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Abstract

We introduce a new trust-region method for unconstrained optimization where the radius
update is computed using the model information at the current iterate rather than at the
preceding one. The update is then performed according to how well the current model retro-
spectively predicts the value of the objective function at last iterate. Global convergence to
first- and second-order critical points is proved under classical assumptions and preliminary
numerical experiments on CUTEr problems indicate that the new method is very competitive.

Keywords: unconstrained minimization, trust-region methods, convergence theory, numerical
experiments.

1 Introduction

Trust-region methods are well-known techniques in nonlinear nonconvex programming, whose con-
cept has matured over more than thirty years (for an extensive coverage, see Conn, Gould and
Toint, 2000). In such methods, one considers a model my of the objective function which is as-
sumed to be adequate in a “trust region”, which is a neighbourhood of the current iterate x. This
neighbourhood is often represented by a ball in some norm, whose radius Ay, is then updated from
iteration k to iteration k + 1 by considering how well m, predicts the objective function value at
iterate xx11. In retrospect, this might seem unnatural since the new radius Agy; will determine
the region in which a possibly updated model my_y; is expected to predict the value of the objective
function around xy;. Our aim in this paper is to propose a variant of the trust-region algorithm
that determines Ay according to how well my 1 predicts the value of the objective function at
x, thereby synchronizing the radius update with the change in models.

This paper explores the theoretical properties and practical numerical potential of the new trust-
region algorithm. We introduce the new method in Section 2, and study its convergence in the next
section. Section 4 presents preliminary numerical experience on standard nonlinear problems. We
conclude and examine perspectives for future research in Section 5.

2 A retrospective trust-region algorithm
We consider the unconstrained optimization problem

min /(). (2.1)

where f is a twice-continuously differentiable objective function which maps R™ into IR and is
bounded below. Trust-region methods are iterative processes, which, given a starting point z,



Draft version (31 October 2007) — definitely not for circulation 2

construct a sequence (zx)r>o of iterates hopefully converging to a solution of (2.1). At each iter-
ation k, a twice-continuously differentiable model my, is defined which we trust inside a (typically
Euclidean) ball By, of radius Ay > 0 centred at the current iterate xy, called the trust region. A step
sk is then computed by (approximately) minimizing the model m;, inside the trust region Bj. The
trial point xy + s is then accepted as the next iterate x; if and only if pg, the ratio

det  flar) — f(@r + sk)
o mk(xk) — mk(xk =+ Sk)

of achieved reduction (in the objective function) to predicted reduction (in its local model my),
is larger than a small positive constant 77 (iteration k is then called successful). In the classical
framework, the trust-region radius is updated at the end of each iteration: it is decreased if the
trial point is rejected (that is if pr < 11) and left unchanged or increased otherwise.

Our new algorithm differs in that the trust-region radius is updated after each successful itera-
tion & (that is at the beginning of iteration k + 1) on the basis of the retrospective ratio

o det  f(@rga) = f@her — sk) _ f) = f(ae + sk
Phit M1 (Tht1) — Mp1(Trt1 — Sk)  Mpg1(@k) — Mpg1 @k + Sk)

of achieved to predicted changes, while continuing to use p; to decide whether the trial iterate
may be accepted. Our method therefore distinguishes the two roles played by pi in the classical
algorithm: that of deciding acceptance of the trial iterate and that of determining the radius update.
It also explicitely takes into account that m,, 1, not my, is used within the trust region of radius
A1

This leads to the retrospective trust-region method described as Algorithm 2.1, in which we
leave the precise definitions of the model (at Step 1) and of “sufficient reduction” (at Step 3) for
the next section.

3 Convergence theory

We now investigate the convergence properties of our algorithm. Since it can be considered as
a variant of the basic trust-region method of Conn et al. (2000), we expect similar results and
significant similarities in their proofs. In what follows, we have attempted to be explicit on the
assumptions and properties, but to refer to Chapter 6 of this reference whenever possible.

Our assumptions are identical to those used for the basic trust-region method.

A.1 The Hessian of the objective function V,, f is uniformly bounded, i.e. there exists a positive
constant k., such that, for all z € R",

IVae f(2)]| < Fusn-

A.2 The model my is first-order coherent with the function f at each iteration xy, i.e. their values
and gradients are equal at xj, for all k:

my(zr) = f(zr) and  gr & Vomp(zr) = Vo f(zn).

A.3 The Hessian of the model V ,m is uniformly bounded, i.e. there exists a constant K., > 1
such that, for all z € R"™ and for all k&,

[Vazme ()] < Kymn — 1.
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Algorithm 2.1: Retrospective trust-region algorithm (RTR)

Step 0: Initialisation. An initial point xy and initial trust-region radius Ag > 0 are given.
The constants 71, 771, 72, 71 and - are also given and satisfy 0 <, < 1,0 < <12 < 1
and 0 < v1 < 72 < 1. Compute f(z) and set k = 0.

Step 1: Model definition. Select a twice-continuously differentiable model mj defined
in Bk.

Step 2: Retrospective trust-region radius update. If £k = 0, go to Step 3. If x, = z1_1,
then choose Ay in [y1Ak—1,72Ak—1). Else, define

_ f(xp—1) — f(ap)

= 2.2
Pk (1) — ma(r) @2
and choose
[Ap—1,00) if pr = 72,
Ap €4 [v2lk—1,Ak-1) if pr € [71,72), (2.3)

(1 Ak—1,720K-1) if pr < 1.

