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Abstract

The estimation of random parameters by means of mixed logit models is be-
coming current practice amongst discrete choice analysts, one of the most straight-
forward applications being the derivation of willingness to pay distribution over a
heterogeneous population. In numerous practical cases, parametric distributions
are a priori specified and the parameters for these distributions are estimated. This
approach can however lead to many practical problems. Firstly, it is difficult to
assess which is the more appropriate analytical distribution. Secondly, unbounded
distributions often produce values ranges with difficult behavioural interpretation.
Thirdly, little is known about the tails and their effects on the mean of the estimates.
(Hess, Bierlaire, Polak [18], Cirillo and Axhausen [6]).

In this paper, we propose to capture the randomness present in the model by us-
ing a new nonparametric estimation method, based on the approximation of inverse
cumulative distribution functions. This technique is applied to simulated data and
the ability to recover both parametric and non-parametric random vectors is tested.
The non-parametric mixed logit model is also used on real data derived from a
Stated Preference survey conducted in the region of Brussels (Belgium) in 2002.
The model presents multiple choices and is estimated on repeated observations.

1 Introduction

In mixed logit models estimation, investigators traditionally use parametric models in-
volving specific functional forms and a finite number of unknown parameters. Among
them, some are considered as random variables in order to reflect population hetero-
geneity.

The early applications of mixed logit have mainly used normal distributions. The
use of unbounded distributions however appears inappropriate in many cases: certain
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attributes are assumed to be positively (or negatively) valued by all individuals; more-
over, a zero cost coefficient causes problems for the evaluation of the willingness to
pay. In order to circumvent these difficulties, more recent models use bounded distri-
butions, often obtained as simple transformations of normals. Train and Sonnier [27]
specify mixed logit models with lognormal, censored normal and Johnson Sb distribu-
tions bounded on both sides. They also suggest to adopt Bayesian procedure in order
to avoid estimation problems encountered with log-normal distributions parameters.

Some investigators have also questioned whether the underlying theory is capa-
ble of conveying sufficient information to enable a correct and successful specifica-
tion of parametric models and have instead proposed the less restrictive nonparamet-
ric or semiparametric approaches to the problem. In that context, Dong and Koppel-
man [9] assume that distributions are represented by a finite number of points and use
the Bayesian method to recover their mass and the associated probabilities. They in-
dicate that Maximum Likelihood Mixed Logit failed to recover the true mass points
from simulated data, although no reasons are given to explain that fact. The empiri-
cal analysis reported by these authors show that Mass Point Mixed Logit is superior
to Parametric Mixed logit. Those results are nevertheless limited by the use of only
two points along each of the parameter dimensions. Hess, Bierlaire and Polak [17]
propose discrete mixture of GEV models over a finite set of distinctive support points.
The major advantage of this approach is the lack of need for simulation processes. The
authors however report several issues in the estimation of such models mainly due to
the non-linearity non-concavity of the log-likelihood function.

Hensher [15] resolves the problem of behaviourally incoherent sign changes by im-
posing a global sign condition on the marginal disutility expression and gives an appli-
cation on the valuation of travel-time savings for car commuters. He adopts a globally
constrained Rayleigh distribution for total travel time parameterization, although his
focus is not on the specific analytical distribution, but on the behavioural appeal of
the imposition of a global sign condition. Train and Weeks [28] place distributional
assumptions on the willingness to pay and derive the distribution of the coefficients.
Their major finding is that models using normal and lognormal distributions for co-
efficients (models in preference space) fit the data better than those in willingness to
pay space but provide less reasonable distribution for the willingness to pay. They also
conclude that it is not possible to identify the distribution to use in all situations and
that the best distribution-fit is highly situation-dependent. Fosgerau [13] employs vari-
ous non-parametric techniques to investigate the distribution of the travel-time savings
from a stated choice experiment. The methodology adopted by this author relies on a
two-step estimation procedure: a Klein and Spady [20] estimator is first used to esti-
mate parameters in a linear index binary choice model with no assumptions on the error
term distribution; the distribution of the error term is then estimated. This method does
not account for repeated observations and applies only to binomial choices. Recently,
Fosgerau and Bierlaire [12] have proposed a semi nonparametric (SNP) specification,
based on Legendre polynomials, to test if a random parameter of a discrete choice
model follows a given distribution. The SNP technique has been successfully applied
to simulated data for testing the null hypothesis that the true (and known) distribution
is a normal or lognormal and to a simple real case study; the test is adapted for just one
random parameter at a time.
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The purpose of this paper is to introduce a new non-parametric approach to resolve
the difficulties associated with the identification of underlying unknown base random
distributions. Our proposal is characterized by the explicit estimation of the shape of
the unknown distributions, expressed via their cumulative distributions, as a part of the
complete calibration procedure. Due to multiple modelling assumptions, such as linear
utilities or the use of a Gumbel distribution to characterize the unobserved part of the
utility function, the recovering of the true distributions inside the population is a tricky,
and perhaps vain, task. It is nevertheless meaningful to capture the randomness nature
of some parameters to correctly apprehend to heterogeneity inside the population. We
will exhibit in this paper that our approach, even based on rough approximations, is
able to fulfil this objective.

