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Abstract

We consider a class of stochastic programming models where the uncertainty
is classically represented using parametric distributions families. The parameters
are then usually estimated together with the optimal value of the problem. How-
ever, misspecification of the underlying random variables often leads to irrealistic
results when little is known about their true distributions. We propose to overcome
this difficulty by introducing a nonparametric approach where we replace the esti-
mation of the distribution parameters by that of cumulative distribution functions
(CDF). A practical algorithm is described which achieves this goal by using a
monotonic spline representation of the inverse marginal CDF’s and a projection-
based trust-region globalization. Applications of the new algorithm to discrete
choice theory are finally discussed, both with simulated data and in the context of
a practical financial application related to interventions of the Bank of Japan in the
foreign exchange market.

1 Introduction

Stochastic programming has an significant place in the mathematical programming
field, where the central role of uncertainty gains even wider recognition. Depending
of the influence and nature of this uncertainty in the optimization problem, various so-
lution approaches have been proposed, ranging from expected-value minimization to
robust optimization. However, the quality of the stochastic models considered remains
crucially dependent on an adequate choice of the distributions of the involved random
variables. This is especially true for some classes of estimation problems where one
aims at calibrating the heterogeneity present in the data. Although it is typically possi-
ble to estimate parameters of predefined distributions in such cases, the very choice of
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these distributions often remains difficult or arbitrary, and it may be influenced more by
classical assumptions and ease of computation than by real knowledge of the problem.

The purpose of this paper is to discuss a nonparametric approach to resolve the
difficulties associated with the identification of underlying unknown base random dis-
tributions. Our proposal is characterized by the explicit estimation of the shape of the
unknown distributions, expressed via their cumulative distribution functions, as a part
of the complete calibration procedure.

Nonparametric techniques are an important topic is statistics and simulation (see
for instance Chapter 6 in Law [31], Dong and Wets [18] or Wasserman [44]), allowing
to deal with uncertainty when the underlying distributions are difficult to recover by
approximating the cumulative distribution functions and probability densities. One of
the most popular tool is the empirical distribution, which has also received attention in
stochastic programming (Pflug [36]), where an approximation of the cumulative distri-
bution function is constructed from observed realisations of the random variable, even
if the true distribution is unknown. As for standard stochastic programs for which ran-
dom variables are completely specified with standard parametric distributions, it is also
assumed in this case that underlying distributions of the involved random variables can
be estimated during a preliminary phase, prior the optimization. This assumption ap-
pears to be reasonable for numerous applications, but, as we will illustrate in this paper,
not all. We will indeed focus our attention on problems in which the estimation of the
random variables is itself part of the optimization process, as is for instance the case
for the calibration of mixed logit models, a recent and popular technique in econo-
metrics and transportation (see Bastin, Cirillo and Hess [5], Bhat [13] or Train [41],
amongst others). The methodology proposed here, based on spline approximations
of inverse cumulative distribution functions, has also been explored in a less general
framework and successfully applied to transportation problems by Bastin, Cirillo, and
Toint [7], who show its value as a new tool for studying the value of time. The present
paper pursues the same idea and casts it in the general context of nonconvex stochas-
tic programming. It also describes its application to a problem in finance for which
traditional approaches have been found to be limited (Bernal and Gnabo [11], Beine,
Bernal, Gnabo, and Lecourt [8]).

The paper is organized as follows. In Section 2 we present the class of consid-
ered problems and motivate our nonparametric approach. We develop the related op-
timization technique in Section 3, and report numerical experiments in Section 4. The
methodology is tested on simulated data, exhibiting the danger of misspecification, as
well as on a real econometric model derived from financial markets. Some conclusions
and perspectives are finally given in Section 5.

2 Problem formulation

We consider the general stochastic program (SP)

min
x∈X

g (E[f(x, ξ)]) , (1)

where X is a compact set in R
n, ξ is a random vector of size m defined on the proba-

bility space (Ξ,F , P ), and g is a function from R to R. For simplicity, we here assume
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that X is deterministic. Crucially, we also assume that a computationally efficient pro-
jection on this feasible set is available (a typical example is when X defines simple
bounds on the components of x). Smoothness and regularity assumptions are made
below, but we do not require convexity of the objective function. Since (1) cannot usu-
ally be solved analytically, we consider a solution process based on the sample average
approximation (SAA), which is constructed by sampling over ξ:

min
x∈X

ĝ(x)
def
= g

(

f̂R(x)
)

, (2)

where f̂R(x) is defined as

f̂R(x) =
1

R

R∑

r=1

f(x, ξr)

for R random draws. In order to ensure consistency of this formulation, we make the
following assumptions.

A.0 The random draws {ξq}∞q=1 are independently and identically distributed.

A.1 For P -almost every ξ, the function f(·, ξ) is continuously differentiable on S.

