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Abstract

An Adaptive Cubic Overestimation (ACO) framework for unconstrained optimization was proposed

and analysed in Cartis, Gould & Toint (Part I, 2007). In this companion paper, we further the analysis

by providing worst-case global iteration complexity bounds for ACO and a second-order variant to

achieve approximate first-order, and for the latter even second-order, criticality of the iterates. In

particular, the second-order ACO algorithm requires at mostO(ǫ−3/2) iterations to drive the objective’s

gradient below the desired accuracy ǫ, and O(ǫ−3), to reach approximate nonnegative curvature in a

subspace. The orders of these bounds match those proved by Nesterov & Polyak (Math. Programming

108(1), 2006, pp 177-205) for their Algorithm 3.3 which minimizes the cubic model globally on each

iteration. Our approach is more general, and relevant to practical (large-scale) calculations, as ACO

allows the cubic model to be solved only approximately and may employ approximate Hessians.

1 Introduction

An Adaptive Cubic Overestimation (ACO) framework has been proposed in Part I [1], as an alternative

to the ubiquitous trust-region [2] and line-search [4] methods for unconstrained optimization. The model

used to compute the step from one iterate to the next arises from the following overestimation property:

assume that a local minimizer of the smooth and unconstrained objective f : IRn → IR is sought, and let

xk be our current best estimate. Furthermore, suppose that the objective’s Hessian ∇xxf(x) is globally

Lipschitz continuous on IRn with ℓ2-norm Lipschitz constant L. Then

f(xk + s) ≤ f(xk) + sT g(xk) + 1
2
sT H(xk)s + 1

6
L‖s‖3

2
def
= mC

k (s), for all s ∈ IRn, (1.1)

where we have defined g(x)
def
= ∇xf(x) and H(x)

def
= ∇xxf(x). Thus, so long as

mC
k (sk) < mC

k (0) = f(xk),

the new iterate xk+1 = xk + sk improves f(x). The bound (1.1) has been known for a long time, see for

example [4, Lemma 4.1.14]. However, (globally) minimizing the model mC
k to compute a step sk, where

the Lipschitz constant L is dynamically estimated, was first considered by Griewank (in an unpublished

technical report [9]) as a means for constructing an affine-invariant variant of Newton’s method which is

globally convergent to second-order critical points and has fast asymptotic convergence. More recently,

Nesterov and Polyak [12] considered a similar idea and the unmodified model mC
k (s), although from a
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different perspective. They were able to show that, if the step is computed by globally minimizing the

cubic model and if the objective’s Hessian is globally Lipschitz continuous, then the resulting algorithm

has a better global-complexity bound than that achieved by the steepest descent method, and proved

superior complexity bounds for the (star) convex and other special cases. Subsequently, Nesterov [11] has

proposed more sophisticated methods which further improve the complexity bounds in the convex case.

Both Griewank [9] and Nesterov et al.[12] were able to characterize the global minimizer of (1.1), even

though the model mC

k may be nonconvex [1, Theorem 3.1]. Even more recently and again independently,

Weiser, Deuflhard and Erdmann [13] also pursued a similar line of thought, motivated (as Griewank) by

the design of an affine-invariant version of Newton’s method. The specific contributions of the above

authors have been carefully detailed in [1, §1].

Simultaneously unifying and generalizing the above contributions, our purpose for the ACO framework

has been to further develop such techniques in a suitable manner for efficient large-scale calculations, while

retaining the good global and local convergence and complexity properties of previous schemes. Hence we

no longer insist that H(x) be globally, or even locally, Lipschitz (or Hölder) continuous in general, and

follow Griewank and Weiser et al. by introducing a dynamic positive parameter σk instead of the scaled

Lipschitz constant1 1
2
L in (1.1). Also, we allow for a symmetric approximation Bk to the local Hessian

H(xk) in the cubic model on each iteration. Thus, instead of (1.1), it is the model

mk(s)
def
= f(xk) + sT gk + 1

2
sT Bks + 1

3
σk‖s‖3, (1.2)

that we employ as an approximation to f in each ACO iteration (the generic algorithmic framework is

restated here on page 4). Here, and for the remainder of the paper, for brevity we write gk = g(xk) and

‖ · ‖ = ‖ · ‖2; our choice of the Euclidean norm for the cubic term is made for simplicity of exposition.

The rules for updating the parameter σk in the course of the ACO algorithm are justified by analogy to

trust-region methods [2, p.116].

Since finding a global minimizer of the model mk(s) may not be essential in practice, and as doing

so might be prohibitively expensive from a computational point of view, we relax this requirement by

letting sk be an approximation to such a minimizer. Thus in the generic ACO framework, we only require

that sk ensures that the decrease in the model is at least as good as that provided by a suitable Cauchy

point. In particular, a milder condition than the inequality in (1.1) is required for the computed step

sk to be accepted. The generic ACO requirements have proved sufficient for ensuring global convergence

to first-order critical points under mild assumptions [1, Theorem 2.5, Corollary 2.6]. For (at least) Q-

superlinear asymptotic rates [1, §4.2] and global convergence to second-order critical points [1, §5], as well

as efficient numerical performance, we have strenghtened the conditions on sk by requiring that it globally

minimizes the cubic model mk(s) over (nested and increasing) subspaces until some suitable termination

criteria is satisfied [1, §3.2, §3.3]. In practice, we perform this approximate minimization of mk using

Lanczos method (which in turn, employs Krylov subspaces) [1, §6.2, §7], and have found that the resulting

second-order variants of ACO show superior numerical performance compared to a standard trust-region

method on small-scale test problems from CUTEr [1, §7].

In this paper, we revisit the global convergence results for ACO and one of its second-order variants

in order to estimate the iteration count required to reach within desired accuracy of first-order—and for

the second-order ACO even second-order—criticality of the iterates, and thus establish a bound on the

global worst-case iteration complexity of these methods. (For more details on the connection between

convergence rates of algorithms and the iteration complexity they imply, see [10, p.36].) In particular,

provided f is continuously differentiable and its gradient is Lipschitz continuous, and Bk is bounded above

for all k, we show in §3 that the generic ACO framework takes at most O(ǫ−2) iterations to drive the

norm of the gradient of f below ǫ. This bound is of the same order as for the steepest descent method

[10, p.29], which is to be expected since the Cauchy-point condition requires no more than a move in the

negative gradient direction. Also, it matches the order of the complexity bounds for trust-region methods

shown in [7, 8].