Step 3: Step calculation. Compute a step sj that “sufficiently reduces the model” my, and
such that zp + s, € By.

Step 4: Acceptance of the trial point. Compute f(xy + s;) and define
f(@r) — fak + sk)

mk(a:k) — mk(a:k + Sk).

Pk =

If pr. > m1, then define xx 1 = xf + Si; otherwise define x 1 = x.
Increment k& by 1 and go to Step 1.

A.4 The decrease on the model my is at least as much as a fraction of that obtained at the Cauchy
point; i.e. there exists a constant K. € (0,1) such that, for all &,

. k
my(zr) — mi(zk + Sk) 2 Kmae | gr|| min [m7 Ak]

Br

with By % 1 + max|| Vaeme ()]
zEBy

Note that A.4 specifies the notion of “sufficient reduction” used in Step 3 of our algorithm, while
the choice of my, in Step 1 is limited by A.2 and A.3. We also note that s; # 0 whenever g; # 0
because of A.4.

3.1 Convergence to First-Order Critical Points

In this section, we prove that the retrospective trust-region algorithm is globally convergent to
first-order critical points, in the sense that every limit point x,. of the sequence of iterates (zy)
produced by the algorithm 2.1 satisfies

Vaef(z:) =0

irrespective of the choice of the starting point xg and initial trust-region radius Ag.
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We first give a bound on the error between the true objective function f and its current model
my. at the previous iterate xj_1.

Theorem 3.1 Suppose that A.1-A.3 hold. Then we have that
|f (@) — mp—1(21)] < Kupn A7 (3.5)
and, if iteration k£ — 1 is successful, that
|f(zr—1) — mi(zr—1)| < FubnA7_q (3.6)

where ot
Fuvn = MaX[Kum, Fumn)- (3.7)

Proof. The bound (3.5) directly results from Theorem 6.4.1 in Conn et al. (2000). We thus
only prove (3.6). Because the objective function and the model are C? functions, we may apply
the mean value theorem on the objective function f and on the model my, and obtain from
Tp—_1 = T — Skp—1 that
f@e—1) = flzr) = (se-1, Vo f(@r)) + 3 (Sk—1, Vaa f (&) Sk—1) (3.8)

me(zr—1) = mu(ar) — (Sk—1, Vame () + 3 (Sk—1, Voo (Cr)sk—1) (3.9)
for some &, Cx in the segment [xg_1, zx.
Because of A.2, the objective function f and the model m; have the same value and gradient
at zx. Thus, subtracting (3.9) from (3.8) and taking absolute values yields that
2 1(5k=1, Vaa f (§6)sk—1) — (Sk—1, Vaomr(Ce)sk—1)|
L sk—1, Vaa f (&) sk—1)] + [{sk—1, Vaomi(Ce)si—1) ]
%(ﬁufh + Kumh — ]-)”SkleQ
%(K:ufh + Kumh — 1)Ai717 (310)

|f(xk—1) — mk(xk_1)| =

INCININ

where we successively used the triangle inequality, the Cauchy-Schwarz inequality, the induced
matrix norm properties, A.1, A.3, and the fact that z) € By_; implies that ||sy_1]] < Ax—1. So
(3.6) clearly holds. O

Thus the analog of Theorem 6.4.1 of Conn et al. (2000) holds in our case, where we replace the
forward difference f(xg+1) — mp(zr41) by its retrospective variant f(xg—1) — mg(zr—1)-

As our new ratio p uses the reduction in my, instead of the reduction in my_1, we are interested
in a bound on their difference, which is provided by this next result.

Lemma 3.2 Suppose that A.1-A.3 hold. Then we have that, for every successful iteration
kE—1,

| k-1 (zp—1) = m—1(z)] = [ (@r—1) — mp ()] | < 2RanAF_;. (3.11)
Proof. Using the model differentiability, we apply the mean value theorem on the model

mg_1, and we obtain that

mi—1(zk) = mp—1(@r—1) + (Sk—1, go—1) + 5 (Sk—1, Vaamr—1(Yr—1)sk—1)  (3.12)
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for some 1)1 in the segment [x;_1, k). Remember that (3.9) in the previous proof gives that
mi(@p-1) = mp(@e) — (Sk—1,9%) + 3 (Sk—1, Voo (Ce)sk—1) (3.13)

for some (j, in the segment [x;_1, zx]. Substituting (3.12) and (3.13) inside the left-hand size of
(3.11), and using A.3, the triangle inequality, the Cauchy-Schwarz inequality, and the induced
matrix norm properties yield that

| [mk—1($k—1) - mk—l(l’k)] - [mk(xk_l) - mk(l’k)] |
= | (sk—1,96-1 — k) — 3 ({(Sk—1, Vaamr—1(Vr—1)sk—1) + (Sk—1, Vaamr(Ce)sk—1))]
< sietll - llgn—1 = gl + Fumnllsn—1]*. (3.14)

Now observe that, because of A.2, ||gk—1 — gk|| = [|Vaf(xx—1) — Vo f(xk)||. We then apply the
mean value theorem on V., f and obtain that