A.2 The family f(x, ξ), x ∈ X , is dominated by a P -integrable function K(ξ), i.e.
EP [K] is finite and |f(x, ξ)| ≤ K(ξ) for all x ∈ X and P -almost every ξ.

A.3 Each gradient component ∂
∂[x]l

f(x, ξ) (l = 1, . . . , n), x ∈ X , is dominated by a
P -integrable function.

A.4 The function g is twice continously differentiable in its argument.

Note that A.3 allows us to apply the results of Rubinstein and Shapiro [39], page 71,
and deduce that the expected value function E[f(x, ξ)] is continuously differentiable
over X , and that the expectation and gradient operator can be interchanged in the ex-
pression of the gradient. Also observe that A.0–A.2 together imply the existence a
uniform law of large numbers (ULLN) on S, for the approximation f̂R(x) of f(x):

sup
x∈X

∣
∣
∣f̂R(x) − f(x)

∣
∣
∣ −→ 0 almost surely as R → ∞,

which in turn allows us to deduce the following property.

Proposition 1. Under Assumptions A.0–A.2, A.4, we have the uniform law of large
numbers

sup
x∈X

∣
∣
∣g
(

f̂R(x)
)

− g(f(x))
∣
∣
∣

a.s.
−→ 0 as R → ∞.

Proof. Let ε > 0. By the continuity of g(·), we have that there exists some δ > 0 such
that |z1 − z2| < δ implies that |g(z1) − g(z2)| < ε. From the ULLN on f̂R(·) with
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respect to f(·), we have that there exists some Rδ such for all R ≥ Rδ, for all x in X ,
∣
∣
∣f̂R(x) − f(x)

∣
∣
∣ < δ almost surely, and therefore

∣
∣
∣g
(

f̂R(x)
)

− g(f(x))
∣
∣
∣ < ε almost

surely.

From A.3 and A.4, we can similarly establish ULLN’s between partial deriva-
tives of the SAA and the true objective. First-order convergence (i.e. convergence
of a sequence of first-order solutions of (2) to a first-order solution of (1) can then
be derived from stochastic variational inequalities, as presented in Gurkan, Özge, and
Robinson [24] and Shapiro [40]. Consider a mapping Φ : R

n × Ξ → R
n and a mul-

tifunction Γ : R
n

⇒ R
n. Suppose that we have a well-defined function φ(x) :=

h (EPΠ [Φ(x, ξ)]). We refer now to

φ(x) ∈ Γ(x) (3)

as the true, or expected value, generalized equation and say that a point x∗ ∈ R
m is a

solution of (3) if φ(x∗) ∈ Γ(x∗). If {ξ1, . . . , ξR} is a random sample, we refer to

φ̂R(x) ∈ Γ(z) (4)

as the SAA generalized equation, where

φ̂R(x) = h

(

R−1
R∑

i=1

Φ(x, ξi)

)

.

We denote by S∗ and S∗
R the sets of (all) solutions of the true (3) and SAA (4) gen-

eralized equations, respectively. Let us denote by d(x, A) := infx′∈A ‖x − x′‖, the
distance from x ∈ R

n to A, and D(A, B) := supx∈A D(x, B), the deviation of the set
A from the set B. We then have the following result (Shapiro [40]), whose proof does
not depend on the explicit forms of φ(x) and φ̂R(x):

Theorème 1. Let S be a compact subset of R
m such that S∗ ⊆ S. Assume that

(a) the multifunction Γ(x) is closed, that is if x(k) → x, y(k) ∈ Γ(xk) and y(k) → y,
then y ∈ Γ(x),

(b) the mapping φ(x) is continuous on S,

(c) almost surely, ∅ 6= S∗
R ⊆ S for sufficiently large R, and

(d) φ̂R(x) converges to φ(x) almost surely uniformly on S as R → ∞.

Then D(S∗
R, S∗) → 0 almost surely as R → ∞.

When X is convex, we can define the first-order criticality conditions for some
point x∗ as the requirement that −∇xg(x∗) belongs to the normal cone to X at x∗,
denoted by NX (x∗). Theorem 1 then allows an easy proof of almost sure first-order
convergence. Consider the choice Γ(·) = NX (·); φ(x∗) belongs to Γ(x∗) if and only
if

〈φ(x∗), u − x∗〉 ≤ 0, ∀u ∈ X .
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Following Shapiro [40], we refer to such variational inequalities as stochastic vari-
ational inequalities and note that the assumption (a) of Theorem 1 always holds in
this case. Let S∗ and S∗

R represent the set of first-order critical points of the true (3)
and SAA (4) generalized equations, respectively. Then under A.0–A.4, we have that
φ(x) = −∇xg(x), and that φ(x) is a continuous random vector on X , yielding as-
sumption (b). Assumption (d) results from the ULLN, while A.1 and the compacity
of X ensure assumption (c) by setting S = X . Thus Theorem 1 guarantees first-order
criticality in the limit as R → ∞, almost surely. Second-order convergence is con-
siderably more difficult to establish, but can nevertheless be deduced under additional
assumptions as in Bastin et al. [6].

