
Adaptive cubic overestimation methods

for unconstrained optimization.

Part I: motivation, convergence and numerical results

Coralia Cartis∗,,‡ Nicholas I. M. Gould†,‡ and Philippe L. Toint§

September 29, 2007; Revised September 25, 2008

Abstract

An Adaptive Cubic Overestimation (ACO) algorithm for unconstrained optimization is proposed,

generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981,

DAMTP, Univ. of Cambridge), an algorithm by Nesterov & Polyak (Math. Programming 108(1), 2006,

pp 177-205) and a proposal by Weiser, Deuflhard & Erdmann (Optim. Methods Softw. 22(3), 2007,

pp 413-431). At each iteration of our approach, an approximate global minimizer of a local cubic

regularization of the objective function is determined, and this ensures a significant improvement

in the objective so long as the Hessian of the objective is locally Lipschitz continuous. The new

method uses an adaptive estimation of the local Lipschitz constant and approximations to the global

model-minimizer which remain computationally-viable even for large-scale problems. We show that

the excellent global and local convergence properties obtained by Nesterov & Polyak are retained, and

sometimes extended to a wider class of problems, by our ACO approach. Numerical experiments with

small-scale test problems from the CUTEr set show superior performance of the ACO algorithm when

compared to a trust-region implementation.

1 Introduction

Trust-region [4] and line-search [8] methods are two commonly-used convergence schemes for unconstrained

optimization and are often used to globalise Newton-like iterations. The work presented in this paper and

in its companion [2] explores a third alternative: the use of a cubic overestimator of the objective function

as a regularization technique for the computation of the step from one iterate to the next. Specifically,

suppose that we wish to find a local minimizer of f : IRn → IR, the smooth objective function of an

unconstrained optimization problem, and that xk is our current best estimate. Furthermore, suppose that

the objective’s Hessian ∇xxf(x) is globally Lipschitz continuous on IRn with ℓ2-norm Lipschitz constant L.

Then

f(xk + s) = f(xk) + sT g(xk) + 1
2
sTH(xk)s+

∫ 1

0 (1 − τ)sT [H(xk + τs) −H(xk)]s dτ

≤ f(xk) + sT g(xk) + 1
2
sTH(xk)s+ 1

6
L‖s‖3

2
def
= mC

k (s), for all s ∈ IRn,
(1.1)

where we have defined g(x)
def
= ∇xf(x) and H(x)

def
= ∇xxf(x). Thus, so long as

mC
k (sk) < mC

k (0) = f(xk), (1.2)
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the new iterate xk+1 = xk + sk improves f(x). The minimization of mC
k (s) can therefore be used to

generate the step sk, forming the basis of new unconstrained minimization algorithms. Our work on such

an algorithm draws on several independent lines of research, some recent and some more that twenty-five

years old. We now briefly review the relevant contributions.

The bound (1.1) has been known for a long time, see for example [8, Lemma 4.1.14]. However, the

use of the model mC
k for computing a step was, as far as we know, first considered by Griewank (in an

unpublished technical report [19]) as a means for constructing affine-invariant variants of Newton’s method

which are globally convergent to second-order critical points. Griewank introduces a variant of the model

mC
k (s) with a variable weight replacing the constant L as a way to regularize Newton’s quadratic model,

especially in the presence of negative curvature. This variant is of the form

mG
k (s)

def
= f(xk) + sT g(xk) + 1

2
sTH(xk)s+ 1

3
σk‖s‖3

Gk
, (1.3)

where σk‖ · ‖Gk
is iteratively chosen to ensure the overestimation property (1.1) while preserving affine

invariance. He then proves global convergence to second-order critical points of a method where the step is

computed by finding any second-order minimizer of the model which provides descent. All such minimizers

(including the global one) are characterized; the convergence proofs are based on a global Hölder condition

and the assumption that the matrices Gk stabilize over the iterations. Griewank also outlines a proof of

quadratic local convergence. He finally suggests minimizing mG
k approximately (using a variant of the

nonlinear conjugate-gradients method), considers the rate of convergence of this modified method, and

gives some preliminary numerical results.

More recently, Nesterov and Polyak [25] considered a similar idea and the unmodified model mC
k (s),

although from a different perspective. They were able to show that, if the step is computed by globally

minimizing the cubic model and if the objective’s Hessian is globally Lipschitz continuous, then the result-

ing algorithm has a better global-complexity bound than that achieved by the steepest descent method.

They completed this remarkable result by showing that the model’s global minimizer could be computed

in a manner acceptable from the complexity point of view and proposed superior complexity bounds for

the (star) convex and other special cases. Global convergence to second-order critical points and asymp-

totically quadratic rate of convergence were also proved for this method, but no numerical results were

provided. Subsequently Nesterov [24] has proposed more sophisticated methods which further improve the

complexity bounds in the convex case.

Even more recently and again independently, Weiser, Deuflhard and Erdmann [28] also pursued the

same line of thought, motivated (as Griewank) by the design of an affine-invariant version of Newton’s

method. Their approach, directly evolved from techniques for convex problems and elaborating on [9],

makes use of the cubic model mG
k (s) with Gk = σkG, where G is positive definite and σk is an estimate of

the global Lipschitz constant (the techniques for updating σk are similar to Griewank’s). The proposed

method does not consider global model minimization, but rather uses approximate techniques for finding

a local minimizer, such as Krylov-space techniques and nonlinear conjugate-gradients. Again global Lip-

schitz continuity is assumed, but no formal convergence or complexity analysis is presented. Limited but

encouraging numerical experience is discussed.

Our purpose here and in [2] is to unify and extend these contributions into a coherent and numerically

efficient algorithmic framework, for which global and asymptotic convergence results can be proved under

weaker assumptions and with simpler proofs, while preserving the good complexity bound shown by

Nesterov and Polyak [25]. Firstly, we relax the need to compute a global minimizer over IRn, but show

that a global minimizer on some suitable subspace is acceptable for obtaining the desirable complexity

bound. Secondly, we do not insist that H(x) be globally, or even locally, Lipschitz (or Hölder) continuous

in general, and follow Griewank and Weiser et al. by introducing a dynamic positive parameter σk instead

of the scaled Lipschitz constant1 1
2
L in (1.1). Lastly, we allow for a symmetric approximation Bk to the

local Hessian H(xk) in the cubic model on each iteration; this may be highly useful in practice. Thus,

1The factor 1
2

is for later convenience.
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instead of (1.1), it is the model

mk(s)
def
= f(xk) + sT gk + 1

2
sTBks+ 1

3
σk‖s‖3, (1.4)

that we employ as an approximation to f in each iteration of our Adaptive Cubic Overestimation (ACO)

algorithm (the generic algorithmic framework is given on page 5). Here, and for the remainder of the

paper, for brevity we write gk = g(xk) and ‖ · ‖ = ‖ · ‖2; our choice of the Euclidean norm for the cubic

term is made for simplicity of exposition.

Note that whereas in the previous proposals discussed above, the cubic term of the model is rather

closely linked to the size of the third derivative (provided the latter exists at all), in our approach, σk

performs a double task. Namely, it may account not only for the discrepancy between the objective

function and its second order Taylor expansion, but also for the difference between the exact and the

approximate Hessian.

The rules for updating the parameter σk in the course of the ACO algorithm are justified by analogy

to trust-region methods. In such a framework, σk might be regarded as the reciprocal of the trust-region

radius (see our comments following the proof of Theorem 3.1 and the updating rules for the trust-region

radius in [4]). Thus σk is increased if insufficient decrease is obtained in some measure of relative objective

change, but decreased or unchanged otherwise.

Since finding a global minimizer of the model mk(s) may not be essential in practice, and as doing so

might be prohibitively expensive from a computational point of view, we relax this requirement by letting

sk be an approximation to such a minimizer. Initially, we only require that sk ensures that the decrease in

the model is at least as good as that provided by a suitable Cauchy point obtained by globally minimizing

(1.4) along the current negative gradient direction. Also, a milder condition than the inequality in (1.1)

is required for the computed step sk to be accepted. Provided the objective function is continuously

differentiable and bounded below, and Bk, bounded above for all k, we show in §2.2 that the ACO iterates

have at least one limit point that is first-order critical. Furthermore, when the gradient of f is uniformly

continuous (on the iterates), the ACO algorithm is globally convergent to first-order critical points. The

broad applicability of these convergence guarantees is particularly relevant when no (exact) second-order

derivative information is available.

To improve on the performance and properties of the ACO algorithm, we further require that the

step sk globally minimizes the model (1.4) in a larger subspace. Suitable candidates include the Krylov

subspaces generated by a Lanczos process or, in the limit, the whole of IRn—recall that the Lanczos

process is particularly appropriate for large-scale problems (see §6.2 and §7). Additional termination

rules are specified for the inner iterations, which guarantee that the steps sk are not too short (see

Lemmas 4.7 and 4.9). Any of these rules makes the ACO algorithm converge asymptotically at least Q-

superlinearly (see Corollary 4.8 and the first remark following its proof), under appropriate assumptions

but without assuming local or global Lipschitz continuity of the Hessian (Theorem 4.3). We also show

that the well-known Dennis-Moré condition [7] on the Hessian approximation Bk is sufficient, and certain

quasi-Newton formulae are thus appropriate. In the same context, we also show that the parameter σk

stays bounded above and all steps sk are eventually accepted (see Theorem 4.3). Under an asymptotic

local Lipschitz assumption on H(x), and slightly stronger agreement between Bk and H(xk) along sk, Q-

quadratic convergence of the iterates is shown when a specific termination criteria is employed (Corollary

4.10). We remark however that, in our numerical experiments, this rule is not the most efficient (see

§7). Requiring asymptotic agreement between Bk and H(xk) (see (4.19)), without requiring Lispchitz

continuity of the Hessian, we show, in a similar fashion to the analogous trust-region results, that the

sequence of iterates {xk} is attracted to one of its limit points which is a local minimizer (Theorem 4.5).

Without requiring local convexity of the objective as in the latter result, but assuming global Lipschitz

continuity of the objective Hessian, we prove that any limit point of the sequence of iterates is weak

second-order critical in the sense that the Hessian restricted to the subspaces of minimization is positive

semidefinite in the limit (Theorem 5.4).

Worst-case iteration complexity bounds for the ACO family of methods are derived in [2]. When
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requiring the mild Cauchy condition on the step, and some stronger assumptions on the objective than

in the global convergence results, we obtain an upper bound on the total number of iterations the ACO

algorithm takes to drive the norm of the gradient of f below ǫ that is of order ǫ−2, which is the same as

for the steepest descent method [23, p.29]. This to be expected since the Cauchy-point condition requires

no more than a move in the negative gradient direction. The steepest-descent-like complexity bound can

be improved when sk is the global minimizer of the model (1.4) in a subspace containing the gradient

gk and an appropriate termination criterion is employed. In particular, assuming H(x) to be globally

Lipschitz continuous, and the approximation Bk “sufficiently close” to H(xk) along sk, we show that the

ACO algorithm has an overall worst-case iteration count of order ǫ−3/2 for generating ‖g(xk)‖ ≤ ǫ, and

of order ǫ−3 for achieving approximate nonnegative curvature in a subspace containing sk. These bounds

match those proved by Nesterov and Polyak [25, §3] for their Algorithm 3.3. However, our framework, at

least for the first-order results, is more general, as we allow more freedom in the choice of sk and of Bk.

Despite the good convergence and complexity properties of the ACO algorithm, its practical efficiency

ultimately relies on the ability to exactly or approximately minimize the cubic model mk. Though mk is

non-convex, Theorem 3.1—first proved by different means in [19] and then, independently, in [25]—gives

a powerful characterization of its global solutions over IRn that can be exploited computationally as we

show in §6.1. Our investigations suggest that the model can be globally minimized surprisingly efficiently,

provided the factorization of the matrix Bk is (inexpensively) available. Since the latter may not be the

case in large-scale optimization, we also address computing cheaper and approximate minimizers of mk,

namely, global minimizers of mk over certain subspaces, that do not involve explicit factorizations of Bk,

only matrix-vector products (see §6.2). Our approach involves using the Lanczos process to build up an

orthogonal basis for the Krylov subspace formed by successively applying Bk to g(xk), and each direction

sk is the global minimizer of the model over the current Krylov subspace. It is easily shown that this

technique of approximately minimizing the cubic model when employed with either of our termination

criterias, is fully covered by our theoretical results. Furthermore, numerical experience with a Matlab

implementation of this approach in the ACO algorithm shows this code to perform consistently better

than a trust-region implementation when tested on all the small unconstrained problems from the CUTEr

test set; see §7 and Figure 7.1 for details. The exact Hessian was used as Bk in both the ACO and the

trust-region implementations.

The outline of the paper (Part I) is as follows. Section 2.1 introduces the ACO algorithm, while §2.2

shows it to be globally convergent to first-order critical points. Section 3.1 gives a new proof to a known

characterization of the global minimizer of the cubic model over IRn, while §3.2 defines some more general

properties that are satisfied by global minimizers of mk over subspaces of IRn. Then §3.3 prescribes some

suitable termination criterias for the inner iterations employed to minimize the cubic model approximately.

Using the results of §3, we show asymptotic convergence properties of the ACO algorithm in the presence

of local convexity in §4.1, while we prove in §4.2 that the ACO algorithm then converges at least Q-

superlinearly. Without assuming local convexity, §5 addresses conditions for the global convergence of the

iterates to (weak) second-order critical limit points. Section 6 addresses ways of globally minimizing the

cubic model both to high accuracy (§6.1) as well as approximately using Lanczos techniques (§6.2). We

detail our numerical experiments in §7 and in Appendix A, and draw final conclusions in §8.

2 Cubic overestimation for unconstrained minimization

In this section, we assume that

AF.1 f ∈ C1(IRn). (2.1)

2.1 The method

The iterative methods we shall consider for minimizing f(x) fit into the generic framework of the Adaptive

Cubic Overestimation (ACO) algorithm summarized below.
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Algorithm 2.1: Adaptive Cubic Overestimation (ACO).

Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and σ0 > 0, for k = 0, 1, . . . until convergence,

1. Compute a step sk for which

mk(sk) ≤ mk(sC

k), (2.2)

where the Cauchy point

sC

k = −αC

kgk and αC

k = arg min
α∈IR+

mk(−αgk). (2.3)

2. Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

f(xk) −mk(sk)
. (2.4)

3. Set

xk+1 =

{

xk + sk if ρk ≥ η1
xk otherwise.

(2.5)

4. Set

σk+1 ∈







(0, σk] if ρk > η2 [very successful iteration]

[σk, γ1σk] if η1 ≤ ρk ≤ η2 [successful iteration]

[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.6)

Given an estimate xk of a critical point of f , a step sk is computed that is only required to satisfy

condition (2.2), and as such may be easily determined. Note that our ulterior interest is in the case

when sk is computed as an approximate (global) minimizer of the model mk(s) in (1.4), where Bk is a

nontrivial approximation to the Hessian of f (provided the latter exists); these details, however, are not

necessary at this point, as we first attempt to derive properties applicable to a wide class of problems

and methods. The step sk is accepted and the new iterate xk+1 set to xk + sk whenever (a reasonable

fraction of) the predicted model decrease f(xk)−mk(sk) is realized by the actual decrease in the objective,

f(xk) − f(xk + sk). This is measured by computing the ratio ρk in (2.4) and requiring ρk to be greater

than a prescribed positive constant η1 (for example, η1 = 0.1)—we shall shortly see (Lemma 2.1) that ρk

is well-defined whenever gk 6= 0. Since the current weight σk has resulted in a successful step, there is no

pressing reason to increase it, and indeed there may be benefits in decreasing it if good agreement between

model and function are observed. By contrast, if ρk is smaller than η1, we judge that the improvement

in objective is insufficient—indeed there is no improvement if ρk ≤ 0. If this happens, the step will be

rejected and xk+1 left as xk. Under these circumstances, the only recourse available is to increase the

weight σk prior to the next iteration with the implicit intention of reducing the size of the step.