1The factor 1
2

is for later convenience.
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These steepest-descent-like complexity bounds can be improved when one of the second-order variants

of ACO—referred here as the ACO(S) algorithm—is employed. ACO(S) [1] distinguishes itself from the

other second-order ACO variants in [1] in the particular criteria used to terminate the inner minimiza-

tion of mk over (increasing) subspaces containing gk. This difference ensures, under local convexity and

local Hessian Lipschitz continuity assumptions, that ACO(S) is Q-quadratically convergent [1, Corollary

4.10], while the other second-order variants proposed are Q-superlinear [1, Corollary 4.8] (under weaker

assumptions). Regarding its iteration complexity, assuming H(x) to be globally Lipschitz continuous, and

the approximation Bk to satisfy ‖(H(xk) − Bk)sk‖ = O(‖sk‖2), we show that the ACO(S) algorithm has

an overall worst-case iteration count of order ǫ−3/2 for generating ‖g(xk)‖ ≤ ǫ (see Corollary 5.3), and of

order ǫ−3 for achieving approximate nonnegative curvature in a subspace containing sk (see Corollary 5.4

and the remarks following its proof). These bounds match those proved by Nesterov and Polyak [12, §3]

for their Algorithm 3.3. However, our framework is more general, as we allow more freedom in the choice

of sk and of Bk in a way that is relevant to practical calculations.

The outline of the paper (Part II) is as follows. Section 2 describes the ACO algorithmic framework

and gives some useful preliminary complexity estimates. Section 3 shows a steepest-descent-like bound for

the iteration complexity of the ACO scheme when we only require that the step sk satisfies the Cauchy-

point condition. Section 4 presents ACO(S), a second-order variant of ACO where the step sk minimizes

the cubic model over (nested) subspaces, while §5 shows improved first-order complexity for ACO(S),

and even approximate second-order complexity estimates for this variant. We draw final conclusions in §6.

Note that the assumption labels, such as AF.1, AF.4, are conforming to notations introduced in Part I [1].

2 A cubic overestimation framework for unconstrained

minimization

2.1 The algorithmic framework

Let us assume for now that

AF.1 f ∈ C1(IRn). (2.1)

The generic Adaptive Cubic Overestimation (ACO) scheme below follows the proposal in [1] and

incorporates also the second-order algorithm for minimizing f to be analysed later on (see §4).

Given an estimate xk of a critical point of f , a step sk is computed that is only required to satisfy

condition (2.2). The step sk is accepted and the new iterate xk+1 set to xk + sk whenever (a reasonable

fraction of) the predicted model decrease f(xk)−mk(sk) is realized by the actual decrease in the objective,

f(xk) − f(xk + sk). This is measured by computing the ratio ρk in (2.4) and requiring ρk to be greater

than a prescribed positive constant η1 (for example, η1 = 0.1). Since the current weight σk has resulted in

a successful step, there is no pressing reason to increase it, and indeed there may be benefits in decreasing

it if good agreement between model and function are observed. By contrast, if ρk is smaller than η1,

we judge that the improvement in objective is insufficient—indeed there is no improvement if ρk ≤ 0. If

this happens, the step will be rejected and xk+1 left as xk. Under these circumstances, the only recourse

available is to increase the weight σk prior to the next iteration with the implicit intention of reducing the

size of the step.

Note that while Steps 2–4 of each ACO iteration were completely defined above, we have not yet

specified how to compute sk in Step 1. The Cauchy point sC

k achieves (2.2) in a computationally inexpensive

way (see [1, §2.1]); the choice of interest, however, is when sk is an approximate (global) minimizer of

mk(s), where Bk in (1.2) is a nontrivial approximation to the Hessian H(xk) and the latter exists (see §4).

Nevertheless, condition (2.2) on sk is sufficient for ensuring global convergence of ACO to first-order

critical points ([1, §2.2]), and a worst-case iteration complexity bound for ACO to generate ‖gk‖ ≤ ǫ will

be provided in this case (§3).
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Algorithm 2.1: Adaptive Cubic Overestimation (ACO).

Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and σ0 > 0, for k = 0, 1, . . . until convergence,

1. Compute a step sk for which

mk(sk) ≤ mk(sC

k), (2.2)

where the Cauchy point

sC

k = −αC

kgk and αC

k = arg min
α∈IR+

mk(−αgk). (2.3)

2. Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

f(xk) − mk(sk)
. (2.4)

3. Set

xk+1 =

{

xk + sk if ρk ≥ η1

xk otherwise.

4. Set

σk+1 ∈







(0, σk] if ρk > η2 [very successful iteration]

[σk, γ1σk] if η1 ≤ ρk ≤ η2 [successful iteration]

[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.5)

We have not yet established if the ratio ρk in (2.4) is well-defined. A sufficient condition for the latter

is that

mk(sk) < f(xk). (2.6)

It follows from [1, Lemma 2.1], or its summary in Lemma 3.1 below, that the ACO framework satisfies

gk 6= 0 =⇒ mk(sk) < f(xk). (2.7)

Note that due to the Cauchy condition, the basic ACO algorithm as stated above, is only a first-order

scheme and hence, AF.1 is sufficient to make it well-defined. As such, it will terminate whenever gk = 0.

Thus, from (2.7), we can safely assume that (2.6) holds on each iteration k ≥ 0 of the generic ACO

framework. For the second-order ACO variant that we analyse later on (§4 onwards), we will argue that

condition (2.6) holds even when gk = 0 (see the last paragraph of §4). This case must be addressed for

such a variant since it will not terminate when gk = 0 as long as (approximate) problem negative curvature

is encountered (in some given subspace). Based on the above remarks and our comments at the end of

§4, it is without loss of generality that we assume that (2.6) holds unless the (basic or second-order) ACO

algorithm terminates.

Condition (2.6) and the construction of ACO’s Steps 2–4 are sufficient for deriving the complexity

properties in the next section, which will be subsequently employed in our main complexity results.

2.2 Some iteration complexity properties

Firstly, let us present a generic worst-case result regarding the number of unsuccessful iterations that occur

up to any given iteration.

Throughout, denote the index set of all successful iterations of the ACO algorithm by

S def
= {k ≥ 0 : k successful or very successful in the sense of (2.5)}. (2.8)
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Given any j ≥ 0, denote the iteration index sets

Sj
def
= {k ≤ j : k ∈ S} and Uj

def
= {i ≤ j : i unsuccessful}, (2.9)

which form a partition of {0, . . . , j}. Let |Sj | and |Uj | denote their respective cardinalities. Concerning

σk, we may require that on each very successful iteration k ∈ Sj , σk+1 is chosen such that

σk+1 ≥ γ3σk, for some γ3 ∈ (0, 1]. (2.10)

Note that (2.10) allows {σk} to converge to zero on very successful iterations (but no faster than {γk
3}).

A stronger condition on σk is

σk ≥ σmin, k ≥ 0, (2.11)

for some σmin > 0. The conditions (2.10) and (2.11) will be employed in the complexity bounds for ACO

and the second-order variant ACO(S), respectively.

Theorem 2.1. For any fixed j ≥ 0, let Sj and Uj be defined in (2.9). Assume that (2.10) holds and

let σ > 0 be such that

σk ≤ σ, for all k ≤ j. (2.12)

Then

|Uj | ≤
⌈

− log γ3

log γ1
|Sj | +

1

log γ1
log

(

σ

σ0

)⌉

. (2.13)

In particular, if σk satisfies (2.11), then it also achieves (2.10) with γ3 = σmin/σ, and we have that

|Uj | ≤
⌈

(|Sj | + 1)
1

log γ1
log

(

σ

σmin

)⌉

. (2.14)

Proof. It follows from the construction of the ACO algorithm and from (2.10) that

γ3σk ≤ σk+1, for all k ∈ Sj ,

and

γ1σi ≤ σi+1, for all i ∈ Uj .

