y(λ)‖2

)

.

It is then straightforward to deduce that ψ(λ;α) is convex if α < 2 − 3/κ(H(λ)), where

κ(H(λ)) is the spectral condition number (λ + σ2
max)/(λ + σ2

min). In particular, if α <

αc
def
= 2 − 3σ2

max/σ
2
min, ψ(λ;α) is convex for all λ ≥ 0. For α ∈ (αc,−1), ψ(λ;α) may not

be unimodal for all λ ≥ 0, but appears often to be so over an (unfortunately unknown)

interval surrounding the required root.

As before, this has immediate consequences.
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Theorem 2.5. Newton’s method applied to (2.40) in the case Ψ(t) = tα for any

nonzero α ≥ −1 will converge monotonically, globally Q-linearly and ultimately Q-

superlinearly to to its positive root λ∗ of (2.35) for any initial estimate λ0 ∈ (0, λ∗].

The same is true for the secant method for initial estimates 0 ≤ λ0 < λ1 ≤ λ∗.

Proof. This again follows directly from Lemma 2.4 because of the known conver-

gence properties of Newton-like methods applied to univariate convex function. See

Lemma A.1 for details. 2

While one might apply the secant method to solve (2.40) without needing derivatives [6],

most effective methods require at least first derivatives. Presuming that Ψ(α) and its

derivatives are known analytically, the only remaining obstacle is then the need to find

the derivative of π(λ). As in the proof of Lemma 2.4, direct differentiation of (2.38)

immediately gives

π′(λ) =
yT (λ)y′(λ)

‖y(λ)‖
,

while that of (2.29) yields

H(λ)y′(λ) + y(λ) = 0.

Thus, using (2.34),

yT (λ)y′(λ) = −y(λ)TH−1(λ)y(λ) = −hT (λ)h(λ),

and hence

π′(λ) = −
‖h(λ)‖2

‖y(λ)‖
, where RT (λ)h(λ) = y(λ).

So the first derivative of π(λ) is available by forward substitution from y(λ) using the

lower triangular—for (2.34), lower bi-diagonal—matrix RT (λ). If higher-order derivatives

are required, they may be computed successively, each at the cost of a further forward or

back substitution [9].

We thus conclude that given λ0 in [0, λ∗), the Newton iterates for (2.40) are generated

as

λj+1 = λj +
‖y(λj)‖

‖h(λj)‖2

[Ψ(‖y(λj)‖) − Ψ(∆)]

Ψ′(‖y(λj)‖)
for j ≥ 0 (2.43)

and when Ψ(t) = tα for α ≥ −1 the iterates converge to λ∗; any starting value λ0 > 0

for which [Ψ(‖y(λ0)‖) − Ψ(‖∆‖)]/Ψ′(‖y(λ0)‖) > 0 is allowed, and the simple expedient of

choosing λ0 to be a tiny positive number almost always suffices. We note that it is possible

to compute better starting values [6,13], but since the above Newton iteration has proved

to be so effective in practice, we have not done so.

Since (2.43) with Ψ(t) = tα converges monotonically to λ∗ from the left for all α ≥ −1,

this leads to the interesting opportunity to choose α at each iteration to give the best
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possible next iterate. Specifically, the Newton correction for a particular α is

∆λj(α) =
‖y(λj)‖

2

‖h(λj)‖2

(

1 − µα
j

)

α
, where µj =

∆

‖y(λj)‖
≤ 1.

But

ξ(α)
def
=

1 − µα

α

decreases monotonically on IR, since

ξ′(α) =
eα lnµ

α2
[1 − α lnµ− e−α ln µ] ≤ 0

which follows because 1− t ≤ e−t for all t, and thus ξ(α) attains its maximum in the region

of interest when α = −1. Thus, there are good theoretical grounds to support the popular

transformation Ψ(t) = 1/t. In our experience it is rare to require more than five Newton

steps to attain full working accuracy, and frequently one or two iterations are enough.

We note in passing that an alternative way of transforming the original secular equation

(2.35) into one which may be more easily solved, using a nonlinear transformation of the

independent variable, has been proposed by Melman [28]. We have not explored this

possibility here.