We note that, for Lipschitz-continuous Hessians, Griewank [19], Nesterov and Polyak [25] and Weiser,

Deuflhard and Erdmann [28] all propose techniques for estimating the global Lipschitz constant L in (1.1).

This is not our objective in the update (2.6) — even for the case of interest when Bk ≈ H(xk) — since

our only concern is local overestimation.

The connection between the construction of the ACO algorithm and of basic trust-region methods

(see for example, [4, p. 116]) is superficially evident in the choice of measure ρk and the criteria for step

acceptance. At a deeper level, the parameter σk might be viewed as the reciprocal of the trust-region radius

(see the remarks following the proof of Theorem 3.1). Thus the ways of updating σk in each iteration

mimick those of changing the trust-region radius. Note that, as in the case of trust-region methods, finding

the Cauchy point is computationally inexpensive as it is a one-dimensional minimization of a (two-piece)
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cubic polynomial; this involves finding roots of a quadratic polynomial and requires one matrix-vector and

three vector products.

We remark that, due to the equivalence of norms on IRn, the ℓ2-norm in the model mk(s) can be

replaced by a more general, norm on IRn of the form ‖x‖ def
=

√
x⊤Mx, x ∈ IRn, where M is a given

symmetric positive definite matrix. We may even allow for M to depend on k as long as it is uniformly

positive definite and bounded as k increases, which may be relevant to preconditioning. It is easy to show

that the convergence properties of the ACO algorithm established in what follows remain true in such a

more general setting, although some of the constants involved change accordingly. The use of different

norms may be viewed as an attempt to achieve affine invariance, an idea pursued by Griewank [19] and

Weiser, Deuflhard and Erdmann [28]. Note also that regularization terms of the form ‖s‖α, for some

α > 2, may be employed in mk(s) instead of the cubic term (complexity aspects of such regularizations are

discussed in [2]). Griewank [19] has considered just such extensions to cope with the possibility of Hölder

rather than Lipschitz continuous Hessians.

Our aim now is to investigate the global convergence properties of the generic ACO algorithm.

2.2 Global convergence to first-order critical points

Throughout, we denote the index set of all successful iterations of the ACO algorithm by

S def
= {k ≥ 0 : k successful or very successful in the sense of (2.6)}. (2.7)

We first obtain a guaranteed lower bound on the decrease in f predicted from the cubic model. This

also shows that the analogue of (1.2) for mk holds, provided gk 6= 0.

Lemma 2.1. Suppose that the step sk satisfies (2.2). Then for k ≥ 0, we have that

f(xk) −mk(sk) ≥ f(xk) −mk(sC

k) ≥

‖gk‖2

6
√

2 max
[

1 + ‖Bk‖, 2
√

σk‖gk‖
] =

‖gk‖
6
√

2
min





‖gk‖
1 + ‖Bk‖

,
1

2

√

‖gk‖
σk



 . (2.8)

Proof. Due to (2.2) and since the equality in (2.8) is straightforward, it remains to show the second

inequality in (2.8). For any α ≥ 0, using the Cauchy-Schwarz inequality, we have

mk(sC

k) − f(xk) ≤ mk(−αgk) − f(xk)

= −α‖gk‖2 + 1
2
α2gT

k Bkgk + 1
3
α3σk‖gk‖3

≤ α‖gk‖2
{

−1 + 1
2
α‖Bk‖ + 1

3
α2σk‖gk‖

}

.

(2.9)

Now m(sC

k) ≤ f(xk) provided −1 + 1
2
α‖Bk‖ + 1

3
α2σk‖gk‖ ≤ 0 and α ≥ 0, the latter two inequalities

being equivalent to

α ∈ [0, αk], where αk
def
=

3

2σk‖gk‖

[

−1

2
‖Bk‖ +

√

1

4
‖Bk‖2 +

4

3
σk‖gk‖

]

.

Furthermore, we can express αk as

αk = 2

[

1

2
‖Bk‖ +

√

1

4
‖Bk‖2 +

4

3
σk‖gk‖

]−1

.

Letting

θk
def
=

[√
2max

(

1 + ‖Bk‖, 2
√

σk‖gk‖
)]−1

, (2.10)
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and employing the inequalities

√

1
4‖Bk‖2 + 4

3σk‖gk‖ ≤ 1
2‖Bk‖ + 2√

3

√

σk‖gk‖ ≤ 2 max
(

1
2‖Bk‖, 2√

3

√

σk‖gk‖
)

≤
√

2max
(

1 + ‖Bk‖, 2
√

σk‖gk‖
)

,

and
1

2
‖Bk‖ ≤ max

(

1 + ‖Bk‖, 2
√

σk‖gk‖
)

,

it follows that 0 < θk ≤ αk. Thus substituting the value of θk in the last inequality in (2.9), we obtain

that

mk(sC

k) − f(xk) ≤ ‖gk‖2

√
2max

(

1 + ‖Bk‖, 2
√

σk‖gk‖
)

{

−1 +
1

2
θk‖Bk‖ +

1

3
θ2kσk‖gk‖

}

≤ 0. (2.11)

It now follows from the definition (2.10) of θk that θk‖Bk‖ ≤ 1 and θ2kσk‖gk‖ ≤ 1, so that the

expression in the curly brackets in (2.11) is bounded above by (−1/6). This and (2.11) imply the

second inequality in (2.8). 2

In the convergence theory of this section, the quantity
√

‖gk‖/σk plays a role similar to that of the

trust-region radius in trust-region methods (compare (2.8) above with the bound (6.3.4) in [4]).

The following assumption will occur frequently in our results. For the model mk, suppose

AM.1 ‖Bk‖ ≤ κB, for all k ≥ 0, and some κB ≥ 0. (2.12)

Next we obtain a useful bound on the step.

Lemma 2.2. Suppose that AM.1 holds and that the step sk satisfies (2.2). Then

‖sk‖ ≤ 3

σk
max(κB,

√

σk‖gk‖), k ≥ 0. (2.13)

Proof. Consider

mk(s) − f(xk) = sT gk + 1
2
sTBks+ 1

3
σk‖s‖3

≥ −‖s‖‖gk‖ − 1
2
‖s‖2‖Bk‖ + 1

3
σk‖s‖3

= ( 1
9
σk‖s‖3 − ‖s‖‖gk‖) + ( 2

9
σk‖s‖3 − 1

2
‖s‖2‖Bk‖).

But then 1
9
σk‖s‖3 − ‖s‖‖gk‖ > 0 if ‖s‖ > 3

√

‖gk‖/σk, while 2
9
σk‖s‖3 − 1

2
‖s‖2‖Bk‖ > 0 if ‖s‖ >

9
4
‖Bk‖/σk. Hence mk(s) > f(xk) whenever

‖s‖ > 3

σk
max(‖Bk‖,

√

σk‖gk‖).

But mk(sk) ≤ f(xk) due to (2.8), and thus (2.13) holds, recalling also AM.1. 2

For the proof of the next result, and some others to follow, we need to show that, under certain

conditions, a step k is very successful in the sense of (2.6). Provided f(xk) > mk(sk), and recalling (2.4),

we have

ρk > η2 ⇐⇒ rk
def
= f(xk + sk) − f(xk) − η2[mk(sk) − f(xk)] < 0. (2.14)

Whenever f(xk) > mk(sk), we can express rk as

rk = f(xk + sk) −mk(sk) + (1 − η2) [mk(sk) − f(xk)] , k ≥ 0. (2.15)
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Conditions are given next to ensure that some iterations become very successful asymptotically.

Lemma 2.3. Let AF.1 and AM.1 hold. Suppose that I is an infinite index set such that

‖gk‖ ≥ ǫ, for all k ∈ I and some ǫ > 0, and

√

‖gk‖
σk

→ 0, as k → ∞, k ∈ I. (2.16)

Then

‖sk‖ ≤ 3

√

‖gk‖
σk

, for all k ∈ I sufficiently large. (2.17)

Additionally, if

xk → x∗, as k → ∞, k ∈ I, for some x∗ ∈ IRn, (2.18)

then each iteration k ∈ I that is sufficiently large is very successful, and

σk+1 ≤ σk, for all k ∈ I sufficiently large. (2.19)

Proof. As (2.16) implies
√

σk‖gk‖ ≥ ǫ
√

σk/‖gk‖ → ∞, as k → ∞, k ∈ I, the bound (2.17) now

follows from (2.13). To prove (2.19), we use (2.14) and (2.15). Hence we first need to estimate the

difference between the function and the model at xk + sk. A Taylor expansion of f(xk + sk) around

xk gives

f(xk + sk) −mk(sk) = (g(ξk) − gk)T sk − 1

2
s⊤k Bksk − σk

3
‖sk‖3, k ≥ 0,

for some ξk on the line segment (xk, xk + sk), which, by employing AM.1 and (2.17), further gives

f(xk + sk) −mk(sk) ≤ 3







‖g(ξk) − gk‖ +
3κB

2

√

‖gk‖
σk







·
√

‖gk‖
σk

, (2.20)

for some ξk on the line segment (xk, xk + sk) and for all k ∈ I sufficiently large. To bound the

remaining term in (2.15), from (2.8), AM.1 and the inequality in (2.16), we obtain

f(xk) −mk(sk) ≥ ǫ

6
√

2
min





ǫ

1 + κB

,
1

2

√

‖gk‖
σk



 , for all k ∈ I,

which, by employing the limit in (2.16), further gives

f(xk) −mk(sk) ≥ ǫ

12
√

2

√

‖gk‖
σk

, for all k ∈ I sufficiently large.

This, (2.15) and (2.20) imply

rk =

√

‖gk‖
σk







3‖g(ξk) − gk‖ +
9κB

2

√

‖gk‖
σk

− (1 − η2)ǫ

12
√

2







, for all k ∈ I sufficiently large. (2.21)

Since ξk belongs to the line segment (xk, xk + sk), we have ‖ξk − x∗‖ ≤ ‖xk − x∗‖ + ‖sk‖. Also, the

limit in (2.16) and (2.17) imply ‖sk‖ → 0, as k → ∞, k ∈ I. It now follows from (2.18) that ξk → x∗,

as k → ∞, k ∈ I, and since g is continuous, we conclude that

‖g(ξk) − gk‖ ≤ ‖g(ξk) − g(x∗)‖ + ‖gk − g(x∗)‖ → 0, k ∈ I, k → ∞.

This, the limit in (2.16) and (2.21) imply that rk < 0, for all k ∈ I sufficiently large and thus, recalling

(2.14), k is very successful. The inequality (2.19) now follows from (2.6). 2
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Next, we show that provided there are only finitely many successful iterations, all later iterates are

first-order critical points.

Lemma 2.4. Let AF.1 and AM.1 hold. Suppose furthermore that there are only finitely many

successful iterations. Then xk = x∗ for all sufficiently large k and g(x∗) = 0.

Proof. After the last successful iterate is computed, indexed by say k0, the construction of the

algorithm implies that xk0+1 = xk0+i
def
= x∗, for all i ≥ 1. If ‖gk0+1‖ > 0, then

‖gk‖ = ‖gk0+1‖ def
= ǫ > 0, for all k ≥ k0 + 1. (2.22)

Thus, letting I := {k : k ≥ k0 + 1} in Lemma 2.3, we have that (2.16) and the second limit in (2.18)

hold. Furthermore, since all iterations k ≥ k0 + 1 are unsuccessful, σk increases by at least a fraction

γ1 so that

σk → ∞, as k → ∞,

which together with (2.22), implies that the first limit in (2.18) is also achieved. Thus, Lemma 2.3

provides that each iteration k ≥ k0 +1 sufficiently large is very successful. This contradicts k ≥ k0 +1

is unsuccessful, and so gk = g(x∗) = 0, k ≥ k0 + 1. 2

We are now ready to prove the first convergence result for the ACO algorithm. In particular, we show

that provided f is bounded from below, either we are in the above case and gk = 0 for some finite k, or

there is a subsequence of {gk} converging to zero.

Theorem 2.5. Suppose that AF.1 and AM.1 hold. If {f(xk)} is bounded below, then

lim inf
k→∞

‖gk‖ = 0. (2.23)

Proof. Lemma 2.4 shows that the result is true when there are only finitely many successful iterations.

Let us now assume infinitely many successful iterations occur, and recall the notation (2.7). We also

assume that (2.23) does not hold, and so

‖gk‖ ≥ ǫ, for some ǫ > 0 and for all k ≥ 0. (2.24)

Let us first prove that (2.24) implies that

∞
∑

k∈S

√

‖gk‖
σk

< +∞. (2.25)

It follows from (2.4), (2.5), (2.8), AM.1 and (2.24) that

f(xk) − f(xk+1) ≥ η1[f(xk) −mk(sk)] ≥ η1ǫ

6
√

2
· min





ǫ

1 + κB

,
1

2

√

‖gk‖
σk



, for all k ∈ S. (2.26)

Since {f(xk)} is monotonically decreasing and assumed to be bounded below, it is convergent, and

hence, the minimum on the right-hand side of (2.26) will be attained at
√

‖gk‖/(2
√
σk) as the left-hand

side of (2.26) converges to zero. Thus we obtain

f(xk) − f(xk+1) ≥
η1ǫ

12
√

2

√

‖gk‖
σk

, for all k ∈ S sufficiently large,
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which summed up over all sufficiently large iterations provides

f(xk0
) − f(xj+1) =

j
∑

k=k0,k∈S
[f(xk) − f(xk+1)] ≥

η1ǫ

12
√

2

j
∑

k=k0,k∈S

√

‖gk‖
σk

, (2.27)

for some iteration index k0 sufficiently large and for any j ∈ S, j ≥ k0. Thus, since {f(xj+1)} is

convergent, (2.25) follows by letting j → ∞ in (2.27).

Now let us argue that the sequence of iterates {xk}, k ≥ 0, is a Cauchy sequence. Note that (2.25)

implies
√

‖gk‖/σk → 0, k → ∞, k ∈ S, (2.28)

and so, also from (2.24), we deduce that (2.16) holds with I := S. It follows from (2.17) and the

construction of the algorithm that

‖xl+r−xl‖ ≤
l+r−1
∑

k=l

‖xk+1−xk‖ =
l+r−1
∑

k=l,k∈S
‖sk‖ ≤ 3

l+r−1
∑

k=l,k∈S

√

‖gk‖
σk

, for l ≥ 0 sufficiently large, r ≥ 0,

whose right-hand side tends to zero as l → ∞ due to (2.25). Thus {xk} is a Cauchy sequence, and

xk → x∗, k → ∞, for some x∗ ∈ IRn. (2.29)

From (2.24), (2.28) and (2.29), we have that (2.16) and (2.18) hold with I := S. Thus Lemma 2.3

provides that all k ∈ S sufficiently large are very successful, and (2.19) holds with I := S. Now, if

all k sufficiently large belong to S, namely, there are no unsuccessful iterations for k sufficiently large,

then (2.19) implies that σk+1 ≤ σk, for all k sufficiently large, and so {σk}, k ≥ 0, is bounded above.

