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Abstract

We describe LANCELOT simple, an interface to the LANCELOT B nonlinear optimization pack-
age within the GALAHAD library (Gould, Orban and Toint, 2003) which ignores problem structure.
The result is an easy-to-use Fortran 90 subroutine, with a small number of intuitively interpretable
arguments. However, since structure is ignored, the means of presenting problems to the solver
limited and the choice of algorithmic parameters considerably restricted, the performance is likely
to be sub-optimal. The proposed interface may nevertheless be useful for users interested in
the solution of simple low-dimensional problems when ease of interface matters more than actual
numerical efficiency.

1 Introduction

This note presents LANCELOT simple, a simple and somewhat naive Fortran 90 interface to the sophis-
ticated optimization package LANCELOT B, whose aim is to solve the nonlinear optimization problem

min
x∈IRn

f(x),

possibly subject to constraints of the one or more of the forms

bl ≤ x ≤ bu,

ce(x) = 0,

ci(x) ≤ 0,

where f : IRn → IR, ce : IRn → IRm and ci : IRn → IRq are twice-continuously differentiable functions,
and bl, bu are vectors of IRn whose components are allowed to be arbitrarily large in absolute value.
LANCELOT B is one of the packages contained in the GALAHAD software library for numerical nonlinear
optimization(1).

Why do we call this interface naive? At variance with more elaborate interfaces for LANCELOT, the
one presented here completely ignores any underlying partial separability or sparsity structure, limits
the forms under which the problem can be presented to the solver and drastically restricts the range of
available algorithmic options. While undoubtedly simpler to use than its more elaborate counterpart, it
may thus offer inferior numerical performance, especially for difficult/large problems, where structure
exploitation and/or careful selection of algorithmic variants matter. Thus, be warned that

THE BEST PERFORMANCE OBTAINABLE WITH LANCELOT B
IS MOST LIKELY NOT WITH THIS NAIVE INTERFACE.

(1)See http://galahad.rl.ac.uk/galahad-www/index.html.
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2 How to use the interface

Before using LANCELOT simple, its module must be made available:

USE LANCELOT_simple_double

The complete calling sequence(2) for LANCELOT simple is as follows:

CALL LANCELOT_simple ( n, X, fx , exit_code [, MY_FUN ] [, MY_GRAD ] &

[,MY_HESS ] [,BL] [,BU] [, VNAMES ] [, CNAMES ] &

[,neq] [,nin] [,CX] [,Y] [, iters ] [, maxit ] &

[,gradtol ] [, feastol ] [, print_level ] )

where the arguments within brackets are optional. The following sections indicate how this calling
sequence can be used in commonly occuring contexts.

2.1 Unconstrained minimization problems

The user should provide, at the very least, suitable values for the following input arguments:

n (integer): the number n of variables,

X (double precision vector of size n ): the starting point for the minimization

In addition the user must provide a subroutine to compute the objective function value at any given
x, with the default name and interface

FUN( X, fx )

where X(1:n) contains the values of the variables x on input, and fx is a double precision scalar
returning the value f(x). If no further information is given, the problem is taken to be unconstrained,
and derivatives of f are unavailable (gradients will be estimated by forward finite-differences by the
LANCELOT package, and Hessian approximated using the Symmetric-Rank-One quasi-Newton up-
date).

The best value of x found by LANCELOT B is returned to the user in the vector X and the associated
objective function value in the double precision output argument fx. In addition, the integer output
argument exit code contains the exit status of the LANCELOT run, the value 0 indicating a successful
run. Other values indicate errors in the input or unsuccessful runs, and are detailed in the specification
documentation for LANCELOT B (with the exception of the value 19 in the constrained case discussed
later, which reports a negative value for one or both input arguments nin and neq).

It is also possible to specify a different name for the objective function evaluation subroutine,
replacing FUN by, say, FUNPROB. This is accomplished by specifying the optional argument MY FUN to
have the value FUNPROB. This is, in turn, best done by including the explicit declaration MY FUN =
FUNPROB in the calling sequence to LANCELOT simple after the leading four compulsory arguments, as
well as the declaring FUNPROB as external. Note that FUNPROB must have the same calling sequence as
FUN.