2.3.4 Recovering the solution.

Once the boundary has been attained, we stop the iteration as soon as AT (Axk − b)+λkxk

is sufficiently small. Since (2.16) gives that

AT (Axk − b) + λkxk = V T
k [BT

k Bkyk + λkyk − β1B
T
k e1] + αk+1vk+1e

T
k+1(Bkyk − β1e1)

and as (2.28) implies that the first term vanishes, we have

AT (Axk − b) + λkxk = αk+1vk+1e
T
k+1Bkyk = αk+1vk+1βk+1e

T
k yk.

Hence

‖AT (Axk − b) + λkxk‖ = |αk+1vk+1βk+1e
T
k yk|

may be computed trivially from available data.

As soon as the required y` is known, the estimate x` = V`y` may be recovered by

regenerating the vectors vk, 1 ≤ l ≤ ` as needed, or by recovering them from memory or

backing store. We have found it advantageous to store a small number t (say t = 10) of the

first vk, 1 ≤ k ≤ t along with ut to avoid the expense of regenerating these early vectors,

and to start the second pass iteration to determine x` from k = t if necessary. We also

take the precaution of recording all previous residuals ‖Axk − b‖, and picking ` to give a

specified fraction of the best reduction found in the first pass. To do this requires that we
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know ‖Axk − b‖. Fortunately, again this is easy to compute from available data. For it

follows from (2.32) and (2.33) that

‖Axk − b‖2 + λk∆
2 = ‖Bkyk − β1e1‖

2 + λk‖yk‖
2

= ‖Rk(λk)yk − fk(λk)‖
2 + φ̄2

k+1(λk) + ‖pk(λk)‖
2

= φ̄2
k+1(λk) + ‖pk(λk)‖

2

,

and thus

‖Axk − b‖ =
√

φ̄2
k+1(λk) + ‖pk(λk)‖2 − λk∆2.

3 Solving the regularised least-squares problem.

We next turn to our second, regularised linear least-squares problem (1.3).

3.1 Solution characteristics.

As in Section 2.1, computationally viable optimality conditions are available. Indeed, the

required solution is given by x(λ∗) satisfying (2.1), where λ∗ is the positive root of a

different secular equation

σ‖x(λ)‖p−2 − λ = 0. (3.1)

Again, if it is feasible to factorize ATA + λI, a simple univariate root finding method—

perhaps using the derivative (2.3) of ‖x(λ)‖—may be used to determine the appropriate

root of (3.1), while otherwise we must resort to iteration.

3.2 Iterative solution.

As before, we shall seek an approximate solution in a sequence of expanding subspaces,

and once again we shall use the Golub–Kahan bi-diagonalisation algorithm as our core

ingredient. Thus we seek the solution to (1.3) when x = Vky, where Vk satisfies (2.5). This

solution is thus xk = Vkyk, where

yk = arg min
y∈IRk

1

2
‖Bky − β1e1‖

2 +
σ

p
‖y‖p. (3.2)

Thus

BT
k (Bkyk − β1e1) + σ‖yk‖

p−2yk = 0

or alternatively

BT
k (Bkyk − β1e1) + λkyk = 0 where λk = σ‖yk‖

p−2.

Hence we must find the (positive) root λ = λk of the secular equation

σ‖yk(λ)‖p−2 − λ = 0, (3.3)



18 C. Cartis, N. I. M. Gould and Ph. L. Toint

where just as in (2.30)

[BT
k Bk + λI]yk(λ) − β1B

T
k e1 = 0. (3.4)

We may solve (3.4) exactly as we did in Section 2.3.2, and thus it remains to consider the

secular equation (3.3). For p = 2, this is just the problem considered in detail by Paige

and Saunders [37]; in this case λk = σ throughout and the solution can be obtained in a

single pass. Thus, in what follows, we shall assume that p > 2.