Thus we deduce inductively

σ0γ
|Sj|
3 γ

|Uj|
1 ≤ σj . (2.15)

We further obtain from (2.12) and (2.15) that |Sj | log γ3 + |Uj | log γ1 ≤ log (σ/σ0), which gives (2.13),

recalling that γ1 > 1 and that |Uj | is an integer. If (2.11) holds, then it implies, together with (2.12),

that (2.10) is satisfied with γ3 = σmin/σ ∈ (0, 1]. The bound (2.14) now follows from (2.13) and

σ0 ≥ σmin. 2

Let Fk
def
= F (xk, gk, Bk, Hk) ≥ 0, k ≥ 0, be some measure of optimality related to our problem of

minimizing f (where Hk may be present in Fk only when the former is well-defined). For example, for

first-order optimality, we may let Fk = ‖gk‖, k ≥ 0. Given any ǫ > 0, and recalling (2.8), let

Sǫ
F

def
= {k ∈ S : Fk > ǫ}, (2.16)

and let |Sǫ
F| denote its cardinality. To allow also for the case when an upper bound on the entire |Sǫ

F|
cannot be provided (see Corollary 3.4), we introduce a generic index set So such that

So ⊆ Sǫ
F, (2.17)
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and denote its cardinality by |So|. The next theorem gives an upper bound on |So|.

Theorem 2.2. Let {f(xk)} be bounded below by flow. Given any ǫ > 0, let Sǫ
F and So be defined

in (2.16) and (2.17), respectively. Suppose that the successful iterates xk generated by the ACO

algorithm have the property that

f(xk) − mk(sk) ≥ αǫp, for all k ∈ So, (2.18)

where α is a positive constant independent of k and ǫ, and p > 0. Then

|So| ≤
⌈

κpǫ
−p

⌉

, (2.19)

where κp
def
= (f(x0) − flow)/(η1α).

Proof. It follows from (2.4) and (2.18) that

f(xk) − f(xk+1) ≥ η1αǫp, for all k ∈ So. (2.20)

The construction of the ACO algorithm implies that the iterates remain unchanged over unsuccessful

iterations. Furthermore, from (2.6), we have f(xk) ≥ f(xk+1), for all k ≥ 0. Thus summing up (2.20)

over all iterates k ∈ So, with say jm ≤ ∞ as the largest index, we deduce

f(x0) − f(xjm
) =

jm−1
∑

k=0,k∈S

[f(xk) − f(xk+1)] ≥
jm−1
∑

k=0,k∈So

[f(xk) − f(xk+1)] ≥ |So|η1αǫp. (2.21)

Recalling that {f(xk)} is bounded below, we further obtain from (2.21) that jm < ∞ and that

|So| ≤
1

η1αǫp
(f(x0) − flow),

which immediately gives (2.19) since |So| must be an integer. 2

If (2.18) holds with So = Sǫ
F, then (2.19) gives an upper bound on the total number of successful

iterations with Fk > ǫ that occur. In particular, it implies that the ACO algorithm takes at most ⌈κpǫ
−p⌉

successful iterations to generate an iterate k such that Fk+1 ≤ ǫ.

In the next sections, we give conditions (on sk and f) under which (2.18) holds with Fk = ‖gk‖ for

p = 2 and p = 3/2. The conditions for the former value of p are more general, while the complexity for

the latter p is better.

3 An iteration complexity bound based on the Cauchy condition

The results in this section assume only condition (2.2) on the step sk. For the model mk, we assume

AM.1 ‖Bk‖ ≤ κB, for all k ≥ 0, and some κB ≥ 0. (3.1)

For the function f , suppose that the gradient g is Lipschitz continuous on an open convex set X containing

all the iterates {xk}, namely,

AF.4 ‖g(x) − g(y)‖ ≤ κH‖x − y‖, for all x, y ∈ X , and some κH ≥ 1. (3.2)

If f ∈ C2(IRn), then AF.4 is satisfied if the Hessian H(x) is bounded above on X . Note however, that for

now, we only assume AF.1. In particular, no Lipschitz continuity of H(x) will be required in this section.
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The next lemma summarizes some useful properties of the ACO iteration.

Lemma 3.1. Suppose that the step sk satisfies (2.2).

i) [1, Lemma 2.1] Then for k ≥ 0, we have that

f(xk) − mk(sk) ≥ ‖gk‖
6
√

2
min





‖gk‖
1 + ‖Bk‖

,
1

2

√

‖gk‖
σk



 . (3.3)

ii) [1, Lemma 2.2] Let AM.1 hold. Then

‖sk‖ ≤ 3

σk
max(κB,

√

σk‖gk‖), k ≥ 0. (3.4)

We are now ready to show that it is always possible to make progress from a nonoptimal point (gk 6= 0).

Lemma 3.2. Let AF.1, AF.4 and AM.1 hold. Also, assume that gk 6= 0 and that

√

σk‖gk‖ >
108

√
2

1 − η2
(κH + κB)

def
= κHB. (3.5)

Then iteration k is very successful and

σk+1 ≤ σk. (3.6)

Proof. Since f(xk) > mk(sk) due to gk 6= 0 and (3.3), it follows from (2.4) that

ρk > η2 ⇐⇒ rk
def
= f(xk + sk) − f(xk) − η2[mk(sk) − f(xk)] < 0. (3.7)

To show (3.6), we derive an upper bound rk, which will be negative provided (3.5) holds. Firstly, we

express rk as

rk = f(xk + sk) − mk(sk) + (1 − η2) [mk(sk) − f(xk)] , k ≥ 0. (3.8)

To bound the first term in (3.8), a Taylor expansion of f(xk + sk) gives

f(xk + sk) − mk(sk) = (g(ξk) − gk)T sk − 1

2
s⊤k Bksk − σk

3
‖sk‖3, k ≥ 0,

for some ξk on the line segment (xk, xk + sk). Employing AM.1 and AF.4, we further obtain

f(xk + sk) − mk(sk) ≤ (κH + κB)‖sk‖2, k ≥ 0. (3.9)

Now, (3.5), η2 ∈ (0, 1) and κH ≥ 0 imply
√

σk‖gk‖ ≥ κB, and so the bound (3.4) becomes ‖sk‖ ≤
3
√

‖gk‖/σk, which together with (3.9), gives

f(xk + sk) − mk(sk) ≤ 9(κH + κB)
‖gk‖
σk

. (3.10)

Let us now evaluate the second difference in (3.8). It follows from (3.5), η2 ∈ (0, 1) and κH ≥ 1 that

2
√

σk‖gk‖ ≥ 1 + κB ≥ 1 + ‖Bk‖, and thus the bound (3.3) becomes

mk(sk) − f(xk) ≤ − 1

12
√

2
· ‖gk‖3/2

√
σk

. (3.11)
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Now, (3.10) and (3.11) provide the following upper bound for rk, namely,

rk ≤ ‖gk‖
σk

[

9(κH + κB) − 1 − η2

12
√

2

√

σk‖gk‖
]

, (3.12)

which together with (3.5), implies rk < 0. Thus k is very successful, and (3.6) follows from (2.5). 2

The next lemma gives an upper bound on σk when gk is bounded away from zero.