2.1 A nonparametric approach

When dealing with problems (1) and (2), one often implicitely makes suppositions on
the distribution of the random vector ξ to generate the draws needed to construct the
SAA. In practice, this may lead to problems, as we will demonstrate below. If we
nevertheless continue to represent uncertainty in the problem at hand by using random
variables in our model, we therefore wish to do with minimal assumptions on their
distributions, avoiding in particular specifics on their shape.

A first observation is that we may consider each of the m components of ξ sep-
arately, at the price of assuming independence between them. As a consequence, we
only have to draw from univariate random variables, which is considerably simpler than
handling the multivariate case. If X is an univariate (known) random variable, a well-
known technique to generate draws from its distribution consist to sample a uniform
distribution on [0, 1], hereafter denoted by U [0, 1], and to apply the inverse cumulative
distribution function F−1

X to these draws:

SX = {F−1
X (U), U ∼ U [0, 1]},

where SX represents the sample set drawn from the random variable X . It is usually
assumed that F−1

X is available (or at least can be well approximated), if the distribu-
tion of X is known. This method is known as the inversion technique in the random
numbers generation litterature (Devroye [17], Law [31]), and is also popular in the
context of variance reduction methods (see for instance L’Ecuyer [32]). The use of
the inverse cumulative distribution function has also previously been proposed in stan-
dard nonparametric estimation by Hora [27] and Avramidis and Wilson [2]. In order to
capitalize on this idea, we introduce the assumption that

A.5 the components of ξ are independent.

The discussion above then implies that we may obtain the necessary draws from the
distribution of the random variable ξ if we are able to estimate for each component X

an inverse cumulative distribution function F−1
X with the properties that

• F−1
X : [0, 1] → R,

• F−1
X is monotonically increasing,
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and if we restrict ourselves to continuous variates,

• F−1
X is continuous.

In other terms, we have to estimate a continuous real function whose domain is [0, 1],
and which is monotonically increasing. One may argue that this approach has advan-
tages in generality and efficiency, since estimating the density instead of F −1

X would
only make sense for continuous distributions, and since it is usually easier to estimate a
function rather than its derivative1. In order to further limit our choices, we also make
the following additional assumption:

A.6 Each component of the random vector ξ is continuous and has a bounded support.

This assumption is often realistic for practical data sets and has the advantage of ex-
plicitly avoiding the presense of tails which are often difficult to interpret.

Functions approximation is a large field of mathematics, and various techniques can
be considered for the problem of estimating F−1

X . In our case, we choose to represent
the desired inverse cumulative distribution function as a finite linear combination of
some basis functions {lq, q = 0, . . . , v}, which are continuous on the interval [0, 1]
for continuous variables, in which case we belive that a basis choice suitable for our
purposes is that of B-splines. In general, a B-spline function C(u) of degree p is a
piecewise polynomial of degree p, defined on the interval [a, b], which can be expressed
as a linear combination of n + 1 basis functions Ni,p(u), as follows:

C(u) =

v∑

i=0

PiNi,p(u).

The coefficients P0, P1, . . . , Pv are called the control points, and u is the knot vector
(u0 = a, u1, . . . , um = b). The basis functions can be constructed by recurrence (on
the degree p) as follows:

Ni,0 =

{

1 if u ∈ [ui, ui+1),

0 otherwise.

and
Ni,p =

u − ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u),

so that v is equal to m−p−1. There are several types of knot vectors, but one especially
convenient for our purposes is the nonperiodic (or clamped or open) knot vector, which
has the form

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}, (5)

that is the first and last knots have multiplicity p + 1. It is possible to show that the
function C(u) is p−1 times continuously differentiable. In this paper, we will consider

1In some situations, one can however prefer to estimate densities as approximations like empirical dis-
tributions can produce asymptotically unbounded densities as the number of observations grows to infinity
(L’Ecuyer, Cordeau and Simard [33]).
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cubic B-splines, i.e. we will set p to 3, giving twice continuously differentiable inverse
cumulative distribution functions. But the most crucial property2 of B-splines in our
context is that, with these basis and knots choices, C(u) is monotonically increasing if
the control points have the same property, that is if

P0 ≤ P1 ≤ . . . ≤ Pv .

As we will describe in the next Section, this property can be algorithmically guaranteed
in our estimation procedure.

For simplicity of presentation, we will assume that all random variates are non-
parametric, while in practice (as in our real application), we can mix parametric and
nonparametric distributions. Our nonparametric estimation problem is then to solve,
for some fixed R,

min
x ∈ X
Pi,j

g

(

1

R

R∑

r=1

f(x, ξr)

)

, (6)

under the additional constraints that, for j = 1, . . . , m,

P0j ≤ P1j ≤ . . . ≤ Pvj (7)

and

[ξr]j =

v∑

i=0

PijNi,p(ζr), (8)

where ζr are draws from the uniform distribution of [0, 1].