3.3 The secular equation and its solution.

Once again, rather than considering (3.3)–(3.4), we prefer the generic case of finding the

positive root of

φσ(λ)
def
= σ‖y(λ)‖p−2 − λ = 0, (3.5)

where y(λ) satisfies (2.36). But as before, there are advantages in seeking instead the same

root of

ψσ(λ)
def
= Ψ(σ‖y(λ)‖p−2) − Ψ(λ) = 0. (3.6)

for some “suitable” differentiable function Ψ. The choices Ψσ(t) = (t/σ)β for some real β,

yielding the secular equation

‖y(λ)‖β(p−2) − (λ/σ)β = 0 (3.7)

(particularly with β = −1), or Ψσ(t, λ) = (λσ/t)β, yielding the secular equation

λβ

‖y(λ)‖β(p−2)
− σβ = 0, (3.8)

have both been proposed for the special case p = 3 [5].

For the secular equation (3.7), we have the following result.

Lemma 3.1. For given real β and p > 2, let

θ(λ; β)
def
= ‖y(λ)‖β(p−2) − (λ/σ)β ,

where y(λ) satisfies (2.36), and suppose that λ ≥ 0. Then θ(λ; β) is strictly convex

and decreasing for all β ∈ (0, 1] and concave and increasing for all −1/(p−2) ≤ β < 0.

Proof. Since −λγ is strictly convex and decreasing when λ ≥ 0 for γ ∈ (0, 1], it follows

from Lemma 2.4 that the same is true for θ(λ; β) for β ∈ (0, 1]. Likewise, as −λγ is

strictly concave and increasing when λ ≥ 0 for γ < 0, Lemma 2.4 shows that the same

is true for θ(λ; β) for −1/(p− 2) ≤ β < 0. 2
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Thus, as in the trust-region case, appropriately initialized secant and Newton’s methods

applied to (3.7) possess powerful convergence properties.

Theorem 3.2. Newton’s method applied to (3.7) for nonzero β ∈ [−1/(p − 2), 1]

will converge monotonically, globally Q-linearly and ultimately Q-superlinearly to its

positive root λ∗ of (3.5) for any initial estimate λ0 ∈ (0, λ∗]. The same is true for the

secant method for initial estimates 0 ≤ λ0 < λ1 ≤ λ∗.

Proof. As before, this follows directly from Lemma 3.1 because of the known con-

vergence properties of Newton-like methods applied to univariate convex function. See

Lemma A.1 for details. 2

By contrast, it is easy to find examples for which the curvature for the function in (3.8)

changes sign, and thus we are unable to conclude in general that Newton-like methods for

this secular equation will converge globally in [0, λ∗].

The Newton iterates for (3.7) satisfy

λj+1 = λj +
‖y(λj)‖

β(p−2) − (λj/σ)β

β
[

(p− 2)‖y(λj)‖β(p−2)−2‖h(λj)‖2 + λβ−1
j /σβ

]

and thus for given β, the Newton correction is

∆λj(β) =
‖y(λj)‖

2

(p− 2)‖h(λj)‖2

(

1 − µβ
j

)

β(1 + τjµ
β
j )
,

where, if λ0 ∈ [0, λ∗] and β ∈ [−1/(p− 2), 1],

τj =
‖y(λj)‖

2

(p− 2)λj‖h(λj)‖2
and µj =

λj

σj‖y(λj)‖p−2
≤ 1.

This again gives us the opportunity to pick β to give the best (largest) Newton correction.

Unfortunately, unlike in the trust-region case, the correction may be multi-modal in the

region of interest, and thus the best step may have to be picked by iteration to maximize

ηj(β)
def
=

1 − µβ
j

β(1 + τjµ
β
j )

for the given data µj and τj.

When 2 < p ≤ 3, another acceleration is possible by choosing β = −1 in (3.6). This

gives

‖y(λ)‖2−p − σ/λ = 0. (3.9)

Rather than applying Newton’s method to (3.9), it then pays instead to linearize the term

ω(λ)
def
= ‖y(λ)‖2−p, while retaining the remaining term σ/λ, when computing a correction
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∆λC

j to the estimate λj of the required root of (3.9). The resulting correction thus satisfies

the equation

ω(λj) + ω′(λj)∆λ
C

j ≡
1

‖y(λj)‖p−2
+ (p− 2)

‖h(λj)‖
2

‖y(λj)‖p
∆λC

j =
σ

λj + ∆λC

j

, (3.10)

which may be rewritten as a quadratic equation for ∆λC

j .