This however, contradicts σk → ∞, which follows from (2.24) and (2.28). Thus (2.24) cannot hold.

It remains to show that all sufficiently large iterations belong, indeed, to S. Let us assume the

contrary: recalling that S is assumed to be infinite (and hence, not all iterations can be consecutively

unsuccessful for all k sufficiently large), let {ki} denote an (infinite) subsequence of very successful

iterations such that ki−1 is unsuccessful for all i ≥ 0 (as all k ∈ S sufficiently large are very successful,

without loss of generality, we can disregard successful iterations). Then (2.6) implies σki
≤ γ2σki−1,

for all i, and ki − 1 being unsuccessful gives gki
= gki−1, for all i. Thus, also from (2.28), we deduce

√

‖gki−1‖/σki−1 → 0, as i→ ∞. (2.30)

It follows from (2.24), (2.29) and (2.30) that (2.16) and (2.18) are satisfied with I := {ki − 1 : i ≥ 0},
and so Lemma 2.3 provides that ki − 1 is very successful for all i sufficiently large. This contradicts

our assumption that ki − 1 is unsuccessful for all i. 2

To show that the whole sequence of gradients {gk} converges to zero, we employ the additional as-

sumption that the gradient g is uniformly continuous on the sequence of iterates {xk}, namely,

AF.2 ‖gti
− gli‖ → 0 whenever ‖xti

− xli‖ → 0, i→ ∞, (2.31)

where {xti
} and {xli} are subsequences of {xk}. Clearly, AF.2 is satisfied if g is uniformly continuous on

IRn. It is also achieved if g is globally Lipschitz continuous on {xk} (see (4.21)); if f ∈ C2(IRn), then the

latter, and hence AF.2, holds if the Hessian of f is bounded above on the convex hull of all the iterates.

Corollary 2.6. Let AF.1–AF.2 and AM.1 hold. If {f(xk)} is bounded below, then

lim
k→∞

‖gk‖ = 0. (2.32)
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Proof. If there are finitely many successful iterations, then Lemma 2.4 implies that (2.32) holds.

Now let S be infinite, and assume that there is an infinite subsequence {ti} ⊆ S such that

‖gti
‖ ≥ 2ǫ, for some ǫ > 0 and for all i. (2.33)

Note that only successful iterates need to be considered since the gradient remains constant on all the

other iterates (due to the construction of the algorithm). Theorem 2.5 implies that for each ti, there

is a first successful iteration li > ti such that ‖gli‖ < ǫ. Thus {li} ⊆ S and for all i, we have

‖gk‖ ≥ ǫ, for all k with ti ≤ k < li, and ‖gli‖ < ǫ. (2.34)

Let K def
= {k ∈ S : ti ≤ k < li}, where the subsequences {ti} and {li} were defined above; note that K

is also infinite. Since K ⊆ S, it follows from (2.4), (2.5), (2.8), AM.1 and (2.34) that

f(xk) − f(xk+1) ≥
η1ǫ

6
√

2
· min





ǫ

1 + κB

,
1

2

√

‖gk‖
σk



, k ∈ K. (2.35)

Since {f(xk)} is monotonically decreasing and bounded from below, it is convergent, and hence the

left-hand side of (2.35) converges to zero as k → ∞. Thus (2.35) implies

√

‖gk‖/σk → 0, k → ∞, k ∈ K. (2.36)

Due to (2.36), the bound (2.35) asymptotically becomes

f(xk) − f(xk+1) ≥
η1ǫ

12
√

2

√

‖gk‖
σk

, for all k ∈ K sufficiently large. (2.37)

From (2.36) and (2.34), we have that (2.16) is satisfied with I := K, and thus (2.17) holds for this

choice of I, which together with (2.37) and the definition of K, provides the bound

f(xk) − f(xk+1) ≥
η1ǫ

36
√

2
‖sk‖, for all ti ≤ k < li, k ∈ S, i sufficiently large. (2.38)

Summing up (2.38) over k with ti ≤ k < li, and employing (2.5) and the triangle inequality, we obtain

36
√

2

η1ǫ
[f(xti

) − f(xli)] ≥
li−1
∑

k=ti,k∈S
‖sk‖ =

li−1
∑

k=ti

‖xk+1 − xk‖ ≥ ‖xti
− xli‖, (2.39)

for all i sufficiently large. Since {f(xk)} is convergent, {f(xti
) − f(xli)} converges to zero as i → ∞.

Thus (2.39) implies that ‖xli − xti
‖ converges to zero as i → ∞, and by AF.2, ‖gli − gti

‖ tends to

zero. We have reached a contradiction, since (2.33) and (2.34) imply ‖gli − gti
‖ ≥ ‖gti

‖ − ‖gli‖ ≥ ǫ

for all i ≥ 0. 2

From now on, we assume throughout that

gk 6= 0, for all k ≥ 0; (2.40)

we will discuss separately the case when gl = 0 for some l (see our remarks at the end of §3.2 and §5). It

follows from (2.8) and (2.40) that

f(xk) > mk(sk), k ≥ 0. (2.41)

A comparison of the above results to those in [22] outlines the similarities of the two approaches, as

well as the differences; see also [27]. Compare for example, Lemma 2.4, Theorem 2.5 and Corollary 2.6 to

Theorems 4.10 and 4.14 in [22]. In particular, note that we extended the results in [22] as no lower bound

was imposed in ACO on the rate of decrease of σk on very successful iterations, while the change to the

trust-region radius on the same type of iterations is required to be bounded (above) in [22].
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3 On approximate minimizers of the model

3.1 Optimality conditions for the minimizer of mk over IRn

In this first subsection, we give a new proof of a fundamental result concerning necessary and sufficient

optimality conditions for the global minimizer of the cubic model, for which different proofs are provided

by Griewank [19] and Nesterov and Polyak [25, §5.1]. Our approach is closer in spirit to trust-region

techniques, thus offering new insight into this surprising result, as well as a proper fit in the context of

our paper.

We may express the derivatives of the cubic model mk(s) in (1.4) as

∇smk(s) = gk +Bks+ λs and ∇ssmk(s) = Bk + λI + λ

(

s

‖s‖

)(

s

‖s‖

)T

, (3.1)

where λ = σk‖s‖ and I is the n by n identity matrix.

We have the following global optimality result.

Theorem 3.1. Any s∗k is a global minimizer of mk(s) over IRn if and only if it satisfies the system

of equations

(Bk + λ∗kI)s
∗
k = −gk, (3.2)

where λ∗k = σk‖s∗k‖ and Bk +λ∗kI is positive semidefinite. If Bk +λ∗kI is positive definite, s∗k is unique.

Proof. In this proof, we drop the iteration subscript k for simplicity. Firstly, let s∗ be a global

minimizer of m(s) over IRn. It follows from (3.1) and the first- and second-order necessary optimality

conditions at s∗ that

g + (B + λ∗I)s∗ = 0,

and hence that (3.2) holds, and that

wT

(

B + λ∗I + λ∗
(

s∗

‖s∗‖

)(

s∗

‖s∗‖

)T
)

w ≥ 0 (3.3)

for all vectors w.

If s∗ = 0, (3.3) is equivalent to λ∗ = 0 and B being positive semi-definite, which immediately gives

the required result. Thus we need only consider s∗ 6= 0.

There are two cases to consider. Firstly, suppose that wT s∗ = 0. In this case, it immediately follows

from (3.3) that

wT (B + λ∗I)w ≥ 0 for all w for which wT s∗ = 0. (3.4)

It thus remains to consider vectors w for which wT s∗ 6= 0. Since w and s∗ are not orthogonal, the line

s∗ + αw intersects the ball of radius ‖s∗‖ at two points, s∗ and u∗ 6= s∗, say, and thus

‖u∗‖ = ‖s∗‖. (3.5)

We let w∗ = u∗ − s∗, and note that w∗ is parallel to w.

Since s∗ is a global minimizer, we immediately have that

0 ≤ m(u∗) −m(s∗)

= gT (u∗ − s∗) + 1
2
(u∗)TBu∗ − 1

2
(s∗)TBs∗ + σ

3 (‖u∗‖3 − ‖s∗‖3)

= gT (u∗ − s∗) + 1
2
(u∗)TBu∗ − 1

2
(s∗)TBs∗,

(3.6)
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where the last equality follows from (3.5). But (3.2) gives that

gT (u∗ − s∗) = (s∗ − u∗)TBs∗ + λ∗(s∗ − u∗)T s∗. (3.7)

In addition, (3.5) shows that

(s∗ − u∗)T s∗ = 1
2
(s∗)T s∗ + 1

2
(u∗)Tu∗ − (u∗)T s∗ = 1

2
(w∗)Tw∗. (3.8)

Thus combining (3.6)–(3.7), we find that

0 ≤ 1
2
λ∗(w∗)Tw∗ + 1

2
(u∗)TBu∗ − 1

2
(s∗)TBs∗ + (s∗)TBs∗ − (u∗)TBs∗

= 1
2
(w∗)T (B + λ∗I)w∗ (3.9)

from which we deduce that

wT (B + λ∗I)w ≥ 0 for all w for which wT s∗ 6= 0. (3.10)

Hence (3.4) and (3.10) together show that B+λ∗I is positive semidefinite. The uniqueness of s∗ when

B+λ∗I is positive definite follows immediately from (3.2). For the sufficiency implication, let s∗ satisfy

(3.2) and note that since mk(s) is bounded below, a global minimizer, say u∗, exists and also satisfies

(3.2). Then, whenever B is positive semidefinite, or indefinite with g not orthogonal to the eigenvector

of B corresponding to its leftmost eigenvalue, say λ1, the argument in the third paragraph on page

27 implies that there exists a unique solution (s, λ) to the system (B + λI)s = −g and λ = σ‖s‖, and

so s∗ = u∗. Else, λ∗ = −λ1 and s∗ and u∗ are solutions of (6.6) for some values of α. It follows that

‖u∗‖ = ‖s∗‖ and the equalities in (3.6), and (3.8), (3.9), (3.10) give m(u∗) ≥ m(s∗), which implies

m(u∗) = m(s∗) since u∗ is a global minimizer. Thus so is s∗. 2

Note how similar this result and its proof are to those for the trust-region subproblem (see [4, Theo-

rem 7.2.1]), for which we aim to minimize gT
k s+

1
2
sTBks within an ℓ2-norm trust region ‖s‖ ≤ ∆k for some

“radius” ∆k > 0. Often, the global solution s∗k of this subproblem satisfies ‖s∗k‖ = ∆k. Then, recalling

that s∗k would also satisfy (3.2), we have from Theorem 3.1 that σk = λ∗k/∆k. Hence one might interpret

the parameter σk in the ACO algorithm as inversely proportional to the trust-region radius.

In §6.1, we discuss ways of computing the global minimizer s∗k.

3.2 Minimizing the cubic model in a subspace

The only requirement on the step sk computed by the ACO algorithm has been that it satisfies the

Cauchy condition (2.2). As we showed in §2.2, this is enough for the algorithm to converge to first-order

critical points. To be able to guarantee stronger convergence properties for the ACO algorithm, further

requirements need to be placed on sk. The strongest such conditions are, of course, the first and second

order (necessary) optimality conditions that sk satisfies provided it is the (exact) global minimizer of mk(s)

over IRn (see Theorem 3.1). This choice of sk, however, may be in general prohibitively expensive from a

computational point of view, and thus, for most (large-scale) practical purposes, (highly) inefficient (see

§6.1). As in the case of trust-region methods, a much more useful approach in practice is to compute an

approximate global minimizer of mk(s) by (globally) minimizing the model over a sequence of (nested)

subspaces, in which each such subproblem is computationally quite inexpensive (see §6.2). Thus the

conditions we require on sk in what follows, are some derivations of first- and second-order optimality

when sk is the global minimizer of mk over a subspace (see (3.11), (3.12) and Lemma 3.2). Then, provided

each subspace includes gk, not only do the previous results still hold, but we can prove further convergence

properties (see §4.1) and deduce good complexity bounds (see [2, §5]) for the ACO algorithm. Furthermore,

our approach and results widen the scope of the convergence and complexity analysis in [25] which addresses

solely the case of the exact global minimizer of mk over IRn.

In what follows, we require that sk satisfies

g⊤k sk + s⊤k Bksk + σk‖sk‖3 = 0, k ≥ 0, (3.11)
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and

s⊤k Bksk + σk‖sk‖3 ≥ 0, k ≥ 0. (3.12)

Note that (3.11) is equivalent to ∇smk(sk)⊤sk = 0, due to (3.1).

The next lemma presents some suitable choices for sk that achieve (3.11) and (3.12).

Lemma 3.2. Suppose that sk is the global minimizer of mk(s), for s ∈ Lk, where Lk is a subspace

of IRn. Then sk satisfies (3.11) and (3.12). Furthermore, letting Qk denote any orthogonal matrix

whose columns form a basis of Lk, we have that

Q⊤
k BkQk + σk‖sk‖I is positive semidefinite. (3.13)

In particular, if s∗k is the global minimizer of mk(s), s ∈ IRn, then s∗k achieves (3.11) and (3.12).

Proof. Let sk be the global minimizer of mk over some Lk, i. e., sk solves

min
s ∈ Lk

mk(s). (3.14)

Let l denote the dimension of the subspace Lk. Let Qk be an orthogonal n× l matrix whose columns

form a basis of Lk. Thus Q⊤
k Qk = I and for all s ∈ Lk, we have s = Qku, for some u ∈ IRl. Recalling

that sk solves (3.14), and letting

sk = Qkuk, (3.15)

we have that uk is the global minimizer of

min
u ∈ IRl

mk,r(u)
def
= f(xk) + (Q⊤

k gk)⊤u+
1

2
u⊤Q⊤

k BkQku+
1

3
σk‖u‖3, (3.16)

where we have used the following property of the Euclidean norm when applied to orthogonal matrices,

‖Qku‖ = ‖u‖, for all u. (3.17)

Applying Theorem 3.1 to the reduced model mk,r and uk, it follows that

Q⊤
k BkQkuk + σk‖uk‖uk = −Q⊤

k gk,

and multiplying by uk, we have

u⊤k Q
⊤
k BkQkuk + σk‖uk‖3 = −g⊤k Qkuk,

which is the same as (3.11), due to (3.15) and (3.17). Moreover, Theorem 3.1 implies that Q⊤
k BkQk +

σk‖uk‖I is positive semidefinite. Due to (3.15) and (3.17), this is (3.13), and also implies

u⊤k Q
⊤
k BkQkuk + σk‖uk‖3 ≥ 0,

which is (3.12). 2

Note that the Cauchy point (2.3) satisfies (3.11) and (3.12) since it globally minimizes mk over the

subspace generated by −gk. To improve the properties and performance of ACO, however, it may be

necessary to minimize mk over (increasingly) larger subspaces.

The next lemma gives a lower bound on the model decrease when (3.11) and (3.12) are satisfied.