2.2 A trust-region method for efficient estimation

In order to solve the program (2), under the constraints that the control points describ-
ing our inverse cumulative distribution functions are monotonic, we first substitute (8)
in (6), which yields a (potentially nonconvex) objective function f(w)

def
= ĝ(x, P ) to

minimize with respect to w
def
= (x, P ) on the feasible region X × C where C is defined

by

C =

m∏

i=1

{(P0j , . . . Pvj) such that P0j ≤ P1j ≤ . . . ≤ Pvj}, (9)

Fortunately, it is easy to verify that C is a convex set, so that consistency results, espe-
cially Theorem 1, can be applied, as long as we also assume that the iterates remain in
a compact set..

If there is only one nonparametric coefficient, C defines v ordered variables. C
is then called the order-simplex. The key of our algorithm is that projection onto the
order-simplex can be performed easily and efficiently, since several efficient algorithms
of O(n) complexity have been designed for this task (Best and Chakravarti [12]), and
their extension to Cartesian products is easy since they can be applied independently

2For a more complete review of B-splines properties, we refer the reader to Piegl and Tiller [37].

7



on each subset of monotonic variables. Since an efficient projection operator onto X is
also assumed to exist, an efficient projection operator onto X × C is easily constructed
and can then be exploited successfully in the solution of the nonlinear optimization
problem defined by (6) (with fixed R), (7) and (9). This is achieved by a computation-
ally efficient specialized trust-region algorithm (see Chapter 12 of Conn, Gould, and
Toint [16]) which we now state.

Algorithm 1: Projected trust-region algorithm

Step 0. Initialization. An initial point w0 ∈ C and an initial trust-region radius ∆0

are given. The constants η1, η2, γ1, and γ2 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. (10)

Compute f(w0) and set k = 0.

Step 1. Model definition. Construct a model mk in the trust-region Bk, defined as

Bk = {w such that ‖w − wk‖ ≤ ∆k}.

Step 2. Step calculation. Compute a step s(k) that “sufficiently reduces the model”
m(k) and such that w(k) + s(k) ∈ (X × C) ∩ Bk.

Step 3. Acceptance of the trial point. Compute f(w(k) + s(k)) and define

ρk =
f(w(k)) − f(w(k) + s(k))

mk(w(k)) − mk(w(k) + s(k))
. (11)

If ρk ≥ η1, then define w(k+1) = w(k)+s(k); otherwise define w(k+1) = w(k).

Step 4. Trust-region radius update.

∆k+1 ∈







[∆k,∞) if ρk ≥ η2,

[γ2∆k, ∆k] if ρk ∈ [η1, η2),

[γ1∆k, γ2∆k] if ρk < η1.

Increment k by 1 and go to Step 1.

In this description, reasonable values for the constants of (10) are for instance given by

η1 = 0.01, η2 = 0.9, and γ1 = γ2 = 0.5,

but other values may be selected. We chose the Euclidean norm in the definition of
Bk. We finally followed the usual practice and defined the model mk to be a quadratic
function of the type

mk(w(k) + s) = f(w(k)) + ∇wf(w(k))T s +
1

2
sT Hks,
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where Hk is either the Hessian ∇2
wwf(w(k)) or some approximation of it. In our exper-

iments, we have used either the SR1 approximation (Conn, Gould and Toint [15]), ei-
ther the BFGS approximation (see for instance Chapter 5 in Nocedal and Wright [35]),
with similar success.

If ρk ≥ η1 in Step 1, the iteration k is said to be successful since the candidate
point w(k) + s(k) is accepted; otherwise the iteration is declared unsuccessful and the
new point is rejected. If ρk ≥ η2, the agreement between the model and the function
is particularly good, and the iteration is said to be very successful. This then suggests
increasing the trust-region radius, as in Step 4, in order to allow a longer step at the
next iteration.

The step s(k) is computed by first attempting to identify the active constraints by
minimizing the model along the projected gradient path (using the complete projection
onto X × C). Note that, at the iteration k, a monotonicity constraint Pij ≤ Pi+1,j will
be said active if

P
(k)
ij = P

(k)
i+1,j and ∂ĝ(x, P )

∂Pij

∣
∣
∣
∣
(x(k),P (k))

≤
∂ĝ(x, P )

∂Pi+1,j

∣
∣
∣
∣
(x(k),P (k))

.

Once the active set has been identified by minimizing the model along this path, fur-
ther reduction of the model can then be obtained by applying a (possibly restarted)
conjugate-gradients algorithm within (X × C) ∩ Bk.