Before we analyse the correction given by (3.10), we have the following general result.

Lemma 3.3. Let the interval I ⊆ IR+ ≡ [0,∞) and σ > 0. Suppose that φ : I → IR+

is concave, strictly increasing and continuously differentiable, and that θ(λ)
def
= φ(λ)−

σ/λ has a (unique) zero λ∗ ∈ I. Let λe ∈ I be such that θ(λe) < 0. Then both the

Newton iterate λe + ∆λN

e for the equation θ(λ) = 0 and the approximation λe + ∆λC

e ,

where ∆λC

e is the larger root of

φ(λe) + φ′(λe)∆λ
C

e =
σ

λe + ∆λC

e

, (3.11)

inherit these properties and (if repeated) converge monotonically towards λ∗. The

convergence is globally Q-linear with factor at least 1 − θ′(λ∗)/θ
′(λe) < 1 and is

ultimately Q-superlinear. Moreover λe + ∆λN

e ≤ λe + ∆λC

e ≤ λ∗.

Proof. Since −σ/λ is concave is strictly increasing and continuously differentiable on

I, the same is true of θ(λ) by assumption on φ. Thus it follows from Lemma A.1 that

the Newton iterates remain in [λe, λ∗] and convergence occurs as described.

Since φ(λe) is a concave function of λ, (3.9) and (3.10) give that

θ(λe + ∆λC

e ) = φ(λe + ∆λC

e ) −
σ

λe + ∆λC

e

≤ φ(λe) + φ′(λe)∆λ
C

e −
σ

λe + ∆λC

e

= 0.

The Newton correction satisfies the linearized equation

φ(λe) + φ′(λe)∆λ
N

e =
σ

λe

−
σ

λ2
e

∆λN

e . (3.12)

But, as σ/λ is a convex function of λ,

σ

λe + ∆λC

e

≥
σ

λe

−
σ

λ2
e

∆λC

e ,

and hence

φ(λe) + φ′(λe)∆λ
C

e ≥
σ

λe

−
σ

λ2
e

∆λC

e ,

from (3.11). Combining this with (3.12), we obtain

θ′(λe)(∆λ
C

e − ∆λN

e ) = (φ′(λe) +
σ

λ2
e

)(∆λC

e − ∆λN

e ) ≥ 0
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and hence ∆λC

e ≥ ∆λN

e > 0 since θ′(λe) > 0. Thus the alternative iterates improves on

the Newton one, and the remaining results follow immediately. 2

Applying Lemma 3.3 to the larger root of (3.10) then gives the following improvement

on Newton’s method.

Corollary 3.4. Suppose that 2 < p ≤ 3. Then the sequence {λj}, j ≥ 0, where

λj+1 = λj + ∆λC

j and ∆λC

j is the larger root of (3.10), will converge monotonically,

globally Q-linearly (with factor at least 1 − θ′(λ∗)/θ
′(λ0) < 1) and ultimately Q-

superlinearly to its positive root λ∗ of (3.5) for any initial estimate λ0 ∈ (0, λ∗].

Moreover, λj +∆λN

j ≤ λj+1 ≤ λ∗, where ∆λN

j is the Newton correction for the equation

θ(λ) = 0 at λ = λj.

Proof. The function ω in (3.10) satisfies the assumptions required by φ in Lemma 3.3

because of Lemma 2.4. The result then follows immediately from Lemma 3.3. 2

In practice, the improvements from using ∆λC

j from (3.10) rather than the Newton

correction are sometimes dramatic, particularly when λ is small since then linearization of

σ/λ gives a poor approximation. Similar accelerations, appropriate when the coefficients

σi and ri in (2.39) are known explicitly, are given by Bunch, Nielsen and Sorensen [23] and

Melman [28].

