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Abstract

New approximate secant equations are shown to result from the knowledge of
(problem dependent) invariant subspace information, which in turn suggests improve-
ments in quasi-Newton methods for unconstrained minimization. A new limited-
memory BFGS using approximate secant equations is then derived and its encour-
aging behaviour illustrated on a small collection of multilevel optimization exam-
ples. The smoothing properties of this algorithm are considered next, and automatic
generation of approximate eigenvalue information demonstrated. The use of this in-
formation for improving algorithmic performance is finally investigated on the same
multilevel examples.

Keywords: large-scale optimization, quasi-Newton methods, limited memory algorithms,

discretized problems, multilevel optimization.

1 Introduction

The history of quasi-Newton methods for optimization is rich and long. Starting with the
Davidon-Fletcher-Powell (DFP) method (Davidon, 1959, Fletcher and Powell, 1963), most
famously represented by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (Broy-
den, 1970, Fletcher, 1970, Goldfarb, 1970 and Shanno, 1970), and excellently explained in
the classical book by Dennis and Schnabel (1983), they have played an important role in
the solution of practical problems. In the context of unconstrained minimization, i.e. the
solution of problems of the form

min
x∈IRn

f(x) (1.1)

for a smooth objective function f from IRn into IR, they attempt to construct, around a
given point x ∈ IRn, a second-order model of this function of the form

m(x + s) = f(x) + 〈g(x), s〉 + 1

2
〈s,Bs〉

where g(x)
def
= ∇xf(x), and where B is an (often positive-definite) approximation of

the Hessian matrix ∇xxf(x), capturing information about the curvature of the objective
function around x. Quasi-Newton methods then proceed to exploit a sequence of models
of this type in an iterative manner. In this process, the curvature information at iterate
xk+1 is obtained by updating the approximate Hessian matrix Bk to obtain the new
approximation Bk+1 such that the secant equation

Bk+1sk = yk, (1.2)

holds, where

sk
def
= xk+1 − xk and yk

def
= g(xk+1) − g(xk), (1.3)
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The pair (sk, yk) is then said to be the quasi-Newton pair associated with equation (1.2).
If positive-definiteness of the matrix Bk is also maintained throughout the iterations (as
can be enforced for instance with the BFGS or DFP updates), the search direction at
iteration k is then computed from

dk+1 = −B−1
k+1g(xk+1) (1.4)

and a linesearch is performed along this direction (see Dennis and Schnabel, 1983, for
details). In order to avoid the cost of solving the linear system in (1.4), the matrix

Hk+1
def
= B−1

k+1 is typically recurred instead of Bk+1, using the inverse secant equation

Hk+1yk = sk (1.5)

as an alternative to (1.2), and

dk+1 = −Hk+1g(xk+1) (1.6)

instead of (1.4). Note that (1.5) uses the same pair as (1.2) but in the reverse order. For
the BFGS update, which is particular interest to us in this paper, the relevant updating
formula is then given by

Hk+1 =

(

I −
skyT

k

yT
k sk

)

Hk

(

I −
yksT

k

yT
k sk

)T

+
sksT

k

yT
k sk

(1.7)

It readily follows from this formula that Hk+1 remains positive-definite if Hk is positive-
definite and if

yT
k sk > 0, (1.8)

a condition one can always enforce in the linesearch procedure if the objective function is
bounded below (again see Dennis and Schnabel, 1983).

We are especially interested in the application of quasi-Newton to large-scale problems,
in which case it is often impractical to store the (dense) matrices Bk+1 or Hk+1 explicitly.
In such a context, a “limited-memory” version of the quasi-Newton method has been
pioneered by several authors, in which the matrix Hk+1 is assembled at every iteration as
a product of finitely many low-rank updates, each involving a pair (sj , yj) (see Liu and
Nocedal, 1989 and Byrd, Lu and Nocedal, 1993, for the most famous algorithm of this
type and further references).

Our purpose in the present paper is to show that additional knowledge about the
eigenstructure of the local Hessian matrix ∇xxf can be used to advantage in order to
capture more information on the local curvature. We discuss in particular how this can be
achieved when limited-memory BFGS updates are considered, and illustrate the practical
motivation for this analysis in the case of large-scale multilevel unconstrained optimization.
Examples of this type are presented, and it is shown that our proposal may improve their
numerical solution substantially.

The resulting multilevel optimization method is a linesearch algorithm, at variance with
the trust-region based techniques discussed in Gratton, Sartenaer and Toint (2006, 2008b)
or Gratton, Mouffe, Toint and Weber-Mendonça (2008a). It also differs from the proposals
by Nash (2000), Lewis and Nash (2002) and Wen and Goldfarb (2007) in that none of these
techniques makes explicit use of limited-memory quasi-Newton Hessian approximations.

Section 2 introduces the use of invariant subspaces in the derivation of secant informa-
tion, presents the resulting quasi-Newton algorithm and discusses the specialization of this
new algorithm to the multilevel case. Section 4 briefly describes our test problems, and
reports our first numerical results. Section 5 discusses further consequences of the use of
the new algorithm to multilevel optimization, introduces approximate eigenvalue equations
and their use within the new algorithmic framework. Section 6 presents the associated
numerical tests. Some conclusions and perspectives are finally outlined in Section 7.
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2 Invariant Subspaces in Quasi-Newton Methods

2.1 Invariant Subspaces and Approximate Secant Equations

We start by considering the case where the objective function f is a convex quadratic,
that is

f(x) = f + 〈g, x〉 + 1

2
〈x,Gx〉

where f ∈ IR, g ∈ IRn and G is a positive-definite symmetric matrix. In this case, it is
easy to verify that, if we consider a step sk at iteration k of a quasi-Newton algorithm,
then

Hyk = sk (2.1)

where H = G−1. Assume now that we also know a decomposition of IRn in a collection
of invariant subspaces {Si}

p
i=1 related to G, i.e. subspaces such that, for each i, Gd ∈ Si

whenever d ∈ Si. Since the eigenvectors of H are identical to those of G, the subspaces
Si are also invariant for H. Now consider Si the orthogonal projectors onto Si. Since
these projectors share a common system of eigenvectors with H, we know that they must
commute, that is HSi = SiH. Using this very simple observation, we then obtain, for a
step sk at iteration k of a quasi-Newton algorithm, that

HSiyk = SiHyk = Sisk, (2.2)

thereby yielding a new secant equation with the pair (Sisk, Siyk). Repeating the procedure
for i ∈ {1, . . . , p}, we therefore obtain p additional secant equations (in addition to the
original equation (2.1)) provided we know the projections Si.