Convergence results for this algorithm can directly be deduced from the theory
presented in Chapter 12 [16], together with more details on the algorithm. In particular,
one obtains that all limit points of the sequence of iterates are first- and second-order
stationary points of problem (2) for fixed R under the constraints (9). Moreover, the
active constraints (in our case the confluent control points of the spline defining the
inverse cumulative distribution functions F−1

X ) are identified after a finite number of
iterations. As already mentioned above, the consistency results of Section 2 then apply
provided the control points iterates remain in a compact set that contains C.

3 Numerical experiments

We have experimented the proposed algorithm in the context of discrete choice the-
ory (Ben Akiva and Lerman [9], Train [41]), in particular in the field of mixed logit
problems. These constitute a recent development in the theory and are used today in a
variety of contexts, e.g. politics (Glasgow [23]), economics (Rigby and Burton [38]),
marketing, transportation (Brownstone, Bunch and Train [14]), and finance [4], in or-
der to explain the behaviour of individuals/households/companies who express their
choices amongst a finite set of alternatives. In this framework, taste heterogeneity
across the population is captured using parametric models whose random variables
have distributions with specific functional forms. In a large majority of the applica-
tions published up to now, the distributions are chosen to be normal. However, the use
of unbounded distributions (such as the normal) appears inappropriate in a number of
cases, especially when certain attributes are assumed to be positively (or negatively)
valued by all individuals. In order to circumvent these difficulties, more recent mod-
els use bounded distributions, often obtained as simple transformations of normals.
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Train and Sonnier [42] specify mixed logit models with lognormal, censored normal
and Johnson Sb distributions bounded on both sides. Less restrictive nonparametric or
semi-parametric approaches have also been proposed, such as mass point mixed logit
models (Dong and Koppelman [19], discrete mixture of GEV models over a finite set
of distinctive support points (Hess, Bierlaire, and Polak [26], nonparametric density
techniques based on Klein and Spady estimators (Fosgerau [20]) and more recently
nonparametric models based on Legendre polynomials (Fosgerau and Bierlaire [21]).
The bounded support assumption A.6 can therefore be considered appropriate, since
extreme behaviours, corresponding to very large (absolute) values of X , are usually
not welcome. It should also be noted that if the use of normal distributions is known
to facilitate the estimation process, failures in convergence have nevertheless been re-
ported for unbounded or nonparametric distributions, as well as difficulties created by
the presence of numerous local maxima (Fosgerau and Bierlaire [21], Fosgerau and
Hess [22]).

In our application context, we consider a set of I individuals, each individual i hav-
ing to choose one alternative within a finite set Ai. We associate an utility Uij to each
alternative Aj in Ai, as perceived by individual i. In line with accepted econometric
theory, we also assume that individuals aim at maximizing their utility, but this utility
is not fully observable. The standard technique is then to decompose the utility Uij in
the sum of a deterministic measurable part Vij(β), where β is a vector to be estimated,
and a random, unobserved part εij . The probability that individual i chooses alternative
j is then given by

Pij(β) = P [Vij(β) + εij ≥ Vik(β) + εik, ∀Ak ∈ Ai].

The probability expression is of course dependent of the distribution choice for εij .
When the εij are assumed to be independent and identically Gumbel distributed amongst
the individuals and alternatives, we obtain the traditional logit probability formula

Pij =
eVij(β)

∑Ai

k=1 eVik(β)

def
= Li,j(β). (12)

In the mixed logit framework, we relax the assumption that β is a constant vector,
but instead consider it as a random vector with cumulative distribution function FB(β)
so that the probability on the left-hand side of (12) is now conditional on the realization
of β, and the unconditional probability becomes

Pij = EB [Lij(β)] =

∫

Lij(β)dPB(β). (13)

As we typically cannot directly estimate B, we assume that it can be described as
B = B(Γ, θ), where Γ is some random vector, and θ some constant parameters vector,
again to be estimated. In other terms, we assume some distribution family for B,
parametrized by θ. If additionally the vector β is continuous, we can rewrite (13) as

Pij(θ) =

∫

Lij(γ, θ)φ(γ, θ)dγ,

10



where φ(γ, θ) is the density of B, with parameters vector θ.
In the case when the same individual can express several choices, we observe for

each individual the sequence of choices yi = (ji1, . . . , jiTi
), which can be assumed to

be correlated. (Such cases are referred to as “panel data”.) A simple way to accomodate
this situation is to assume the heterogeneity is present at the population level only, but
not at the level of individuals. The probability to observe the individuals’ choices is
then given by the product of logit probabilities Lijit

(Train [41]):

Piyi
(θ) =

∫
(

Ti∏

t=1

Lijit
(γ, θ)

)

φ(γ, θ)dγ.