4 Solving the regularised least-`2-norm problem.

Our final topic is the solution of the regularised linear least `2-norm problem (1.4). We

note in passing that (1.4) is an exact penalty function [34, §15.1] for the problem of

minimizing ‖x‖ subject to Ax = b, and thus if the latter is compatible we will expect

these equations t be satisfied for all sufficiently small σ. By contrast (1.3) is the quadratic

penalty function [34, §15.1] for the same problem and thus there is no expectation that

Ax = b will be satisfied even if it is compatible.

4.1 Solution characteristics.

Let ν = ‖Ax− b‖. In this case (1.4) is equivalent to the differentiable constrained problem

minimize
x∈IRn, ν∈IR

ν +
σ

p
‖x‖p subject to

1

2
‖Ax− b‖2 =

1

2
ν2. (4.1)

First-order optimality conditions for (4.1) require that

(

σx‖x‖p−2

1

)

= µ

(

AT (Ax− b)

−ν

)

(4.2)
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for some Lagrange multiplier µ. Letting λ = σν‖x‖p−2, (4.2) implies that the required

solution is x(λ∗), where x(λ) is given by (2.1) and λ∗ satisfies yet another secular equation

‖Ax(λ) − b‖ −
λ

σ‖x(λ)‖p−2
= 0. (4.3)

Once again, if factorizing ATA + λI is feasible, a simple univariate root finding method

might be used to determine the appropriate root of (4.3)—this might require the derivatives

(2.3) of ‖x(λ)‖ and

ν ′(λ) =
(Ax(λ) − b)TAx′(λ)

ν(λ)
= −λ

xT (λ)x′(λ)

ν(λ)

of ν(λ) = ‖Ax(λ) − b‖—but otherwise we shall resort to an iterative method.

4.2 Iterative solution.

Unsurprisingly, we seek an approximate solution in a sequence of expanding subspaces

based on Golub–Kahan bi-diagonalisation. Thus we seek the solution to (1.4) when x =

Vky, where Vk satisfies (2.5). This solution is thus xk = Vkyk, where

yk = arg min
y∈IRk

1

2
‖Bky − β1e1‖ +

σ

p
‖y‖p. (4.4)

Thus, as in Section 3.2, we seek yk = yk(λk) where yk(λ) satisfies (3.4) and λk is the

positive root of the secular equation

‖Bkyk(λ) − β1e1‖ −
λ

σ‖yk(λ)‖p−2
= 0. (4.5)

It remains to examine the secular equation (4.5).

4.3 The secular equation and its solution.

Once again, rather than considering specifically (3.4) and (4.5), we investigate the generic

problem of finding the positive root of

ρ(λ)
def
= σ

‖By(λ) − g‖

λ
−

1

‖y(λ)‖p−2
= 0, (4.6)

where y(λ) satisfies (2.36); as we shall see, there is a good reason for dividing both sides

of the original equation by λ. But more generally, we may prefer

σβ

(

‖By(λ) − g‖

λ

)β

−
1

‖y(λ)‖β(p−2)
= 0 (4.7)

or
(

‖By(λ) − g‖

λ

)β

‖y(λ)‖β(p−2) −
1

σβ
= 0 (4.8)
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for some real β. To this end, we have the following result.

Lemma 4.1. Let

τ(λ)
def
=

‖By(λ) − g‖

λ

and suppose that λ ≥ 0. Then [τ(λ)])β is strictly convex and decreasing for all β > 0

and concave and non-increasing for all β ∈ [−1, 0).

Proof. Using the notation introduced in the proof of Lemma 2.2, we have that

By(λ) − g = P (S(STS + λI)−1ST r − r), and hence

[τ(λ)]2 =
‖By(λ) − g‖2

λ2
=

p
∑

i=1

r2
i

(σ2
i + λ)2

, (4.9)

The result then follows directly by applying Lemma 2.1 with χ(λ) = τ(λ). 2

Consider first the secular equation (4.7). If β > 0, the leading term is strictly convex and

decreasing (Lemma 4.1) while the second term is convex and decreasing for β ≤ 1/(p− 2)

(Lemma 2.4) and hence so is their sum. Similarly, if β < 0, the leading term is concave

and increasing for β ≥ −1 (Lemma 4.1) while the remaining term is strictly concave (just

concave if p = 2) and increasing (Lemma 2.4) as is the sum of the two terms. Thus we

have the following convergence result.