Lemma 3.3. Suppose that sk satisfies (3.11). Then

f(xk) −mk(sk) =
1

2
s⊤k Bksk +

2

3
σk‖sk‖3. (3.18)
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Additionally, if sk also satisfies (3.12), then

f(xk) −mk(sk) ≥ 1

6
σk‖sk‖3. (3.19)

Proof. Relation (3.18) can be obtained by eliminating the term s⊤k gk from (1.4) and (3.11). It follows

from (3.12) that s⊤k Bksk ≥ −σk‖sk‖3, which we then substitute into (3.18) and obtain (3.19). 2

Requiring that sk satisfies (3.11) may not necessarily imply (2.2), unless sk = −gk. Nevertheless, when

minimizing mk globally over successive subspaces, condition (2.2) can be easily ensured by including gk

in each of the subspaces. This is the approach we take in our implementation of the ACO algorithm,

where the subspaces generated by Lanczos method naturally include the gradient (see §6 and §7). Thus,

throughout, we assume the Cauchy condition (2.2) still holds.

The assumption (2.40) provides the implication

sk satisfies (3.11) =⇒ sk 6= 0. (3.20)

To see this, assume sk = 0. Then (3.18) gives f(xk) = mk(sk). This, however, contradicts (2.41).

In the case when gk = 0 for some k ≥ 0 and thus assumption (2.40) is not satisfied, we need to be more

careful. If sk minimizes mk over a subspace Lk generated by the columns of some orthogonal matrix Qk,

we have

(3.13) holds and λmin(Q⊤
k BkQk) < 0 =⇒ sk 6= 0, (3.21)

since Lemma 3.2 holds even when gk = 0. But if λmin(Q
⊤
k BkQk) ≥ 0 and gk = 0, then sk = 0 and the

ACO algorithm will terminate. Hence, if our intention is to identify whether Bk is indefinite, it will be

necessary to build Qk so that Q⊤
k BkQk predicts negative eigenvalues of Bk. This will ultimately be the

case with probability one if Qk is built as the Lanczos basis of the Krylov space {Bl
kv}l≥0 for some random

initial vector v 6= 0. Note that we have the implication

(3.19), (3.21) and σk > 0 =⇒ (2.41), (3.22)

and thus the step will reduce the model.

3.3 Termination criteria for the approximate minimization of mk

In the previous section, the bound (3.19) on the model decrease was deduced. However, for this to be useful

for investigating rates of convergence (and later on in [2], complexity bounds) for the ACO algorithm, we

must ensure that sk does not become too small compared to the size of the gradient. To deduce a lower

bound on ‖sk‖, we need to be more specific about the ACO algorithm. In particular, suitable termination

criteria for the method used to minimize mk(s) need to be made precise.

Let us assume that some iterative solver is used on each (major) iteration k to approximately minimize

mk(s). Let us set the termination criteria for its inner iterations i to be

‖∇smk(si,k)‖ ≤ θi,k‖gk‖, (3.23)

where

θi,k
def
= κθ min(1, hi,k), (3.24)

where si,k are the inner iterates generated by the solver, κθ is any constant in (0, 1), and

hi,k
def
= hi,k(‖si,k‖, ‖gk‖)

are positive parameters. In particular, we are interested in two choices for hi,k, namely,

hi,k = ‖si,k‖, i ≥ 0, k ≥ 0, (3.25)
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and

hi,k = ‖gk‖1/2, i ≥ 0, k ≥ 0. (3.26)

The first choice gives improved complexity for the ACO algorithm (see [2, §5]), while the second yields

the best numerical performance of the algorithm in our experiments (see §7). Note that gk = ∇smk(0).

The condition (3.23) is always satisfied by any minimizer si,k of mk, since then ∇smk(si,k) = 0. Thus

condition (3.23) can always be achieved by an iterative solver, the worst that could happen is to iterate until

an exact minimizer of mk is found. We hope in practice to terminate well before this inevitable outcome.

It follows from (3.23) and (3.24) that

TC.h ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, hk), k ≥ 0, (3.27)

where hk
def
= hi,k > 0 with i being the last inner iteration. In particular, for the choice (3.25), we have

TC.s ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖sk‖), k ≥ 0, (3.28)

while for the choice (3.26), we obtain

TC.g ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖gk‖1/2), k ≥ 0. (3.29)

The lower bounds on sk that the criteria TC.h, TC.s and TC.g provide are given in Lemmas 4.7 and 4.9.

4 Local convergence properties

For the remainder of the paper, we assume that

AF.3 f ∈ C2(IRn). (4.1)

Provided AF.3 holds, a Taylor expansion of f(xk + sk) and its agreement with the model to first-order

give the following estimate of the difference between the function and the model at xk + sk, namely,

f(xk + sk) −mk(sk) =
1

2
s⊤k [H(ξk) −Bk]sk − σk

3
‖sk‖3, k ≥ 0, (4.2)

for some ξk on the line segment (xk, xk + sk). The expression (4.2) will be useful in some proofs.

4.1 Locally convex models

In this section, we investigate the convergence properties of the ACO algorithm in the case when the

approximate Hessians Bk become positive definite asymptotically, at least along the direction sk. Some

results in this section follow closely those of §6.5 in [4].

Our main assumption in this section is that sk satisfies (3.11). We remark that condition (3.12) is

automatically achieved when Bk is positive semidefinite. Thus at present, we do not assume explicitly

that sk satisfies (3.12). Furthermore, no requirement of a termination criteria for the inner iterations is

made (thus none of the definitions in §3.3 are employed in this section). Significantly, none of the results

in this section requires the Hessian of the objective to be globally or locally Lipschitz continuous.

Let

Rk(sk)
def
=

s⊤k Bksk

‖sk‖2
, k ≥ 0, (4.3)

denote the Rayleigh quotient of sk with respect to Bk, representing the curvature of the quadratic part of

the model mk along the step. We show that if (3.11) holds, we can guarantee stronger lower bounds on

the model decrease than (3.19).
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Lemma 4.1. Let sk satisfy (3.11). Then

f(xk) −mk(sk) ≥ 1

2
Rk(sk)‖sk‖2, (4.4)

where Rk(sk) is the Rayleigh quotient (4.3). In particular,

f(xk) −mk(sk) ≥ 1

2
λmin(Bk)‖sk‖2, (4.5)

where λmin(Bk) denotes the leftmost eigenvalue of Bk.

Proof. The bound (4.4) follows straightforwardly from (3.18) and (4.3), while for (4.5), we also

employed the Rayleigh quotient inequality ([4, p.19]). 2

When the Rayleigh quotient (4.3) is uniformly positive, the size of sk is of order ‖gk‖, as we show next.

Lemma 4.2. Suppose that sk satisfies (3.11). If the Rayleigh quotient (4.3) is positive, then

‖sk‖ ≤ 1

Rk(sk)
‖gk‖. (4.6)

Furthermore, if Bk is positive definite, then

‖sk‖ ≤ 1

λmin(Bk)
‖gk‖. (4.7)

Proof. The following relations are derived from (3.11) and the Cauchy-Schwarz inequality

Rk(sk)‖sk‖2 ≤ s⊤k Bksk + σk‖sk‖3 = −g⊤k sk ≤ ‖gk‖ · ‖sk‖.

The first and the last terms above give (4.7) since sk 6= 0 because of (3.20), and Rk(sk) > 0. The

bound (4.7) follows from (4.6) and the Rayleigh quotient inequality. 2

The next theorem shows that all iterations are ultimately very successful provided some further as-

sumption on the level of resemblance between the approximate Hessians Bk and the true Hessians H(xk)

holds as the iterates converge to a local minimizer. In particular, we require

AM.2
‖(Bk −H(xk))sk‖

‖sk‖
→ 0, whenever ‖gk‖ → 0. (4.8)

The first limit in (4.8) is known as the Dennis–Moré condition [7]. A number of quasi-Newton techniques

for updating Bk achieve this condition provided some additional properties hold [26, §3.3, Chapter 8]. For

example, for Powell symmetric Broyden updates, it was shown in [20] that the Dennis–Moré condition is

satisfied “on average” when the iterates converge to a stationary point x∗ with H(x∗) positive definite and

locally Lipschitz continuous, provided also that the distances to the solution — or equivalently the steps

— are square summable. It follows from (2.8) that the latter condition holds in our case over successful

iterations.
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Theorem 4.3. Let AF.2–AF.3 and AM.1–AM.2 hold, and also let sk satisfy (3.11), and

xk → x∗, as k → ∞, (4.9)

where H(x∗) is positive definite. Then there exists Rmin > 0 such that

Rk(sk) ≥ Rmin, for all k sufficiently large. (4.10)

Also, we have

‖sk‖ ≤ 1

Rmin
‖gk‖, for all k sufficiently large. (4.11)

Furthermore, all iterations are eventually very successful, and σk is bounded from above.

Proof. Since f is continuous, the limit (4.9) implies {f(xk)} is bounded below. Thus Corollary 2.6

provides that x∗ is a first-order critical point and ‖gk‖ → 0. The latter limit and AM.2 imply

‖(H(xk) −Bk)sk‖
‖sk‖

→ 0, k → ∞, (4.12)

i. e., the Dennis–Moré condition holds. Since H(x∗) is positive definite, so is H(xk) for all k sufficiently

large. In particular, there exists a constant Rmin such that

s⊤k H(xk)sk

‖sk‖2
> 2Rmin > 0, for all k sufficiently large. (4.13)

From (4.3), (4.12) and (4.13), we obtain that for all sufficiently large k,

2Rmin‖sk‖2 ≤ s⊤k H(xk)sk = s⊤k [H(xk) −Bk]sk + s⊤k Bksk ≤ [Rmin +Rk(sk)] ‖sk‖2,

which gives (4.10). The bound (4.11) now follows from (4.6) and (4.10).

It follows from (2.41) that the equivalence (2.14) holds. We are going to derive an upper bound on

the expression (2.15) of rk and show that it is negative for all k sufficiently large. From (4.2), we have,

also since σk ≥ 0,

f(xk + sk) −mk(sk) ≤ 1

2
‖(H(ξk) −Bk)sk‖ · ‖sk‖, (4.14)

where ξk belongs to the line segment (xk, xk + sk). Relation (4.4) in Lemma 4.1, and (4.10), imply

f(xk) −mk(sk) ≥ 1

2
Rmin‖sk‖2, for all k sufficiently large. (4.15)

It follows from (2.15), (4.14) and (4.15) that

rk ≤ 1

2
‖sk‖2

{‖(H(ξk) −Bk)sk‖
‖sk‖

− (1 − η2)Rmin

}

, for all k sufficiently large. (4.16)

We have
‖(H(ξk) −Bk)sk‖

‖sk‖
≤ ‖H(xk) −H(ξk)‖ +

‖(H(xk) −Bk)sk‖
‖sk‖

, k ≥ 0. (4.17)

Since ξk ∈ (xk, xk + sk), we have ‖ξk − xk‖ ≤ ‖sk‖, which together with (4.11) and ‖gk‖ → 0, gives

‖ξk−xk‖ → 0. This, (4.9) and H(x) continuous, give ‖H(xk)−H(ξk)‖ → 0, as k → ∞. It now follows

from (4.12) and (4.17) that
‖(H(ξk) −Bk)sk‖

‖sk‖
→ 0, k → ∞.

This, (3.20) and (4.16) imply rk < 0, for all k sufficiently large. Since σk is not allowed to increase on

the very successful steps of the ACO algorithm, and every k sufficiently large is very successful, σk is

bounded from above. 2
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The next two theorems address conditions under which the assumption (4.9) holds.

Theorem 4.4. Suppose that AF.2–AF.3, AM.1 and (3.11) hold, and that {f(xk)} is bounded below.

Also, assume that {xki
} is a subsequence of iterates converging to some x∗ and that there exists λ > 0

such that

λmin(Bk) ≥ λ, (4.18)

whenever xk is sufficiently close to x∗. Let H(x∗) be nonsingular. Then xk → x∗, as k → ∞.

Proof. The conditions of Corollary 2.6 are satisfied, and thus ‖gk‖ → 0, k → ∞. We deduce that

g(x∗) = 0 and x∗ is a first-order critical point. By employing (4.7) in Lemma 4.2, the proof now

follows similarly to that of [4, Theorem 6.5.2]. 2

We remark that the sequence of iterates {xk} has a converging subsequence provided, for example, the

level set of f(x0) is bounded.

The above theorem does not prevent the situation when the iterates converge to a critical point that is not

a local minimizer. In the next theorem, besides assuming that x∗ is a strict local minimizer, we require the

approximate Hessians Bk to resemble the true Hessians H(xk) whenever the iterates approach a first-order

critical point, namely,

AM.3 ‖H(xk) −Bk‖ → 0, k → ∞, whenever ‖gk‖ → 0, k → ∞. (4.19)

This condition is ensured, at least from a theoretical point of view, when Bk is set to the approximation

of H(xk) computed by finite differences [8, 26]. It is also satisfied when using the symmetric rank one

approximation to update Bk and the steps are linearly independent [1, 3].

Theorem 4.5. Let AF.2–AF.3, AM.1, AM.3 and (3.11) hold. Let also {f(xk)} be bounded below.

Furthermore, suppose that {xki
} is a subsequence of iterates converging to some x∗ with H(x∗) pos-

itive definite. Then the whole sequence of iterates {xk} converges to x∗, all iterations are eventually

very successful, and σk stays bounded above.

Proof. Corollary 2.6 and f bounded below provide that x∗ is a first-order critical point and ‖gk‖ → 0.

The latter limit and AM.3 imply

‖H(xk) −Bk‖ → 0, k → ∞. (4.20)

Let {ki} index all the successful iterates xki
that converge to x∗ (recall that the iterates remain

constant on unsuccessful iterations). Since H(x∗) is positive definite and xki
→ x∗, it follows from

(4.20) that Bki
is positive definite for all sufficiently large i, and thus there exists λ > 0 such that

(4.18) holds. Theorem 4.4 now provides that the whole sequence {xk} converges to x∗.

The conditions of Theorem 4.3 now hold since AM.3 implies AM.2. Thus the latter part of Theorem

4.5 follows from Theorem 4.3. 2

We remark that in the conditions of Theorem 4.5, Bk is positive definite asymptotically.

4.2 Asymptotic rate of convergence

In this section, the termination criteria in §3.3 are employed to show that the steps sk do not become too

small compared to the size of gk (Lemmas 4.7 and 4.9), which then implies, in the context of Theorems

4.3 and 4.5, that the ACO algorithm is at least Q-superlinearly convergent (Corollaries 4.8 and 4.10).
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Firstly, a technical result is deduced from the termination criterion TC.h, which requires that g is

Lipschitz continuous on an open convex set X containing all the iterates {xk}, namely,

AF.4 ‖g(x) − g(y)‖ ≤ κH‖x− y‖, for all x, y ∈ X , and some κH ≥ 0. (4.21)

If AF.3 holds, AF.4 is satisfied if the Hessian H(x) is bounded above on X . Note that AF.4 implies AF.2.