Lemma 3.3. Let AF.1, AF.4 and AM.1 hold. Also, let ǫ > 0 such that ‖gk‖ > ǫ for all k = 0, . . . , j,

where j ≤ ∞. Then

σk ≤ max
(

σ0,
γ2

ǫ
κ2

HB

)

, for all k = 0, . . . , j, (3.13)

where κHB is defined in (3.5).

Proof. For any k ∈ {0, . . . , j}, due to ‖gk‖ > ǫ, (3.5) and Lemma 3.2, we have the implication

σk >
κ2

HB

ǫ
=⇒ σk+1 ≤ σk. (3.14)

Thus, when σ0 ≤ γ2κ
2
HB

/ǫ, (3.14) implies σk ≤ γ2κ
2
HB

/ǫ, ∀k ∈ {0, . . . , j}, where the factor γ2 is

introduced for the case when σk is less than κ2
HB

/ǫ and the iteration k is not very successful. Letting

k = 0 in (3.14) gives (3.13) when σ0 ≥ γ2κ
2
HB

/ǫ, since γ2 > 1. 2

A comparison of Lemmas 3.2 and 3.3 to [2, Theorems 6.4.2, 6.4.3] outlines the similarities of the two

approaches, as well as the differences.

Next we show that the conditions of Theorem 2.2 are satisfied with Fk = ‖gk‖, which provides an upper

bound on the number of successful iterations. To bound the number of unsuccessful iterations, we then

employ Theorem 2.1. Finally, we combine the two bounds to deduce one on the total number of iterations.

Corollary 3.4. Let AF.1, AF.4 and AM.1 hold, and {f(xk)} be bounded below by flow. Given any

ǫ ∈ (0, 1], assume that ‖g0‖ > ǫ and let j1 ≤ ∞ be the first iteration such that ‖gj1+1‖ ≤ ǫ. Then

the ACO algorithm takes at most

Ls
1

def
=

⌈

κs
Cǫ−2

⌉

(3.15)

successful iterations to generate ‖gj1+1‖ ≤ ǫ, where

κs
C

def
= (f(x0) − flow)/(η1αC), αC

def
= [6

√
2max (1 + κB, 2 max(

√
σ0, κHB

√
γ2))]

−1 (3.16)

and κHB is defined in (3.5). Additionally, assume that on each very successful iteration k, σk+1 is

chosen such that (2.10) is satisfied. Then

j1 ≤
⌈

κCǫ−2
⌉ def

= L1, (3.17)

and so the ACO algorithm takes at most L1 (successful and unsuccessful) iterations to generate

‖gj1+1‖ ≤ ǫ, where

κC
def
=

(

1 − log γ3

log γ1

)

κs
C + κu

C, κu
C

def
=

1

log γ1
max

(

1,
γ2κ

2
HB

σ0

)

(3.18)

and κs
C is defined in (3.16).
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Proof. The definition of j1 in the statement of the Corollary is equivalent to

‖gk‖ > ǫ, for all k = 0, . . . , j1, and ‖gj1+1‖ ≤ ǫ. (3.19)

Thus Lemma 3.3 applies with j = j1. It follows from (3.3), AM.1, (3.13) and (3.19) that

f(xk) − mk(sk) ≥ αCǫ2, for all k = 0, . . . , j1, (3.20)

where αC is defined in (3.16). Letting j = j1 in (2.9), Theorem 2.2 with Fk = ‖gk‖, Sǫ
F = {k ∈ S :

‖gk‖ > ǫ}, So = Sj1 and p = 2 yields the complexity bound

|Sj1 | ≤ Ls
1, (3.21)

with Ls
1 defined in (3.15), which proves the first part of the Corollary.

Let us now give an upper bound on the number of unsuccessful iterations that occur up to j1. It

follows from (3.13) and ǫ ≤ 1 that we may let σ
def
= max

(

σ0, γ2κ
2
HB

)

/ǫ and j = j1 in Theorem 2.1.

Then (2.13), the inequality log(σ/σ0) ≤ σ/σ0 and the bound (3.21) imply that

|Uj1 | ≤
⌈

− log γ3

log γ1
Ls

1 +
κu

C

ǫ

⌉

, (3.22)

where Uj1 is (2.9) with j = j1 and κu
C is defined in (3.18).

Since j1 = |Sj1 | + |Uj1 |, the bound (3.17) is the sum of the upper bounds (3.15) and (3.22) on the

number of consecutive successful and unsuccessful iterations k with ‖gk‖ > ǫ that occur. 2

We remark (again) that the complexity bound (3.17) is of the same order as that for the steepest

descent method [10, p.29]. This is to be expected because of the (only) requirement (2.2) that we imposed

on the step, which implies no more than a move along the steepest descent direction.

Similar complexity results for trust-region methods are given in [7, 8].

Note that Corollary 3.4 implies lim infk→∞ ‖gk‖ = 0. In fact, we have proved the latter limit in [1,

Theorem 2.5] solely under the conditions AF.1 and AM.1. Thus, the additional condition AF.4 in Corollary

3.4 shows that in this case, stronger problem assumptions are required in order to be able to estimate the

global iteration complexity of ACO than to ensure its global convergence. Furthermore, provided also that

g is uniformly continuous on the iterates — an assumption that is weaker than AF.4 — we have shown in

[1, Corollary 2.6] that limk→∞ gk = 0.

4 A second-order ACO algorithm

The step sk computed by the ACO algorithm has only been required to satisfy the Cauchy condition (2.2).