If the user is able to provide the gradient of f , then the optional input argument MY GRAD must be
specified and given the name of the user-supplied routine for computing the gradient, say GRADPROB.
This subroutine must have an interface of the form

GRADPROB ( X, G )

where G is a double precision vector of size n in which the subroutine returns the value of the gradient
of f at x = X. The calling sequence to LANCELOT simple must thus contain (in this case), MY GRAD =
GRADPROB, and a declaration of GRADPROB as external.

If, additionally, the user is willing to compute the second-derivative matrix of f at x, the optional
input argument MY HESS must be specified and given the name of the user-supplied routine computing
the Hessian, say HESSPROB. This must have an interface of the form

(2)The reference package specification document is available in the GALAHAD installation tree in the file
./doc/lancelot simple.pdf.
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HESSPROB ( X, H )

where H is a double precision vector of size n*(n+1)/2 in which the subroutine returns the entries
of the upper triangular part of the Hessian of f at x =X, stored by columns. The calling sequence
to LANCELOT simple must thus contain (in this case), MY HESS = HESSPROB, and a declaration of
HESSPROB as external. Note that first derivatives must also be available in this case, and MY GRAD must
thus be specified.

The names of the problem variables may be specified in the optional input argument

VNAMES (a size n vector of character fields of length 10)

by inserting VNAMES = mynames in the calling sequence.
One final feature is that by specifying the optional integer argument iters = lanit, the number

of iterations performed by LANCELOT is recorded in lanit.

Example

Let us consider the optimization problem

min
x1,x2

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2,

which is the renowned Rosenbrock “banana” problem. The most basic way to solve the problem (but
not the most efficient) is, given the starting point X = (/ -1.2d0, 1.0d0 /), to

CALL LANCELOT_simple ( 2, X, fx , exit_code )

where the function FUN is given by

SUBROUTINE FUN( X, F )

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 )

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: F

F = 100.0 _wp*(X(2)-X(1)**2)**2 +(1.0 _wp -X(1))**2

RETURN

END SUBROUTINE FUN

After compiling and linking (with the GALAHAD modules and library), the solution is returned in 60
iterations (with exit code = 0). The same effect is obtained by the call

CALL LANCELOT_simple ( 2, X, fx , exit_code , MY_FUN = FUN )

but this syntax allows the change of name from FUN to, say, ROSENBROCK FUN in the user-supplied
program, as discussed above.

If we now wish to use first and second derivatives of the objective function, one could use the call

CALL LANCELOT_simple ( 2, X, fx , exit_code , MY_FUN = FUN , &

MY_GRAD = ROSENBROCK_GRAD , &

MY_HESS = ROSENBROCK_HESS )

provide the additional routines

SUBROUTINE ROSENBROCK_GRAD ( X, G )

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 )

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: G( : )

G( 1 ) = -400.0 _wp*(X(2)-X(1)**2)*X(1) -2.0 _wp *(1.0_wp -X(1))

G( 2 ) = 200.0 _wp*(X(2)-X(1)**2)

RETURN

END SUBROUTINE ROSENBROCK_GRAD

and
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SUBROUTINE ROSENBROCK_HESS ( X, H )

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 )

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: H( : )

H( 1 ) = -400.0 _wp*(X(2) -3.0 _wp*X(1)**2)+2.0 _wp

H( 2 ) = -400.0 _wp*X(1)

H( 3 ) = 200.0 _wp

RETURN

END SUBROUTINE ROSENBROCK_HESS

and declare them external in the calling program.
Convergence is then obtained in 23 iterations. Note that using exact first-derivatives only is also

possible: MY HESS should then be absent from the calling sequence and providing the subroutine
ROSENBROCK HESS is unnecessary.