1
Vaof(zr) = Vo f(ze—1) + /0 Vo f(xp—1 + ask_1)sk—1 da. (3.15)

Thus the Cauchy-Schwarz inequality, and A.1 give that

1 1
lgr—1—gxl < / IVaaf(@r-1+ask—1)| - [|sk-1ll do < / Foum [[sk—1]l do = Kum[|sk—1 |- (3.16)
0 0
Substituting this bound in (3.14), we obtain that

(a1 (@r-1) — ma—1(@k)] — [ma(@e-1) = mr(@R)] | < (Fum + Fomn) [ 8517 = 260 A7
where we finally use (3.7), and the fact that x; € B_1. O

We conclude from this result that the denominators in the expression of g, and p;_; differ by
a quantity which is of the same order as the error between the model and the objective function.
Using this observation, we are now capable of showing that the iteration must be successful if the
radius is sufficiently small compared to the gradient, and also that the trust-region radius has to
increase in this case.

Theorem 3.3 Suppose that A.1-A.4 hold. Suppose furthermore that g, # 0 and that

(1 —72) | Kmae
(3 —272) | Kubn

Ag—1 <min |1 -, llgr—1l- (3.17)

Then iteration k — 1 is successful and

Ap > Apy. (3.18)

Proof. We first apply Theorem 6.4.2 of Conn et al. (2000) to deduce that iteration k — 1 is
successful and thus that z; = x5_1 + sp—1 # zr—1. Observe now that the constants 72 and k4.
lie in the interval (0, 1), which implies that

1—4 1 1—7
A-m) 1 _, 4 vadc( i2)

B2 "2 Gz < 19
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The conditions (3.17), (3.19), and (3.7), combined with the definition of §x_; in A.4 imply that

1 Kmde _
Mgt < 2mseye 1 and Apy < 19l (3.20)
2 Kuon Br—1

As a consequence, A.4 immediately gives that

lgr—1ll
Br—-1

On the other hand, we may apply Lemma 3.2 and use the triangle inequality to obtain that

Mp—1(Tp—1) — Mr—1(Tk) = Kmae||gr—1|| min { ;Ak—1:| = Kmael|gk—1]|Ak—1. (3.21)

|mi—1(ze—1) — me—1(zr)| — [mp(@r—1) — my(ze)
< |[mk—1(33k—1) — mp—1(zk)] — [mu(@r—1) — mk(l’k)”
< 2/@ubhA271

and therefore, with (3.21), that

|mp(cr—1) — mg(zy)| [mi—1(zx—1) — mr_1(21)| — 2K AF_,

=
= fimdc”gk—lHAk—l - Z/fubhAz,y (3-22)

We finally may apply Theorem 3.1 and deduce from A.2, (3.6) and (3.22) that

flor—1) — mi(zr—1) Kaon A k—1

Nk -1 = S
o | mg(zr—1) — mg(zg) Kmael|gk—1]] = 2Kuon Ak—1

<1—ij (3.23)

because (3.17) implies that (3 — 272) ke Ak—1 < (1 — 72)Kmac||gr—1|| and thus that k., Ak—1 <
(1 — 712) (Kmael| gk—1]] — 26wnBr—1) With Kpallgr—1]] — 26wnBr—1 > 0 by (3.20). Therefore,
pr = T2 and (2.3) then ensures that (3.18) holds. O

It is therefore guaranteed that the trust-region radius can not be decreased indefinitely if the
current iterate is not near critically. This is ensured by the next theorem.

Theorem 3.4 Suppose that A.1-A.4 hold. Suppose furthermore that there exists a constant
Kivg Such that ||gx|| > ki for all k. Then there is a constant k4 such that

Ak 2 Kiba (324)
for all .

Proof. The proof is the same as for Theorem 6.4.3 in Conn et al. (2000) except that

(1 - ﬁQ) Y1RmacKibg
(3 - 2772) Rubh .

Kipa = min |1 —nq,

a

>From here on, the proof for the basic trust region applies without change. We first deduce
the global convergence of the algorithm to first-order critical points when it generates only finitely
many successful iterations.
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Theorem 3.5 Suppose that A.1-A.4 hold. Suppose furthermore that there are only finitely
many successful iterations. Then xj = x, for all sufficiently large k and x. is first-order critical.

Proof. The same argument as in Theorem 6.4.4 in Conn et al. (2000) may be applied since

the radius update is identical to that of the basic trust region method for unsuccessful iterations.
O

Finally, the next two results ensure the global convergence of the algorithm to first-order critical

points, by showing in a first step that at least one accumulation point of the iterates sequence is
first-order critical.

Theorem 3.6 Suppose that A.1-A.4 hold. Then one has that

likminf IVaf(zk)] = 0. (3.25)

Proof. See Theorem 6.4.5 in Conn et al. (2000). O

As for the basic trust-region method, this can be extended to show that all limit points are
first-order critical.

Theorem 3.7 Suppose that A.1-A.4 hold. Then one has that

T |V, f ()| = 0. (3.26)
Proof. See Theorem 6.4.6 in Conn et al. (2000). O

3.2 Convergence to Second-Order Critical Points

We now investigate the possibility to exploit second-order information on the objective function,
with the aim of ensuring convergence to second-order critical points, i.e. points =, such that

Vof(z.) =0 and Vg, f(x.) is positive semidefinite.