This has proved sufficient to guarantee approximate first-order criticality of the generated iterates to

desired accuracy in a finite number of iterations (§3), and furthermore, convergence of ACO to first-order

critical points [1]. To be able to guarantee stronger complexity and convergence properties for the ACO

algorithm, we could set sk to the (exact) global minimizer of mk(s) over IRn. Such a choice is possible as

mk(s) is bounded below over IRn; moreover, even though mk may be nonconvex, a characterization of its

global minimizer can be given (see [9], [12, §5.1], [1, Th.3.1]), and can be used for computing such a step

[1, §6.1]. Indeed, Griewank [9] and Nesterov et al. [12] show global convergence to second-order critical

points at fast asymptotic rate of their algorithms with such a choice of sk (provided the Hessian is globally

Lipschitz continuous and Bk = H(xk), etc.); in [12], global iteration complexity bounds of order ǫ−3/2

and ǫ−3 are given for approximate (within ǫ) first-order and second-order optimality, respectively. This

choice of sk, however, may be in general prohibitively expensive from a computational point of view, and

thus, for most (large-scale) practical purposes, (highly) inefficient (see [1, §6.1]). Therefore, in [1], we have

proposed to compute sk as an approximate global minimizer of mk(s) by globally minimizing the model

over a sequence of (nested and increasing) subspaces, in which each such subproblem is computationally
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quite inexpensive (see [1, §6.2]). Thus the conditions we have required on sk in [1, §3.2], and further on

in this paper (see next paragraph), are some derivations of first- and second-order optimality when sk is

the global minimizer of mk over a subspace. Provided each subspace includes gk, the resulting ACO will

satisfy (2.2), and so it will remain globally convergent to first-order, and the previous complexity bound

still applies. In our ACO implementation [1], the successive subspaces that mk is minimized over in each

(major) ACO iteration are generated using Lanczos method and so they naturally include the gradient

gk [1, §6.2]. Another ingredient needed in this context is a termination criteria for the method used to

minimize mk (over subspaces). Various such rules were proposed in [1, §3.3], with the aim of yielding a step

sk that does not become too small compared to the size of the gradient. Using the above techniques for the

step calculation, we showed in [1] that the resulting ACO methods have Q-superlinear asymptotic rates of

convergence (without requiring Lipschitz continuity of the Hessian) and converge globally to approximate

second-order critical points.

Using the (only) termination criteria that was shown in [1, §] to make ACO Q-quadratically convergent

locally, and the subspace minimization condition for sk, we show that the resulting ACO variant—referred

to here as ACO(S)—satisfies the same complexity bounds for first- and second-order criticality as in [12],

despite solving the cubic model inexactly and using approximate Hessians.

Minimizing the cubic model in a subspace In what follows, we require that sk satisfies

g⊤k sk + s⊤k Bksk + σk‖sk‖3 = 0, k ≥ 0, (4.1)

and

s⊤k Bksk + σk‖sk‖3 ≥ 0, k ≥ 0. (4.2)

The next lemma presents some suitable choices for sk that achieve (4.1) and (4.2).

Lemma 4.1. [1] Suppose that sk is the global minimizer of mk(s), for s ∈ Lk, where Lk is a

subspace of IRn. Then sk satisfies (4.1) and (4.2). Furthermore, letting Qk denote any orthogonal

matrix whose columns form a basis of Lk, we have that

Q⊤
k BkQk + σk‖sk‖I is positive semidefinite. (4.3)

In particular, if s∗k is the global minimizer of mk(s), s ∈ IRn, then s∗k achieves (4.1) and (4.2).

Proof. See the proof of [1, Lemma 3.2], which applies the characterization of the global minimizer

of a cubic model over IRn to the reduced model mk

∣

∣

∣

Lk
. 2

The Cauchy point (2.3) satisfies (4.1) and (4.2) since it globally minimizes mk over the subspace

generated by −gk. To improve the properties and performance of ACO, however, it may be necessary to

minimize mk over (increasingly) larger subspaces (that each contain gk so that (2.2) can still be achieved).

The next lemma gives a lower bound on the model decrease when (4.1) and (4.2) are satisfied.

Lemma 4.2. [1, Lemma 3.3] Suppose that sk satisfies (4.1) and (4.2). Then

f(xk) − mk(sk) ≥ 1

6
σk‖sk‖3. (4.4)

Termination criteria for the approximate minimization of mk For the above bound (4.4) on

the model decrease to be useful for investigating complexity bounds for ACO, we must ensure that sk
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does not become too small compared to the size of the gradient. To deduce a lower bound on ‖sk‖, we

need to be more specific about ACO. In particular, a suitable termination criteria for the method used to

minimize mk(s) needs to be specified.

Let us assume that some iterative solver is used on each (major) iteration k to approximately minimize

mk(s). Let us set the termination criteria for its inner iterations i to be

‖∇smk(si,k)‖ ≤ θi,k‖gk‖, (4.5)

where

θi,k
def
= κθ min(1, ‖si,k‖), (4.6)

where si,k are the inner iterates generated by the solver and κθ is any constant in (0, 1).

Note that gk = ∇smk(0). The condition (4.5) is always satisfied by any minimizer si,k of mk, since

then ∇smk(si,k) = 0. Thus condition (4.5) can always be achieved by an iterative solver, the worst that

could happen is to iterate until an exact minimizer of mk is found. We hope in practice to terminate well

before this inevitable outcome.

It follows from (4.5) and (4.6) that

TC.s ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖sk‖), k ≥ 0. (4.7)

where sk
def
= si,k > 0 with i being the last inner iteration. The lower bound on sk that the criteria TC.s

provides is given in Lemma 5.2.

Note that a family of termination criteria were proposed in [1, §3.3], that also includes TC.s. Conditions

were given under which ACO with any of these termination rules (and sk satisfying (4.1) and (4.2)) is locally

Q-superlinearly convergent, without assuming Lipschitz continuity of the Hessian H(x) (see [1, Corollary

4.8]); the latter result also applies to TC.s. Furthermore, when the Hessian is locally Lipschitz continuous

and standard local convergence assumptions hold, ACO with the TC.s rule is locally Q-quadratically

convergent (see [1, Corollary 4.10]). This rate of convergence implies an O(| log log ǫ|) local iteration

complexity bound (when the iterates are attracted to a local minimizer x∗ of f with H(x∗) positive

definite) [10]; however, the basin of attraction of x∗ is unknown in general.

Summary Let us now summarize the second-order ACO variant that we described above.

Algorithm 4.1: ACO(S).

In each iteration k of the ACO algorithm, perform Step 1 as follows:

compute sk such that (4.1), (4.2) and TC.s are achieved, and (2.2) remains satisfied.

Note that for generality purposes, we do not prescribe how the above conditions in ACO(S) are to be

achieved by sk. We have briefly mentioned in the first paragraph of this section—and discussed at length

in [1, §6.2,§7]—a way to satisfy them using Lanczos method (to globally minimizes mk over a sequence of

nested Krylov subspaces until TC.s holds) in each major ACO(S) iteration k.

Let us now ensure that (2.6) holds unless ACO(S) terminates. Clearly, (2.7) continues to hold since sk

still satisfies (2.2). In the case when gk = 0 for some k ≥ 0, we need to be more careful. If sk minimizes

mk over a subspace Lk generated by the columns of some orthogonal matrix Qk (as it is the case in our

implementation of ACO(S) and in its complexity analysis for second-order optimality in §5.2), then we

have

(4.3) holds and λmin(Q⊤
k BkQk) < 0 =⇒ sk 6= 0, (4.8)

since Lemma 4.1 holds even when gk = 0. Thus, when the left-hand side of the implication (4.8) holds,

the (4.4), (4.8) and σk > 0 imply that (2.6) is satisfied. But if λmin(Q⊤
k BkQk) ≥ 0 and gk = 0, then, from
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(4.1), sk = 0 and the ACO(S) algorithm will terminate. Hence, if our intention is to identify whether Bk is

indefinite, it will be necessary to build Qk so that Q⊤
k BkQk predicts negative eigenvalues of Bk. This will

ultimately be the case with probability one if Qk is built as the Lanczos basis of the Krylov space {Bl
kv}l≥0

for some random initial vector v 6= 0. We assume here that, irrespectively of the way the step conditions

are achieved in ACO(S), (2.6) holds, even when gk = 0, unless the ACO(S) algorithm terminates.