In order to perform this estimation efficiently, we use a B-spline parametrization
of the inverse cumulative distribution functions and the associated monotonicity con-
straints are then included in the log-likelihood maximization. B-splines are known to
provide a concise formulation for curves that are composed of many polynomial pieces,
thereby automatically controlling the overall curve smoothness (Farin [11]). This tech-
nique is often used for nonparametric regression (Fox [14]). Recent applications in
such areas as meteorology, medicine and price modeling can be found in Singh, Mc-
Namara, and Lozanoff [25], Jarvis and Stuart [19], and Bao and Wan [2]. To date there
have only been a handful of applications of this class of functions in econometrics (En-
gle, Granger, Rice, and Weiss [10], Koenker, Ng and Portnoy [21]), partly due to the
difficulty to impose some conditions, as monotonicity. To our best knowledge, it is new
for mixed logit models estimation. The random variables of the objective functions are
here assumed to be continuous, bounded, and independent, and we are interested by
the inverse cumulating distribution functions. These functions are modeled by means
of cubic B-splines with strictly increasing base coefficients, a sufficient condition to
construct monotonic (increasing) functions. As a result, the number of parameters that
have to be estimated increases; the information on the shape of the random variables
however should help the analyst to find the right parametric distribution for the random
parameters (if this exists).

The paper is organized as follows. Section 2 briefly recalls the Mixed logit model
formulation and the estimation techniques adopted to solve the related maximum log-
likelihood problem. Non-parametric estimation of continuous variables is developed
on Section 3, together with a short review of the constrained optimization techniques
used to ensure a correct function shape. Section 4 presents results obtained on sim-
ulated data and discusses the ability to recover both parametric and non-parametric
random vectors. Results on a real case study are given in Section 5. Conclusions and
perspectives for research are finally presented.

2 Mixed Multinomial Logit Model (MMNL) formula-
tion

The mixed logit formulation is nowadays extensively used in transport modeling for its
flexibility. In particular, MMNL models estimate taste variation, avoid the problem of
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restricted substitution pattern in standard logit model and account for state dependency
across observations.

We consider a set of I individuals, each one having to choose one alternative within
a finite set Aj . We associate an utility Uij to each alternative Aj in Ai, as perceived
by individual i. Relying on the econometric theory, we also assume that individuals
aim to maximize their utility, but we do not observe all the components. Instead, we
decompose the utility Uij as the sum of a deterministic part Vij(β), where β is a vector
to estimate, and a random, unobserved part εij . The probability choice is then

Lij(β) = P [Vij(β) + εij ≥ Vin(β) + εin, ∀An ∈ A(i)].

The probability expression is of course dependent of the distribution choice for εij .
When the εij’s are assumed to be i.i.d. Gumbel’s amongst the individuals and alterna-
tives, we obtain the traditional logit probabiilty.

In the mixed logit framework, we relax the assumption that β is a constant vector,
but instead a random vector with cumulative distribution function (CDF) FB(β) so that
the probability choice Lij is now conditional on the realization β, and the unconditional
probability is

Pij = EB [Lij(β)] =

∫

Lij(β)dPB(β). (1)

We therefore cannot directly estimate B, so we will assume that it can be described as
B = B(Γ, θ), where Γ is some random vector, and θ some constant parameters vector
to estimate. In other terms, we assume some distribution family for B, parametrized
by θ. If, moreover, the vector β is continuous, we can rewrite (1) as

Pij(θ) =

∫

Lij(γ, θ)φ(γ, θ)dγ,

where φ(γ, θ) is the density of B, with parameters vector θ.
In the case when the same individual can express several choices, we observe for

each individual the sequence of choices yi = (ji1, . . . , jiTi
), that can be assumed to be

correlated, and we will consider the data as panel data. A simple way to accomodate
this situation is to assume the heterogeneity is present on the population level only, but
not on the individual level. The probability to observe the individuals choices is then
given by the product of logit probabilities Lijit

(Train [26]):

Piyi
(θ) =

∫
(

Ti∏

t=1

Lijit
(γ, θ)

)

φ(γ, θ)dγ.