Lemma 4.6. Let AF.3–AF.4 and TC.h hold. Then, for each k ∈ S, with S defined in (2.7), we have

(1 − κθ)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

H(xk + τsk)dτ −H(xk)

∥

∥

∥

∥

· ‖sk‖ + ‖(H(xk) −Bk)sk‖ + κθκHhk‖sk‖ + σk‖sk‖2,

(4.22)

where κθ ∈ (0, 1) occurs in TC.h.

Proof. Let k ∈ S, and so gk+1 = g(xk + sk). Then

‖gk+1‖ ≤ ‖g(xk + sk) −∇smk(sk)‖ + ‖∇smk(sk)‖ ≤ ‖g(xk + sk) −∇smk(sk)‖ + θk‖gk‖, (4.23)

where we used TC.h to derive the last inequality. We also have from Taylor’s theorem and (3.1)

‖g(xk + sk) −∇smk(sk)‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −Bk]skdτ

∥

∥

∥

∥

+ σk‖sk‖2. (4.24)

From AF.4 and the triangle inequality, we obtain

‖gk‖ ≤ ‖gk+1‖ + ‖gk+1 − gk‖ ≤ ‖gk+1‖ + κH‖sk‖. (4.25)

Substituting (4.25) and (4.24) into (4.23), we deduce

(1 − θk)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −Bk]skdτ

∥

∥

∥

∥

+ θkκH‖sk‖ + σk‖sk‖2. (4.26)

It follows from the definition of θk in (3.27) that θk ≤ κθhk and θk ≤ κθ, and (4.26) becomes

(1 − κθ)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −Bk]skdτ

∥

∥

∥

∥

+ κθκHhk‖sk‖ + σk‖sk‖2. (4.27)

The triangle inequality provides
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −Bk]skdτ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ 1

0

H(xk + τsk)dτ −H(xk)

∥

∥

∥

∥

· ‖sk‖ + ‖(H(xk) −Bk)sk‖, (4.28)

and so (4.22) follows from (4.27). 2

The next lemma establishes conditions under which the TC.h criterion provides a lower bound on sk.

Lemma 4.7. Let AF.3–AF.4, AM.2 and the limit xk → x∗, k → ∞, hold. Let TC.h be achieved with

hk → 0, as k → ∞, k ∈ S. (4.29)

Then sk satisfies

‖sk‖(dk + σk‖sk‖) ≥ (1 − κθ)‖gk+1‖ for all k ∈ S, (4.30)

where dk > 0 for all k ≥ 0, and

dk → 0, as k → ∞, k ∈ S. (4.31)
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Proof. The inequality (4.22) can be expressed as

(1 − κθ)‖gk+1‖ ≤
[
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −H(xk)]dτ

∥

∥

∥

∥

+
‖(H(xk) −Bk)sk‖

‖sk‖
+ κθκHhk

]

· ‖sk‖ + σk‖sk‖2,

where k ∈ S. Let dk denote the term in the curly brackets multiplying ‖sk‖. Then dk > 0 since

hk > 0. Furthermore, xk + τsk ∈ (xk, xk+1), for all τ ∈ (0, 1), and xk → x∗, imply
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −H(xk)]dτ

∥

∥

∥

∥

→ 0, as k → ∞, (4.32)

since the Hessian of f is continuous. Since AF.4 implies AF.2, Corollary 2.6 provides ‖gk‖ → 0. It now

follows from AM.2, (4.29) and (4.32) that dk → 0, as the index k of successful iterations increases. 2

By employing Lemma 4.7 in the context of Theorem 4.3, we show that the ACO algorithm is asymp-

totically Q-superlinearly convergent.

Corollary 4.8. In addition to the conditions of Theorem 4.3, assume that AF.4 holds and TC.h is

satisfied with hk → 0, k → ∞, k ∈ S. Then

‖gk+1‖
‖gk‖

→ 0, as k → ∞, (4.33)

and
‖xk+1 − x∗‖
‖xk − x∗‖

→ 0, as k → ∞. (4.34)

In particular, the limits (4.33) and (4.34) hold when hk = ‖sk‖, k ≥ 0, or hk = ‖gk‖1/2, k ≥ 0, i. e.,

in the case of the termination criterias TC.s and TC.g, respectively.

Proof. Note that AF.4 implies that AF.2 holds in the conditions of Theorem 4.3. Since the conditions

of Lemma 4.7 hold, so does the bound (4.30). Moreover, as Theorem 4.3 gives that all iterates are

eventually very successful and σk is bounded above, say by some σsup, (4.30) holds for all k sufficiently

large and thus

‖sk‖(dk + σsup‖sk‖) ≥ (1 − κθ)‖gk+1‖ (4.35)

for all k sufficiently large, where dk > 0 and κθ ∈ (0, 1). Employing the upper bound (4.11) on sk,

(4.35) becomes

1

Rmin

(

dk +
σsup

Rmin
‖gk‖

)

‖gk‖ ≥ ‖sk‖(dk + σsup‖sk‖) ≥ (1 − κθ)‖gk+1‖, (4.36)

for all k sufficiently large, and further, because of (2.40),

‖gk+1‖
‖gk‖

≤ Rmindk + σsup‖gk‖
R2

min(1 − κθ)
, (4.37)

for all k sufficiently large. The right-hand side of (4.37) tends to zero as k → ∞, since

dk → 0 and ‖gk‖ → 0, as k → ∞; (4.38)

the first limit above comes from (4.31) and all k sufficiently large being successful, while the second

limit follows from Corollary 2.6. Thus (4.33) holds. The limit (4.34) is obtained from standard Taylor

expansions of gk and gk+1 around x∗, and from g(x∗) = 0 with positive definite H(x∗).

The bound (4.11) and the second limit in (4.38) imply that the choices of hk in TC.s and TC.g converge

to zero, and thus the limits (4.33) and (4.34) hold for these choices of hk. 2
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Note that the limits (4.33) and (4.34) also hold if we let hk = ‖sk‖/σk, k ≥ 0, in TC.h, provided the

conditions of Theorem 4.3 hold (since then, σk is bounded above asymptotically). See (7.3) in §7.

Note also that no assumption on the Hessian of f being globally or locally Lipschitz continuous has

been imposed in Lemma 4.7 or in Corollary 4.8. Our next results, however, make a local Lipschitz conti-

nuity assumption on the Hessian of f in a neighbourhood of a given point x∗, i. e.,

AF.5 ‖H(x) −H(y)‖ ≤ L∗‖x− y‖, for all x, y sufficiently close to x∗, and some L∗ > 0,

and show a tighter bound on sk than (4.30) (see Lemma 4.9), and further, Q-quadratic asymptotic con-

vergence of the iterates (Corollary 4.10). In this context, we also slightly strengthen the condition AM.2,

by requiring that Bk satisfies

AM.4 ‖(H(xk) −Bk)sk‖ ≤ C‖sk‖2, for all k ≥ 0, and some constant C > 0. (4.39)

We remark that if the inequality in AM.4 holds for sufficiently large k, it also holds for all k ≥ 0. The

condition AM.4 is trivially satisfied with C = 0 when we set Bk = H(xk) for all k ≥ 0. Quasi-Newton

methods may still satisfy AM.4 in practice, though theoretically, only condition AM.2 can be ensured.

Lemma 4.9. Let AF.3–AF.5, AM.4 and TC.s hold. Suppose also that xk → x∗, as k → ∞. If

σk ≤ σmax, for all k ≥ 0, (4.40)

for some σmax > 0, then sk satisfies

‖sk‖ ≥ κ∗g
√

‖gk+1‖ for all sufficiently large k ∈ S, (4.41)

where κ∗g is the positive constant

κ∗g
def
=

√

1 − κθ

1
2
L∗ + C + σmax + κθκH

. (4.42)

Proof. The conditions of Lemma 4.6 are satisfied with hk = ‖sk‖. Thus, for any k ∈ S sufficiently

large, (4.22) becomes, due also to AM.4 and (4.40),

(1 − κθ)‖gk+1‖ ≤
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −H(xk)]dτ

∥

∥

∥

∥

· ‖sk‖ + C‖sk‖2 + (σmax + κθκH)‖sk‖2. (4.43)

Since xk → x∗, AF.5 and xk + τsk being on the line segment (xk, xk+1) for any τ ∈ (0, 1), imply
∥

∥

∥

∥

∫ 1

0

[H(xk + τsk) −H(xk)]dτ

∥

∥

∥

∥

≤
∫ 1

0

‖H(xk + τsk) −H(xk)‖dτ ≤ 1
2
L∗‖sk‖, (4.44)

for all sufficiently large k ∈ S. Thus (4.43) becomes

(1 − κθ)‖gk+1‖ ≤ ( 1
2
L∗ + C + σmax + κθκH) ‖sk‖2, (4.45)

which together with (4.42) provides (4.41). 2

Our next result employs Lemma 4.9 to show Q-quadratic asymptotic convergence of the ACO algorithm.

Corollary 4.10. In addition to the conditions of Theorem 4.3, assume that AF.4–AF.5, AM.4 and

TC.s hold. Then gk converges to zero, and xk, to x∗, Q-quadratically, as k → ∞.
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Proof. Note that AF.4 implies that AF.2 holds in the conditions of Theorem 4.3. Also, AM.4 implies

AM.2, since (4.10) and ‖gk‖ → 0 give ‖sk‖ → 0, as k → ∞. Theorem 4.3 implies that σk is bounded

above and thus (4.40) holds. Recalling that all the iterates are eventually very successful, Lemma 4.9

now implies that

‖sk‖ ≥ κ∗g
√

‖gk+1‖, for all k sufficiently large, (4.46)

where κ∗g > 0. It follows from (4.10) and (4.46) that

1

Rmin
‖gk‖ ≥ ‖sk‖ ≥ κ∗g

√

‖gk+1‖, for all k sufficiently large, (4.47)

and thus
‖gk+1‖
‖gk‖2

≤ 1

R2
min(κ

∗
g)

2
, for all k sufficiently large, (4.48)

and gk converges Q-quadratically. The Q-quadratic rate of convergence of the iterates follows in a

standard way, using Taylor’s theorem. 2

Analogues of Corollaries 4.8 and 4.10 hold in the case when the stronger conditions of Theorem 4.5 are

satisfied. In particular, we require the stronger condition AM.3, instead of AM.2 or AM.4, to be achieved

by Bk; then, the limit xk → x∗ is guaranteed to hold. The weaker assumption AM.2, however, makes

Corollary 4.8 applicable to quasi-Newton methods (see our remarks following (4.8)).

Note that no positive lower bound on σk was required for the convergence results in §2.2, §4.1 and

§4.2 to hold. In particular, asymptotically, it may be desirable in implementations to let σk to go to zero,

possibly at the same rate as ‖gk‖. This feature is included in our implementation of the ACO algorithm

(see §7).

We remark that assumption AF.4 was only employed in §4.2 and will not be used again for the remainder

of the paper (Part I). Thus note that (4.21) could have been replaced by the weaker condition that g is

Lipschitz continuous only on the iterates {xk}; due to connections to Part II [2], we prefer the formulation

in (4.21).

5 Global convergence to second-order critical points

This section addresses the convergence of the sequence of iterates to second-order critical points in a

framework that does not require global or local convexity of the model or the function f at the iterates or

their limit points. Then, however, we shall see that other conditions such as H(x) being globally Lipschitz

continuous, need to be imposed. A common assumption in this section is that

σk ≥ σmin, k ≥ 0, (5.1)

for some σmin > 0. The first lemma gives a useful property of the steps sk, derived from (3.19).

Lemma 5.1. Let {f(xk)} be bounded below by flow. Also, assume that sk satisfies (3.11) and (3.12),

and σk, the bound (5.1). Then, recalling (2.7), we have

‖sk‖ → 0, as k → ∞, k ∈ S. (5.2)

Proof. The construction of the ACO algorithm, (2.41), the model decrease (3.19) and (5.1) give

f(xk) − f(xk+1) ≥ η1[f(xk) −mk(sk)] ≥ 1
6
η1σmin‖sk‖3, k ∈ S. (5.3)
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Summing up over all iterates from 0 to k, we obtain from (5.3)

f(x0) − f(xk+1) ≥
η1
6
σmin

k
∑

j=0, j∈S
‖sj‖3, k ≥ 0,

which further gives, together with {f(xk)} being bounded below,

6

η1σmin
[f(x0) − flow] ≥

k
∑

j=0, j∈S
‖sj‖3, k ≥ 0. (5.4)

Thus the series
∑∞

j=0, j∈S ‖sj‖3 is convergent, and (5.2) holds. 2

The next lemma shows that σk cannot blow up provided the objective f has a globally Lipschitz continuous

Hessian, namely,

AF.6 ‖H(x) −H(y)‖ ≤ L‖x− y‖, for all x, y ∈ IRn, where L > 0, (5.5)

and Bk and H(xk) agree along sk in the sense of AM.4.

Lemma 5.2. Let AF.3, AF.6 and AM.4 hold. Then

σk ≤ max (σ0, 3
2
γ2(C + L))

def
= L0, for all k ≥ 0. (5.6)

Proof. Let L1
def
= 3(C + L)/2. To prove (5.6), it is enough to show the implication

σk ≥ L1 =⇒ k very successful, (5.7)

which further gives σk+1 ≤ σk. We allow the factor γ2 in L0 for the case when σk is only slightly less

than L1 and k is not very successful, while the term σ0 in (5.6) accounts for choices at start-up.

To show (5.7), we deduce from (4.2) that for each k ≥ 0,

f(xk + sk) −mk(sk) ≤ 1
2‖H(ξk) −H(xk)‖ · ‖sk‖2 + 1

2‖(H(xk) −Bk)sk‖ · ‖sk‖ − σk

3 ‖sk‖3,

≤
(

C+L
2 − σk

3

)

‖sk‖3,
(5.8)

where to obtain the second inequality, we employed AF.6, ‖ξk −xk‖ ≤ ‖sk‖ and AM.4. It follows from

(5.8) that

σk ≥ L1 =⇒ f(xk + sk) ≤ mk(sk). (5.9)

The second inequality in (5.9) and (2.41) imply that the ratio (2.4) satisfies ρk ≥ 1 and so ρk > η2,

for any η2 ∈ (0, 1). Thus the step k is very successful. 2

Next, we show that all the limit points of the sequence of Rayleigh quotients of Bk and of H(xk) at

successful steps sk are nonnegative.

Theorem 5.3. Let AF.3, AF.6 and AM.4 hold, and {f(xk)} be bounded below by flow. Also,

assume that sk satisfies (3.11) and (3.12), and σk, (5.1). Then, recalling (4.3), we have

lim inf
k∈S, k→∞

Rk(sk) ≥ 0 and lim inf
k∈S, k→∞

s⊤k H(xk)sk

‖sk‖2
≥ 0. (5.10)
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Proof. For all k ≥ 0 such that Rk(sk) < 0, (3.12), (3.20) and (5.6) imply

L0‖sk‖ ≥ σk‖sk‖ ≥ −Rk(sk) = |Rk(sk)|.