Theorem 4.2. Newton’s method applied to (4.7) for nonzero β ∈ [−1, 1/(p − 2)]

will converge monotonically, globally Q-linearly and ultimately Q-superlinearly to its

positive root λ∗ of (3.5) for any initial estimate λ0 ∈ (0, λ∗]. The same is true for the

secant method for initial estimates 0 ≤ λ0 < λ1 ≤ λ∗.

Proof. This follows directly from the above discussion since the function in (4.7) is

convex and decreasing (0 < β ≤ 1/(p − 2)) or concave and increasing (−1 < β < 0),

and because of the known convergence properties of Newton-like methods applied to

such functions. See Lemma A.1 for details. 2

While Theorem 4.2 appears encouraging, the convergence may initially be slow when

p > 2 since both ‖y(λ)‖ and τ(λ) may be large (and have large derivatives) when λ is

close to zero. This defect might in principal be avoided by considering secular equations

involving their reciprocals, such as (4.8) when β < 0. If β > 0, the leading term in (4.8) is

the product of two decreasing, convex, positive functions (Lemmas 2.4 and 4.1) and thus

decreasing, convex and positive [4, Exer.3.32]. Thus Newton-like methods for (4.8) will
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converge as above in this case. However, for negative β it is not clear when the leading

term

ξ(λ)
def
=

(

‖By(λ) − g‖

λ
‖y(λ)‖p−2

)β

(4.10)

in (4.8) will be concave; it is the product of increasing, concave terms when max(−1, 1/2−

p) ≤ β < 0 (Lemmas 2.4 and 4.1), but this is insufficient to ensure concavity. Plots of

(4.10) for various examples suggest that the term in question may be concave for sufficiently

small negative β, and indeed it can be shown that ξ(λ) is bounded below and above by

known concave functions 2 when β ∈ [− 1

2
, 0) and p ≤ 3.

In practice, we have found that Newton steps from (4.8) with β = −1/(p − 1) always

seem to outperform those for (4.7) with β in the range allowed by Theorem 4.2. We thus

use such steps by default, but with the safeguard that if ρ(λ) in (4.6) following the step

becomes negative, we revert to the Newton step for (4.7) with β = −1/(p − 2). To date

this safeguard has not been needed, and between two and six Newton steps appear to be

necessary to achieve full working accuracy.

The special case p = 2 is not affected by these deliberations since then (4.8) becomes

(

‖By(λ) − g‖

λ

)β

−
1

σβ
= 0, (4.11)

for which the leading term is concave and increasing for all β ∈ [−1, 0). Thus, for this case,

Newton-like methods for (4.11) will converge as in Theorem 4.2, and the choice β = −1

gives the best behaviour for the same reasons as those discussed at the end of Section 2.3.3.

5 Software.

The ideas developed in this paper have been implemented as three thread-safe Fortran 95

packages—respectively LSTR, LSRT and L2RT for problems (1.2)–(1.4)—as part of version

2.1 of the GALAHAD optimization library [15]. All use reverse communication to obtain

the matrix-vector products

u := u+ Av and v := v + ATu,

as required, and offer a variety of options. In particular, for the trust-region problem, the

user can decide whether to stop at the Steihaug-Toint point if encountered (§2.3.1), or to

2Specifically, given (2.39) and (4.9), it can be shown that if α ∈ (0, 1]

κ1[π(λ)]2 min(1, [π(λ)]2) ≤ ([π(λ)]ατ(λ))2 ≤ κ2[π(λ)]2 max(1, [π(λ)]2)

for some constants κ1 and κ2. In this case

κ
β
1
[min(π(λ)]β , [π(λ)]2β) ≤ ([π(λ)]ατ(λ))

β
≤ κ

β
2
[max(π(λ)]β , [π(λ)]2β)

for which the bounding functions are concave by Lemma 2.4 when β ∈ [− 1

2
, 0).
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continue around the trust-region boundary (§2.3.2). For all three problems, as we have

mentioned in Section 2.3.4, the second-phase may be accelerated if needed by storing the

first t (say) vectors vi, i = 1, . . . , t, along with ut as calculated in the first pass so that

the bi-diagonalisation (2.4) may be restarted at iteration k = t. Moreover (§2.3.4), as

the second pass may be an additional expense, a record is kept of the optimal objective

function values for each value of k, and the second pass is only performed so far as to

ensure a given fraction of the final optimal objective value. Large savings may be made in

the second pass by choosing the required fraction to be significantly smaller than one.