2.2 Bound constrained minimization problems

Bounds on the problem variables may be imposed by specifying one or both of

BL (double precision vector of size n): the lower bounds bl on the variables,

BU (double precision vector of size n): the upper bounds bu on the variables.

Note that infinite bounds (represented by a number larger than 1020 in absolute value) are acceptable,
as well as equal lower and upper bounds, which amounts to fixing the corresponding variables. Except
for the specification of BL and/or BU, the interface is identical to that for unconstrained problems
described in the previous paragraph.

Example

If one now wishes to impose zero upper bounds on the variables of our unconstrained problem and
give names to the variables and the objective function, one could use the following call

VNAMES (1) = ’x1 ’

VNAMES (2) = ’x2 ’

CALL LANCELOT_simple ( 2, X, fx , exit_code , MY_FUN = FUN , &

MY_GRAD = ROSENBROCK_GRAD , &

MY_HESS = ROSENBROCK_HESS , &

BU = (/ 0.0d0 , 0.0 d0 /), &

VNAMES = VNAMES )

in which case convergence is obtained in 6 iterations.

2.3 Equality constrained minimization problems

If, additionally, general equality constraints are also present in the problem, this must be declared by
specifying the following additional optional input argument

neq (integer): the number m of equality constraints.

In this case, the equality constraints are numbered from 1 to neq and the value of the i-th equality
constraint must be computed by a user-supplied routine of the form

FUNPROB ( X, fx , i ) ( i = 1,... ,neq )

where the fx now returns the value of the i-th equality constraint evaluated at x = X if i is specified.
(This extension of the unconstrained case is best implemented by adding an optional argument i to the
unconstrained version of FUN.) If derivatives are available, then the GRADPROB and (possibly) HESSPROB
subroutines must be adapted as well

GRADPROB ( X, G, i ) HESSPROB ( X, H, i ) ( i = 1 ,... ,neq )
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to compute the gradient and Hessian of the i-th constraint at x = X. The constraints may be assigned
names in the optional input argument

CNAMES (a size neq array of character fields of length 10)

The name of constraint i should appear in CNAMES(i) for each i = 1, ..., neq.
Note that, if the gradient of the objective function is provided, so must the gradients of the equality

constraints. The same level of derivative availability is assumed for all problem functions (objective and
constraints). The final values of the constraints and the values of their associated Lagrange multipliers
are optionally returned to the user in the double precision output arguments CX and Y, respectively
(both being of size neq).

2.4 Inequality constrained minimization problems

If inequality constraints are present in the problem, they are included just as for equality constraints.
One needs to specify the optional input argument

nin (integer): the number q of inequality constraints.

The inequality constraints are then numbered from 1 to nin and their values or that of their derivatives
is again computed by calling, for i = 1,...,nin,

FUNPROB ( X, fx , i ) GRADPROB ( X, G, i ) HESSPROB ( X, H, i )

The inequality constraints are internally converted to equations by adding slack variables, whose names
are set to Slack i, where the character i in this string takes the integers values 1 to nin.) As in the
equality-constrained case, the name of constraint i (i = 1, ..., nin) may be specified in CNAMES(i).
The values of the inequality constraints at the final X are returned (as for equalities) in the optional
double precision output argument CX of size nin. The values of the corresponding Lagrange multipliers
are returned in the optional double precision output argument Y of size nin.

2.5 Minimization problems with equality and inequality constraints

If there are both equalities and inequalities, neq and nin must be specified and the values and deriva-
tives of the constraints are computed by

FUNPROB ( X, fx , i ) GRADPROB ( X, G, i ) HESSPROB ( X, H, i ) (i=1,...,neq)

for the equality constraints, and

FUNPROB ( X, fx , i ) GRADPROB ( X, G, i ) HESSPROB ( X, H, i ) (i=neq+1,neq+nin)

for the inequality constraints. The components i = 1, ..., neq of the vector CNAMES now contain the
names of the neq equality constraints and components i = neq + 1 , ..., neq + nin, the names
of the nin inequality constraints. Again, the same level of derivative availability is assumed for all
problem functions (objective and constraints). Finally, the optional arguments CX and/or Y, if used,
now have size neq+nin.