Of course, we need to clarify what we precisely mean by “second-order information”. We therefore
introduce the following additional assumptions:

A.5 The model is asymptotically second-order coherent with the objective function near first-order
critical points, i.e.

klim VoS (xr) = Vaamp(xk)|| = 0 whenever klim llgxll = 0.

A.6 The Hessian of every model my is Lipschitz continuous, that is, there exists a constant kg,
such that, for all k,

Veamp(z) = Veamp(y)|| < sz — |
for all z,y € B.
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A.7 If the smallest eigenvalue 71 of the Hessian of the model my, at xj is negative, then
my(xg) — mi(Tg + Sk) 2 Keoal|Tk]| min(ﬁf, Ai)
for some constant k.4 € (0, 1).

These assumptions are identical to those used in Sections 6.5 and 6.6 of Conn et al. (2000) for the
basic trust-region method. In fact, the second-order convergence properties of the retrospective
trust-region method also turn out to be exactly the same as those of the basic trust-region method,
and their proofs can essentially been borrowed from this case, with the exception of Lemma 6.5.3.
We therefore need to present a proof of that particular result for the new method. As we indicate
below, all other results generalize without change and we only mention them for the sake of clarity.

In our analog of Lemma 6.5.3, we assume that the model reduction is eventually significant in
the sense that it is at least of the same order as the error between the model and the objective
function. We then show that the trust-region radius becomes asymptotically irrelevant if the steps
tend to zero.

Lemma 3.8 Suppose that A.1-A.3, and A.5 hold. Suppose also that there exists a sequence
(ki) and a constant K,q.a > 0 such that

>0 (3.27)

mg, (Tg,) — M, (Tk, + Sk;) = Kuaal| Sk,
for all 7 sufficiently large. Finally, suppose that
lim ||sg, ]| = 0.
i—00
Then iteration k; is successful and

Pl;+1 = T2 and Ag, 41 = Ag (3.28)

i

for i sufficiently large.

Proof. We first apply Lemma 6.5.3 of Conn et al. (2000) to deduce that every iteration k;
is successful for 7 sufficiently large. Now, consider k; one such iteration. The equations (3.10)
and (3.9) imply that for some &k, +1 and (x, 11 in the segment [z, Tk, 1],

f(@r:) — me41(zn,)
M1 (Tk;) — M1 (Th; 1)
(8t Vaa f(§k+1)8k:) — (Skis VoM, 41(Cry1)Sk;)

= (Skys Ghit1) + 3 (St s Voo, 4+1(Coi1) 5k, )
Iskll® - [ Vaaf (Ehit1) = Vaamg+1(Crir) |
| = (Skss Gkit1) + 5 (Skys Voo +1(Cro41) Sk, )

|p~ki+1 - ]-| =

(3.29)

where we also used the Cauchy-Schwarz inequality. By substituting gx,+1 = Vi f(zk,+1) (be-
cause of A.2) with its expression in (3.15), the denominator D of the latter fraction can be
rewritten as

1
b= }_ <Ski)gki +/ vzzf(xkl + aski)ski d0é> + % <Ski; vrrmki+1(<ki+1)ski> :
0
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Then, replacing — (sk,, gk,) by its expression in (3.12), we obtain
D = mp, (xki) — Mg, (xkiJrl) + % <Sk71' ) v$$mki (¢k1)5k,>

1
+3 (Ski» Vaak,41(Coi+1)5k,) — <Sk,“/ Vi f (2, + ask,)sk, dOé> ‘
0

for some v, in the segment [zy,,xk,+1]. The triangle inequality, properties of the integral,
(3.27), and Cauchy-Schwarz inequality give therefore the following lower bound on D:

D = |my,(zg,) — (xk +1)]
-3 < (Vaa f(wr, + ask,) — Veamr, (Vr,)]sk, da>
+ <Skm/ [ Irf(mkz + aski) - vzimki+1(<ki+1)]8ki da> ‘
0
> zzf(xkl + aski) - vrrmki (wkz)
1
= Sl [ 19aa o, + as1) = Vaomg 1 (G- s da
0
> |8k | * (Fmaa — 3€0) (3.30)

where

def

1 1
€ = / ||szf($kI +013ki) _vzzmki (¢k1) | da+/ ||vmrf(xk1 +O‘Ski) _vzimkri-l(ckrl-l)” dav.
0 0

The triangle inequality now implies that

”vw:pf(wk, + aski) - vwwmki (djk»)” < ||vwwf(wk, + O‘Ski) - vwwf(xh”'

(3.31)
+ I Vaa f(2r;) — Vaamu, (r,) weMi, (Tk,) — Vaemp, (Yr,)

and, similarly, that

”vrrf(xh + aski) - vzzmki+1(<ki+l)” < ||vzzf(xk1 + O‘Ski) - me(ﬂfki+1)||

(3.32)
+ I Vaa f (k1) = Vaami,+1 (@, +0) | + | Veemi, 11Tk +1) — Veeme,+1(Cr+1) |-