The software may also be used to solve weighted least-squares problems involving the

objective ‖W (Ax− b)‖ and a scaled trust region ‖Sx‖ ≤ ∆ simply by solving instead the

problem

minimize
x̄∈IRn

‖Āx̄− b̄‖ subject to ‖x̄‖ ≤ ∆,

where Ā = WAS−1 and b̄ = Wb and then recovering x = S−1x̄. Note the implication here

that S must be non-singular. Similarly the weighted regularised problems

minimize
x∈IRn

1

q
‖W (Ax− b)‖q +

1

p
σ‖Sx‖p

(q = 1, 2) may be solved instead as

minimize
x̄∈IRn

1

q
‖Āx̄− b̄‖q +

1

p
σ‖x̄‖p.

Note that the choice of W and S will affect the convergence of the method, and thus

good choices may be used to accelerate its convergence. This is often known as precon-

ditioning, but be aware that preconditioning changes the norms that define the problem.

Good preconditioners will cluster the singular values of Ā around a few distinct values,

and ideally (but usually unrealistically) all the singular values will be mapped to 1.

As we indicated in Section 1.1, our intention has always been to use these packages to

solve problems arising in nonlinear fitting and constrained optimization. We shall delay

numerical comparisons until we have done so. However at least one comment is in order

here. We mentioned in Section 2.3.1 that the improvement possible if we solve the trust-

region problem (1.2) accurately is no more than twice that derived from the Steihaug-Toint

point. In practice, our experience has been far less optimistic, and often less than a ten

percent—and sometimes less than one percent– improvement has been observed. Thus in

the case of (1.2), we do not recommend going beyond the Steihaug-Toint point, since to

do so will incur the cost of a second pass to recover xk from yk. This is by contrast to

the problem of minimizing general quadratic functions within an `2 trust-region where the

Steihaug-Toint point can be a very poor predictor of the possible reduction. This issue is

not relevant for our other two, regularised, problems (1.3) and (1.4).
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6 Comments and conclusions.

We have proposed a framework for solving a variety of (implicitly or explicitly) regu-

larised linear-least squares problems. All proceed by approximating the solution to the

given problem in an increasing set of convenient subspaces. Each leads to its own secular

equation—a root-finding problem—for which Newton-like and other approaches are most

effective. Software for each of the problems is available as part of GALAHAD. The methods

considered may easily be extended to the more general regularisation

minimize
x∈IRn

1

q
‖Ax− b‖q +

1

p
σ‖x‖p

for p, q ≥ 1 but we do not give details here.

One alternative we have not yet considered is to apply the ideas first proposed by

Hager and Park [18, 19], and subsequently refined by Erway, Gill, and Griffin [10], for the

problem of minimizing a general quadratic function q(x) within a spherical trust-region.

These recognise that a possible disadvantage of the earlier GLTR approach [14] to the

same problem—and by implication for the methods we have considered here—is the need

for a second pass to recover the solution xk = Vkyk once a suitable yk has been determined.

The idea is simply that once it has been established that the solution lies on the trust-

region boundary, a sequence of points {xk} are generated by choosing xk+1 to solve the

given problem over a low-dimensional subspace Sk containing at least xk and a mixture

of ∇xq(xk), a crude Newton-based approximation to the solution x(λ) to the relevant

secular equation and an approximation to the eigenvector corresponding to the left-most

eigenvalue of ∇xxq(xk); since in our cases the objective is convex, the latter would not be

needed. It has been established [19] that such an iteration converges to the solution to the

problem, although it is unclear quite how this compares in cost with that of the second

pass in the GLTR approach. This general approach can clearly be adapted–in the case of

problem (1.2)—or generalised to the regularised problems (1.3) and (1.4). It remains to

see how effective this is in comparison to the methods we have given in all of these cases.
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Appendix A

The following result is stated, in part, in other sources, e.g., [22, Thm.4.8]. For complete-

ness, here we state and prove the version we require.