If we now consider general twice differentiable, possibly non-convex, objective func-
tions, then (2.1) remains valid for

G =

∫ 1

0

∇xxf(xk + t(xk+1 − xk))sk dt

and the same reasonning still holds if the invariant subspaces are now associated with
this latter matrix. Finally, if the subspaces Si are only approximately invariant, or if
the operators Si are only approximately equal to projectors onto these subspaces, then
our secant equations stop being exact but can be expected to hold approximately. We
therefore refer to secant equations of the type (2.2) as approximate, as opposed to the
exact equation (1.5). We are interested in the size of perturbations of G that would be
necessary for the approximate secant equation (2.2) to hold exactly. We first consider all
(possibly nonsymmetric) perturbations Fi such that

(G + Fi)Sisk = Siyk, 1 ≤ i ≤ p. (2.3)

A direct computation shows that for each i, the perturbation given by the Powell-Symmetric-
Broyden (PSB) update (Powell, 1970)

Ei =
(GSisk − Siyk)(Sisk)T + (Sisk)(GSisk − Siyk)T

‖Sisk‖2
−

(GSisk − Siyk)T Sisk

‖Sisk‖2
2

SisksT
k ST

i

‖Sisk‖2
2

satisfies (2.3) (with Fi = Ei), and that ‖Ei‖2 ≤ 3‖GSisk − Siyk‖2/‖Sisk‖2. Therefore,

‖Ei‖2

‖G‖2
≤ 3

‖GSisk − Siyk‖2

‖G‖2‖Sisk‖2
, (2.4)

for k ≥ 0 and 0 ≤ i ≤ p. Interestingly, the factor 3 the right-hand side turns out to
be unnecessary, as pointed out by Bunch, Demmel and Van Loan (1989) (or Higham,
1996, p. 149), and we deduce that there exists a symmetric perturbation Ei such that Ei

solves (2.3) and
‖Ei‖2

‖G‖2
=

‖GSisk − Siyk‖2

‖G‖2‖Sisk‖2
, (2.5)
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for k ≥ 0 and 0 ≤ i ≤ p. If the quantity on the right-hand side of this inequality is modest,
relation (2.2) (H = G−1) holds exactly for a symmetric Hessian approximation relatively
close to G. It may thus be reasonable to use it for extracting curvature information,
which may then be included in our current Hessian approximation. Let us now consider
the numerator of the right-hand side of inequality (2.5), and assume that the operator Si

is symmetric and can be decomposed as Si = QiDiQ
T
i , where the columns of Qi form an

orthonormal basis of Si and Di is diagonal of dimension dim(Si). Now consider Qi such
that the matrix (Qi, Q

c
i ) is orthogonal and define

QT
i GQi = Gi and (QC

i )T GQi = Fi.

Then we have that

‖GSisk−Siyk‖
2 = ‖GQiDiQ

T
i sk−QiDiQ

T
i yk‖

2 = ‖GiDiQ
T
i sk−DiQ

T
i yk‖

2+‖FiDiQ
T
i sk‖

2.

Decomposing the step orthogonally as sk = Qisik + Qc
is

c
ik and using the secant equation

Gsk = yk, we obtain that

‖GSisk − Siyk‖
2 = ‖GiDisik − DiGisik − DiFis

c
ik‖

2 + ‖FDisik‖
2

≤ ‖(GiDi − DiGi)sik‖
2 + ‖Fi‖

2‖Di‖
2 ( ‖sik‖

2 + ‖sc
ik‖

2 ),

and therefore, using (2.5) and the triangle inequality, that

‖Ei‖

‖G‖
≤

‖GiDi − DiGi‖

σmin(Di)‖G‖
+ κ(Di)

‖Fi‖

‖G‖

‖sk‖

‖sik‖
, (2.6)

where σmin(Di) is the smallest singular value of Di. This formula shows that we may
expect the relative perturbation to G to be small when Si is an approximate projector,
in which case Di is close to the identity matrix and of modest conditioning, and if the
off-diagonal term Fi small compared to ‖G‖ (which we would expect if Si is approximately
invariant) together with ‖sik‖ being non-marginal with respect to ‖sk‖. This last condition
is also acceptable, since we would not be interested in exploiting the curvature information
along a “projected step” sik which is vanishingly small compared to the complete step sk,
because rounding errors would make then this information unreliable. Note that (2.6) also
yields the further bound

‖Ei‖

‖G‖
≤ κ(Di)

[

2
‖Gi‖

‖G‖
+

‖Fi‖

‖G‖

‖sk‖

‖sik‖

]

, (2.7)

which indicates that, if ‖Gi‖ is small compared to ‖G‖, we may also expect a relatively
small perturbation to G even when Di differs significantly from the identity (while re-
maining well-conditioned).

2.2 Multi-Secant (Limited-Memory) Quasi-Newton Algorithms

Using the simple derivation exposed above, and assuming, crucially, that a collection
of (possibly approximate) projectors Si are known, we may then outline a multi-secant
quasi-Newton algorithm as in Algorithm 2.1 on the following page.

In this outline, we have not specified the linesearch procedure in detail, but this well
understood technique is described in detail in Section 6.3 of Dennis and Schnabel (1983)
or in Moré and Thuente (1994), for instance. We have not either indicated how we can
impose (1.5) and (2.8) together. While updating simultaneously for more than one secant
equation is indeed possible (see Byrd, Nocedal and Schnabel, 1994), we focus here on the
incorporation of the information in the Hessian in a sequential manner, by performing
first p BFGS updates of the form (1.7) using the p pairs (Sisk, Siyk), followed by a final
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Algorithm 2.1: Multi-Secant Quasi-Newton Algorithm (outline)

Step 0: Initialization. An initial point x0 ∈ IRn and an initial (positive-definite)
Hessian H0 are given. The operators Si (i = 1, . . . , p) are also given, as well a
a small tolerance ǫ ≥ 0. Compute f(x0) and g(x0), and set k = 0.

Step 1: If ‖g(xk)‖ ≤ ǫ, stop.

Step 2: Compute the search direction. Define dk = −Hkg(xk).

Step 3: Linesearch. Perform a linesearch ensuring

f(xk+1) ≤ f(xk) + α〈g(xk), dk〉 and 〈g(xk+1), dk〉 ≥ β〈g(xk), dk〉

for some α ∈ (0, 1) and β ∈ (α, 1), yielding f(xk+1), g(xk+1), sk and yk satisfying
(1.8).

Step 4: Update the Hessian approximation. Compute Hk+1 such that (1.5)
holds and

Hk+1(Siyk) = (Sisk) i ∈ {1, . . . , p}. (2.8)

Step 5: Loop. Set k = k + 1 and return to Step 1.

update using the pair (sk, yk). Of course the order in which the p “subspace updates” are
performed is then significant.

If the problem size is large, which is the case of interest to us, it is often better to avoid
the explicit updating of Bk+1 or Hk+1, mostly because the low rank update (1.7) typically
results in Hk+1 being dense. To circumvent this problem, variants of the classical quasi-
Newton algorithm have been proposed that replace (1.6) by a recursion in which Hk+1 is
implicitly reconstructed from some simple initial approximation (typically a multiple of
the identity matrix: we use the matrix

〈yk, sk〉

‖yk‖2
2

I

in the experiments discussed below) and a modest number of the most recent pairs (sj , yj).
No matrix is ever assembled in the process, which only requires the storage of a small
number of vectors. Because only the most recent pairs are used, these methods are
called “limited-memory” methods, compared to the usual (full-memory) quasi-Newton
algorithms where Hk+1 includes information derived from all past pairs. The best-known
method of this type is the limited-memory BFGS method pioneered by Byrd, Lu, No-
cedal and Zhu, 1995. The update (1.7) is (implicitly) used in this algorithm to compute
the step. An efficient technique to perform the calculation of the step sk is described on
page 225 of Nocedal and Wright (1999), where m pairs (sj , yj) are used sequentially in
the implicit update of a diagonal initial approximation. We refer below to this technique
as the implicit-secant-updating algorithm.