Now (5.2) implies the limit Rk(sk) → 0, k ∈ S and k → ∞, for all Rk(sk) < 0. This proves the first

limit in (5.10). The second inequality in (5.10) now follows from the first, (5.2) and the inequalities

Rk(sk) ≤ ‖[H(xk) −Bk]sk‖
‖sk‖

+
s⊤k H(xk)sk

‖sk‖2
≤ C‖sk‖ +

s⊤k H(xk)sk

‖sk‖2
, k ≥ 0,

where we employed AM.4 to obtain the last inequality. 2

The next theorem gives conditions which ensure that the limit points of the sequence of iterates are

second order critical points. Beforehand, we remark a useful property concerning the Hessian H(xk) and

its approximation Bk. Given any matrix Qk with orthogonal columns, [13, Corollary 8.1.6] provides the

first inequality below

|λmin(Q
⊤
k H(xk)Qk) − λmin(Q⊤

k BkQk)| ≤ ‖Q⊤
k [H(xk) −Bk]Qk‖ ≤

√
n‖H(xk) −Bk‖, k ≥ 0, (5.11)

while the second inequality above employs ‖Q⊤
k ‖ ≤ √

n and ‖Qk‖ = 1.

Theorem 5.4. Let AF.3, AF.6 and AM.4 hold. Assume that {f(xk)} is bounded below by flow,

and that σk satisfies (5.1). Also, let sk be a global minimizer of mk over a subspace Lk, and let

Qk be any orthogonal matrix whose columns form a basis of Lk. Then any subsequence of negative

leftmost eigenvalues {λmin(Q
⊤
k BkQk)} converges to zero as k → ∞, k ∈ S, and thus

lim inf
k∈S, k→∞

λmin(Q⊤
k BkQk) ≥ 0. (5.12)

Additionally, assume that AF.2, AM.1 and AM.3 hold. Then any subsequence of negative leftmost

eigenvalues {λmin(Q
⊤
k H(xk)Qk)} converges to zero as k → ∞, k ∈ S, and thus

lim inf
k∈S, k→∞

λmin(Q
⊤
k H(xk)Qk) ≥ 0. (5.13)

Furthermore, if Qk becomes a full orthogonal basis of IRn as k → ∞, k ∈ S, then, provided it exists,

any limit point of the sequence of iterates {xk} is second-order critical.

Proof. For all k ≥ 0 such that λmin(Q
⊤
k BkQk) < 0, we employ Lemma 3.2, in particular, (3.13), and

also (5.6), to obtain

L0‖sk‖ ≥ σk‖sk‖ ≥ −λmin(Q
⊤
k BkQk) = |λmin(Q

⊤
k BkQk)|.

Now (5.2) implies the limit

λmin(Q⊤
k BkQk) → 0, k ∈ S and k → ∞, for all λmin(Q⊤

k BkQk) < 0, (5.14)

which gives (5.12).

Assume now that AF.2, AM.1 and AM.3 holds. Then AF.2, AM.1, {f(xk)} bounded below, (2.40)

and Corollary 2.6 give that

‖gk‖ → 0, k → ∞, (5.15)

so that the first limit in AM.3 holds, i. e.,

‖H(xk) −Bk‖ → 0, k → ∞. (5.16)
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We deduce from (5.11) that for all k ≥ 0 with λmin(Q
⊤
k H(xk)Qk) < 0, we have

0 ≤ −λmin(Q
⊤
k H(xk)Qk) ≤ √

n‖H(xk) −Bk‖ − λmin(Q⊤
k BkQk)

≤ √
n‖H(xk) −Bk‖ + max(0,−λmin(Q

⊤
k BkQk)).

(5.17)

It follows from (5.14) and (5.16) that the right-hand side of (5.17) converges to zero as k ∈ S → ∞,

and so λmin(Q⊤
k H(xk)Qk) → 0, k ∈ S → ∞ with λmin(Q⊤

k H(xk)Qk) < 0. This gives (5.13).

Assume now that there exists x∗ such that xk → x∗, k ∈ K and k → ∞. Then (5.15) and the arguments

that give (5.15) imply ‖g(x∗)‖ = 0 and K ⊆ S, where the set inclusion also uses the fact that the

iterates remain constant on unsuccessful iterations. Employing AF.3, we have H(xk) → H(x∗), k ∈ K,

k → ∞. Since the set of orthogonal matrices is compact and Qk becomes full-dimensional as k → ∞,

k ∈ K, any limit point, say Q, of {Qk}k∈K is a full orthogonal basis of IRn. Due to similarity and from

(5.13), we now have λmin(H(x∗)) = λmin(Q⊤H(x∗)Q) ≥ 0, and so x∗ is second-order critical. 2

In our implementation of the ACO algorithm, though we minimize mk only in certain subspaces,

our particular approach (see §6.2) implies that ever more accurate Ritz approximations to the extreme

eigenvalues of Bk are computed provided the gradient is not orthogonal to any eigenvector of Bk [14]. In

other words, except for the latter case, we expect that the orthogonal bases of the generated subspaces

become full-dimensional asymptotically, and so Theorem 5.4 implies that the solutions we obtain will be

second-order critical in the limit.

When Qk = I and Bk = H(xk) for all k ≥ 0, the last part of Theorem 5.4 is essentially [25, Theorem 2].

Encountering zero gradient values. Recall the discussion in the last paragraph of §3.2, where we

assume that there exists k ≥ 0 such that gk = 0 and thus (2.40) does not hold. Then (3.21) provides

sk 6= 0 and (2.41) holds. These two relations imply that Lemmas 5.1 and 5.2 continue to hold even when

some of the iterates have zero gradients (and the ACO algorithm continues to iterate to try to attain

second-order criticality in the subspaces). Employing these Lemmas and the conditions of Corollary 5.4,

the limit (5.12) can be shown as before since the value of the gradient was irrelevant in its derivation. To

ensure (5.13), we further assume, in addition to the requirements of Corollary 5.4, that

Bk = Hk for all k for which gk = 0. (5.18)

The proof of (5.13) follows as before, except that if there are infinitely many kl such that

gkl
= 0 and λmin(Q

⊤
kl
H(xkl

)Qkl
) < 0, (5.19)

then (5.13) and (5.18) give lim infkl→∞,kl∈S λmin(Q
⊤
kl
H(xkl

)Qkl
) ≥ 0. Note that the ACO algorithm

ultimately moves away from iterates satisfying (5.19): since σk is bounded above as in (5.6), the ACO

algorithm cannot take an infinite number of unsuccessful steps at xkl
(when σk is increased by a fixed

fraction).

The last statement of Corollary 5.4 also holds in this case provided Qk is full-dimensional also when gk = 0.

6 Methods for approximately minimizing the cubic model

While the ACO algorithm provides a powerful general framework for unconstrained minimization, the

practicality and efficiency of this algorithm is obviously related to our ability to find a suitable (approxi-

mate) minimizer of the cubic model at each iteration. In this section we consider this issue in some detail.

The optimality conditions in Theorem 3.1 for the global minimizer of mk(s) over IRn are highly suggestive

of efficient algorithms in many cases, as we discuss in the first subsection. We then concentrate on one

way in which this minimizer may be approximated in practice, while retaining both the convergence and

complexity properties of the true model minimizer. Most especially, the method we propose is “matrix-

free”—that is, we only requires Hessian-vector products rather than access to the Hessian itself—and thus

may be used in principle for large, unstructured problems.

Throughout this section, we drop the (major) iteration subscript k for convenience.
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6.1 Computing the global solution

To start with, we suppose that we wish to compute the global model minimizer of m(s) over IRn. Theo-

rem 3.1 shows that we seek a pair (s, λ) for which

(B + λI)s = −g and λ2 = σ2sT s (6.1)

and for which B + λI is positive semidefinite. Just as in the trust-region case2 [4, $7.3.1], suppose that B

has an eigendecomposition

B = UT ΛU, (6.2)

where Λ is a diagonal matrix of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and U is an orthonormal matrix of

associated eigenvectors. Then

B(λ) = UT (Λ + λI)U.

We deduce immediately from Theorem 3.1 that the value of λ we seek must satisfy λ ≥ −λ1 as only then

is B(λ) positive semidefinite.

Suppose that λ > −λ1. Then B + λI is positive definite, and let

s(λ) = −(B + λI)−1g = −UT (Λ + λI)−1Ug. (6.3)

But, of course, the solution we are looking for depends upon the nonlinear equality ‖s(λ)‖2 = λ/σ. To

say more, we need to examine ‖s(λ)‖2 in detail. For convenience, define ψ(λ)
def
= ‖s(λ)‖2

2. We have that

ψ(λ) = ‖UT (Λ + λI)−1Ug‖2
2 = ‖(Λ + λI)−1Ug‖2

2 =
n
∑

i=1

γ2
i

(λi + λ)2
, (6.4)

where γi is the ith component of Ug.

If B is positive semidefinite, the required solution is given by the single positive root to either of the

equivalent univariate nonlinear equations

θ2(λ)
def
= ψ(λ) − λ2

σ2
= 0 or θ1(λ)

def
=
√

ψ(λ) − λ

σ
= 0, (6.5)

as the left-hand sides in (6.5) are strictly decreasing functions of λ, for λ ≥ max(0,−λ1) = 0, and range

between some positive value and −∞. If B is indefinite and γ1 6= 0, the solution is likewise the root larger

than −λ1 of the same equations. Hence in both these cases, the model m(s) has a unique global minimizer.

But if B is indefinite and γ1 = 0, we have difficulties analogous to those for the hard case [4, §7.3.1.3] for

the trust-region subproblem in which the required solution s∗ is made up as a suitable linear combination

of u1 and lims→−λ1
s(λ). To determine the values of the coefficients of this linear combination, in place of

the trust-region constraint, we employ (6.1), and find a value for α ∈ IR such that

−λ1 = σ‖s(−λ1) + αu1‖. (6.6)

See Figure 6.1 for an illustration of the graphs of θ1 and θ2.

In practice, just as in the trust-region case, it may be preferable to solve one of

φ2(λ)
def
=

1

ψ(λ)
− σ2

λ2
= 0, φ1(λ)

def
=

1
√

ψ(λ)
− σ

λ
= 0,

β2(λ)
def
=

λ2

ψ(λ)
− σ2 = 0 or β1(λ)

def
=

λ
√

ψ(λ)
− σ = 0

(6.7)

instead of (6.5). Figures 6.2 and 6.3 illustrate these alternatives.

2Griewank also comments in [19] on the similarity between the two problems, but does not use it in practice.
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Figure 6.1: Graphs of the functions θ1(λ) (left) and θ2(λ) (right) from (6.5) when g = (0.25 1)T ,

H = diag(−1 1) and σ = 2.

Figure 6.2: Graphs of the functions φ1(λ) (left) and φ2(λ) (right) from (6.7) when g = (0.25 1)T ,

H = diag(−1 1) and σ = 2.

Figure 6.3: Graphs of the functions β1(λ) (left) and β2(λ) (right) from (6.7) when g = (0.25 1)T ,

H = diag(−1 1) and σ = 2.
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In any event, a safeguarded univariate Newton iteration to find the required root of whichever of the

functions (6.5) or (6.7) we prefer is recommended, but in all cases this requires the solution of a sequence

of linear equations

B(λ(k))s(k) ≡ (B + λ(k)I)s(k) = −g
for selected λ(k) > max(0,−λ1). Clearly to use Newton’s method, derivatives of (simple functions of) ψ(λ)

will be required, but fortunately these are easily obtained once a factorization of B + λ(k)I is known. In

particular, we have the result below.

Lemma 6.1. Suppose that s(λ) satisfies (6.3), ψ(λ) = ‖s(λ)‖2
2 and λ > −λ1. Then

ψ′(λ) = 2s(λ)
T∇λs(λ) and ψ′′(λ) = 6‖∇λs(λ)‖2

2, (6.8)

where

∇λs(λ) = −B(λ)−1s(λ). (6.9)

Moreover, given the Cholesky factorization B(λ) = L(λ)LT (λ), it follows that

s(λ)T∇λs(λ) = −‖w(λ)‖2
2,

where L(λ)LT (λ)s(λ) = −g and L(λ)w(λ) = s(λ).

Proof. See the proof of [4, Lem. 7.3.1]. 2

Then, for example, for φ1(λ) from (6.7), we obtain the following expressions.

Corollary 6.2. Suppose g 6= 0. Then the function φ1(λ) is strictly increasing, when λ >

max(0,−λ1), and concave. Its first two derivatives are

φ′1(λ) = −s(λ)
T∇λs(λ)

‖s(λ)‖3
2

+
σ

λ2
> 0 (6.10)

and

φ′′1 (λ) =
3
(

s(λ)T∇λs(λ)
2 − ‖s(λ)‖2

2‖∇λs(λ)‖2
2

)

‖s(λ)‖5
2

− 2σ

λ3
< 0. (6.11)

Proof. Again, see the proof of [4, Lem. 7.3.1]. 2

In this case, the basic Newton iteration is as follows.

In practice, various safeguards of the kinds described for the trust-region case in [4, $7.3.4–7.3.8] should

be added to ensure convergence of Algorithm 6.1 from an arbitrary initial λ. Numerical experience has

indicated that the speed of (global) convergence may be improved by only linearizing the term ω(λ)
def
=

1/
√

ψ(λ) of φ1 in (6.7)—and not the σ/λ term as does Newton’s method—when computing a correction

∆λC to the estimate λ of the required root of φ1. The resulting correction thus satisfies the equation

ω(λ) + ω′(λ)∆λC ≡ 1

ψ
1
2 (λ)

− 1
2

ψ′(λ)

ψ
3
2 (λ)

∆λC =
σ

λ+ ∆λC
, (6.12)

which may be rewritten as a quadratic equation for ∆λC.
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Algorithm 6.1: Newton’s method to solve φ1(λ) = 0

Let λ > max(0,−λ1) be given.

Step 1. Factorize B(λ) = LLT .

Step 2. Solve LLT s = −g.

Step 3. Solve Lw = s.

Step 4. Compute the Newton correction ∆λN =

λ

(

‖s‖2 −
λ

σ

)

‖s‖2 +
λ

σ

(

λ‖w‖2
2

‖s‖2
2

) .

Step 5. Replace λ by λ+ ∆λN.

Although Algorithm 6.1 and the variant using (6.12) are not generally globally convergent, there is one

very important case in which they will be.

Theorem 6.3. Suppose λ > −λ1 and φ1(λ) < 0. Then both the Newton iterate λ + ∆λN and

alternative λ + ∆λC inherit these properties and converge monotonically towards the required root,

λ∗. The convergence is globally Q-linear with factor at least

γλ
def
= 1 − φ′1(λ∗)

φ′1(λ)
< 1

and is ultimately Q-quadratic. Moreover λ+ ∆λN ≤ λ+ ∆λC ≤ λ∗.

Proof. The proof in the case of the Newton iterate is essentially identical to that of [4, Lem. 7.3.2].

Since ω(λ) is a concave function of λ, (6.7) and (6.12) give that

φ1(λ+ ∆λC) = ω(λ+ ∆λC) − σ

λ+ ∆λC
≤ ω(λ) + ω′(λ)∆λC − σ

λ+ ∆λC
= 0.

The Newton correction satisfies the linearized equation

ω(λ) + ω′(λ)∆λN =
σ

λ
− σ

λ2
∆λN. (6.13)

But, as σ/λ is a convex function of λ,

σ

λ+ ∆λC
≥ σ

λ
− σ

λ2
∆λC,

and hence

ω(λ) + ω′(λ)∆λC ≥ σ

λ
− σ

λ2
∆λC,

from (6.12). Combining this with (6.13), we obtain

φ′1(λ)(∆λ
C − ∆λN) = (ω′(λ) +

σ

λ2
)(∆λC − ∆λN) ≥ 0

and hence ∆λC ≥ ∆λN > 0 since Corollary 6.2 gives φ′1(λ) > 0. Thus the alternative iterates improves

on the Newton one. 2
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Similar results are easily derived for the other root functions defined in (6.5) and (6.7).