5 Iteration complexity bounds for the ACO(S) algorithm

For the remainder of the paper, let us assume that

AF.3 f ∈ C2(IRn). (5.1)

Note that no assumption on the Hessian of f being globally or locally Lipschitz continuous has been

imposed in Corollary 3.4. In what follows, however, we assume that the objective’s Hessian is globally

Lipschitz continuous, namely,

AF.6 ‖H(x) − H(y)‖ ≤ L‖x − y‖, for all x, y ∈ IRn, where L > 0, (5.2)

and that Bk and H(xk) agree along sk in the sense that

AM.4 ‖(H(xk) − Bk)sk‖ ≤ C‖sk‖2, for all k ≥ 0, and some constant C > 0. (5.3)

The requirement (5.3) is a slight strengthening of the Dennis–Moré condition [3]. The latter is achieved

by some quasi-Newton updates provided some further assumptions hold (see our discussion following [1,

(4.6)]). Quasi-Newton methods may still satisfy AM.4 in practice, though we are not aware if this can be

ensured theoretically. We remark that if the inequality in AM.4 holds for sufficiently large k, it also holds

for all k ≥ 0. The condition AM.4 is trivially satisfied with C = 0 when we set Bk = H(xk) for all k ≥ 0.

Some preliminary lemmas are to follow. Firstly, let us show that when the above assumptions hold,

σk cannot become unbounded, irrespectively of how the step sk is computed as long as (2.6) holds. Thus

the result below applies to the basic ACO framework and to ACO(S).

Lemma 5.1. [1, Lemma 5.2] Let AF.3, AF.6 and AM.4 hold. Then

σk ≤ max (σ0, 3
2
γ2(C + L))

def
= L0, for all k ≥ 0. (5.4)

In view of the global complexity analysis to follow, we would like to obtain a tighter bound on the

model decrease in ACO(S) than in (3.3). For that, we use the bound (4.4) and a lower bound on sk to be

deduced in the next lemma.

Lemma 5.2. Let AF.3–AF.4, AF.6, AM.4 and TC.s hold. Then sk satisfies

‖sk‖ ≥ κg

√

‖gk+1‖ for all successful iterations k, (5.5)

where κg is the positive constant

κg
def
=

√

1 − κθ

1
2
L + C + L0 + κθκH

(5.6)

and κθ is defined in (4.7) and L0, in (5.4).
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Proof. The conditions of Lemma 5.1 are satisfied, and so the bound (5.4) on σk holds. The proof of

(5.5) follows similarly to that of [1, Lemma 4.9] , by letting σmax = L0 and L∗ = L, and recalling that

we are now in a non-asymptotic regime. (The latter Lemma was employed in [1] to prove that ACO(S)

is Q-quadratically convergent asymptotically.) For convenience, however, and since the bound (5.5) is

crucial for the complexity analysis to follow, we give a complete proof of the lemma here.

Let k ∈ S, and so gk+1 = g(xk + sk). Then

‖gk+1‖ ≤ ‖g(xk + sk) −∇smk(sk)‖ + ‖∇smk(sk)‖ ≤ ‖g(xk + sk) −∇smk(sk)‖ + θk‖gk‖, (5.7)

where we used TC.s to derive the last inequality. We also have from differentiating mk,

∇smk(sk) = gk + Bksk + σk‖sk‖sk,

and from Taylor’s theorem that

‖g(xk + sk) −∇smk(sk)‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) − Bk]skdτ

∥

∥

∥

∥

+ σk‖sk‖2. (5.8)

From the triangle inequality and AF.4, we obtain

‖gk‖ ≤ ‖gk+1‖ + ‖gk+1 − gk‖ ≤ ‖gk+1‖ + κH‖sk‖. (5.9)

Substituting (5.9) and (5.8) into (5.7), we deduce

(1 − θk)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) − Bk]skdτ

∥

∥

∥

∥

+ θkκH‖sk‖ + σk‖sk‖2. (5.10)

It follows from the definition of θk in (4.7) that θk ≤ κθ‖sk‖ and θk ≤ κθ, and (5.10) becomes

(1 − κθ)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) − Bk]skdτ

∥

∥

∥

∥

+ (κθκH + σk)‖sk‖2. (5.11)

The triangle inequality, AM.4 and AF.6 provide

∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) − Bk]skdτ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) − H(xk)]dτ

∥

∥

∥

∥

· ‖sk‖ + ‖(H(xk) − Bk)sk‖,

≤
∫ 1

0

‖H(xk + τsk) − H(xk)‖dτ · ‖sk‖ + C‖sk‖2,

≤ ( 1
2
L + C) ‖sk‖2. (5.12)

It now follows from (5.11) and from the bound (5.4) in Lemma 5.1 that

(1 − κθ)‖gk+1‖ ≤ ( 1
2
L + C + κθκH + L0) ‖sk‖2, (5.13)

which together with (5.6) provides (5.5). 2

In the next sections, ACO(S) is shown to satisfy better complexity bounds than the basic ACO frame-

work. In particular, the overall iteration complexity bound for ACO(S) is O(ǫ−3/2) for first-order optimality

within ǫ, and O(ǫ−3), for approximate second-order conditions in a subspace containing sk. As in [12],

we also require f to have a globally Lipschitz continuous Hessian. We allow more freedom in the cubic

model, however, since Bk does not have to be the exact Hessian, as long as it satisfies AM.4; also, sk is

not required to be a global minimizer of mk over IRn.
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5.1 A worst-case bound for approximate first-order optimality

We are now ready to give an improved complexity bound for the ACO(S) algorithm.

Corollary 5.3. Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold, and {f(xk)} be bounded below by

flow. Let σk be bounded below as in (2.11), and let ǫ > 0. Then the total number of successful

iterations with

min (‖gk‖, ‖gk+1‖) > ǫ (5.14)

that occur when applying the ACO(S) algorithm is at most

L̃s
1

def
=

⌈

κs
Sǫ

−3/2
⌉

, (5.15)

where

κs
S

def
= (f(x0) − flow)/(η1αS), αS

def
= (σminκ

3
g)/6 (5.16)

and κg is defined in (5.6). Assuming that (5.14) holds at k = 0, the ACO(S) algorithm takes at most

L̃s
1 + 1 successful iterations to generate a (first) iterate, say l1, with ‖gl1+1‖ ≤ ǫ.