This technique can readily be adapted to our context where each secant pair generates
p additional approximate ones corresponding to its images in p approximate invariant
subspaces. Instead of considering only the last m pairs in the limited-memory updating
procedure, we may now consider m × p pairs, or any selection we care to make amongst
them. An extreme case is when we select only the p + 1 secant pairs corresponding to
(sk, yk) and its images (2.8) onto {Si}

p
i=1, giving a “memory-less” BFGS method.
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2.3 Collinearity and Curvature Control

Nothing in the algorithm we have described so far prevents secant pairs from being lin-
early dependent. While not a major issue in the usual context where secant pairs are
generated at different iterations, this might be an issue in our case, where one expects
some dependency amongst the pairs generated from different, but possibly nested, invari-
ant subspaces. Fortunately, some control of the possible collinearity of the secant pairs is
easy, and we have chosen to include a provision in our algorithm that considers the angle
between approximate secant pairs generated at iteration k and the “exact” pair (sk, yk).
More formally, we have decided to ignore the secant pair (Sisk, Siyk) whenever

|〈Sisk, sk〉|2 ≤ τ‖Sisk‖2 ‖sk‖2 or |〈Sisk, Sjsk〉| ≤ τ‖Sisk‖2 ‖Sjsk‖2

for some τ ∈ (0, 1] (typically 0.999 when this feature is active) and some j < i. Note that
this last condition depends on the order in which the secant pairs are considered, a choice
which we discuss below.

Because we wish to preserve the positive-definite nature of the approximate Hessian
Hk+1, we also ignore approximate secant pairs for which

〈Siyk, Sisk〉 ≥ µ‖Siyk‖2 ‖Sisk‖2

for some µ ∈ (0, 1).
Of course, the above discussion and the proposed multi-secant quasi-Newton methods

may only be of practical interest when suitable operators Si are known for a collection
of (approximate) invariant subspaces. The purpose of the next paragraph is to show
that this desirable situation may occur in at least an important practical case: multilevel
optimization. But it should be noted that our derivation, and the bounds (2.6) and (2.7)
are not restricted to this particular framework.

3 An Application to Multilevel Optimization

We now consider a particular framework in which the concepts described above occur
naturally and therefore can be exploited to design improved optimization algorithms.

3.1 Invariant Subspaces and Multigrid

Let us assume that the optimization variables of the problem under consideration represent
the discretization of some continuous field defined on some spatial or temporal domain,
a very common situation in engineering applications or physical modelling. For example,
the variables may stand for coordinates of a design surface, atmospheric pressure over
some part of the ocean, or position of a spacecraft along a controlled trajectory. The main
characteristics of these problems is that it is possible to define discretization of the field of
interest with varying degree of coarseness, from the very coarse to the very fine. For the
sake of the argument, suppose that we consider r + 1 such different field discretizations,
which we number from 0 (coarsest) to r (finest). In this case, it is very often reasonable
to assume that, for each i ∈ {1, . . . , r}, there exist a full-rank linear operator Ri from
IRni into IRni−1 (the restriction from the fine grid i to the coarser grid i− 1) and another
full-rank operator Pi from IRni−1 into IRni (the prolongation from the coarse grid i− 1 to
the fine grid i) such that σiPi = RT

i for some known constant σi > 0. Moreover, these
grid-transfer operators are typically computationaly cheap to apply: the prolongation is
for instance often chosen as the linear interpolation operator and the restriction as some
multiple of its transpose, sometimes called the full-weighting operator.

When the problem to be solved for the (field) variables is a linear or nonlinear system
of equations (instead of an optimization problem), multigrid techniques often yield the
computationally most efficient algorithm, as their cost typically grows only linearly with
the number of variables. The main characteristics of multigrid algorithms (we refer the
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reader to Briggs, Henson and McCormick, 2000 for an excellent introduction, or to Trot-
tenberg, Oosterlee and Schüller, 2001, for a fuller treatment) are based on the observation
that different “frequencies” are present in the solution of the finest grid problem (or even
of the infinite-dimensional one), and become only progressively visible in the hierarchy
from coarse to fine grids. Low frequencies are visible from coarse grids and up, but higher
ones can only be distinguished when the mesh-size of the grid becomes comparable to the
inverse of the frequency in question. In multigrid strategies, specific algorithms, called
smoothers, are known to very efficiently reduce the high frequency components of the er-
ror on a grid (that is, in most cases, the components whose “wavelength” is comparable
to the grid’s mesh-size), but have little effect on the low frequency error components. It
is observed however that such components on a fine grid appear more oscillatory on a
coarser grid. They may thus be viewed as high frequency components on some coarser
grid and be in turn efficiently reduced by a smoother. Moreover, this is done at a lower
cost since computations on coarse grids are typically much cheaper than on finer ones. The
multigrid strategy consists therefore in alternating between solving the problem on coarse
grids, essentially annihilating low frequency components of the error, and on fine grids,
where high frequency components are reduced (at a higher cost) by a smoother. This last
operation is often called smoothing and the associated method a smoother because the
effect of reducing high frequency components without altering much the low frequency
ones has a “smoothing effect” on the error’s behaviour.

In other words, the multigrid strategy exploits the fact that the considered operator is
(approximately) separable in the frequency domain, and that restrictions from fine to pro-
gressively coarser grids followed by prolongations to the fine grid isolate the corresponding
nested invariant subspaces frequency-wise. A very well-understood example is that of the
linear Poisson equation in a bounded domain, given in its discretized(1) variational form
by

min
u

1

2
〈u,∆u〉 − 〈f, u〉, (3.9)

where u = u(x) is the unknown temperature distribution at position x of the underlying
spatial domain and ∆ is the discretized Laplacian. It is easy (see Briggs et al., 2000,
page 18) to verify that the eigenvalues of the unidimensional discretized operator in n− 1
variables are (when one takes the Dirichlet boundary condition u0 = un = 0 into account)

λi = 4 sin2

(

iπ

2n

)

(i = 1, . . . , n − 1)

and that its eigenvectors are given componentwise by

zi,j = sin

(

ijπ

n

)

(i = 1, . . . , n − 1, j = 0, . . . , n).

It is remarkable that the eigenvectors zi (i = 1, . . . , 1

2
n) on the fine grid are exactly

representable on a coarser grid with double mesh-size. If we choose the commonly used
full weighting restriction operator (the transpose of the linear interpolator), it is possible
to verify (see Briggs et al., 2000, pages 80–81) that

[Rrzi]j = θi sin

(

ijπ

n/2

)

, where θi =







cos2
(

iπ
2n

)

for i = 1, . . . , 1

2
n,

− sin2
(

iπ
2n

)

for i = 1

2
n, . . . , n.

It would be ideal if the prolongation PrRrzi would be exactly a linear combination of

{zi}
n/2
i=1, the eigenvectors associated with the smooth modes on the fine grid, since then

the image of PrRr would be identical to the invariant subspace spanned by the vectors

{zi}
n/2
i=1. Unfortunately, this often not the case, due to a (often modest) contamination of

the prolongated vector by oscillatory modes. Thus the image of PrRr is only approximately
equal to Sr−1, but this operator is typically very cheap to apply.