We conclude this section with an interesting observation concerning the global minimizer s(σ) of the

cubic model m(s, σ) ≡ m(s) in (1.4), where we now make clear the explicit dependence on the parameter σ.

Theorem 6.4. Suppose that s(σ) 6= 0 is a global minimizer of the model m(s, σ) ≡ m(s) in (1.4).

Then the length of the minimizer ν(σ)
def
= ‖s(σ)‖ is a non-increasing function of σ.

Proof. We have from Theorem 3.1 that

(B + σ‖s(σ)‖I)s(σ) = −g (6.14)

and that B + σ‖s(σ)‖I and thus B + σ‖s(σ)‖I + σ‖s(σ)‖−1s(σ)sT (σ) are positive semidefinite. We

consider the derivative ν′(σ) = ‖s(σ)‖−1sT (σ)∇σs(σ). Differentiating (6.14) with respect to σ reveals

that

(B + σ‖s(σ)‖I)∇σs(σ) + ‖s(σ)‖s(σ) + σ‖s(σ)‖−1s(σ)sT (σ)∇σs(σ) = 0

and thus that
(

B + σ‖s(σ)‖I + σ‖s(σ)‖−1s(σ)sT (σ)
)

∇σs(σ) = −‖s(σ)‖s(σ). (6.15)

Premultiplying (6.15) by sT (σ) and dividing by ‖s(σ)‖ gives that

ν′(σ) = −∇σs
T (σ)(B + σ‖s(σ)‖I + σ‖s(σ)‖−1s(σ)sT (σ))∇σs(σ)

‖s(σ)‖2
≤ 0

since we have seen that B + σ‖s(σ)‖I + σ‖s(σ)‖−1s(σ)sT (σ) is positive semidefinite. Thus ν′(σ) is a

non-increasing function of σ. 2

Griewank [19] provides a more complicated proof of the same result.

6.2 Computing an approximate solution

Of course, the dominant cost of the methods we have just discussed is that of factorizing B+λI for various

λ, and this may be prohibitive for large n; indeed factorization may be impossible. An obvious alternative

is to use a Krylov method to approximate the solution. This was first proposed in [14] for trust-region

methods.

The Lanczos method may be used to build up an orthogonal basis {q0, · · · , qj} for the Krylov space

{g,Bg,B2g, . . . , Bjg}, formed by applying successively B to g. Letting Qj = (q0, · · · qj), the key relation-

ships are

QT
j Qj = I, QT

j BQj = Tj and QT
j g = γ0e1, (6.16)

where e1 is the first unit vector of appropriate length and Tj is a symmetric, tridiagonal matrix.

We shall consider vectors of the form

s ∈ Sj = {s ∈ IRn | s = Qju}

and seek

sj = Qjuj, (6.17)

where sj solves the problem

min
s ∈Sj

m(s). (6.18)

It then follows directly from (6.16) that uj solves the problem

min
u ∈ IRj+1

mj(u)
def
= f + γ0u

T e1 + 1
2
uTTju+ 1

3
σ‖u‖3

2. (6.19)
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There are a number of crucial observations to be made here. Firstly, as Tj is tridiagonal, it is feasible

to use the method broadly described in §6.1 to compute the solution to (6.18) even when n is large.

Secondly, having found uj, the matrix Qj is needed to recover sj , and thus the Lanczos vectors qj will

either need to be saved on backing store or regenerated when required. We only need Qj once we are

satisfied that continuing the Lanczos process will give little extra benefit. Thirdly, one would hope that as

a sequence of such problems may be solved, and as Tj only changes by the addition of an extra diagonal

and superdiagonal entry, solution data from one subproblem may be useful for starting the next. Lastly,

this is a clear extension of the GLTR method for the solution of the trust-region problem [14], and many

of the implementation issues and details follow directly from there.

Furthermore, employing this approach within the ACO algorithm benefits from the theoretical guar-

antees of convergence in §2.2–§5, and satisfies the complexity bounds developed in [2]. To see this, let

Lk = Sj in Lemma 3.2 and note that the current gradient is included in all subspaces Sj .

6.3 Scaled regularization

The preceding development can trivially be generalized if the regularization 1
3
σ‖s‖3

2 is replaced by the

scaled variant 1
3
σ‖s‖3

M , where we define ‖s‖M = sTMs for some symmetric positive definite M . All that

changes is that the key second-derivative matrix is B(λ) = B+λM in Theorem 3.1 and its successors, and

that M -orthogonal vectors are generated using the preconditioned Lanczos method; the regularization in

the tridiagonal problem (6.19) is not altered.

6.4 A further possibility

Another possibility is suppose that the optimal ‖s‖2 is known to be of size ∆. In this case, the required

value of m(s) is f + sT g + 1
2
sTBs+ 1

3
σ∆3, where s solves the trust-region problem

q(∆) = min
s∈IRn

sT g + 1
2
sTBs subject to ‖s‖2 = ∆.

Hence

min s ∈ IR
nm(s) = min

∆∈IR+

q(∆) + 1
3
σ∆3

and we may use known algorithms for the trust-region problem to accomplish the univariate minimization

of q(∆) + 1
3
σ∆3. We have not considered this possibility further at this stage.

7 Numerical results

We now turn our attention to investigating how the cubic overestimation method performs in practice.

We have implemented the ACO algorithm with B set to the true Hessian H , together with both the exact

and inexact subproblem solvers described in §6.1 and §6.2. To be specific, when solving the subproblem,

we compute the required root λ of φ1(λ); we use Algorithm 6.1 to find the required root, replacing the

correction ∆λ in Step 4 by the improvement given by (6.12). To simplify matters, we start the root finding

from max(0,−λ1) + ǫ for some tiny ǫ—this of course entails that we find the eigenvalue λ1 of B (§6.1 and

the built-in MATLAB function eigs) or Tj (§6.2 and the specially-designed algorithm given in [14]), which

is potentially expensive in the case of B, but far less so for Tj , especially since we have that of Tj−1 as a

starting estimate—in which case Theorem 6.3 will ensure global (and ultimately) rapid convergence.

In view of its suitability for large-scale problems, in the results we shall present, we used the Lanczos-

based inexact solver described in §6.2. Using the exact solver gives similar results for the small-scale

problems that we tested, since the values of the parameters in the stopping rules we have chosen to

use require that we solve to reasonably high relative accuracy in the inexact case (see (7.1)–(7.3)). We

considered three stopping rules for the inexact inner iteration, all derived from the TC.h criteria in §3.3.



C. Cartis, N. I. M. Gould and Ph. L. Toint 33

In the first, recalling TC.g, we stop as soon as the approximate solution in Step 2 of the ACO algorithm

satisfies

‖∇mk(sk)‖ ≤ min(0.0001, ‖∇mk(0)‖ 1
2 )‖∇mk(0)‖; (7.1)

the aim is to try to encourage rapid ultimate convergence [6, 21] without the expense of “over-solving”

when far from optimality—we refer to (7.1) as the “g rule” (see Corollary 4.8 where we show the ACO

algorithm with such a termination criteria converges Q-superlinearly). The remaining rules are geared

more towards ensuring the best overall complexity bound we have obtained (see [2, §5]). Thus our second

“s rule” comes from TC.s, and it is to stop as soon as

‖∇mk(sk)‖ ≤ min(0.0001, ‖sk‖)‖∇mk(0)‖. (7.2)

However since we were concerned that this might be overly stringent when sk is small when σk is large

rather than because ∇mk(0) is small, our final “s/σ rule” is to stop as soon as

‖∇mk(sk)‖ ≤ min

(

0.0001,
‖sk‖

max(1, σk)

)

‖∇mk(0)‖. (7.3)

The ACO algorithm converges at least Q-superlinearly also when (7.2) and (7.3) are employed (see Corol-

laries 4.8 and 4.10, and the remarks inbetween).

The other crucial ingredient is the management of the regularization parameter σk in Step 4 of the ACO

algorithm. Here, on very successful iterations, we set σk+1 = max(min(σk, ‖gk‖), ǫM ), where ǫM ≈ 10−16

is the relative machine precision—the intention is to try to reduce the model rapidly to Newton (σ = 0)

model once convergence sets in, while maintaining some regularization before the asymptotics are entered.

For other successful steps we leave σk unchanged, while for unsuccessful steps we increase σk by 2 (the

choice of the “2” factor is for simplicity, and it is likely that better values are possible in a similar vein to

[15]). We start with σ0 = 1, and use η1 = 0.1 and η2 = 0.9, similar performance being observed for other

choices of initial parameters.

By way of a comparison, we have also implemented a standard trust-region method [4, Alg. 6.1.1.].

Here we have used the GLTR method [14] to find an approximate solution of the trust-region problem,

stopping as above as soon as (7.1) is satisfied. The trust-region radius ∆k+1 following a very successful

iteration is min(max(2‖sk‖,∆k), 1010), it is left unchanged if the iteration is merely successful, while an

unsuccessful step results in a halving of the radius. The initial radius is always set to 1.

We give the results obtained by applying both Algorithms to all of the unconstrained problems from

the CUTEr collection [16]; for those whose dimensions may be adjusted, we chose small variants simply so

as not to overload our (Matlab) computing environment, most particularly the CUTEr interface to Matlab.

All of our experiments were performed on a single processor of a 3.06 GHz Dell Precision 650 Workstation.

Both our new algorithm, and the trust-region algorithm were implemented as Matlab M-files, and the

tests performed using Matlab 7.2.

We give the complete set of results in Appendix A. The algorithm is stopped as soon as the norm

of the gradient ‖g(xk)‖ is smaller than 10−5. An upper limit of 10000 iterations was set, and any run

exceeding this is flagged as a failure. In Figure 7.1, we present the iteration-count performance profile

[10] for the methods. We would have liked to have given a similar figure for CPU times, but the Matlab

CPU timer proved too inaccurate for this purpose—we defer such a comparison until we have produced a

careful (Fortran) implementation and tested it on larger examples in a controlled computing environment.

While we should regard our results as tentative, since improvements to both algorithms are most likely,

we are delighted with the overall performance of our new algorithm. Trust-region methods are generally

considered to be reliable and effective methods for unconstrained minimization, and thus it is gratifying

to be able to improve upon them in so many cases. Of course, there are cases where the new algorithm

isn’t as effective, but in general the algorithm appears able to move to the asymptotic region more rapidly.

Whether this is a consequence of a provably good complexity bound or for other reasons of robustness is

not clear. For the three cases where the new algorithm fails, slow (but sure) progress is made towards the

solution, but these problems are well known to be very hard. Of the three variants of the new method, that
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Performance Profile: iteration count − 131 CUTEr problems

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
ACO − s/σ stopping rule (3 failures)
trust−region (8 failures)

Figure 7.1: Performance profile, p(α): Iteration counts for the 131 problems under consideration.

which is less concerned with provably superior worst-case complexity, appears to be more promising. This

is perhaps not so surprising since the more conservative acceptance rules (7.2) and (7.3) aim for guaranteed

rather than speculative reduction. There is very little to choose between the latter pair, indicating that

our concern that (7.2) may be over-stringent may have been misplaced.

Using quasi-Newton updates rather than the exact Hessian in computations will require careful imple-

mentation and thought. Clearly, we do not need positive definiteness of the updates due to the regular-

ization term of the cubic model, and hence indefinite update formulae, such as the symmetric rank-one

formula, may be used. Indeed, choices that ultimately aim to imitate the true Hessian (such as the sym-

metric rank-one and Powell symmetric-Broyden formulae) should be used so as to reveal problem negative

curvature and hence allow convergence to weak second-order critical points (see §5). Recalling our remarks

following (4.8) and (4.19), and also some potentially useful linear algebra details in [11, 12], the Powell

symmetric-Broyden and symmetric rank-one updates may prove to be a reasonable choice in this context,

for medium-scale problems.

8 Conclusions

In this paper we have considered the convergence properties of a new general cubic overestimation frame-

work for unconstrained optimization which has roots in earlier algorithmic proposals by Griewank [19],

Nesterov and Polyak [25] and Weiser, Deuflhard and Erdmann [28]. The framework allows for the ap-

proximate solution of the key step calculation, and is suitable for large-scale problems. We presented a

Lanczos-based approximation method which is covered by our theoretical developments. In practice, the

new method is competitive with trust-region methods in tests for small-scale problems.

Our next goal is to implement and test these ideas carefully in the large-scale case, and also to investi-

gate the computational efficiency of using quasi-Newton updates in place of the exact Hessian. The latter

approach fits within the theoretical framework of this paper.

Extensions to these ideas are obvious and far-reaching. In particular, since the use of trust-region

models is widespread in optimization, it is worth investigating where cubic models might be employed

in their place. Projection methods for bound constrained minimization and penalty/barrier/augmented
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Lagrangian methods for constrained optimization are obvious candidates. Note that in the case of linear

equality constraints, the (semi-)norm will only need to regularize in the null-space of the constraints, and

solving the subproblem is likewise easy so long as the Krylov subspace is projected onto the constraint

manifold [4]. More generally, difficulties resulting form the incompatibility of the intersection of linearized

constraints with trust-region bounds has been a perennial problem in constrained optimization; (cubic)

regularization offers an easy way to avoid this difficulty.
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Appendix A

Here we give the complete set of results from our tests. For each problem, in Table 1 we report its number

of variables (n), along with the number of iterations (= the number of function evaluations) required for

convergence (iter), the number of gradient evaluations (#g), and the best objective function value found

(f ; the subscript gives the base-10 exponent) for the four rival methods. The symbol > indicates that the

iteration limit was exceeded.
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Trust-region ACO with g-rule ACO with s-rule ACO with s/σ-rule