The vector of unknown parameters θ is then estimated by maximizing the log-
likelihood function, i.e. by solving the problem

max
θ

LL(θ) = max
θ

1

I

I∑

i=1

ln Piyi
(θ), (14)

where yi is the vector of alternative choices made by the individual i. As pointed in
Bastin et al. [6], (14) can be viewed as an extension of (1), and the corresponding SAA
is

max
θ

SLLR(θ) = max
θ

1

I

I∑

i=1

ln SP R
iyi

(θ), (15)

where

SP R
iyi

=
1

R

R∑

ri=1

Ti∏

t=1

Lijit
(γri

, θ),

and R is the number of random draws γri
. The SAA program (15) can be solved

directly by Algorithm 1, using the equivalent form of minimizing −SLLR(θ). We use
the nul vector as the starting point in our experiments.

3.1 Simulations

We first validate our estimation procedure on simulated data. We wish to verify that
it approximately recovers the underlying distributions, and to compare it to traditional
parametric estimation. In our simulated experiments we create a synthetic population
of 2000 individuals, each one delivering one observation. The design contains four
alternatives, normally distributed with parameters N(0.5, 1), and three independent
variables, one normal, one lognormal and one spline. The parameters used for these
distributions are given in Table 1. We then estimate four models, one using correct
distributions families, one constructed with normals only, one made with lognormals
only, one using splines only. In our estimation procedure, X = R

n, so that in order
to be consistent with the developed theory, we assume that the complete vectors of
iterates remain in a compact set. We chose 5 equally spaced knot points per spline
approximation, that is, taking account of the repetitions in the form (5), we choose
U = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}.
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The worst fit is obtained when all distributions are assumed to be lognormal, which
is not surprising since the lognormal is unable to capture negative coefficients. The use
of normals provides a good fit, even if it is unable to capture the fact that the coefficient
corresponding to the lognormal in the original specification should be positive. This
is in line with other reported results, especially in Train and Weeks [43]. The model
specification built only on splines outperforms all models in terms of log-likelihood
optimal value, and is close to the one obtained with the correct specification. The
difference is however of the order of the sampling accuracy, so no strong conclusion can
be reached, but we cannot exclude a slight overfit on the sample data. The numerical
convergence is slower with the splines-only specification, but again, this should not be
a surprise since the two first parameters violate Assumption A.6.

Distribution Real coeff. Correct model Normals Lognormals Splines
Normal 0.0 (µ) 0.025 0.013 -26.369 -16.783

2.0 (σ) 2.200 2.069 16.648 -1.125
-1.125
-0.600
1.439
1.439
7.163

Lognormal 0.0 (µ) 0.0322 1.262 -0.600 -2.520
1.0 (σ) 0.880 0.924 0.884 1.331

1.331
1.331
1.356
2.038
3.088

Spline -15.0 -6.157 0.135 -28.532 -6.086
-3.0 -6.157 2.4780942 22.13822 -6.086
-0.5 0.134 0.0184
0.0 0.6091 0.644
0.5 0.6091 0.644
3.0 0.6091 0.644

15.0 27.076 25.865
Log-likelihood - -1.213 -1.216 -1.268 -1.212

Table 1: Calibration on simulated data

The same observations can be made in Figure 1, illustrating the agreement be-
tween the true cumulative distribution functions, and the different estimations. The
all-lognormal model performs the worst, even for the second variable, while the best
model is, as expected, the correctly specified one, which would typically be unavailable
in practice. The all-normal model achieves good agreement, except on the last variable.
The agreement for the lognormally distributed parameter is better than expected, the
only problem being the infinite tail on the left, although the true spline specification is
bounded. The all-splines model can be seen as a compromise when we have no infor-
mation on the real distributions. The agreement with the first and third parameter are
particularly good, while the model captures the essence of the second parameter, in a
better way than with the all-lognormal model.

These findings however have to be taken with care, as by construction, two of our
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Figure 1: First simulated case: normal, lognormal and spline variates.
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parameters are symmetric, as is the normal distribution. Such conditions favor the
normal distribution, but we expect the opposite to happen when the distribution are
highly unsymmetric.

This led us to design a second experiment, where we now use two independent
variables, one lognormal, and one spline, for which the selected parameters are chosen
to ensure unsymmetry. As illustrated in Table 2 and Figure 2, the all-normal model now
perfoms very poorly when compared to the other formulations, while the all-lognormal
model is acceptable. The true specification is obviously better, but the all-spline model
again provides a good compromise.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5  0  5  10  15

Real model
Correct model

Normals model
Lognormals model

Splines model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -2  0  2  4  6  8  10

Real model
Correct model

Normals model
Lognormals model

Splines model

Figure 2: Second simulated case: normal, lognormal and spline variates.