2.1 MMNL Model estimation

The vector of unknown parameters is estimated by maximizing the log-likelihood func-
tion, i.e. by solving the problem:

max
θ

LL(θ) = max
θ

1

I

I∑

i=1

ln Piyi
(θ), (2)
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where yi is the vector of alternative choices made by the individual i. This involves
the computation of Piyi

(θ) for each individual i (i = 1, . . . , I), which is impractical
since it requires the evaluation of one multidimensional integral per individual. To
approximate this integral, a popular approach is to choose for each individual a point
set SR = {u1, . . . , uR} in (0, 1]s, where s is the problem dimension, i.e. the number
of random coefficients, convert the vectors uri

to the (multivariate) distribution of Γ,
and then take the average value of the function over SR. This leads to the simulated
probability

SP R
iyi

=
1

R

R∑

ri=1

Ti∏

t=1

Lijit
(γri

, θ),

where R is the number of random draws γri
. As a result, θ is now computed as one

solution of the simulated log-likelihood problem

max
θ

SLLR(θ) = max
θ

1

I

I∑

i=1

ln SP R
iyi

(θ).

We will denote by θ∗R one solution of this last approximation (often called Sample Av-
erage Approximation, or SAA), while θ∗ denotes the solution of the true problem (2).

3 Non-parametric estimation of continuous variables

Most of the studies devoted to estimation of parameters without assumptions on the un-
derlying distributions are concerned with discrete distributions. Such a discrete treat-
ment could lead to an arbitrary population segmentation, which can be avoided if we
turn to continuous distributions.

Each component of the random vector inherent to the mixed logit function is itself
random, and if we assume independence between these components, we can consider
each one separately. Then all what we have to do is to draw from univariate ran-
dom variables. If X is an univariate random distribution, a well-known technique to
generate draws from its distribution consist to sample an uniform on [0, 1], hereafter
denoted by U [0, 1], and to apply the inverse cumulative distribution function F −1

X to
these draws:

SX = {F−1

X (U), U ∼ U [0, 1]},

where SX represented the sample set drawn from the random variable X . It is usually
assumed that F−1

X is available (or at least some numerically good approximation of it),
the distribution X being known. This method is known as the inversion technique in
the random numbers generation litterature (Devroye [8], Law [22]), and is also popular
in the context of variance reduction methods (see for instance L’Ecuyer [23]).

We will capitalize on this approach by assuming that the distribution of the random
variable X is not known, but that FX , or more precisely F−1

X , can still be approximated
in some way. If X is a random continuous variable, the only properties that F −1

X has
to satisfy are:

• F−1

X : [0, 1] → R,
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• F−1

X is monotonically increasing,

• F−1

X is continuous.

In other terms, we have to estimate an arbitrary continuous real function whose domain
is [0, 1], and which is monotonically increasing.

Functions approximation is a large field of mathematics, and various techniques are
possible. We however seek an adequate balance between estimation capabilities and
satisfaction of the conditions ensuring that we can interpret the function as an inverse
cumulative distribution function. Moreover, the density exists only for continuous dis-
tributions, and is the derivative of the cumulative distribution function. It is also usually
easier to estimate a function rather than its derivative. All these considerations lead us
to propose to estimate the inverse cumulative distribution function and to express it as
some element of a functional space:

F−1

X (·) =
∞∑

k=1

pkhk(·),

where {hk, k = 0, . . . ,∞} constitute a basis of this space and pk are the coordinates
of FX (if the basis cardinal is finite, and equal to n, we just set hk and pk to 0, for
k > n).

If we furthermore assume that the random variable X has a bounded support, an
elegant way to achieve such a balance is the use of B-spline functions. The bounded
support assumption is not too much restrictive, since extreme behaviours, correspond-
ing to values of X tending to plus or minus infinity, are usually not welcome since that
are difficult to interpret. We therefore consider the bounded support assumption as an
advantage rather than a drawback of the proposition.