2.6 An example

Suppose we now consider the problem

min
x1,x2

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2, (2.1)

under the constraints

0 ≤ x1, x1 + 3x2 − 3 = 0, x2
1 + x2

2 − 4 ≤ 0 (2.2)

To solve this problem, we now use the call
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CALL LANCELOT_simple ( 2, X, fx , exit_code , BL = (/0.0D0 , -1.0D20/), &

MY_FUN = FUN , MY_GRAD = GRAD , MY_HESS = HESS , &

neq = 1, nin = 1, CX = cx , Y = y ) &

(assuming we wish to examine cx and y), and modify the FUN, GRAD and HESS functions as follows

!.............................................................................

SUBROUTINE FUN ( X, F, i )

!.............................................................................

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 ) ! set precision

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: F

INTEGER , INTENT ( IN ), OPTIONAL :: i

IF ( . NOT. PRESENT ( i ) ) THEN

! the objective function value (user defined)

!==============================================================================

F = 100.0 _wp*(X(2)-X(1)**2)**2 +(1.0 _wp -X(1))**2 !

!==============================================================================

ELSE

SELECT CASE ( i )

CASE ( 1 )

! the equality constraint value (user defined)

!==============================================================================

F = X(1)+3.0 _wp*X(2) -3.0 _wp !

!==============================================================================

CASE ( 2 )

! the inequality constraint value (user defined)

!==============================================================================

F = X(1)**2+X(2)**2 -4.0 _wp !

!==============================================================================

END SELECT

END IF

RETURN

END SUBROUTINE FUN

!

!.............................................................................

SUBROUTINE GRAD( X, G, i )

!.............................................................................

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 ) ! set precision

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: G( : )

INTEGER , INTENT ( IN ), OPTIONAL :: i

IF ( . NOT. PRESENT ( i ) ) THEN

! the objective functions ’s gradient components (user defined)

!==============================================================================

G( 1 ) = -400.0 _wp*(X(2)-X(1)**2)*X(1) -2.0 _wp *(1.0_wp -X(1)) !

G( 2 ) = 200.0 _wp*(X(2)-X(1)**2) !

!==============================================================================

ELSE

SELECT CASE ( i )

CASE ( 1 )

! the equality constraint ’s gradient components (user defined)

!==============================================================================

G( 1 ) = 1.0 _wp !

G( 2 ) = 3.0 _wp !

!==============================================================================

CASE ( 2 )

! the inequality constraint ’s gradient components (user defined)

!==============================================================================



Gould, Orban, Toint: LANCELOT simple: a simple interface for LANCELOT B 7

G( 1 ) = 2.0 _wp*X(1) !

G( 2 ) = 2.0 _wp*X(2) !

!==============================================================================

END SELECT

END IF

RETURN

END SUBROUTINE GRAD

!

!.............................................................................

SUBROUTINE HESS( X, H, i )

!.............................................................................

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 ) ! set precision

REAL( KIND = wp ), INTENT ( IN ) :: X( : )

REAL( KIND = wp ), INTENT ( OUT ) :: H( : )

INTEGER , INTENT ( IN ), OPTIONAL :: i

IF ( . NOT. PRESENT ( i ) ) THEN

! the entries of the upper triangle of the objective function ’s

! Hessian matrix , stored by columns (user defined)

!==============================================================================

H( 1 ) = -400.0 _wp*(X(2) -3.0 _wp*X(1)**2)+2.0 _wp !

H( 2 ) = -400.0 _wp*X(1) !

H( 3 ) = 200.0 _wp !

!==============================================================================

ELSE

SELECT CASE ( i )

CASE ( 1 )

! the entries of the upper triangle of the equality

! constraint ’s Hessian matrix , stored by columns (user defined)

!==============================================================================

H( 1 ) = 0.0 _wp !

H( 2 ) = 0.0 _wp !

H( 3 ) = 0.0 _wp !