(1)Using a simple finite-difference scheme.
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3.2 A Multi-Secant Limited-Memory BFGS Algorithm

We may now combine all the ingredients of our discussion so far into a single minimization
algorithm: it suffices to use the multi-secant limited-memory BFGS method described
above with the definition of our multigrid approximate (symmetric) operators

Siur
def
= Pr . . . Pi+1Ri+1 . . . Rrur for 0 ≤ i ≤ r − 1. (3.10)

In the usual multigrid framework, this operator would be combined with explicit smoothing
steps in order to reduce the propagation of high frequency components in the result. More
generally (and restricting the argument to two levels only and to the case where sk belongs
to the coarse subspace), the equation

Riyk = RiGPiP
+
i sk

also suggests to distinguish between differences in gradients (the vectors yk) to which
the restriction operators Ri may naturally be applied (as gradients belong to the dual)
and steps (the vectors sk) for which it would be more suitable to apply the generalized
inverse P+

i (these vectors lie in the primal). Unfortunately, these options are difficult to
apply in practice because smoothing steps typically require the explicit knowledge of the
Hessian matrix, which is unavailable here, and because computing the generalized inverse
would be too costly. Moreover, as is discussed in Section 5, the limited-memory quasi-
Newton method may itself be interpreted as a smoother, which thus provides an implicit
a posteriori smoothing in the process.

We obviously expect multi-secant updates to work at their best potential when the
eigensystem of the objective function’s Hessian ∇xxf(x) is well-aligned with the grid, in
the sense that

Si∇xxf(x) ≈ ∇xxf(x)Si.

Note that many algorithmic variants are possible in selecting Pk+1 (in Step 5). One
may for instance give priority to the most recent information by selecting the pairs
(sk,0, yk,0), . . . , (sk,r−1, yk,r−1), (sk, yk) or to exact secant equations (as in the usual li-
mited-memory BFGS) by including pairs (sk−m+1, yk−m+1), . . . , (sk, yk) instead. Any
combination of the above is also possible.

4 Numerical Experience with Multi-Secant Equations

We now illustrate the performance of the multi-secant multigrid limited-memory BFGS
algorithm on test problems exhibiting the multigrid structure.

4.1 Test Examples

We now briefly describe the problems on which our multi-secant limited-memory BFGS
algorithm has been applied.

4.1.1 DN: A Dirichlet-to-Neumann Transfer Problem

Let S be the square [0, π] × [0, π] and let Γ be its lower edge defined by {(x, y), 0 ≤ x ≤
π, y = 0}. The Dirichlet-to-Neumann transfer problem (Lewis and Nash, 2005) consists
in finding the function a(x) defined on [0, π], that minimizes

∫ π

0

[∂yu(x, 0) − φ(x)]
2

dx,
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Algorithm 3.1: Multi-Secant Multigrid Limited-Memory BFGS

Initialization. An initial point x0 ∈ IRnr and an initial (positive-definite) Hessian
H0 are given. The restriction and prolongation operators Ri and Pi are given
for i = 1, . . . , r, and the operators Si are given by (3.10) for i = 0, . . . , r − 1.
Choose a memory size m ≥ 1, as well a a small tolerance ǫ ≥ 0. Compute f(x0)
and g(x0), define the initial set of secant pairs P0 = ∅ and set k = 0.

Step 1: If ‖g(xk)‖ ≤ ǫ, stop.

Step 2: Compute the search direction. Apply the implicit-secant-updating al-
gorithm to compute sk = −Hkg(xk) using the secant pairs in Pk.

Step 3: Linesearch. Perform a linesearch ensuring

f(xk+1) ≤ f(xk) + α〈g(xk), sk〉 and 〈g(xk+1), sk〉 ≥ β〈g(xk), sk〉

for some α ∈ (0, 1) and β ∈ (α, 1), yielding f(xk+1), g(xk+1) and yk satisfying
(1.8).

Step 4: Generate secant pairs. Apply the operators to compute

sk,i = Sisk and yk,i = Siyk

for i = 0, . . . , r − 1 and set

P+
k = Pk ∪ {(sk,0, yk,0), . . . , (sk,r−1, yk,r−1), (sk, yk)}.

Step 5: Select the next set of secant pairs. Select m pairs in P+
k to form Pk+1.

Step 6: Loop. Set k = k + 1 and return to Step 1.

where ∂yu is the partial derivative of u with respect to y, and where u is the solution of
the boundary value problem

∆u = 0 in S,
u(x, y) = a(x) on Γ,
u(x, y) = 0 on ∂S\Γ.

The problem is a one-dimensional minimization problem, but the computations of the ob-
jective function and gradient involve a partial differential equation in two dimensions. To
introduce oscillatory components in the solution, we set φ(x) =

∑15
i=1 [sin(i x) + sin(40x)] .

The discretization of the problem is performed by finite differences with the same grid
spacing in the two directions. The discretized problem is a linear least-squares problem.

4.1.2 Q2D: A Simple Quadratic Example

We consider here the two-dimensional model problem for multigrid solvers in the unit
square domain S2 = [0, 1] × [0, 1] = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}:

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is u(x, y) = 2y(1−y)+2x(1−x).
This problem is discretized using a 5-point finite-difference scheme, giving linear systems
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Aix = bi at level i where each Ai is a symmetric positive-definite matrix. The optimization
is carried out on the variational minimization problem

min
x∈IRnr

1

2
xT Arx − xT br, (4.1)

which is obviously equivalent to the linear system Arx = br. The main purpose of this
example is to illustrate that our algorithm is able to exploit the best multigrid structure.

4.1.3 MS: A Minimum Surface Problem

We consider the minimum surface problem

min
v∈K

∫ 1

0

∫ 1

0

√

1 + (∂xv)2 + (∂yv)2 dx dy,

where K =
{

v ∈ H1(S2) | v(x, y) = v0(x, y) on ∂S2

}

. The boundary condition v0 is cho-
sen as

v0(x, y) =















f(x), y = 0, 0 ≤ x ≤ 1,
0, x = 0, 0 ≤ y ≤ 1,
f(x), y = 1, 0 ≤ x ≤ 1,
0, x = 1, 0 ≤ y ≤ 1,

where f(x) = x(1 − x). This convex problem is discretized using a finite element basis
defined using a uniform triangulation of S2, with same grid spacing h along the two
coordinate directions. The basis functions are the classical P1 functions which are linear
on each triangle and take value 0 or 1 at each vertex. The starting point is a random
vector uniformly distributed in [0, 1].

4.1.4 BR: Bratu’s Problem in Two Dimensions

We consider the minimization problem

min
v∈K

∫ 1

0

∫ 1

0

(∂xv)2 + (∂yv)2 + R v ev dx dy,

where K =
{

v ∈ H1(S2) | v(x, y) = 0 on ∂S2

}

, corresponding to a variational formulation
of the partial differential equation

−∆u(x, y) + Reu = 0 in S2

u(x, y) = 0 on ∂S2,

where R = 6.8, as advocated in Moré and Toraldo (1991). This variational problem is
discretized using the same finite element basis as that used in the MS problem. The
starting point is a random vector uniformly distributed in [0, 1].