Name n iter #g f iter #g f iter #g f iter #g f

ALLINITU 4 8 8 5.74 16 9 5.74 16 9 5.74 16 9 5.74

ARGLINA 200 30 30 2.00+2 8 8 2.00+2 8 8 2.00+2 8 8 2.00+2

ARWHEAD 100 6 6 6.59
−14 6 6 8.79

−14 6 6 8.79
−14 6 6 8.79

−14

BARD 3 8 8 8.21
−3 8 8 8.21

−3 8 8 8.21
−3 8 8 8.21

−3

BDQRTIC 100 14 14 3.79+2 10 10 3.79+2 10 10 3.79+2 10 10 3.79+2

BEALE 2 9 7 7.55
−14 10 7 9.89

−12 10 7 9.89
−12 10 7 9.89

−12

BIGGS6 6 200 196 2.43
−1 66 47 1.66

−10 76 52 1.35
−11 76 52 1.35

−11

BOX3 3 8 8 2.03
−11 9 9 5.84

−16 9 9 5.84
−16 9 9 5.84

−16

BRKMCC 2 3 3 1.69
−1 4 4 1.69

−1 4 4 1.69
−1 4 4 1.69

−1

BROWNAL 200 11 11 5.49
−20 5 5 8.29

−17 3 3 1.47
−9 3 3 1.47

−9

BROWNBS 2 > > 9.80+11 28 27 2.17
−29 28 27 1.78

−29 28 27 1.78
−29

BROWNDEN 4 44 44 8.58+4 9 9 8.58+4 9 9 8.58+4 9 9 8.58+4

BROYDN7D 100 22 22 3.24+1 25 17 3.01+1 25 17 3.01+1 25 17 3.01+1

BRYBND 100 18 15 5.54
−17 16 10 5.32

−17 16 10 5.34
−17 16 10 5.32

−17

CHAINWOO 100 255 253 3.22+1 60 42 1.00 60 41 1.00 60 42 1.00

CHNROSNB 50 63 61 1.28
−18 68 42 1.82

−16 68 42 1.80
−16 68 42 1.80

−16

CLIFF 2 28 28 2.00
−1 28 28 2.00

−1 28 28 2.00
−1 28 28 2.00

−1

CRAGGLVY 202 29 29 6.67+1 14 14 6.67+1 14 14 6.67+1 14 14 6.67+1

CUBE 2 32 28 1.00
−19 56 27 7.73

−21 56 27 7.73
−21 56 27 7.73

−21

CURLY10 50 15 15 -5.02+3 27 16 -5.02+3 27 16 -5.02+3 27 16 -5.02+3

CURLY20 50 12 12 -5.02+3 29 15 -5.02+3 29 15 -5.02+3 29 15 -5.02+3

CURLY30 50 19 18 -5.02+3 30 15 -5.02+3 30 15 -5.02+3 30 15 -5.02+3

DECONVU 61 46 38 1.40
−9 142 56 3.92

−11 131 55 1.27
−10 144 56 1.41

−10

DENSCHNA 2 6 6 2.21
−12 6 6 1.83

−12 6 6 1.83
−12 6 6 1.83

−12

DENSCHNB 2 6 6 1.04
−13 6 6 2.74

−15 6 6 2.74
−15 6 6 2.74

−15

DENSCHNC 2 11 11 2.18
−20 11 11 5.50

−19 11 11 5.50
−19 11 11 5.50

−19

DENSCHND 3 36 36 1.77
−8 50 33 8.74

−9 50 33 8.74
−9 50 33 8.74

−9

DENSCHNE 3 16 16 1.10
−18 24 14 9.92

−14 25 15 1.84
−11 25 15 1.84

−11

DENSCHNF 2 7 7 6.51
−22 7 7 6.93

−22 7 7 6.93
−22 7 7 6.93

−22

DIXMAANA 150 27 27 1.00 8 8 1.00 8 8 1.00 8 8 1.00

DIXMAANB 150 27 27 1.00 8 8 1.00 8 8 1.00 8 8 1.00

DIXMAANC 150 27 27 1.00 22 15 1.00 23 16 1.00 23 16 1.00

DIXMAAND 150 27 27 1.00 26 18 1.00 26 18 1.00 26 18 1.00

DIXMAANE 150 31 31 1.00 12 12 1.00 12 12 1.00 12 12 1.00

DIXMAANF 150 29 29 1.00 24 19 1.00 24 19 1.00 24 19 1.00

DIXMAANG 150 29 29 1.00 29 23 1.00 29 23 1.00 29 23 1.00

DIXMAANH 150 29 29 1.00 31 23 1.00 31 23 1.00 31 23 1.00

DIXMAANI 150 37 37 1.00 17 17 1.00 17 17 1.00 17 17 1.00

DIXMAANJ 150 38 36 1.00 33 28 1.00 33 28 1.00 33 28 1.00

DIXMAANK 150 35 34 1.00 35 28 1.00 35 28 1.00 35 28 1.00

DIXMAANL 150 41 39 1.00 37 29 1.00 37 29 1.00 37 29 1.00

DJTL 2 81 72 -8.95+3 1655 1581 -8.95+3 1655 1581 -8.95+3 1655 1581 -8.95+3

DQRTIC 100 594 594 1.20
−7 25 25 2.36

−8 25 25 2.36
−8 25 25 2.36

−8

EDENSCH 100 76 76 6.03+2 12 12 6.03+2 12 12 6.03+2 12 12 6.03+2

EG2 100 4 4 -9.89+1 4 4 -9.89+1 4 4 -9.89+1 4 4 -9.89+1

EIGENALS 110 23 23 2.83
−15 25 20 3.38

−15 25 20 4.56
−15 25 20 6.56

−16

EIGENBLS 110 88 83 8.84
−15 170 71 7.46

−11 202 78 1.40
−12 208 81 2.02

−12

EIGENCLS 132 46 44 1.02
−15 57 35 9.47

−13 57 35 1.82
−11 56 35 4.34

−12

ENGVAL1 100 19 19 1.09+2 9 9 1.09+2 9 9 1.09+2 9 9 1.09+2

ENGVAL2 3 14 14 9.71
−17 27 16 3.08

−20 27 16 3.08
−20 27 16 3.08

−20

ERRINROS 50 127 123 4.39+1 66 39 4.39+1 61 41 3.99+1 61 41 3.99+1

EXPFIT 2 10 8 2.41
−1 14 7 2.41

−1 14 7 2.41
−1 14 7 2.41

−1

EXTROSNB 100 1619 1591 7.96
−9 6826 1197 1.67

−8 6984 1219 1.58
−8 6768 1187 1.71

−8

FLETCBV2 100 3 3 -5.14
−1 5 5 -5.14

−1 5 5 -5.14
−1 5 5 -5.14

−1

FLETCBV3 50 > > -3.43 > > -1.17+2 > > -1.17+2 > > -1.18+2

FLETCHBV 10 5012 5012 -1.99+6 341 299 -2.17+6 496 419 -2.28+6 465 388 -2.22+6

FLETCHCR 100 154 151 1.00
−15 230 154 6.20

−17 230 154 6.20
−17 230 154 6.20

−17

FMINSRF2 121 128 126 1.00 45 38 1.00 45 38 1.00 45 38 1.00

FMINSURF 121 67 66 1.00 43 36 1.00 43 36 1.00 43 36 1.00

FREUROTH 100 55 30 1.20+4 17 12 1.20+4 17 12 1.20+4 17 12 1.20+4

GENHUMPS 10 > > 1.42+3 7599 3977 1.32
−10 7442 3831 3.66

−17 7596 3983 1.96
−10

GENROSE 100 79 77 1.00 130 62 1.00 135 63 1.00 133 63 1.00

GENROSEB 500 663 660 1.00 647 290 1.00 652 294 1.00 657 294 1.00

GROWTHLS 3 142 134 1.00 115 69 1.00 113 71 1.00 113 71 1.00

GULF 3 248 246 2.96
−11 45 33 2.89

−11 45 33 2.90
−11 45 33 2.89

−11

HAIRY 2 103 100 2.00+1 75 31 2.00+1 81 33 2.00+1 80 33 2.00+1

HATFLDD 3 19 18 6.62
−8 26 23 6.62

−8 26 23 6.62
−8 26 23 6.62

−8

HATFLDE 3 20 19 5.12
−7 22 17 5.12

−7 22 17 5.12
−7 22 17 5.12

−7

HEART6LS 6 3369 3363 4.09
−16 407 310 4.02

−14 413 300 2.55
−16 426 304 1.32

−14

HEART8LS 8 103 99 1.42
−19 94 49 1.99

−17 98 48 8.26
−18 95 50 7.57

−15

HELIX 3 13 12 1.16
−15 21 12 3.13

−13 21 12 3.13
−13 21 12 3.13

−13

Table 1: Comparison between the trust-region and ACO algorithms
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Trust-region ACO with g-rule ACO with s-rule ACO with s/σ-rule

Name n iter #g f iter #g f iter #g f iter #g f

HIMMELBB 2 14 10 2.52
−21 21 7 9.71

−26 21 7 9.71
−26 21 7 9.71

−26

HUMPS 2 6015 6007 2.39
−18 1552 636 2.02

−12 1591 663 1.64
−10 1498 659 3.68

−10

HYDC20LS 99 > > 5.37
−1 > > 7.67

−1 > > 7.75
−1 > > 7.68

−1

JENSMP 2 10 10 1.24+2 10 10 1.24+2 10 10 1.24+2 10 10 1.24+2

KOWOSB 4 13 10 3.08
−4 10 8 3.08

−4 10 8 3.08
−4 10 8 3.08

−4

LIARWHD 100 35 35 3.87
−14 12 12 4.44

−26 12 12 4.44
−26 12 12 4.44

−26

LOGHAIRY 2 9349 9346 1.82
−1 2737 1208 1.82

−1 2696 1198 1.82
−1 2617 1145 1.82

−1

MANCINO 100 754 754 1.27
−21 27 11 1.35

−21 27 11 1.35
−21 27 11 1.16

−21

MEXHAT 2 37 28 -4.00
−2 98 27 -4.00

−2 98 27 -4.00
−2 98 27 -4.00

−2

MEYER3 3 > > 9.02+1 361 234 8.79+1 422 269 8.79+1 420 268 8.79+1

MOREBV 100 95 95 2.87
−7 59 59 4.16

−7 102 102 2.86
−7 102 102 2.86

−7

MSQRTALS 100 22 19 1.42
−14 18 15 5.84

−15 18 15 4.73
−15 18 15 5.77

−15

MSQRTBLS 100 20 17 3.32
−12 18 15 2.07

−15 18 15 1.99
−15 18 15 2.06

−15

NONCVXU2 100 714 714 2.33+2 51 42 2.32+2 49 41 2.32+2 49 41 2.32+2

NONCVXUN 100 689 689 2.35+2 43 33 2.33+2 47 38 2.33+2 47 38 2.33+2

NONDIA 100 7 7 1.50
−18 11 8 2.90

−18 11 8 2.90
−18 11 8 2.90

−18

NONDQUAR 100 17 17 2.58
−15 16 16 1.42

−8 62 38 1.81
−6 62 38 1.81

−6

NONMSQRT 100 3838 3838 1.81+1 2700 2535 1.81+1 2959 2926 1.81+1 3809 3777 1.81+1

OSBORNEA 5 111 104 5.46
−5 468 266 4.69

−2 697 465 4.70
−2 991 607 4.70

−2

OSBORNEB 11 21 20 4.01
−2 21 18 4.01

−2 21 18 4.01
−2 21 18 4.01

−2

OSCIPATH 8 3910 3829 5.61
−8 8172 2474 8.67

−8 8115 2463 8.75
−8 8209 2485 8.22

−8

PALMER5C 6 64 64 2.13 8 8 2.13 8 8 2.13 8 8 2.13

PALMER6C 8 512 512 1.64
−2 124 124 1.64

−2 239 239 1.64
−2 239 239 1.64

−2

PALMER7C 8 1243 1243 6.02
−1 55 55 6.02

−1 162 162 6.02
−1 162 162 6.02

−1

PALMER8C 8 590 590 1.60
−1 303 303 1.60

−1 311 311 1.60
−1 311 311 1.60

−1

PARKCH 15 1 1 4.73
−7 1 1 4.73

−7 42 25 1.62+3 56 26 1.62+3

PENALTY1 100 610 602 9.02
−4 85 35 9.02

−4 85 35 9.02
−4 85 35 9.02

−4

PENALTY2 200 2 2 4.71+13 4 4 4.71+13 11 11 4.71+13 11 11 4.71+13

PENALTY3 200 1 1 1.16+6 1 1 1.16+6 29 14 1.00
−3 24 14 9.97

−4

PFIT1LS 3 331 315 1.66
−12 870 233 1.07

−13 870 233 1.07
−13 870 233 1.07

−13

PFIT2LS 3 104 92 2.71
−13 246 69 1.46

−16 247 69 1.16
−16 245 69 2.55

−16

PFIT3LS 3 131 119 3.44
−14 574 168 7.03

−18 581 166 1.61
−13 581 166 4.21

−13

PFIT4LS 3 227 212 4.62
−16 1319 417 2.06

−14 1319 419 1.01
−13 1316 419 9.86

−14

POWELLSG 4 5 5 1.93
−30 5 5 1.81

−12 16 16 4.54
−9 16 16 4.54

−9

POWER 100 28 28 1.25
−9 24 24 1.61

−9 24 24 1.61
−9 24 24 1.61

−9

QUARTC 100 566 566 0.00 12 12 1.42
−25 25 25 2.36

−8 25 25 2.36
−8

ROSENBR 2 4 4 1.71
−32 5 5 1.07

−15 37 20 1.80
−12 37 20 1.80

−12

S308 2 1 1 0.00 1 1 0.00 10 10 7.73
−1 10 10 7.73

−1

SBRYBND 100 > > 6.76+6 > > 6.76+6 > > 6.76+6 > > 2.44+2

SCHMVETT 100 6 6 -2.94+2 5 5 -2.94+2 5 5 -2.94+2 5 5 -2.94+2

SENSORS 100 25 23 -1.97+3 34 23 -1.94+3 41 25 -1.94+3 34 23 -1.94+3

SINEVAL 2 57 53 1.58
−25 94 43 4.77

−14 94 43 4.80
−14 94 43 4.77

−14

SINQUAD 100 16 16 -4.01+3 15 9 -4.01+3 15 9 -4.01+3 15 9 -4.01+3

SISSER 2 13 13 1.07
−8 13 13 1.14

−8 13 13 1.14
−8 13 13 1.14

−8

SNAIL 2 12 12 2.54
−15 7 7 8.46

−16 100 63 2.16
−17 100 63 2.16

−17

SPARSINE 100 11 11 3.63
−17 25 17 1.84

−17 25 17 2.17
−17 25 17 1.86

−17

SPARSQUR 100 17 17 2.32
−8 17 17 7.78

−9 17 17 7.78
−9 17 17 7.78

−9

SPMSRTLS 100 12 12 9.34
−14 17 16 3.90

−13 17 16 4.53
−13 17 16 4.53

−13

SROSENBR 100 7 7 9.08
−13 9 9 6.52

−16 9 9 6.52
−16 9 9 6.52

−16

STREG 4 > > 1.00+20 104 52 2.95
−13 214 147 9.88

−20 214 147 9.88
−20

TOINTGOR 50 41 41 1.37+3 9 9 1.37+3 9 9 1.37+3 9 9 1.37+3

TOINTGSS 100 32 32 1.01+1 11 10 1.02+1 11 10 1.02+1 11 10 1.02+1

TOINTPSP 50 35 35 2.26+2 30 19 2.26+2 30 19 2.26+2 30 19 2.26+2

TQUARTIC 100 78 75 1.09
−20 18 13 1.62

−23 18 13 1.62
−23 18 13 1.62

−23

VARDIM 200 10 10 1.05
−25 3 3 7.19

−26 30 30 6.79
−25 30 30 6.79

−25

VAREIGVL 50 20 17 7.98
−10 14 14 8.39

−10 14 14 7.97
−10 14 14 7.99

−10

VIBRBEAM 8 > > 4.54 261 144 1.56
−1 304 188 1.56

−1 257 140 1.56
−1

WATSON 12 11 11 9.13
−9 10 10 1.86

−9 10 10 1.83
−9 10 10 1.83

−9

WOODS 4 71 68 2.18
−21 69 39 6.99

−19 69 39 6.99
−19 69 39 6.99

−19

YFITU 3 246 245 6.79
−13 59 46 6.82

−13 59 46 6.82
−13 59 46 6.82

−13

Table 1: Comparison between the trust-region and ACO algorithms