!==============================================================================

CASE ( 2 )

! the entries of the upper triangle of the inequality

! constraint ’s Hessian matrix , stored by columns (user defined)

!==============================================================================

H( 1 ) = 2.0 _wp !

H( 2 ) = 0.0 _wp !

H( 3 ) = 2.0 _wp !

!==============================================================================

END SELECT

END IF

RETURN

END SUBROUTINE HESS

Convergence is then obtained in 8 iterations. Note that, in our example, the objective function or its
derivatives is/are computed if the index i is omitted.

3 Available algorithmic options

Beyond the choice of derivative level for the problem functions, the following optional arguments allow
a (very limited) control of the algorithmic choices available in LANCELOT:

maxit (integer): maximum number of iterations (default if absent: 1000)

gradtol (double precision): the threshold on the maximum infinity norm of the gradient (or of the
Lagrangian’s gradient) required for declaring convergence (default if absent: 1.0d-5),
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feastol (double precision): the threshold on the maximum infinity norm of the constraint violation
required for declaring convergence (for constrained problems) (default if absent: 1.0d-5),

print level (integer): a positive number proportional to the amount of output by the package: 0
corresponds to the silent mode, 1 to a single line of information per iteration (the default if
absent), while higher values progressively produce more output.

Users should keep in mind that more elaborate algorithmic options are available when using more
elaborate interfaces to the LANCELOT code within GALAHAD.

The full call corresponding to our constrained example could be

CALL LANCELOT_simple ( 2, X, fx , exit_code , &

FUN = FUN , GRAD = GRAD , HESS = HESS , &

BL = BL , BU = BU , VNAMES = VNAMES , &

CNAMES = CNAMES , neq = 1, nin = 1 , &

CX = cx , Y = y, ITERS = iters , maxit = 100 , &

gradtol = 1.0d-5, feastol = 1.0d-5, &

print_level = 1 )

4 Compiling and linking

Of course, the interface described above is an interface within the GALAHAD library. Its use therefore
requires the a priori installation of this library and the necessary mechanisms to access its content.

At compile time, the Fortran 90 compiler must be informed of the particular module where the
interface can be found. Assuming GALAHAD is properly installed in double precision and that the
environmental variable(3) GALAHAD has been set to point to the main GALAHAD directory (see Gould
et al., 2003 for details), the relevant Fortran 90 module can be found in the directory

$GALAHAD/modules/pc.lnx.l95/double

where the string pc.lnx.l95 indicates the particular architecture under which the GALAHAD li-
brary has been installed (in this case, a PC under Linux and the Lahay lf95 Fortran 90 compiler).
This information needs to be provided to the compiler via an architecture-dependent flag (typi-
cally -I, -M or -module; see the makefile variable MODULES for your architecture in the directory
$GALAHAD/makefiles).

Similarly, the linker must be able to include the relevant GALAHAD objects into the executable
code. These objects are the GALAHAD library proper, as well as the BLAS, LAPACK, HSL and
METIS libraries, which may all be found (in their public domain versions) in the directory

$GALAHAD/objects/pc.lnx.l95/double

The link command should therefore include a string of the form

-L$GALAHAD/objects/pc.lnx.l95/double -lgalahad -lgalahad_hsl \

-lgalahad_metis -lgalahad_lapack -lgalahad_blas

for proper execution.

5 Single precision version

A single precision version is also available in the GALAHAD library. All real LANCELOT simple should
then be defined in single precision.

(3)in the Bourne or C-shell.
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6 Other sources of information

The user is encouraged to consult the specsheet of the (non-naive) interface to LANCELOT within
the GALAHAD software library for a better view of all possibilities offered by an intelligent use of the
package. The library is described in Gould et al. (2003). The book by Conn, Gould and Toint (1992)
is also a good source of additional information.
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Appendix: example calling code and makefile

In order to clarify the use of the interface as much as possible, we provide in this appendix the
full Fortran 90 code of a calling program corresponding to our constrained example (2.1)-(2.2) of
Section 2.6. The necessary subroutines FUN, GRAD and HESS are those of Section 2.6 and are assumed
to be appended to calling program. We also give a makefile for compiling/linking this program into
an executable file. These are intended as a base which can be modified to suit particular user needs.