A B-spline function of degree p is a polynomial function of degree p, defined on
the interval [a, b], that can be expressed as a linear combination of n+1 basis functions
Ni,p(u), as follows:

C(u) =
n∑

i=0

PiNi,p(u).

The coefficients P0, P1, . . . , Pn are called the control points, and u is the knot vector
(u0 = a, u1, . . . , um = b). The basis functions can be constructed by recurrence on
the degree p:

Ni,0 =

{

1 if u ∈ [ui, ui+1),

0 otherwise.
and

Ni,p =
u − ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u),

so that n is equal to m − p − 1.
There are several types of knot vectors, but one especially convenient for our pur-

poses is the nonperiodic (or clamped or open) knot vector, which has the form

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

},
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that is the first and last knots have multiplicity p + 1.
It is possible to show that the function C(u) is p−1 continuously differentiable. In

this paper, we will consider cubic B-splines, i.e. we will set p to 3. Another particularly
nice property with respect to our needs is that with these basis and knots choices, C(u)
is monotonically increasing if P0 ≤ P1 ≤ . . . ≤ Pn. As we will describe in the
next Section, this property can be algorithmically guaranteed. The resulting spline
construction is illustrated in Figure 1.
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Figure 1: Basis B-splines and monotonically increasing spline.

For a more complete review of B-splines properties, we refer the reader to Piegl
and Tiller [24].

3.1 Constrained Optimization

When estimating the log-likelihood function, we have to solve a problem of the form

max
x∈C

f(x),

where C ⊂ Rn is the feasible region. In our case, C will have the form

C = {xdi ≤ xdi+1 ≤ . . . ≤ xdi+n},

for some i’s in N0. That is C is the set of real numbers satisfying the monotonicity
constraints. Such constraints can be easily dealt with projections. For simplicity, we
temporarily assume that we only have one non-parametric coefficient, so that C defines
k ordered variables. C is then call the order-simplex, as illustrated in Figure 2 for the
three-dimensional case.

The projection onto the order-simplex can be performed easily and efficiently, since
several algorithms of complexity O(n) have been designed (Ayer, Brunk, Ewing, Reid
and Silverman [1], Best and Chakravarti [4]). Moreover, it is possible to adapt a well-
known approach for nonlinear optimization, the trust-region algorithm, to benefit from
such projections (see Chapter 12 of Conn, Gould, and Toint [7]). The main idea of
a trust-region algorithm involves the calculation, at iteration k (with current estimate
θk), of a trial point θk + sk by approximately maximizing a model mk of the objective
function inside a trust region defined as

Bk = {θ such that ‖θ − θk‖k ≤ ∆k},
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Figure 2: Order-simplex

where ∆k is called the trust-region radius. We will here use a quadratic model:

mk(s) = SLLR(θk) + sT∇θSLLR(θk) +
1

2
sT Hks, (3)

where Hk is a symmetric approximation of the Hessian ∇2
θθSLLR(θk). The step sk

is computed by first attempting to identifying the active constraints by maximizing the
model (3) along the projected gradient path (illustrated in Figure 3). Once these active
constraints have been guessed, the model is further maximized in the corresponding
face using an approximate projected truncated conjugate-gradient technique. The pre-
dicted and actual increases in the value of the objective function are then compared by
computing the ratio

ρk =
SLLR(θk + sk) − SLLR(θk)

mk(θk + sk) − mk(θk)
,

If this ratio is larger than a certain threshold, set to 0.01 in our tests, the trial point
becomes the new iterate, and the trust-region radius is (possibly) enlarged. More pre-
cisely, if ρk is larger than 0.75, we set the trust-region ∆k to be the maximum between
θk and 2‖sk‖, otherwise we set ∆k = 0.5∆k. If the ratio is below the bound, the trial
point is rejected and the trust region is shrunk by a factor of 2, in order to improve
the correspondence of the model with the true objective function, thereby concluding
the iteration. Details of the convergence theory and constraint identification for the
proposed algorithm may be found in Chapter 12 of [7].
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Figure 3: Projected conjugated gradient path