Furthermore, when ǫ ≤ 1, we have

l1 ≤
⌈

κSǫ−3/2
⌉

def
= L̃1, (5.17)

and so the ACO(S) algorithm takes at most L̃1 (successful and unsuccessful) iterations to generate

‖gl1+1‖ ≤ ǫ, where

κS
def
= (1 + κu

S)(2 + κs
S) and κu

S
def
= log(L0/σmin)/ log γ1, (5.18)

with L0 defined in (5.4) and κs
S, in (5.16).

Proof. Let

Sǫ
g

def
= {k ∈ S : min (‖gk‖, ‖gk+1‖) > ǫ}, (5.19)

and let |Sǫ
g| denote its cardinality. It follows from (4.4), (2.11), (5.5) and (5.19) that

f(xk) − mk(sk) ≥ αSǫ3/2, for all k ∈ Sǫ
g, (5.20)

where αS is defined in (5.16). Letting Fk = min (‖gk‖, ‖gk+1‖), Sǫ
F = So = Sǫ

g and p = 3/2 in

Theorem 2.2, we deduce that |Sǫ
g| ≤ L̃s

1, with L̃s
1 defined in (5.15). This proves the first part of the

Corollary and, assuming that (5.14) holds with k = 0, it also implies the bound

|Sl+ | ≤ L̃s
1, (5.21)

where Sl+ is (2.9) with j = l+ and l+ is the first iterate such that (5.14) does not hold at l+ +1. Thus

‖gk‖ > ǫ, for all k = 0, . . . , (l+ + 1) and ‖gl++2‖ ≤ ǫ. Recalling the definition of l1 in the statement of

the Corollary, it follows that Sl1 \ {l1} = Sl+ , where Sl1 is (2.9) with j = l1. From (5.21), we now have

|Sl1 | ≤ L̃s
1 + 1. (5.22)

A bound on the number of unsuccessful iterations up to l1 follows from (5.22) and from (2.14) in

Theorem 2.1 with j = l1 and σ = L0, where L0 is provided by (5.4) in Lemma 5.1. Thus we have

|Ul1 | ≤
⌈

(2 + L̃s
1)κ

u
S

⌉

, (5.23)

where Ul1 is (2.9) with j = l1 and κu
S is defined in (5.18). Since l1 = |Sl1 | + |Ul1 |, the upper bound

(5.17) is the sum of (5.22) and (5.23), where we also employ the expression (5.15) of L̃s
1. 2
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Note that we may replace the cubic term σk‖s‖3/3 in mk(s) by σk‖s‖α/α, for some α > 2. Let us

further assume that then, we also replace AM.4 by the condition ‖(H(xk) − Bk)sk‖ ≤ C‖sk‖α−1, and

AF.6 by (α − 2)−Hölder continuity of H(x), i. e., there exists CH > 0 such that

‖H(x) − H(y)‖ ≤ CH‖x − y‖α−2, for all x, y ∈ IRn.

In these conditions and using similar arguments as for α = 3, one can show that

lα ≤ ⌈καǫ−α/(α−1)⌉,

where lα is a (first) iteration such that ‖glα+1‖ ≤ ǫ, ǫ ∈ (0, 1) and κα > 0 is a constant independent of ǫ.

Thus, when α ∈ (2, 3), the resulting variants of the ACO algorithm have better worst-case iteration

complexity than the steepest descent method under weaker assumptions on H(x) and Bk than Lipchitz

continuity and AM.4, respectively. When α > 3, the complexity of the ACO α-variants is better than the

O(ǫ−3/2) of the ACO algorithm, but the result applies only to quadratic functions.

5.2 A complexity bound for achieving approximate second-order optimality

in a subspace

The next corollary addresses the complexity of achieving approximate nonnegative curvature in the Hessian

approximation Bk along sk and in a subspace. Note that the approach in §2.1 and §3, when we require

at least as much model decrease as given by the Cauchy point, is not expected to provide second-order

optimality of the iterates asymptotically as it is, essentially, steepest descent method. When in the

ACO(S) algorithm the step sk is computed by globally minimizing the model over subspaces (that may

even equal IRn asymptotically), second-order criticality of the iterates is achieved in the limit, at least in

these subspaces, as shown in [1, Theorem 5.4] (provided AF.6 and AM.4 hold). We now analyse the global

complexity of reaching within ǫ of second-order criticality with respect to the approximate Hessian in the

subspaces of minimization.

Corollary 5.4. Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold. Let {f(xk)} be bounded below by

flow and σk, as in (2.11). Let sk in ACO(S) be the global minimizer of mk(s) over a subspace Lk

that is generated by the columns of an orthogonal matrix Qk and let λmin(Q⊤
k BkQk) denote the

leftmost eigenvalue of Q⊤
k BkQk. Then, given any ǫ > 0, the total number of successful iterations

with negative curvature

−λmin(Q
⊤
k BkQk) > ǫ (5.24)

that occur when applying the ACO(S) algorithm is at most

Ls
2

def
=

⌈

κcurvǫ
−3

⌉

, (5.25)

where

κcurv
def
= (f(x0) − flow)/(η1αcurv) and αcurv

def
= σmin/(6L3

0), (5.26)

with σmin and L0 defined in (2.11) and (5.4), respectively. Assuming that (5.24) holds at k = 0,

the ACO(S) algorithm takes at most Ls
2 successful iterations to generate a (first) iterate, say l2, with

−λmin(Q
⊤
l2+1Bl2+1Ql2+1) ≤ ǫ. Furthermore, when ǫ ≤ 1, we have

l2 ≤
⌈

κt
curvǫ

−3
⌉ def

= L2, (5.27)

and so the ACO(S) algorithm takes at most L2 (successful and unsuccessful) iterations to generate

−λmin(Q
⊤
l2+1Bl2+1Ql2+1) ≤ ǫ, where κt

curv
def
= (1 + κu

S)κcurv + κu
S and κu

S is defined in (5.18).
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Proof. Lemma 4.1 implies that the matrix Q⊤
k BkQk + σk‖sk‖I is positive semidefinite and thus,

λmin(Q⊤
k BkQk) + σk‖sk‖ ≥ 0, for k ≥ 0,

which further gives

σk‖sk‖ ≥ |λmin(Q
⊤
k BkQk)|, for any k ≥ 0 such that −λmin(Q

⊤
k BkQk) > ǫ, (5.28)

since the latter inequality implies λmin(Q⊤
k BkQk) < 0. It follows from (4.4), (5.4) and (5.28) that

f(xk) − mk(sk) ≥ αcurvǫ
3, for all k ≥ 0 with −λmin(Q

⊤
k BkQk) > ǫ, (5.29)

where αcurv is defined in (5.26). Define Sǫ
λ

def
= {k ∈ S : −λmin(Q

⊤
k BkQk) > ǫ} and |Sǫ

λ|, its cardinality.

Letting Fk = |λmin(Q⊤
k BkQk)|, So = Sǫ

F = Sǫ
λ and p = 3 in Theorem 2.2 provides the bound

|Sǫ
λ| ≤ Ls

2, where Ls
2 is defined in (5.25). (5.30)

Assuming that (5.24) holds at k = 0, and recalling that l2 is the first iteration such that (5.24) does

not hold at l2 + 1 and that Sl2 is (2.9) with j = l2, we have Sl2 ⊆ Sǫ
λ. Thus (5.30) implies

|Sl2 | ≤ Ls
2. (5.31)

A bound on the number of unsuccessful iterations up to l2 can be obtained in the same way as in the

proof of Corollary 5.3, since Theorem 2.1 does not depend on the choice of optimality measure Fk.