Since we now observe that

EME 1Chit1 — T4

||(mkz + asg, ) ki

<
[(zx, + ask,) — o, +1|| <

NN

lskll,

we may deduce that both

| and ||v11f(mkz + aski) - vrfmkri-l(ckri-l)”

converge to zero with ||sg,|| because the first and third terms of the right-hand side of (3.31)
and (3.32) tend to zero by continuity of the the objective function’s and model’s Hessians,
and because the middle term in the right-hand side of these inequalities also converges to zero
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because of A.5 and Theorem 3.7. As a consequence, €; < K.,qa When 7 is sufficiently large, and
therefore, combining (3.29) and (3.30), and using the triangle inequality, we obtain

- 2
|pki+1 - 1| < ”vrrf(fkrl-l) - vrfmki-Fl(Cki-Fl)H
maqd
2
< ”vﬂcwf(&erl) - me(xkﬁl)ﬂ
mqd

+ IVaa f(Tri41) = Vaamp, 41Tk, 11) ||

+ ||vrrmki+1(xki+1) - szmkH-l(CkH-l)” (333)

By the same reasoning as for (3.31)—(3.32), the right-hand side of (3.33) tends to zero when
i goes to infinity, and pg,+1 therefore tends to 1. It is thus larger than 72 < 1 for ¢ sufficiently
large and (3.28) follows. 0

As in Lemma 6.5.4 of Conn et al. (2000), we may apply this result to the entire sequence of
iterates and deduce that all iterations are eventually successful and the trust-region radius bounded
away from zero.

>From here on, the theory in Conn et al. (2000) generalizes without significant change, yielding
the following results.

Theorem 3.9 Suppose that A.1-A.5 hold and that z, is a subsequence of the iterates gen-
erated by Algorithm RTR converging to a first-order critical point x, where the Hessian of
the objective function V., f(x,) is positive definite. Suppose furthermore that s; # 0 for all
k sufficiently large. Then the complete sequence of iterates converges to x., all iterations are
eventually very successful, and the trust-region radius Ay is bounded away from zero.

Proof. See Theorem 6.5.5 in Conn et al. (2000). O

We now proof that if the sequence of iterates remains in a compact set, then the existence of at
least one second-order critical accumulation point is guaranteed.

Theorem 3.10 Suppose that A.1-A.7 hold and that all iterates remain in some compact
set. Then there exists at least one limit point x, of the sequence of iterates x; produced by
Algorithm RTR, which is second-order critical.

Proof. See Theorem 6.6.5 in Conn et al. (2000). O
By just strengthening the radius update rule by requiring that
if pr =172 and Ap < Anax, then Ay € [13A%, 14A%] (3.34)

for some 4 > v3 > 1 and some A, > 0, we moreover obtain the second-order criticality of any
limit point of the sequence of iterates generated by Algorithm RTR.
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Theorem 3.11 Suppose that A.1-A.7, and (3.34) hold and let =, be any limit point of the
sequence of iterates. Then z, is a second-order critical point.

Proof. See Theorem 6.6.8 in Conn et al. (2000). O

Thus the retrospective trust-region algorithm shares all the (interesting) convergence properties
of the basic trust-region method under the same assumptions. We conclude this theory section by
noting that the above convergence results are still valid if one replaces the Euclidean norm by any
(possibly iteration dependent) uniformly equivalent norm, thereby allowing problem scaling and
preconditioning.

4 Preliminary numerical experience

We now consider the numerical behaviour of the new algorithm, in comparison with the basic trust-
region algorithm BTR (see page 116 of Conn et al. (2000)). We test both algorithms on all of
the 146 unconstrained problems of the CUTEr collection (see Gould, Orban and Toint, 2003). For
the problems whose dimension may be changed, we chose a reasonably small value in order not to
overload the CUTEr interface with MATLAB. The starting points are the standard ones provided
by the CUTEr library.

For the basic algorithm, the trust-region radius update was implemented by using the simple
rule (and the corresponding parameters) proposed in Conn et al. (2000), p. 782:

max (o sk, Ax) if pr = 02,
Apy1 =4 Ak if pr € [m1,m2),
s skl if pr. <M,

where «; is fixed at 2.5, as at 0.25, n; at 0.05 and 7, at 0.9. To avoid biasing the comparison,
we fave decided to make as few adaptations as possible to that rule in our retrospective variant
(i.e. Step 2 in Algorithm 2.1). Thus, if iteration k is unsuccessful, i.e. pp < 11 and consequently
Xy = Tky1, we also decrease the trust-region to Agi1 = asl|sk||. If, on the contrary, iteration k is
successful, i.e. pr > 11, the trust-region is updated as follows:

max (o ||k, Ax)  if prg1 = 72,
Apy1 = Ag if pry1 € [71,72),
az skl if pry1 <.

where we choose the same values as above for a; and as, and take 7; = 1, = 0.05 and 72 = 15 = 0.9.
The model was chosen, in both cases, to be the exact Taylor’s series truncated to second-order, and
the exact minimizer of this model inside the trust-region, was computed using the Moré-Sorensen
algorithm (see Moré and Sorensen, 1983).

We considered that the iterative process converged when the Euclidean norm of the gradient
became smaller than 107°. Failure was declared if the algorithm did not converge within the
maximum number of 100 000 iterations.

We chose to compare the number of iterations to achieve convergence instead of the CPU time
or number of function evaluations. Indeed, the cost per iteration is the same for both algorithms
and they both evaluate the objective function once per iteration and compute one gradient at every
successful iteration. Moreover, timings in MATLAB are often difficult to interpret.