4.1.5 IP: An Inverse Problem from Image Processing

We consider the image deblurring problem stated on page 130 of Vogel (2002). In this
problem, the columns of the unknown deblurred image are stacked into a vector f . A
doubly block Toeplitz matrix T is computed using the blur function of Hansen’s tool-
box (Hansen 1994), which also yields the blurred image d. The image deblurring problem
uses the total variation principle and can be written as

min
f

[

1

2
‖Tf − d‖2

2 + 1

10

∫ 1

0

∫ 1

0

√

1 + (∂xf)2 + (∂yf)2 dx dy

]

.

The problem is convex. The discretization scheme is the same as for the MS problem, and
the starting point for the minimization is chosen as f = 0.
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4.1.6 MT: A Membrane Tracking Problem

We consider the minimization problem

min
v∈K

∫ 1

0

∫ 1

0

(∂xv)2 + (∂yv)2 + v dx dy.

The set of constraints is defined by

K =
{

v ∈ H1(S2) | v(x, y) = 0 on Γ1 and v(x, y) ≥ l(x, y) on Γ2

}

,

where boundary conditions are defined on the line segments Γ1 = {0} × [0, 1] and Γ2 =

{1} × [0, 1], and where l(x, y) =

√

1 − (y − 0.5)
2 − 1.3. This problem corresponds to the

displacement of a membrane under a traction of unit density (see Hlavacek, Haslinger,
Necas and Lovisek, 1998). To fit into our unconstrained optimization framework, this
bound-constrained problem is transformed into a problem with Dirichlet boundary condi-
tions by replacing K with

K ′ =
{

v ∈ H1(S2) | v(x, y) = 0 on Γ1 and v(x, y) = l(x, y) on Γ2

}

.

The discretization of the above problem again uses the same finite element basis as for the
MS problem. The starting point is a random vector uniformly distributed in [0, 1].

4.1.7 DASW: Data Assimilation for the Shallow-Water System

Data assimilation problems constitute an important class of parameter estimation. Their
purpose is to reconstruct the initial conditions at t = 0 of a dynamical system based
on knowledge of the system evolution laws and on observations of the state at times ti.
More precisely, consider a dynamical system described by the equation ẋ = f(t, x) whose
solution operator is given by x(t) = M(t, x0). Assume that the system state is observed
(possibly only in parts) at times {ti}

N
i=0, yielding observation vectors {yi}

N
i=0, whose model

is given by yi = Hx(ti) + ǫ, where ǫ is a noise with covariance matrix Ri. Assume finally
that one knows B, an a priori error covariance matrix on x0. We are then interested to
find x0 which minimizes

1

2
‖x0 − xb‖

2
B−1 +

1

2

N
∑

i=0

‖HM(ti, x0) − yi‖
2
R−1

i

. (4.2)

The first term in this cost function is the often called the background term, the second
the observation term.

An interesting application of (4.2) is given by a system governed by the (two-dimensional)
shallow-water equations. This system is often considered as a good approximation of the
dynamical systems used in ocean modeling, themselves a crucial element of climatic evo-
lution scenarios (Griffies, 2004). The system’s equations are



















∂u
∂t

+ u∂u
∂x

+ v ∂v
∂y

− fv + g ∂z
∂x

= 0,

∂v
∂t

+ u∂v
∂x

+ v ∂v
∂y

+ fu + g ∂z
∂y

= 0,

∂z
∂t

+ u∂z
∂x

+ v ∂z
∂y

+ z
(

∂u
∂x

+ ∂v
∂y

)

= 0,

(4.3)

where u, v and z are functions of (x, y, t). The domain is the rectangle [0, Lx] × [0, Ly]
(with Lx = 32 × 106 meters and Ly = 8 × 106 meters) and the integration horizon is
50 timesteps of 400 seconds. The boundary conditions are assumed to be periodic in y
and of Dirichlet type in x. Following the suggestion by Weaver and Courtier (2001) we
have modelled the a priori term xb using a diffusion operator. As is recommended in the
climate modelling community (we refer the reader to Griffies, 2004, for further details),
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our formulation uses initial geostrophic winds and a β-plane formulation for the Coriolis
force; we integrate this system using a leapfrog scheme and a Laplacian spatial damping
(which introduces a right-hand side of the form µ(∆u,∆v,∆z)T in the system (4.3), where
µ = 3× 106). We also considered using an Asselin time-filter (see Asselin, 1972), but gave
this up as it had little effect on our results. In our problem, we assume to observe the
state at every fifth point in the spatial domain and every fifth time step. The true initial
geopotential height, which we seek to reconstruct, is assumed to be

z(x, y, 0) = 5000 + 50 sin

(

2πx

Lx

)

cos2
(

π(y − 1

2
Ly)

Ly

)

.

The same starting point for this non-convex problem is used for all tests and is generated
as the initial state perturbed by normally distributed random noise with zero mean and
standard deviation equal to 10−2.

This problem is interesting for our tests because numerical experiments indicate that
this problem is not well-suited to a multigrid approach(2).

4.2 The First Results

We now turn to the numerical experiments themselves, where we considered the test
examples described above for the sizes and algorithmic parameters presented in Table 4.1.
In this table, m is the total number of secant pairs (exact and approximate) memorized
by our algorithm and “# levels” is the number of levels exploited in the multi-secant
algorithm. All experiments were run in Matlab. We used the full-weighting restriction
and the linear-interpolation prolongation operators in all cases, and µ was set to 10−6.
Convergence of the algorithm was declared as soon as ‖g(xk)‖ ≤ ǫ, the values of this
tolerance being also specified in Table 4.1.

DN Q2D MS BR

size (n) 255 1046529 = 10232 1046529 = 10232 261121 = 5112

memory (m) 10 9 9 7
# levels (r) 7 8 7 3
accuracy (ǫ) 10−5 10−5 10−5 10−5

IP MT DASW

size (n) 66049 = 2572 262143 = 511× 513 3969 = 632

memory (m) 9 8 5
# levels (r) 4 6 4
accuracy (ǫ) 10−5 10−5 10−3

Table 4.1: The parameters in our numerical tests

The algorithmic variants tested differ according to the mechanism used in Step 5 to
select the secant pairs, the order in which these pairs are used in the implicit updating
procedure and the level of collinearity control τ . We have defined three different strategies
for the selection of secant pairs:

full: all secant pairs (exact and approximate) are considered for each iteration, but the
pairs generated at the iterations further in the past are dropped first, and, amongst
those corresponding to the same iteration, the approximate pairs are dropped before
the exact one;

local: only the approximate secant pairs generated at the current iterations are con-
sidered for updating, in addition to as many past exact pairs as allowed by the
memory;

(2)We experimented with a Galerkin full-multigrid scheme on a linear system whose matrix was obtained
from finite differences in the gradients of (4.2), and observed a numerical performance not significantly
better than that of a pure Gauss-Seidel smoother.
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mless: all information from previous iterations is discarded and only the (exact and ap-
proximate) pairs generated at the current iteration are considered. This corresponds
to using the multiple-secant updates in a purely “memoryless” manner.

We have also defined two different strategies for the order in which the approximate secant
pairs are used for updating :

coarse-first: the approximate inverse Hessian is updated for the pairs corresponding to
the coarser levels first;

fine-first: the approximate inverse Hessian is updated for the pairs corresponding to the
finer levels first.