These two examples indicate that a parametric model can behave well when infor-
mation about the distributions families is available, but also that a misspecified model
can lead to a very poor estimation. The nonparametric approach allows us to capture
the randomness of the model, even in the absence of any knowledge of the underlying
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Distribution Real coeff. Correct model Normals Lognormals Splines
Lognormal -0.5 (µ) -0.40642264 1.209 -0.360 -0.337

2.0 (σ) 1.8074374 1.278 1.625 -0.337
0.222
1.151
1.151
3.446

27.123
Spline -1.0 -0.564 1.526 -0.831 -0.543

-0.5 -0.564 2.024 3.2983643 -0.543
0.0 -0.564 -0.543
0.5 1.456 1.317
3.0 1.863 2.246
12.0 13.454 13.240
15.0 13.454 13.240

Log-likelihood - -1.100 -1.108 -1.103 -1.099

Table 2: Calibration on simulated data, second case.

distributions.

3.2 An application in finance

The algorithm developed has been applied to a financial problem concerning central
bank interventions and dynamics in the foreign exchange (FX) market. Intervening in
the FX market is a complex process (Beine et al. [8]); recently, several research papers
have explored the determinants of interventions (Almekinders [1], Baillie and Oster-
berg [3], Ito [28], Ito and Yabu [29], Kearns and Rigobon [30], Bernal [10], and Bernal
and Gnabo [11]). The main conclusions are that interventions tend to be conducted to
counteract large deviations of the exchange rate from past levels. The existence of non-
intervention bands have also been outlined, suggesting that monetary authorities incur
significant costs when intervening on the foreign exchange markets. Our application
concerns the Bank of Japan (BoJ), which has intervened in the FX market more than
300 times since the beginning of the 1990s, and has played a major role by conducting
very large-scaled operations (Bernal [10]). The data used for our analysis have been
collected from the Japanese Ministry of Finance’s website (where they are publicly
available) for the period April, 1991 to September, 2004. For each intervention, the
exact date, amount and currencies involved are provided; our database contains data
for a total of 3497 official trading days. In a given situation where intervention is pos-
sible, there are four possible outcomes of the central bank’s decision: no intervention,
public intervention, secret intervention detected by the market, secret intervention not
detected by the market3 (see Table 3 for the details about BoJ decisions in the period
1991-2004).

3"Pure secret interventions" are secret interventions which were not detected by the market, i.e. for which
there were no news reports of the intervention at all. Conversely, "detected secret interventions" are secret
interventions which were detected by the market: that is for which there was a highly speculative news report
about the intervention (Beine et al. [8]).
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Trading days Intervention Public Undetected Detected
3497 342 212 74 56

Table 3: Bank of Japan decisions 1991-2004

We again have that X = R
n in this case. As for the simulated data, we chose 5

equally spaced knot points per spline approximation.
Discrete choice models are used to analyze BoJ decisions and to determine the

factors that affect interventions on the FX market and their types. The four described
outcomes constitute the set of alternatives available to BoJ. The independent variables
are listed in Table 4; the relative coefficients are estimated as specific to the alternatives.
For an exhaustive description of the procedure adopted to calculate these variables we
refer the reader to Beine et al. [8]. The results of our model estimations are reported in
Table 3, where we compare three model formulations. The estimated coefficients and
their level of significance are reported for (a) a logit model, (b) a mixed logit model
with error component and random parameter on the “amount” variable (assumed to
be normally distributed), (c) a mixed logit with error component and random param-
eter on “amount” with nonparametric distribution (B-Spline). The error component is
specified here to capture the correlation across the alternatives that share the secrecy
in the intervention of the central bank. The fit of the model improves significantly
from the logit formulation to the mixed logit formulation; the use of B-Spline also pro-
duces an improvement of the final value of the log-likelihood. We note that significant
variables keep the same sign on the three different specifications and that they are con-
sistent with the expectations of financial analysts. The error component is reported to
be significant, confirming the hypothesis of correlation amongst the alternatives that
share this error component. For a detailed economic interpretation of the results ob-
tained we refer again to Beine et al. [8], and focus our attention in what follows on
the variable “amount”. In particular, central bankers reports that large interventions are
much more likely to be detected (Neely [34]). The coefficient of the variable “amount”
which plays a significant role in each intervention decision is found to be positive in
the logit formulation (as expected). When the same coefficient is supposed to be nor-
mally distributed a large share (53%) of the intervention decisions are characterized by
a negative value of the “amount” parameter. To overcome this problem a nonparamet-
ric distribution has been adopted, which produces a positively bounded coefficient in
the interval [0.01, 1.88].