4 Simulations

Our first experiment aims at verifying that known distributions can be approximately
recovered by our estimation technique. In our simulated experiments we create two
synthetic populations; the first data set is cross sectional and simulates 2000 individuals
giving just one response, the second data set is a panel of 1000 individuals contributing
with two observations each. The design contains four alternatives, normally distributed
with parameters N(0.5, 1), and one independent variable. We run two simulations on
each of the data sets described. The first supposes that the coefficient to be estimated is
normally distributed with parameters N(0, 4). The second assumes that the coefficient
is lognormally distributed with mean 1.133 and standard deviation 0.604. Results are
illustrated in the following figures, where the cumulative distribution function (CDF) is
shown on the left and the inverse of the cumulative distribution function (ICDF) on the
right, and the spline is constructed using the knot vector {0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1}.
As far as normal distribution is concerned, we note that B-splines approximate quite
well the true distribution of the coefficient except on the tails. This should be expected
since we approximate an unbounded distribution with a bounded distribution. The
approximation is less accurate when trying to reproduce a coefficient with lognormal
distribution, but the general behaviour is captured. In both cases results are better with
panel data.
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Figure 4: Spline reproducing normal distribution on cross-sectional data
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Figure 5: Spline reproducing normal distribution on panel data
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Figure 6: Spline reproducing lognormal distribution on cross-sectional data
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Figure 7: Spline reproducing lognormal distribution on panel data
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5 Real case study: IRIS survey

Stated preference data are used to validate our methodology on a real case. The IRIS
dataset is derived from a survey conducted in the region of Brussels (Belgium) in the
autumn of 2002. The respondents are car users, intercepted during morning peak hours
on the ring that gives access to the city from the suburban areas. They were presented
with up to three scenarios, each containing four choice options: car, car with delayed
departure time, public transport and car on a High Occupancy Vehicles lane (this latest
alternative being only prospective). For a more detailed description about the scope of
the survey, the way it was administrated, the design and the principal findings we refer
the reader to Bastin, Cirillo and Toint [3]. The final mode choice model is estimated
on 2602 observations belonging to 871 individuals. The original model specification
contained 18 exogenous variables, of which seven were assumed to be randomly dis-
tributed; in particular the two components of time (congested travel time and free-flow
travel time) were assumed to be lognormal and cost was kept constant. Here, we extend
the original analysis to normal and non-parametric distribution (based on B-Spline) for
both time and cost coefficients. In total six model specifications have been estimated:

(1) times normally distributed, cost constant (T N);

(2) times and cost normally distributed (T-C N);

(3) times log-normally distributed, cost constant (T L);

(4) times and cost log-normally distributed (T-C L);

(5) times B-Spline distributed, cost constant (T BS);

(6) times and cost B-Spline distributed (T-C BS).

For the B-Spline coefficients, seven coefficients (P1,P2,...,P7) have been estimated,
where P1 and P7 give the bounds of the distribution, and the knot vector is defined
on the percentiles 0, 0.25, 0.5, 0.75, and 1. Monte Carlo simulations based on 2000
random draws per individual have been adopted to calculate the maximum likelihood.
The results provided ihave been averaged over ten simulations. All the runs have been
executed with a modified version of AMLET, available in open source from the site
http://www.grt.be/amlet. The coefficient estimates are reported in Table 1. Due to
space limitations we do not report t-statistics, but all the coefficients except the alter-
native specific constant of public transport are significant at 5% level. These results
confirm the existence of both time and cost taste heterogeneity across the population.
The fit of the model improves when we replace lognormal distributions with normal
distributions; the use of non-parametric distributions reinforces that trend (Table 2).
When we apply normal distribution to both congested (Cong T Time) and free-flow
travel time (FF T Time) parameters we obtain that for the first component about 16%
and for the second about 20% of the population have positive values. These percent-
ages do not change much when we estimate non-parametric distributions for both con-
gested and free-flow travel time. However, B-Spline indicates a reduction of positive
values for cost coefficient from the 31.6% obtained with normal distribution to 11.9%,
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a large proportion of the population having a cost coefficient close to 0. In order to
compute the values of travel time savings (VTTS), we simply draw on time and cost,
and compute the corresponding ratio. The effects of the different distributions adopted
on values of travel time savings (VTTS) are shown on Table 3 where the 25th, 50th
and 75th percentiles are calculated; the resulting distributions and the inverse of the
cumulative distribution function are presented on Figure 10 and Figure 11, where we
used 750.000 draws; for the non-parametric distributions we also present the values
corrected by truncating the distributions at zero Table 4. For completeness, we also
present the mean VTTS, defined as the ratio 60E[time]/E[cost]. Note that in order
to be able to compare all distributions, we transform the lognormal CDF (only defined
on R+, and estimated using the opposite of associated observations) to its symmetric
distribution with respect to the vertical axis on 0.
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Figure 8: Congested Travel Time and Free-Flow Travel Time CDF
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Figure 9: Cost CDF