Each algorithmic variant is thus characterized by the triplet specifying its the pair selection
strategy, its pair ordering strategy and its value of τ . We also consider the standard
limited-memory BFGS method (L-BFGS) for comparison. Table 4.2 on the current page
presents the results of our first tests, expressed in terms of number of objective function
evaluations (nf) and iterations (nit).

Multi-secant LM variant DN Q2D MS BR

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 152 122 381 304 2130 1716 472 381
full coarse-first 0.999 131 108 515 432 2541 2194 547 465
full fine-first 1.0 130 105 366 273 2097 1815 428 367
full fine-first 0.999 120 98 638 550 2361 2099 396 337
local coarse-first 1.0 94 84 563 427 2003 1707 440 372
local coarse-first 0.999 110 92 501 385 2033 1725 450 384
local fine-first 1.0 120 100 304 233 2267 1943 397 339
local fine-first 0.999 90 76 335 278 1867 1605 400 341
mless coarse-first 1.0 125 100 563 427 1724 1364 527 422
mless coarse-first 0.999 113 89 501 385 2207 1832 401 316
mless fine-first 1.0 137 100 304 233 1679 1371 420 313
mless fine-first 0.999 140 107 335 278 2204 1844 445 338

L-BFGS 330 319 1505 1471 2671 2644 1074 1053

Multi-secant LM variant IP MT DASW

Pairs upd. order τ nf nit nf nit nf nit

full coarse-first 1.0 196 186 1542 1277 73 70
full coarse-first 0.999 204 206 1262 1041 73 70
full fine-first 1.0 213 200 1070 883 64 62
full fine-first 0.999 214 210 1272 1077 64 62
local coarse-first 1.0 165 161 929 781 73 70
local coarse-first 0.999 165 162 1070 882 73 70
local fine-first 1.0 185 184 1027 861 64 62
local fine-first 0.999 180 179 1138 959 64 62
mless coarse-first 1.0 355 353 1536 1221 73 70
mless coarse-first 0.999 280 279 1307 1051 73 70
mless fine-first 1.0 265 256 862 650 64 62
mless fine-first 0.999 232 225 1461 1149 64 62

L-BFGS 181 176 1419 1386 60 57

Table 4.2: Performance of multi-secant limited-memory BFGS algorithms

These results indicate that using approximate secant pairs associated with grid lev-
els is potentially useful, although not uniformly for every problem nor across variants.
Further variations were also observed for other choices of m and r, but leave the overall
picture unchanged. In the results reported here, the improvement is especially noticeable
for problems (like Q2D and BR) where one expects the multigrid method to perform well.
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One also notes that the “local” and “mless” variants seem to be most efficient, and that
collinearity control often helps somewhat the first of these strategies. The memoryless vari-
ants (“mless”) are especially efficient on the Laplacian (Q2D) and Bratu (BR) problems.
We also note that the memory-less and local variants give identical number of function
evaluations and iterations for problem Q2D, which we believe results from the fact that
r ≈ m, which leaves little room for past iteration history. The same comment applies to
the data assimilation problem (DASW), for which the multisecant variants are clearly less
successful. Given our observation that this latter example is not well-suited to multigrids,
the performance of our algorithms on this problem does not come as a surprise. We finally
observe that collinearity control produces fairly mixed results, and seems to be irrelevant
for problem DASW.

In order to verify the analysis of Section 2.1, we have also computed the relative
perturbations (2.5) (with G = ∇xxf(xk+1) and ‖ · ‖ = ‖ · ‖∞) during runs of the variant
[local,coarse-first,1.0] on problems Q2D and MS. Typical results are shown in Figure 4.1.
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Figure 4.1: Evolution of the relative Hessian perturbation sizes (2.5) with k for the vari-
ant [local,coarse-first,1.0] with m = 7 and r = 4 for problems of size n = 632 (Q2D on the
left, MS on the right, logarithmic vertical scale)

This figure shows that the size of the relative perturbation of the true Hessian needed
to make the approximate secant exact is very modest (a few percent of ‖∇xxf(xk+1)‖,
typically). The relative size of the Hessian perturbation necessary make the exact secant
equation (1.5) hold exactly is shown in the right figure as the curve ultimately decreasing
to the order of 10−5. Clearly, this perturbation is of the same order as that for the
approximate secant equations in the early iterations of the algorithm. It is invisible on the
left figure, because it is always tiny (between 10−15 and 10−10) on a quadratic function.
Further analysis (not illustrated here) indicates that the perturbation corresponding to
past exact secant equations follows the same pattern as that corresponding to the current
one, both for quadratic and nonquadratic problems.

5 Asymptotic Approximate Eigenvalue Equations

These numerical experiments prompt another discussion. It was observed in the numerical
test-runs that the multiple-secant limited-memory BFGS algorithm also acts as a smoother
on the original problem, in the sense that convergence often occurs much faster for the oscil-
latory modes of the solution than for the smooth modes. This is illustrated in Figure 5.2
which shows the decomposition of the step sk along the subspaces S0,S

C
1 ,SC

2 , . . . ,SC
r ,

where, for i > 0, SC
i is the orthogonal complement of Si−1 in Si, thereby isolating to

contribution which is specific to each of the nested subspaces.
In this figure, one observes that, for both problems, sk is nearly entirely contained in S0

(the coarse subspaces corresponding to very smooth modes), for k sufficiently large, which
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Figure 5.2: Evolution of the decomposition of the step sk for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 along S0,S

C
1 ,SC

2 , . . . ,SC
r for problems of size n = 312

(Q2D on the left, MS on the right, logarithmic vertical scale)

we express by writing that
sk ≈ S0sk (5.1)

for large k. Now observe that the eigenvalues associated with S0 are typically the smallest
ones: in the case of the one-dimensional Laplacian model problem analyzed above, we
have that

S0 = span

{

sin

(

ijπ

n

)}n0

i=1

and the eigenvalues associated with this invariant subspace are

λi = 4 sin2

(

iπ

2n

)

(i = 1, . . . , n0). (5.2)

If we assume, for instance, that n = 255 and that we exploit five levels, we verify that
n0 = 7. The eigenvalues (5.2) are therefore all contained in the interval [0.00015, 0.0074].
The norm of the Laplacian operator is however given by its maximal eigenvalue, equal to
4. Thus the deviation of the eigenvalues associated to S0 from any approximation ρ0 in
the interval, relative to the operator norm, is bounded by

0.0074 − 0.00015

4
≈ 0.0018,

that is slightly less than 0.2%. Modifying the Laplacian operator by imposing that its
restriction to S0 is ρ0I therefore amounts to a perturbation of the operator of at most 0.2%,
which is again very modest. Moreover, this discussion is consistent with our observation
following (2.7) as we see here that ‖G0‖ is small compared to ‖G‖. Returning to the case
discussed in Section 2.1, this indicates that

Gsk ≈ GS0sk ≈ ρ0sk,

and sk ≈ S0sk is an approximate eigenvector of G, the value ρ0 being the Rayleigh quotient
along this direction, given by

ρ0‖S0sk‖
2 = 〈S0sk, GS0sk〉 ≈ 〈S0sk, S0Gsk〉 ≈ 〈S0sk, S0yk〉.