All runs were performed in Matlab v. 7.1.0.183 (R14) Service Pack 3 on a 3.2 Ghz Intel single-core
processor computer with 2 GB of RAM. The Figure 4.1 represents the comparison by a performance
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profile (see Dolan and Moré¢, 2002) of the number of iterations of the two algorithms. In this figure,
we have only kept the problems for which both algorithms converged to the same local solution (we
excluded BROYDN7D, FLETCHBV, NONCVXU2 and NUNCVXUN).

Comparison between the retrospective and the basic TR algorithm
1 T T T T T T T

X

0.65 4
0.6% 1
0.55 Retrospective TR |7
——— Basic TR
05 . . . . . I I
1 15 2 25 3 35 4 45 5

Figure 4.1: Performance profile comparing the number of iterations of the RTR and BTR algorithms

Our results show that the retrospective algorithm is overall more efficient than the classical
one, and just as reliable. Both algorithms failed on MEYER3, a problem well-known for its extreme
conditioning, and on FLETCBV3. On the other hand, BTR failed on SCOSINE, which was solved by
RTR.

5 Conclusion and perspectives

We have introduced a natural variant of the basic trust-region algorithm, where the most recent
model information is exploited to update the trust-region radius. We have also shown that limit
points of sequences of iterates produced by the new algorithm are second-order critical points for
the minimization problem. Qur preliminary numerical experiments indicate that the method is very
competitive and deserves further study.

This new method is especially interesting for adaptive techniques which exploit the information
made available during the optimization process in order to vary the accuracy of the objective
function computation. These methods typically appear in the context of a noisy objective function,
where noise reduction can be achieved but at a significant cost. We therefore assume that the
error can be estimated and consequently maintained under some acceptable threshold, while at the
same time keeping the computational cost as low as possible. A first trust-region method with
dynamic accuracy is described in Section 10.6 of Conn et al. (2000). The main idea there is to
impose a model reduction larger than some multiple of the noise evaluated at both the current and
candidate iterates. A cheaper nonmonotone approach has been developed in the context of nonlinear
stochastic programming by Bastin, Cirillo and Toint (2006a), (see also Bastin, Cirillo and Toint,
2006b) more specifically for the minimization of sample average approximations (Shapiro 2003)
relying on Monte-Carlo sampling, a method also known as sample-path optimization (Robinson,
1996). The main difference with respect to the work of Conn et al. is that it allows a reduction of
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the model smaller than the noise level. In both cases, the size of the model reduction is the main
component to decide on the desired accuracy of the objective function: the adaptive mechanism is
thus applied on the basis of past information, at the previous iterate, rather that at the current
one. Our new proposal could therefore improve these techniques significantly because it uses the
most relevant information on the model’s quality at the current iterate instead of at the previous
iterate, but this remains to be analyzed further.

Other applications of the same idea are also possible across the wide class of trust-region meth-
ods, constrained and unconstrained.
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Appendix A

Here is the set of results from our tests. For each problem, we report its number of variables (n),
the number of iterations (iter), the number of gradient evaluations (#g¢) and the best objective
function value found (f). The symbol > indicates that the iteration limit (fixed at 100 000) was
exceeded.

BTR RTR

Name n iter #g f iter #g f

AKIVA 2 6 7  6.1660e+400 6 7 6.1660e+00
ALLINITU 4 7 8  5.7444e+00 7 8  5.7444e+00
ARGLINA 200 5 6  2.0000e+-02 5 6  2.0000e+02
ARWHEAD 100 5 6  6.5947e—14 5 6  6.5947e—14
BARD 3 9 9  8.2149e—03 9 9  8.2149e—03
BDQRTIC 100 10 11 3.7877e+02 10 11 3.7877e+-02
BEALE 2 9 9 1.9232e—16 8 8 4.5813e—14
BIGGS6 6 617 482 2.4268e—01 444 360 2.4269e—01
BOX3 3 7 8 1.5192e—11 7 8 1.5192e—11
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BTR RTR