We observe quite a lot of variability in VTTS values, especially when cost is as-
sumed to be random. Lognormal distribution applied to both time and cost parameters
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Parameter T N T-C N T L T-C L T BS T-C BS
Car Passenger(CP) µ -1.252 -1.305 -1.153 -1.151 -1.226 -1.289
HOV (HOV) µ -4.773 -4.903 -5.253 -5.358 -4.606 -4.888
HOV (HOV) σ 4.668 4.759 4.919 4.954 4.583 4.897
Shared car on HOV (HOVs) µ -6.704 -7.138 -7.259 -7.741 -6.561 -7.321
Shared car on HOV (HOVs) σ 6.009 6.149 6.372 6.554 5.904 6.413
Public Transport (PT) µ -0.869 -0.958 -0.839 -0.841 -0.824 -0.817
Cong T Time P1 -0.074 -0.078 -2.822 -2.786 -0.212 -0.250
Cong T Time P2 0.076 0.077 1.004 1.003 -0.182 -0.204
Cong T Time P3 -0.141 -0.152
Cong T Time P4 -0.041 -0.045
Cong T Time P5 -0.036 -0.039
Cong T Time P6 -0.036 -0.029
Cong T Time P7 0.696 0.656
FF T Time P1 -0.066 -0.070 -2.976 -2.929 -0.249 -0.270
FF T Time P2 0.080 0.083 1.051 1.078 -0.178 -0.225
FF T Time P3 -0.095 -0.093
FF T Time P4 -0.080 -0.083
FF T Time P5 0.010 0.002
FF T Time P6 0.013 0.025
FF T Time P7 0.126 0.078
Cost P1 -0.291 -0.363 -0.282 -2.318 -0.309 -3.587
Cost P2 0.757 1.758 -1.345
Cost P3 -0.6086
Cost P4 -0.584
Cost P5 -0.267
Cost P6 0.187
Cost P7 1.269
Toll (HOV) µ -0.494 -0.499 -0.508 -0.513 -0.493 -0.359
Dist.(CD,CP,CDs,CPs,HOV,HOVs) µ 0.192 0.212 0.214 0.238 0.186 0.218
Dist.(CD,CP,CDs,CPs,HOV,HOVs) σ 0.236 0.253 0.251 0.274 0.239 0.257
Trip Freq. -once a week (PT) µ 3.423 3.982 3.235 3.0746 3.482 3.701
Comfort no-seats (PT,PTs) µ -1.211 -1.409 -1.169 -1.298 -1.272 -1.411
Comfort crowded (PT,PTs) µ -1.872 -2.0409 -1.877 -2.024 -1.906 -2.059
Earlier Dep. Time (CP,CPs) µ -2.836 -2.939 -3.233 -3.302 -2.703 -3.009
Earlier Dep. Time (CP,CPs) σ 2.559 2.594 2.878 2.876 2.506 2.723
Later Dep. Time (CP,CPs) µ -1.908 -2.054 -2.442 -2.586 -1.887 -2.129
Later Dep. Time (CP,CPs) σ 2.026 2.145 2.575 2.728 2.0885 2.277
Much Later Dep. Time (CP,CPs) µ -2.464 -2.615 -2.685 -2.808 -2.390 -2.647
Self-employed (CD-HOV) µ 1.763 1.740 1.878 1.799 1.669 1.699
Manager (HOV) µ 1.206 1.172 1.272 1.306 1.203 1.187
Num. cars -3 per HHLD (CD) µ 2.297 2.437 2.027 2.112 2.237 2.375

Table 1: Real data: IRIS parameters estimation
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Dist. T N T-C N T L T-C L T BS T-C BS
Loglikelihood β -3.1460 -3.1399 -3.1604 -3.1511 -3.1453 -3.1339