Moreover,
S0yk = S0Gsk = GS0sk ≈ Gsk = yk. (5.3)

If we now consider S1 (a superset of S0 of dimension 15 in our example), the size of relative
perturbation Hessian remains at most 9%. Expressing the above reasoning for an a generic
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invariant subspace Si (note that S0 ⊂ Si in our multilevel context), we may thus expect
that

GSisk ≈
〈GSisk, Sisk〉

‖Sisk‖2
2

Sisk ≈
〈yk, Sisk〉

‖Sisk‖2
2

Sisk ≈
〈Siyk, Sisk〉

‖Sisk‖2
2

Sisk,

which yields

HSisk ≈
‖Sisk‖

2

〈Siyk, Sisk〉
Sisk. (5.4)

Alternatively,

〈Siyk,HSiyk〉 ≈ 〈Siyk, SiHyk〉 ≈ 〈Siyk, Sisk〉 ≈ 〈yk, Sisk〉,

yielding

HSisk ≈
〈Siyk, Sisk〉

‖Siyk‖2
2

Sisk. (5.5)

Using the approximations (5.1) and (5.3), we see that equations of the form

Hpi,k ≈ ρi,kqi,k (i = 0, . . . , r − 1), (5.6)

may therefore be of interest when updating our Hessian approximation, where we have
the choice to select pi,k and qi,k among Sisk (0 ≤ i < r − 1) or sk, and ρi,k among

‖Sisk‖
2
2

〈yk, Sisk〉
,

‖Sisk‖
2
2

〈Siyk, Sisk〉
,

〈yk, Sisk〉

‖Siyk‖2
2

or
〈Siyk, Sisk〉

‖Siyk‖2
2

(5.7)

Further alternative forms may be obtained by replacing Sisk by sk or ‖Sisk‖
2
2 by 〈sk, Sisk〉

or ‖sk‖
2
2, or Siyk by yk in (5.7). . .

We also note that Algorithm 3.1 was stated above using only secant equations of the
form (2.8), but it is now possible to incorporate equations of the form (5.6) (possibly in
combination with (2.8)) into the updates. This only requires the redefinition of the vectors
yk,i to be generated at Step 4: for instance, we redefine yk,i to be

〈yk,i, sk,i〉

‖sk,i‖2
2

sk,i

if one wishes to use (5.4).
Finally, we observe that the variants described in this section differ from those in

Section 2.1 in that they only require the storage of the steps sk, This significantly reduces
the memory needs for the method, which might be an advantage for very large problems.

6 Numerical Experience with Eigenvalue Equations

Our present purpose is not to conduct a full investigation of which of the alternative forms
mentioned in the previous section is numerically preferable and when. We focus in this
section on verifying the main lines of our analysis of approximate eigenvalue equations
and on illustrating the potential of a few choices in a simple algorithmic setting. We leave
the more complete experimentation and the design of a suitable selection mechanism for
further research.

In this first exploration, we have chosen to experiment with four variants of the many
possible choices of the type (5.6)-(5.7), namely the “eigenvalue equations” given by (5.4),
(5.5),

HSisk ≈
‖Sisk‖

2
2

〈yk, Sisk〉
Sisk, (6.1)

and

HSisk ≈
〈yk, Sisk〉

‖Siyk‖2
2

Sisk. (6.2)
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Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 219 129 158 126 132 118 139 114
full coarse-first 0.999 222 125 129 106 177 160 153 129
full fine-first 1.0 529 272 176 134 129 117 145 106
full fine-first 0.999 243 127 157 118 145 129 113 89
local coarse-first 1.0 156 96 121 101 233 217 138 117
local coarse-first 0.999 164 106 122 99 195 178 126 103
local fine-first 1.0 159 100 104 86 116 104 101 85
local fine-first 0.999 159 103 127 105 135 124 123 105
mless coarse-first 1.0 199 112 169 136 246 223 138 111
mless coarse-first 0.999 224 128 178 132 239 219 153 125
mless fine-first 1.0 229 128 122 90 229 192 168 135
mless fine-first 0.999 216 119 155 117 188 159 156 125

Table 6.3: Performance of eigenvalue limited-memory BFGS algorithms on problem DN
(L-BFGS uses 330 function evaluations and 319 iterations on this problem)

Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 707 564 806 608 689 534 552 440
full coarse-first 0.999 592 470 868 672 704 592 689 595
full fine-first 1.0 414 316 439 336 565 467 842 675
full fine-first 0.999 908 749 1068 853 1185 966 770 637
local coarse-first 1.0 551 437 771 576 630 482 686 551
local coarse-first 0.999 405 313 524 410 532 410 602 481
local fine-first 1.0 690 528 479 366 558 433 520 428
local fine-first 0.999 579 479 389 313 699 582 518 413
mless coarse-first 1.0 551 437 771 576 630 482 686 551
mless coarse-first 0.999 405 313 524 410 532 410 532 481
mless fine-first 1.0 690 528 479 366 558 433 520 428
mless fine-first 0.999 579 479 389 313 699 582 518 413

Table 6.4: Performance of eigenvalue limited-memory BFGS algorithms on problem Q2D
(L-BFGS uses 1505 function evaluations and 1471 iterations on this problem)

The results of the numerical experience using these equations in the limited memory
framework already detailed for approximate secant equations are given in Tables 6.3 to
6.9.

Qualitatively speaking, we obtain a conclusion very similar to that reached for approx-
imate secant equations: there exists a clear algorithmic potential in using the information
specified by the approximate eigenvalue equations, but this potential is uniform neither
across problems nor across algorithmic variants. We only note that some of the best
performances are obtained with these techniques, in particular for the data assimilation
problem DASW.

As for the multiple secant equations, we may complete our picture by an estimation of
the approximate nature of the considered eigenvalue equations. This estimation is again
obtained by measuring the size of the Hessian perturbation that would ensure (5.6) exactly,
relative to the Hessian norm. In this case ,the relative perturbation size is then given by

‖Ei‖∞
‖G‖∞

≤
‖Gpi,k − ρi,kqi,k‖∞

‖pi,k‖∞ ‖G‖∞
(6.3)

for the appropriate choices of pi,k, qi,k and ρi,k. The results obtained during runs of the
variant [local,coarse-first,1.0] on problems Q2D and MS are illustrated in Figures 6.3 to
6.6. These pictures confirm our analysis that the limited-memory framework may generate
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Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 2123 1672 2663 2027 2277 1998 2627 2326
full coarse-first 0.999 2674 2145 2780 2170 2595 2295 2466 2187
full fine-first 1.0 2300 1895 2192 1772 1957 1683 2101 1817
full fine-first 0.999 3097 2561 2610 2117 3042 2588 3259 2792
local coarse-first 1.0 2780 2270 2869 2227 2511 2213 2375 2135
local coarse-first 0.999 2565 2094 2275 2214 2369 2078 2367 2099
local fine-first 1.0 2147 1872 2168 1851 2147 1917 2029 1808
local fine-first 0.999 1698 1470 1637 1379 1848 1654 2316 2080
mless coarse-first 1.0 2840 2107 2246 2246 2356 2043 2180 1931
mless coarse-first 0.999 2429 1889 2753 1997 2346 1997 2546 2182
mless fine-first 1.0 1494 1207 1833 1477 1992 1718 1853 1643
mless fine-first 0.999 2036 1974 1922 1627 3075 2674 3397 3045