Name n iter #g f iter #g f

BRKMCC 2 2 3 1.6904e—01 2 3 1.6904e—01
BROWNAL 200 27 23 2.4548e—13 25 21 7.9812e—23
BROWNBS 2 29 29  0.0000e+00 28 28  4.9304e—30
BROWNDEN 4 10 11 8.5822e+-04 10 11 8.5822e+-04
BROYDN7D 100 27 23 3.9739%e+01 22 20 3.9867e+-01
BRYBND 100 12 11 5.0820e—19 14 12 1.8559e—17
CHAINWOO 100 62 52 1.0000e+-00 49 45 1.0000e+00
CHNROSNB 50 67 57  3.9250e—14 55 54  6.3584e—14
CLIFF 2 27 28 1.9979e—01 27 28 1.9979e—01
COSINE 100 6 7 -9.9000e+-01 6 7 -9.9000e+01
CRAGGLVY 202 15 16 6.6741e+01 15 16 6.6741e+4-01
CUBE 2 40 33 8.0930e—16 35 30 1.3070e—14
CURLY10 50 9 10 -5.0158e+03 9 10 -5.0158e+-03
CURLY20 50 8 9 -5.0158e+03 8 9 -5.0158e+03
CURLY30 50 13 13 -5.0158e+03 13 13 -5.0158e+03
DECONVU 61 19 14 1.3203e—08 20 15 1.5318e—08
DENSCHNA 2 5 6 2.2139%—12 5 6 2.2139e—12
DENSCHNB 2 4 5  3.3850e—16 4 5  3.3850e—16
DENSCHNC 2 10 11 2.1777e—20 10 11 2.1777e—20
DENSCHND 3 40 34 6.5710e—09 33 29 9.2866e—08
DENSCHNE 3 9 10  8.7102e—19 9 10  8.7102e—19
DENSCHNF 2 6 7  6.5132e—22 6 7  6.5132e—22
DIXMAANA 150 7 8 1.0000e+-00 7 8 1.0000e+00
DIXMAANB 150 14 13 1.0000e+-00 14 13 1.0000e+00
DIXMAANC 150 10 10 1.0000e+-00 10 10 1.0000e+-00
DIXMAAND 150 12 11 1.0000e+-00 12 11 1.0000e-+00
DIXMAANE 150 17 15 1.0000e+-00 14 13 1.0000e+00
DIXMAANF 150 18 15 1.0000e+-00 15 13 1.0000e+00
DIXMAANG 150 16 14  1.0000e+00 16 14 1.0000e+00
DIXMAANH 150 20 17 1.0000e+-00 15 14 1.0000e+00
DIXMAANI 150 14 13 1.0000e+-00 14 13 1.0000e+00
DIXMAANJ 150 19 16 1.0000e+-00 19 16 1.0000e+00
DIXMAANK 150 21 18 1.0000e+-00 16 15 1.0000e+00
DIXMAANL 150 20 16 1.0000e+-00 20 16 1.0000e+-00
DIXON3DQ 100 4 5 1.1402e—29 4 5 1.1402e—29
DJTL 2 120 89 -8.9515e+03 112 85  -8.9515e+4-03
DQDRTIC 100 5 6  5.9658e—29 5 6  5.9658e—29
DQRTIC 100 29 30  2.8059e—08 29 30  2.8059e—08
EDENSCH 100 24 19 6.0328e+-02 24 20 6.0328e+-02
EG2 100 3 4 -9.8947e+01 3 4 -9.8947e+01
EIGENALS 110 20 21 5.0766e—21 21 21 5.0350e—24
EIGENBLS 110 92 72 7.1205e—12 118 104 1.3990e—13
ENGVAL1L 100 9 10 1.0909e+-02 9 10 1.0909e+-02
ENGVAL2 3 13 14 9.7152e—17 13 14 9.7152e—17
ERRINROS 50 47 43 3.9904e+01 48 45  3.9904e+01
EXPFIT 2 7 6 2.4051e—01 7 6 2.4051e—01
EXTROSNB 100 685 554  8.2403e—07 504 484  2.9412e—07
FLETCBV2 100 2 3  -5.1401le—01 2 3 -5.1401le—01
FLETCBV3 50 > > -1.1173e+03 > > -1.1072e+03
FLETCHBV 10 508 498  -2.2561e+06 817 810 -2.0573e+06
FLETCHCR 100 357 284 3.5522e—14 214 212 6.8069e—15
FMINSRF2 121 26 23 1.0000e+-00 25 22 1.0000e+-00
FMINSURF 121 30 26 1.0000e+-00 27 22 1.0000e+00
FREUROTH 100 9 10 1.1965e+04 9 10 1.1965e+04
GENHUMPS 10 | 10280 9680  3.5566e—12 | 11744 11060  3.4200e—15
GENROSE 100 123 99 1.0000e+-00 107 96 1.0000e+00
GENROSEB 500 515 424 1.0000e+-00 354 338 1.0000e+00
GROWTHLS 3 112 92 1.0040e+-00 92 82 1.0040e+00
GULF 3 26 23 4.8518e—13 27 27 1.1954e—11
HAIRY 2 58 53  2.0000e+01 106 96  2.0000e+-01
HATFLDD 3 20 20 6.6151e—08 20 20 6.6151e—08
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BTR RTR