Table 2: Real data: Final log-likelihood values for the six models estimated

Quant. T N T-C N T L T-C L T B-S T-C BS
Cong T Time 25% 4.75 3.36 6.41 16.10 7.20 2.42

50% 15.31 4.52 12.64 37.61 11.05 4.36
75% 25.89 10.49 24.88 87.77 26.12 16.68
Mean 15.323 12.96 20.90 13.17 7.90 4.74

FF T Time 25% 2.56 2.10 5.33 14.03 0.89 0.70
50% 13.72 6.24 10.84 32.65 13.53 3.07
75% 24.91 11.35 22.02 75.74 22.18 14.35
Mean 13.74 11.61 18.798 12.35 12.64 7.47

Table 3: Real data: value of travel time savings

Quant. T N (corr.) T-C N (corr.) T BS (corr.) T-C BS (corr.)
Cong T Time 25% 10.25 4.65 7.84 4.56

50% 18.54 5.59 15.03 6.95
75% 27.98 12.54 28.47 17.01
Mean 19.93 7.94 18.35 7.83

FF T Time 25% 9.64 4.40 9.55 3.96
50% 17.97 4.87 17.11 5.60
75% 27.68 12.62 25.67 15.23
Mean 19.58 7.92 18.59 7.65

Table 4: Value of travel time savings from B-Spline truncated at zero
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Figure 10: Value of Congested Travel Time

14



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-30 -20 -10  0  10  20  30  40

Normal
Lognormal

Spline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45

Normal
Lognormal

Spline

Figure 11: Value of Free-Flow Travel Time

produce high VTTS values for the known effect of fat tails [16]. Normal distributions
result into low VTTS values given the relatively high percentages of “wrong” positive
values for time and cost. Non-parametric distributions produce VVTS values that are
close to those obtained with normal distributions; in particular non-parametric distri-
butions on time and cost result into a congested VTTS higher than free-flow VTTS
(as expected). Computational time does increase with model flexibility; when three
parameters are specified as non-parametric optimization time is about 74 minutes on
a MacBook Pro, which is 6 times higher than the time required to estimate the same
model with three normal distributions instead. Still, these values are very reasonable es-
pecially if we consider that improvements are possible by adopting quasi-Monte Carlo
draws [5] or an adaptive algorithm as in Bastin et al. [3], as well as various refinements
of the current code. To summarize, we found that non-parametric B-Splines (a) on both
time and cost coefficients provide the best fit, (b) reduce significantly the percentages of
the population showing positive values for cost but leave unchanged the proportion of
positive time values, (c) give VTTS ranges that do not suffer from fat tail effects. This
suggests that the lognormal assumption, even if it more coherent with the econometric
theory, is not reasonable here, and the non-parametric approach has the advantage over
the normal to bound the distributions.

6 Conclusion

The estimation of heterogeneity in travel time saving has become one of the most dis-
cussed subjects in travel behaviour. This problem is often approached with advanced
demand models that allow the estimation of random coefficients with parametric distri-
bution. This approach is not without drawbacks, especially the choice of the "best" dis-
tribution is not a trivial task. In this paper we have proposed to turn to non-parametric
methods by adopting B-spline curves as polynomial approximations of arbitrary dis-
tributions, and we have implemented them into a classical mixed logit formulation.
Constrained optimization methods are used to deal with the monotonicity of the in-
verse of the cumulative distribution functions. The method has been applied to both
simulated and real data. The results from simulated data show that B-Spline have been
able to recover the initial and known parametric distributions. We have also used real
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data to validate our methodology and found that for the IRIS data set not only the
goodness of fit of the non-parametric model is better, but that it also gives VTTS dis-
tributions that would be very difficult to recover with classic parametric distributions.
Thus parametric approach can fail to detect the real distribution and non-parametric
random variables could guide the analysts in search for the real shape of the coeffi-
cients distributions. The proposed approach is highly flexible and can handle more
than one random parameter at a time. However, improved model flexibility comes at
the expense of a (moderate) increase in computational costs, that are higher to those
needed to run classical parametric mixed logit models. Finally, most methods to gen-
erate multivariate distributions rely on the marginal functions and some dependence
treatment between these marginals. These methods usually exploit the inversion tech-
nique to generate these marginals, so a natural extension of the proposed method will be
to examine how to apply it to such multivariate random vector generation techniques.
This issue, together with recent applications proposed in econometrics to study state
dependency, will be part of our future investigations.
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