The code of the calling program(4) is the following.

PROGRAM RUN_LANCELOT_simple

!-----------------------------------------------------------------------------

! !

! This programs provides a simple (naive ) way to run LANCELOT B on an !

! optimization problem without interaction with CUTEr and using a simple !

! representation of the problem where the objective function and !

! constraints comprise each a single group with a single nonlinear !

! element . !

! !

! The use of this program and the accompanying script lanb_simple !

! requires that the GALAHAD package has prealably be installed . !

! !

! Ph. L. Toint , November 2007. !

! Copyright reserved , Gould/Orban/Toint , for GALAHAD productions !

! !

!-----------------------------------------------------------------------------

!

USE LANCELOT_simple_double

!

IMPLICIT NONE

INTEGER , PARAMETER :: wp = KIND ( 1.0D+0 ) ! set precision

REAL ( KIND = wp ), PARAMETER :: infinity = 10.0 _wp ** 20

(4)This code is available in the GALAHAD installation tree in the file ./src/lanb simple/run lancelot simple.f90.
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INTEGER :: n, neq , nin , iters , maxit , print_level , exit_code

REAL ( KIND = wp ) :: gradtol , feastol , fx

CHARACTER ( LEN = 10 ) , ALLOCATABLE , DIMENSION (:) :: VNAMES , CNAMES

REAL ( KIND = wp ), ALLOCATABLE , DIMENSION (:) :: BL , BU , X, CX , Y

EXTERNAL :: FUN , GRAD , HESS

!

! THE TEST PROBLEM DIMENSIONS (user defined)

!

n = 2 ! number of variables

neq = 1 ! number of equality constraints , excluding fixed variables

nin = 1 ! number of inequality ( <= 0) constraints , excluding bounds

!

! allocate space for problem defining vectors

!

ALLOCATE ( X( n ), BL( n ), BU( n ), CX( neq+nin ), Y( neq+nin ) )

ALLOCATE ( VNAMES ( n ),CNAMES ( neq+nin ) )

!

! starting point

!

X(1) = -1.2 _wp ! starting point ( componentwise)

X(2) = 1.0 _wp

!

! bounds on the variables

!

BL (1) = 0.0 _wp ! lower bounds ( componentwise)

BL(2) = - infinity

BU (1) = infinity ! upper bounds ( componentwise)

BU (2) = 3.0 _wp

!

! names

!

VNAMES (1) = ’x1 ’ ! variables

VNAMES (2) = ’x2 ’

CNAMES (1) = ’ Equality ’ ! equality constraints

CNAMES (2) = ’ Inequality ’ ! inequality constraints

!

! algorithmic parameters

!

maxit = 100

gradtol = 0.00001 _wp ! identical to default

feastol = 0.00001 _wp ! identical to default

print_level = 1 ! identical to default

!

! solve by calling LANCELOT B

!

CALL LANCELOT_simple ( n, X, fx , exit_code , &

MY_FUN = FUN , MY_GRAD = GRAD , MY_HESS = HESS , &

BL = BL , BU = BU , VNAMES = VNAMES , &

CNAMES = CNAMES , neq = neq , nin = nin , &

CX = CX , Y = Y, ITERS = iters , MAXIT = maxit , &

GRADTOL = gradtol , FEASTOL = feastol , &

PRINT_LEVEL = print_level )

!

! clean up

!

DEALLOCATE ( X, BL , BU , CX , Y )

DEALLOCATE ( VNAMES , CNAMES )

STOP
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!

END PROGRAM RUN_LANCELOT_simple

The makefile(5) is then given for the specific default DOUBLE PRECSION case where

• the Lahay lf95 Fortran compiler is used,

• the architecture specified at the installation of the GALAHAD library is pc.linx.l95 (running on
a PC under linux with lf95),

• the environment variable $GALAHAD has been set properly (as recommended in the installation of
the GALAHAD library).