Lemma A.1. Suppose that θ : I → IR is convex (resp. concave), strictly de-

creasing (resp. strictly increasing) and continuously differentiable on some interval

I = [λmin, λmax] ⊆ IR, and suppose further that there is a λ∗ ∈ I for which θ(λ∗) = 0.

(i) Now suppose that θ(λ0) > 0 for some given λ0 ∈ I. Then the Newton iterates

{λj}, where

λj+1 = λj −
θ(λj)

θ′(λj)
, (A.1)

for j ≥ 0, all lie in [λ0, λ∗] and increase monotonically to λ∗. The convergence is

globally Q-linear with factor at least

γN def
= 1 −

θ′(λ∗)

θ′(λ0)
< 1

and is ultimately Q-superlinear (Q-quadratic if additionally θ′ is Lipschitz continuous

around λ∗).

(ii) Suppose that θ(λ0) and θ(λ1) > 0 for some given λ0 < λ1 ∈ I. Then the secant

iterates {λj}, where

λj+1 = λj −
(λj − λj−1)θ(λj)

θ(λj) − θ(λj−1)
, (A.2)

for j ≥ 1, all lie in [λ0, λ∗] and increase monotonically to λ∗. The convergence is

globally Q-linear with factor at least γN, and is ultimately Q-superlinear.

Proof. We consider the convex case; the concave case then follows directly by consid-

ering −θ. The assumptions are such that λ ∈ I < λ∗ if and only if θ(λ) > 0.

(i) By induction, suppose that θ(λj) > 0. Since by assumption θ′(λj) < 0, (A.1) shows

that λj+1 > λj. Additionally, the convexity of θ and (A.1) imply that

θ(λj+1) ≥ θ(λj) + θ′(λj)(λj+1 − λj) = 0,

and thus θ(λj + 1) > 0. Convexity also implies that

θ′(λ∗)(λj − λ∗) = θ(λ∗) + θ′(λ∗)(λj − λ∗) ≥ θ(λj), (A.3)
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in which case

λ∗ − λj+1 = λ∗ − λj +
θ(λj)

θ′(λj)
≤ (λ∗ − λj)

(

1 −
θ′(λ∗)

θ′(λj)

)

≤ γN(λ∗ − λj), (A.4)

which establishes both that {λj} converges to λ∗ and that the convergence is at least

linear. Ultimate superlinear convergence follows from (A.4) since θ′(λj) → θ′(λ∗),

while quadratic convergence for Lipschitz continuous θ′ follows since θ′(λ∗) < 0 [36,

Thm. 10.2.2].

(ii) By induction, suppose that λj−1 < λj and θ(λj) > 0 (in which case θ(λj−1) > θ(λj)).

Then it follows directly from (A.2) shows that λj+1 > λj. This, the convexity of θ and

(A.2) imply that

θ(λj+1) ≥ θ(λj) +
λj+1 − λj

λj−1 − λj

(θ(λj−1) − θ(λj)) = 0.

Furthermore, the mean-value theorem implies that θ(λj) − θ(λj−1) = θ′(ξj)(λj − λj−1)

for some ξj ∈ (λj−1, λj), and thus from (A.2)

λj+1 = λj −
θ(λj)

θ′(ξj)
. (A.5)

Thus, using (A.3) and (A.5),

λ∗ − λj+1 = λ∗ − λj +
θ(λj)

θ′(ξj)
≤ (λ∗ − λj)

(

1 −
θ′(λ∗)

θ′(ξj)

)

≤ γN(λ∗ − λj), (A.6)

once again establishing both that {λj} converges to λ∗ and that the convergence is at

least linear. Ultimate superlinear convergence follows from (A.6) since θ′(ξj) → θ′(λ∗);

a more precise estimate of the Q-rate may be established if θ′ is Lipschitz continuous [36,

Thm. 11.2.8]. 2