Thus we deduce, also from (5.31),

|Ul2 | ≤ ⌈(1 + |Sl2 |)κu
S⌉ ≤ ⌈(1 + Ls

2)κ
u
S⌉, (5.32)

where Ul2 is given in (2.9) with j = l2 and κu
S, in (5.18). Since l2 = |Sl2 | + |Ul2 |, the bound (5.27)

readily follows from ǫ ≤ 1, (5.31) and (5.32). 2

Note that the complexity bounds in Corollary 5.4 also give a bound on the number of the iterations

at which negative curvature occurs along the step sk by considering Lk as the subspace generated by the

normalized sk.

Assuming sk in ACO(S) minimizes mk globally over the subspace generated by the columns of the

orthogonal matrix Qk for k ≥ 0, let us now briefly remark on the complexity of driving the leftmost

negative eigenvalue of Q⊤
k H(xk)Qk — as opposed to Q⊤

k BkQk — below a given tolerance, i. e.,

−λmin(Q
⊤
k H(xk)Qk) ≤ ǫ. (5.33)

In the conditions of Corollary 5.4, let us further assume that

‖Bk − H(xk)‖ ≤ ǫ2, for all k ≥ k1 where k1 is such that ‖gk1
‖ ≤ ǫ1, (5.34)

for some positive parameters ǫ1 and ǫ2, with ǫ2
√

n < ǫ. Then Corollary 5.3 gives an upper bound on the

(first) iteration k1 with ‖gk‖ ≤ ǫ1, and we are left with having to estimate k ≥ k1 until (5.33) is achieved.

A useful property concerning H(xk) and its approximation Bk is needed for the latter. Given any matrix

Qk with orthogonal columns, [6, Corollary 8.1.6] provides the first inequality below

|λmin(Q
⊤
k H(xk)Qk) − λmin(Q⊤

k BkQk)| ≤ ‖Q⊤
k [H(xk) − Bk]Qk‖ ≤

√
n‖H(xk) − Bk‖, k ≥ 0, (5.35)

while the second inequality above employs ‖Q⊤
k ‖ ≤ √

n and ‖Qk‖ = 1. Now (5.34) and (5.35) give

|λmin(Q
⊤
k HkQk) − λmin(Q⊤

k BkQk)| ≤ ǫ2
√

n, k ≥ k1, (5.36)

and thus, (5.33) is satisfied when

−λmin(Q
⊤
k BkQk) ≤ ǫ − ǫ2

√
n

def
= ǫ3. (5.37)
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Now Corollary 5.4 applies and gives us an upper bound on the number of iterations k such that (5.37) is

achieved, which is O(ǫ−3
3 ).

If we make the choice Bk = H(xk) and Qk is full-dimensional for all k ≥ 0, then the above argument

or the second part of Corollary 5.4 imply that (5.33) is achieved for k at most O(ǫ−3), which recovers the

result obtained by Nesterov and Polyak [12, p. 185] for their Algorithm 3.3.

Corollary 5.4 implies lim infk∈S,k→∞ λmin(Q
T
k BkQk) ≥ 0, provided its conditions hold. The global

convergence result to approximate critical points [1, Theorem 5.4] is more general as it does not employ

TC.s; also, conditions are given for the above limit to hold when Bk is replaced by H(xk).

5.3 A complexity bound for achieving approximate first- and second-order

optimality

Finally, in order to estimate the complexity of generating an iterate that is both approximately first- and

second-order critical, let us combine the results in Corollaries 5.3 and 5.4.

Corollary 5.5. Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold, and {f(xk)} be bounded below by

flow. Let σk be bounded below as in (2.11), and sk in ACO(S) be the global minimizer of mk(s) over

a subspace Lk that is generated by the columns of an orthogonal matrix Qk. Given any ǫ ∈ (0, 1),

the ACO(S) algorithm generates l3 ≥ 0 with

max
(

‖gl3+1‖,−λmin(Q
⊤
l3+1Bl3+1Ql3+1)

)

≤ ǫ (5.38)

in at most ⌈κs
fsǫ

−3⌉ successful iterations, where

κs
fs

def
= κs

S + κcurv + 1, (5.39)

and κs
S and κcurv are defined in (5.16) and (5.26), respectively. Furthermore, l3 ≤

⌈

κfsǫ
−3

⌉

, where

κfs
def
= (1 + κu

S)κs
fs + κu

S and κu
S is defined in (5.18).

Proof. The conditions of Corollaries 5.3 and 5.4 are satisfied. Thus the sum of the bounds (5.15)

and (5.30), i. e.,

⌈κs
Sǫ−3/2 + κcurvǫ

−3⌉, (5.40)

gives an upper bound on all the possible successful iterations that may occur either with

min(‖gk‖), ‖gk+1‖) > ǫ

or with

−λmin(Q⊤
k BkQk) > ǫ.

As the first of these criticality measures involves both iterations k and k+1, the latest such a successful

iteration is given by (5.39). The bound on l3 follows from Theorem 2.1, as in the proof of Corollary

5.3. 2

The above result shows that the better bound (5.17) for approximate first-order optimality is oblit-

erated by (5.27) for approximate second-order optimality (in the minimization subspaces) when seeking

accuracy in both these optimality conditions.

Counting zero gradient values. Recall the discussion in the last paragraphs of §2.1 and §4 regarding

the case when there exists k ≥ 0 such that gk = 0. Note that in the conditions of Corollary 5.4, (4.8)

implies that sk 6= 0 and (2.6) holds. Furthermore, (5.29) remains satisfied even when gk = 0, since our
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derivation of (5.29) in the proof of Corollary 5.4 does not depend on the value of the gradient. Similarly,

Corollary 5.5 also continues to hold in this case.

6 Conclusions

In this paper, we investigated the global iteration complexity of a general cubic overestimation framework,

and a second-order variant, for unconstrained optimization, both first introduced and analysed in the

companion paper [1]. The generality of the former framework allows a worst-case complexity bound that

is of the same order as for the steepest descent method. Its second-order variant, however, has better first-

order complexity and allows second-order criticality complexity bounds, that match the order of similar

bounds proved by Nesterov and Polyak [12] for their Algorithm 3.3. Our approach is more general as it

allows approximate model minimization to be employed, as well as approximate Hessians.

Similarly to [11, 12], further attention needs to be devoted to analysing the global iteration complexity

of ACO and its variants for particular problem classes, such as when f is convex or strongly convex.

Together with Part I [1], the ACO framework, and in particular, its second-order variants, have been

shown to have good global and local convergence, as well as complexity, and to perform better than a

standard trust-region approach on small-scale test problems from CUTEr.
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