########################################################################

# #

# Makefile #

# #

# compiles and links the simple 1-element naive interface #

# to LANCELOT B, with the program RUN_LANCELOT_simple.f90. #

# This makefile requires the prior installation of the #

# GALAHAD package , including the definition of the GALAHAD #

# environment variable (This variable needs to point to the main #

# directory in which the GALAHAD package has been installed .) #

# #

# D. Orban , December 2007. #

# Copyright reserved , Gould/Orban/Toint , for GALAHAD productions #

# #

########################################################################

FORTRAN = lf95

ARCH = pc.lnx.l95

PREC = double

MAIN = run_lancelot_simple

USRLIBS =

GALMODULES = ${GALAHAD }/ modules/$(ARCH)/$(PREC)

GALLIBDIR = ${GALAHAD }/ objects/$(ARCH)/$(PREC)

GALLIBS1 = -lgalahad -lgalahad_blas -lgalahad_hsl

GALLIBS2 = - lgalahad_metis -lgalahad_lapack

GALLIBS = -L$(GALLIBDIR ) $(GALLIBS1 ) $(GALLIBS2)

%.o: %. f90

$(FORTRAN) -c -I$(GALMODULES ) $+

MAIN: $(MAIN).o

$(FORTRAN) -o $(MAIN) $(MAIN).o $(GALLIBS ) $(USRLIBS)

Modifying this makefile for another example, another compiler or another precision requires (possibly)
adapting the definitions of the name of the calling program (here run lancelot naive.f90), the
variables MAIN, USRLIBS, FORTRAN, ARCH and PREC. The options in the compiling and linking commands
may also vary for other Fortran 90 compilers. This can be achieved by issuing commands of the type

make FORTRAN=g95 ARCH=mac.osx.g95 PREC=single MAIN=spamalot USRLIBS=-lg2c

In our example (which corresponds to the default settings in the makefile), the simple commands

make

run_lancelot_simple

produce the following output:
(5)This makefile is available in the GALAHAD installation tree in the file ./src/lanb simple/bin/Makefile.
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**********************************************
* *
* LANCELOT_simple *
* *
* a simple interface to GALAHAD/LANCELOT B *
* *
**********************************************

Penalty parameter 1.0000E-01 Required projected gradient norm = 1.0000E-01
Required constraint norm = 1.0000E-01

********* Starting optimization **************

There are 3 variables
There are 3 groups
There are 3 nonlinear elements

Objective function value 1.01000000000000E+02
Constraint norm 2.00000000000000E+00

Iter #g.ev c.g.it f proj.g rho radius step cgend #free time
0 1 0 1.21E+02 1.6E+02 - - - - 3 0.0
1 2 1 3.83E+01 5.8E+01 8.9E-01 1.0E+00 1.0E+00 -CURV 3 0.0
2 3 2 1.01E+02 3.0E+00 9.8E-02 1.0E+00 1.0E+00 BOUND 3 0.0
3 4 3 7.71E+00 2.1E+00 1.1E+00 1.0E+00 8.7E-01 CONVR 3 0.0
4 5 4 4.85E-01 2.2E+00 1.1E+00 1.7E+00 5.2E-01 CONVR 3 0.0
5 6 5 2.73E-02 8.5E-01 1.1E+00 1.7E+00 9.9E-02 CONVR 3 0.0
6 7 6 2.32E-02 2.1E-02 1.1E+00 1.7E+00 1.1E-02 CONVR 3 0.0

Iteration number 6 Merit function value = 2.31890590071E-02
No. derivative evals 7 Projected gradient norm = 2.08773257903E-02
C.G. iterations 6 Trust-region radius = 1.73866572139E+00
Number of updates skipped 0

There are 3 variables and 0 active bounds

Times for Cauchy, systems, products and updates 0.00 0.00 0.00 0.00

Exact Cauchy step computed
Bandsolver preconditioned C.G. ( semi-bandwidth = 5 ) used
Infinity-norm trust region used
Non-monotone descent strategy ( history = 1 ) used
Exact second derivatives used