Name n iter #g f iter #g f

HATFLDE 3 21 21 5.1204e—07 21 21 5.1204e—07
HEARTS6LS 6 845 794 7.6247e—24 689 676 3.5331e—22
HEARTSLS 8 105 84  2.9586e—15 86 74 1.0250e—18
HELIX 3 10 10 1.7058e—15 8 8  4.9599e—13
HIELOW 3 8 8  8.7417e+02 8 8  8.7417e+02
HILBERTA 2 3 4 8.2173e—33 3 4 8.2173e—33
HILBERTB 10 3 4 7.9218e—30 3 4 7.9218e—30
HIMMELBB 2 14 11 6.1873e—29 11 8 1.2467e—20
HIMMELBF 4 116 115 3.1857e+4-02 94 92 3.1857e4-02
HIMMELBG 2 5 6  9.0327e—12 5 6  9.0327e—12
HIMMELBH 2 4 5 -1.0000e+4-00 4 5 -1.0000e+00
HUMPS 2 2466 2329  2.3594e—10 5536 5266  3.6245e—11
JENSMP 2 9 10 1.2436e+02 9 10 1.2436e+02
KOWOSB 4 10 9  3.0780e—04 10 9  3.0780e—04
LIARWHD 100 12 13 5.5677e—14 12 13 5.5677e—14
LOGHAIRY 2 2777 2730 1.8232e—01 9343 8523 1.8232e—01
MANCINO 100 14 15 1.5301e—21 16 15 1.8618e—21
MARATOSB 2 850 777 -1.0000e+00 678 668  -1.0000e+00
MEXHAT 2 31 30 -4.0010e—02 31 30 -4.0010e—02
MEYER3 3 > > 8.7946e+01 > > 8.7946e+-01
MODBEALE 200 10 11 7.8240e—21 10 11 7.8240e—21
MOREBV 100 1 2 7.8870e—10 1 2 7.8870e—10
MSQRTALS 100 21 17 2.3642e—12 19 17 2.7268e—19
MSQRTBLS 100 19 16 1.6184e—13 17 15  7.1379e—16
NONCVXU2 100 47 42 2.3284e+-02 51 40 2.3227e+-02
NONCVXUN 100 45 39  2.3733e+02 38 31 2.3285e+-02
NONDIA 100 6 7 1.4948e—18 6 7 1.4948e—18
NONDQUAR 100 15 16 2.6991e—09 15 16 2.6991e—09
OSBORNEA 5 38 32 5.4649e—05 35 30  5.4649e—05
OSBORNEB 11 18 17 4.0138e—02 17 16 4.0138e—02
OSCIPATH 8 2682 2252 1.7742e—05 2156 1954 1.5328e—05
PALMERI1C 8 7 8  9.7605e—02 7 8  9.7605e—02
PALMERI1D 7 7 8  6.5267e—01 7 8  6.5267e—01
PALMER2C 8 6 7 1.4369e—02 6 7 1.4369e—02
PALMER3C 8 6 7 1.9538e—02 6 7 1.9538e—02
PALMERAC 8 7 8  5.0311e—02 7 8  5.0311e—02
PALMERS5C 6 5 6  2.1281e+00 5 6  2.1281e+00
PALMERSG6C 8 7 8 1.6387e—02 7 8 1.6387e—02
PALMERT7C 8 9 10 6.0199e—01 9 10  6.0199e—01
PALMERSC 8 8 9 1.5977e—01 8 9 1.5977e—01
PENALTY1 100 45 44 9.0249e—04 45 44 9.0249e—04
PENALTY2 100 19 20 9.7096e+04 19 20 9.7096e+-04
PFITI1LS 3 536 432 9.0700e—13 290 277 3.8991e—15
PFIT2LS 3 175 140  7.7708e—15 104 93  4.9517e—16
PFIT3LS 3 221 177 3.5764e—14 112 102 1.3794e—15
PFIT4LS 3 404 330 9.9629e—21 233 223 3.6519e—20
POWELLSG 4 15 16 4.6333e—09 15 16 4.6333e—09
POWER 100 24 25 1.1818e—09 24 25 1.1818e—09
QUARTC 100 29 30  2.8059e—08 29 30  2.8059e—08
ROSENBR 2 29 26 1.8013e—23 26 24 2.9201e—14
S308 2 11 10 7.7320e—01 11 10 7.7320e—01
SBRYBND 100 50 40 8.1982e—18 50 40 8.1982e—18
SCHMVETT 100 4 5  -2.9400e+-02 4 5 -2.9400e+-02
SCOSINE 100 > > -9.9000e+01 97 90  -9.9000e+01
SCURLY10 100 39 35 -1.0032e+04 46 42 -1.0032e+04
SCURLY20 100 34 30 -1.0032e+04 37 33 -1.0032e+04
SCURLY30 100 35 31 -1.0032e+04 35 31 -1.0032e+-04
SENSORS 100 21 21 -1.9668e+03 28 26 -1.9668e+-03
SINEVAL 2 54 48 1.7176e—28 54 50 1.1634e—31
SINQUAD 100 9 10 -4.0056e+03 9 10 -4.0056e+-03
SISSER 2 12 13 1.0658e—08 12 13 1.0658e—08
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BTR RTR

Name n iter #8 f iter #8 f

SNAIL 2 62 61 3.3170e—16 59 60 1.2117e—14
SPARSINE 100 37 27 3.0507e—14 41 29 2.0419e—15
SPARSQUR 100 16 17 1.4795e—08 16 17 1.4795e—08
SPMSRTLS 100 14 13 8.3824e—15 14 13 8.3824e—15
SROSENBR 100 6 7 8.8993e—28 6 7 8.8993e—28
TOINTGOR 50 9 10 1.3739e+-03 9 10 1.3739e+4-03
TOINTGSS 100 11 10 1.0102e+-01 11 10 1.0102e+-01
TOINTPSP 50 24 21 2.2556e+02 17 15 2.2556e+02
TQUARTIC 100 11 11 1.1878e—14 13 13 3.0400e—17
VARDIM 200 29 30 2.6246e—24 29 30 2.6246e—24
VAREIGVL 50 16 14 1.5304e—09 16 14 1.5304e—09
VIBRBEAM 8 49 38 1.5645e—01 52 41 1.5645e—01
WATSON 12 14 14 8.1544e—07 12 13 7.2604e—08
WOODS 4 67 56  8.3449e—15 52 47 1.4369e—21
YFITU 3 51 44 6.6698e—13 48 44  6.6697e—13
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