Table 6.5: Performance of eigenvalue limited-memory BFGS algorithms on problem MS
(L-BFGS uses 2671 function evaluations and 2644 iterations on this problem)

Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 511 425 532 443 555 484 552 490
full coarse-first 0.999 424 352 580 478 471 405 622 544
full fine-first 1.0 321 251 420 326 469 392 593 494
full fine-first 0.999 377 291 557 460 413 342 573 479
local coarse-first 1.0 383 334 584 486 494 441 390 348
local coarse-first 0.999 427 358 647 522 523 462 363 322
local fine-first 1.0 365 329 548 466 527 465 315 282
local fine-first 0.999 381 339 449 396 419 364 415 359
mless coarse-first 1.0 660 525 518 391 575 473 548 468
mless coarse-first 0.999 405 314 432 320 605 486 490 404
mless fine-first 1.0 432 343 535 407 419 339 547 431
mless fine-first 0.999 301 234 428 330 338 282 665 522

Table 6.6: Performance of eigenvalue limited-memory BFGS algorithms on problem BR
(L-BFGS uses 1074 function evaluations and 1053 iterations on this problem)

useful approximate eigenvalue information. The quality and relevance of this information
varies according to the precise choice of approximate eigenvalue equation used and problem
considered. Once more, this encourages further investigation in methods exploiting this
information .

7 Conclusions

We have shown that the a priori knowledge of approximate invariant subspaces associ-
ated with the Hessian of an unconstrained optimization problem allows a more efficient
exploitation of the secant information, and thus more efficient minimization algorithms.
As an application, we have also described how this knowledge can often be extracted from
the multilevel structure of discretized infinite dimensional problems. Using the asymptotic
smoothing properties of the limited-memory BFGS method, we have also indicated how
the steps generated by this algorithm often generate approximate eigenvalue information,
which may in turn be used to reduce the memory required for an efficient optimization.
Preliminary numerical experience on a small collection of test problems suggests that this
approach is promising and further investigation worthwhile.

The exploitation of invariant subspace information opens, from the authors’ point of
view, a number of immediate possibilities and more long-term perspectives. The first
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Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 330 303 282 274 256 252 248 241
full coarse-first 0.999 367 314 206 199 237 229 233 228
full fine-first 1.0 2007 1015 186 181 610 609 189 187
full fine-first 0.999 1738 881 178 609 610 609 198 196
local coarse-first 1.0 223 220 164 174 166 165 165 164
local coarse-first 0.999 229 226 164 163 169 168 169 168
local fine-first 1.0 680 405 179 178 211 210 184 183
local fine-first 0.999 727 444 184 183 219 218 184 183
mless coarse-first 1.0 285 261 195 189 344 343 191 189
mless coarse-first 0.999 371 314 246 195 344 343 200 197
mless fine-first 1.0 959 484 198 245 3061 3060 236 235
mless fine-first 0.999 1292 695 240 239 3061 3060 233 230

Table 6.7: Performance of eigenvalue limited-memory BFGS algorithms on problem IP
(L-BFGS uses 181 function evaluations and 176 iterations on this problem)

Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 1219 1060 1363 1099 1219 1072 1292 1140
full coarse-first 0.999 1370 1167 1295 1034 1588 1384 1469 1294
full fine-first 1.0 974 805 935 749 1063 934 1232 1075
full fine-first 0.999 1064 847 1334 1074 1605 1377 1593 1367
local coarse-first 1.0 1544 1299 1221 987 1334 1190 1340 1205
local coarse-first 0.999 1512 1279 1275 1033 1279 1124 1277 1128
local fine-first 1.0 1129 964 977 823 1293 1113 1205 1043
local fine-first 0.999 1262 1079 931 786 1312 1146 1496 1375
mless coarse-first 1.0 1311 1050 1515 1531 1311 1300 1469 1256
mless coarse-first 0.999 1304 1050 1682 1292 1775 1471 1417 1188
mless fine-first 1.0 1106 881 1145 880 1423 1136 1064 866
mless fine-first 0.999 890 703 1349 1094 1981 1649 1540 1270

Table 6.8: Performance of eigenvalue limited-memory BFGS algorithms on problem MT
(L-BFGS uses 1419 function evaluations and 1386 iterations on this problem)

would be to investigate other frameworks where approximate invariant subspaces and as-
sociated approximate projectors can be obtained, possibly at the cost of some problem
preprocessing. In particular the domain of model-reduction methods (of which multilevel
can be considered a member) seems of interest. In this context, the hierarchy of models
of different fidelity provides the support of the approximate invariant subspaces, and the
authors believe that the ideas presented in this paper can then be applied using suitable
prolongations and restrictions between the levels of this hierarchy. More algebraic decom-
positions may also be considered for the determination of approximate invariant subspaces,
for instance in cases where nested subsets of variables are known to generate different de-
grees of model nonlinearity. One may also consider the use of multi-secant/eigenvalue
approaches in algorithms for bound- and more generally constrained optimization.

In the more specific case of multilevel optimization and, although algorithmic variants
have been outlined in the present paper, much remains to be done for obtaining a well-
tested, robust and optimized multi-secant/eigenvalue quasi-Newton code. In particular,
approximate techniques for computing the vector P+

i sk as an alternative to Risk might
prove efficient in this context. But other questions also merit further research. One may
wonder, for instance, if the BFGS updates could be performed at the different grid levels
and the resulting matrices prolongated to the fine grid. One may also consider the effect
of using simultaneous updates or other quasi-Newton updates in the context of multi-
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Eigenvalue LM variant (6.1) (5.4) (6.2) (5.5)

Pairs upd. order τ nf nit nf nit nf nit nf nit

full coarse-first 1.0 65 62 83 80 47 45 79 71
full coarse-first 0.999 65 62 83 80 47 45 79 71
full fine-first 1.0 61 58 93 92 81 76 59 51
full fine-first 0.999 61 58 93 92 81 76 59 51
local coarse-first 1.0 65 63 83 80 47 45 79 71
local coarse-first 0.999 65 63 83 80 47 45 79 71
local fine-first 1.0 61 58 91 88 91 84 57 51
local fine-first 0.999 61 58 91 88 91 84 57 51
mless coarse-first 1.0 65 63 83 80 47 45 79 71
mless coarse-first 0.999 65 63 83 80 47 45 79 71
mless fine-first 1.0 61 58 91 88 91 84 57 51
mless fine-first 0.999 61 48 91 88 91 84 57 51

Table 6.9: Performance of eigenvalue limited-memory BFGS algorithms on problem DASW
(L-BFGS uses 60 function evaluations and 57 iterations on this problem)
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Figure 6.3: Evolution of the relative Hessian perturbation sizes (2.5) with k for the vari-
ant [local,coarse-first,1.0] with m = 7 and r = 4 using equation (6.1) for problems of size
n = 632 (Q2D on the left, MS on the right, logarithmic vertical scale)

secant algorithms, or the use of the resulting approximations in multilevel optimization
algorithms of the type suggested by Nash (2000), Gratton et al. (2008a) or Wen and
Goldfarb (2007). Yet further research questions include the effect of the particular choice
of the restriction and prolongation operators and the impact of grid refinement strategies.
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