Objective function value 2.30556773462821E-02

Penalty parameter = 1.0000E-01
Projected gradient norm = 2.0877E-02 Required gradient norm = 1.0000E-01
Constraint norm = 5.1647E-03 Required constraint norm = 1.0000E-01

******** Updating multiplier estimates **********

Penalty parameter 1.0000E-01 Required projected gradient norm = 1.0000E-02
Required constraint norm = 1.2589E-02

Iter #g.ev c.g.it f proj.g rho radius step cgend #free time
6 7 6 2.36E-02 1.5E-01 - - - - 3 0.0
7 8 7 2.34E-02 3.4E-04 1.0E+00 1.0E+00 3.6E-03 CONVR 3 0.0

Iteration number 7 Merit function value = 2.34466960383E-02
No. derivative evals 8 Projected gradient norm = 3.42123908435E-04
C.G. iterations 7 Trust-region radius = 1.00000000000E+00
Number of updates skipped 0

There are 3 variables and 0 active bounds

Times for Cauchy, systems, products and updates 0.00 0.00 0.00 0.00

Exact Cauchy step computed
Bandsolver preconditioned C.G. ( semi-bandwidth = 5 ) used
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Infinity-norm trust region used
Non-monotone descent strategy ( history = 1 ) used
Exact second derivatives used

Objective function value 2.33210093681760E-02

Penalty parameter = 1.0000E-01
Projected gradient norm = 3.4212E-04 Required gradient norm = 1.0000E-02
Constraint norm = 1.5101E-04 Required constraint norm = 1.2589E-02

******** Updating multiplier estimates **********

Penalty parameter 1.0000E-01 Required projected gradient norm = 1.0000E-03
Required constraint norm = 1.5849E-03

Iter #g.ev c.g.it f proj.g rho radius step cgend #free time
7 8 7 2.34E-02 5.2E-03 - - - - 3 0.0
8 9 8 2.34E-02 2.5E-07 1.0E+00 1.0E+00 6.2E-05 CONVR 3 0.0

Iteration number 8 Merit function value = 2.34391260921E-02
No. derivative evals 9 Projected gradient norm = 2.45864887574E-07
C.G. iterations 8 Trust-region radius = 1.00000000000E+00
Number of updates skipped 0

There are 3 variables and 0 active bounds

Times for Cauchy, systems, products and updates 0.00 0.00 0.00 0.00

Exact Cauchy step computed
Bandsolver preconditioned C.G. ( semi-bandwidth = 5 ) used
Infinity-norm trust region used
Non-monotone descent strategy ( history = 1 ) used
Exact second derivatives used

Objective function value 2.33135045070784E-02

Penalty parameter = 1.0000E-01
Projected gradient norm = 2.4586E-07 Required gradient norm = 1.0000E-03
Constraint norm = 2.9716E-06 Required constraint norm = 1.5849E-03

Variable name Number Status Value Lower bound Upper bound | Dual value
------------- ------ ------ ----- ----------- ----------- | ----------
x1 1 FREE 8.4750E-01 0.0000E+00 1.0000E+20 | 2.4586E-07
x2 2 FREE 7.1750E-01 -1.0000E+20 3.0000E+00 | -5.0502E-08
Slack_1 3 FREE 2.7669E+00 0.0000E+00 1.0000E+20 | 2.3343E-08

Constraint name Number Value Scale factor | Lagrange multiplier
--------------- ------ ----- ----- ------ | -------------------

Equality 1 -1.2974E-06 1.0000E+00 | 5.0124E-02
Inequality 2 -2.9716E-06 1.0000E+00 | 2.3343E-08

Objective function value 2.33135045070784E-02

There are 3 variables in total.
There are 2 equality constraints.
Of these 1 are primal degenerate.
There are 0 variables on their bounds.
Of these 0 are dual degenerate.