The spline model also informs us that most of the time (70%), the invested amount
is associated to a low parameter, as already suggested by the logit model, while this
factor can be more important in approximately one third of the time. In view of this
low “amount” parameter, we could reasonably wonder if the mixed logit model per-
forms well only because of the error component. We therefore calibrated one additional
model, fixing the “amount” parameter to a constant while using the error component
term. The log-likelihood optimal value is then −596.84, suggesting that there is a
significative heterogeneity in the influence of the invested amount, and that a random
parameter helps to capture these variations. We conclude this section by observing that
the use of mixed multinomial logit improves the fit of the model, but that the classi-
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W (no intervention decision)
Short term Absolute level of short-term exchange rate deviation (%)
Medium term Absolute level of medium-term exchange rate deviation (%)
Long term Absolute level of long-term exchange rate deviation (%)
Misalignment Absolute level of exchange rate misalignment (%)
Statement 1 if authorities made a statement expressing some discom-

fort with the exchange rate or confirming/discussing the in-
tervention on the day of the operation

Interventiont−1 1 if there was an official intervention the day before
RVt−1 Exchange rate realized volatility of preceding day, estimated

at the end of the day
Z (public process)
Leaning 1 if the intervention tries to reverse recent exchange rate

trend
Previous report 1 if the last detected intervention was a success
Inconsistency 1 if the intervention direction is inconsistent with the reduc-

tion of the exchange
Statement sum Number of verbal interventions from the authorities signal-

ing a discomfort with the exchange rate in the 5 days before
the intervention

X (detection process)
Amount Amount invested in the daily intervention
Concertation 1 if intervention is concerted
Success 1 if the intervention moves the exchange rate in the desired

direction
Cluster 1 if there is at least one detected intervention over the last 5

preceding days

Table 4: Variables description.

cal normal distribution fails to detect the real shape of the coefficient associated to the
variable. Furthermore the nonparametric B-Spline model is able to detect the nonsym-
metric nature of the random parameter and reveals that this coefficient is very different
from zero in just one third of the intervention cases.

4 Conclusion

We have studied stochastic programming problems for which some probability distri-
bution parameters are estimated along with the optimization, in which the determina-
tion of the true distribution or even of an empirical distribution prior the optimization
is either difficult or impossible.

To alleviate this difficulty, we propose a new nonparametric approach based on ap-
proximations of the inverse cumulative distribution functions, in particular using cubic
B-splines. We apply the proposed methodology in the context of discrete choice mod-
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Figure 3: investment distributions.

eling. On simulated data, we conclude that misspecification of the underlying random
variables often leads to irrealistic results while the nonparametric approach allows us to
capture the randomness inside the population. We also validate the method on a finan-
cial model, dealing with bank interventions in the FX market, and obtain encouraging
results.

Various questions however remain open. One may first wonder at how to choose
the number of knots and their position in order to increase the estimation efficiency
and quality, since too many knots would produce overfitting, and too few can lead to
a poor approximation. We could possibly allow the knots to be chosen dynamically,
along with the optimization process, but this problem is known to be very hard (see for
instance Harashima, Ferrari, and Sanka [25]). Other heuristics are therefore of interest.
A second question arises from the observation that most methods for generating mul-
tivariate distributions rely on the marginal functions and some treatment of the depen-
dency between these marginals. These methods usually exploit the inversion technique
to generate the marginals, and a natural extension of the method proposed here would
concern its application to such multivariate random vector generation techniques.

The results obtained so far with our new nonparametric model appear to be en-
couraging. However, the authors are well aware that only continued experience with
a broader variety of models and stochastic dependences will ultimately reveal the true
protential of the ideas exposed in the present paper.
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Model Logit Mixed logit I Mixed logit II
Alternative specific constants
No intervention 4.685 (21.7) 6.129 (14.7) 7.116
Public intervention -0.797 (3.1) -0.359 (0.9) 0.698
Detected secret intervention -1.493 (6.0) -1.850 (11.1) -1.825
Error component - 2.536 (6.3) 4.188
W (no intervention decision)
Short term -0.052 (0.3) -0.082 (0.3) -0.148
Medium term -0.084 (1.5) -0.103 (0.6) -0.104
Long term -0.015 (0.8) -0.196 (1.6) -0.099
Misalignement -0.015 (1.9) -0.028 (1.2) -0.030
Statement -0.712 (4.6) -0.825 (4.0) -0.851
Interventiont−1 -2.832 (15.3) -2.34 (5.27) -2.364
RVt−1 0.257 (2.1) 0.069 (0.5) 0.056
Z (public process)
Leaning 3.807 (9.6) 3.904 (6.3) 3.789
Previous report 3.593 (6.3) 3.485 (7.7) 3.525
Inconsistency -0.688 (1.3) 0.081 (0.1) 0.23
Statement sum -0.462 (0.4) 0.021 (0.2) -1.058
X (detection process)
Invested amount P1 0.014 (4.5) -0.025 (5.8) 0.007
Invested amount P2 - 0.450 (7.7) 0.010
Invested amount P3 - - 0.011
Invested amount P4 - - 0.011
Invested amount P5 - - 0.011
Invested amount P6 - - 1.882
Concertation 6.772 (2.0) 0.629 (15.1) 1.466
Success 2.447 (3.4) 1.586 (6.0) 1.649
Cluster -0.563 (0.9) -0.499 (1.5) -0.333
Log-likelihood -683.43 -571.61 -563.36

Table 5: Estimated parameters.
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