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Abstract

We present a multilevel numerical algorithm for the exact solution of the Eu-
clidean trust-region subproblem. This particular subproblem typically arises when
optimizing a nonlinear (possibly non-convex) objective function whose variables are
discretized continuous functions, in which case the different levels of discretization
provide a natural multilevel context. The trust-region problem is considered at the
highest level (corresponding to the finest discretization), but information on the prob-
lem curvature at lower levels is exploited for improved efficiency. The algorithm is
inspired by the method of Moré and Sorensen (1979), for which two different mul-
tilevel variants will be analyzed. Some preliminary numerical comparisons are also
presented.

Keywords: Nonlinear optimization, trust-region subproblem, numerical algorithms, multi-

level methods.

1 Introduction

Trust-region methods are a well-known class of optimization techniques, recognized to
be both theoretically sound and numerically efficient (see Conn, Gould and Toint, 2000
for a comprehensive description). In a series of recent papers, Gratton, Sartenaer and
Toint (2007b, 2006b, 2006a) and Gratton, Mouffe, Toint and Weber-Mendonça (2007a),
have specialized this class of methods to the case where the optimization problem at
hand involves variables that are discretized continuous functions(1). Such problems are
typically very large as the discretization mesh goes to zero, and their solution at the finest
discretization level is very inefficient: the recursive trust-region methods proposed by these
authors then provide a numerically much more attractive alternative, whose behaviour is
also backed by a strong theoretical convergence argument. The main idea in this recursive
algorithm is to consider a low level description of the objective function as a model for
high level optimization.

Our objective in the present contribution is to investigate an alternative application of
the trust-region paradigm to the same class of problems. Instead of considering a hierarchy
of objective functions, we consider here multilevel techniques for the (exact) solution
of the trust-region subproblem at the highest level, that is for the finest discretization.
If the objective function is (locally) convex, then a suitable optimizing step is derived
from the solution of (a variant of) Newton’s equations, which often results in solving
a positive-definite linear system. This is for instance the case if the local Hessian is
given by a discretized Laplacian or other elliptic operator. In this case, one can very
naturally consider applying a classical multigrid linear solver to this system, yielding a
very efficient method to compute the step. We refer the interested reader to Trottenberg,
Oosterlee and Schüller (2001), or Briggs, Henson and McCormick (2000) for excellent

(1)Note that conceptually similar techniques have also been proposed in the linesearch setting by Fisher
(1998) Nash (2000) Lewis and Nash (2005), Oh, Milstein, Bouman and Webb (2005) and Wen and Goldfarb
(2007), but we will not investigate this avenue in this paper.
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expositions of the principles and methods of this class of algorithms, originally introduced
by Brandt (1977). However, things become much less clear when the objective function is
locally non-convex, in which case a suitable step is no longer given by Newton’s equations.
Techniques for computing a step in this case are well-known for small dimensional problems
(see Hebden, 1973, Moré and Sorensen, 1979, or Section 7.3 in Conn et al., 2000), and
guarantee, in most cases, that every limit point of the sequence of iterates is a second-order
stationary point. However, these techniques are unfortunately very often impractical for
large discretized problems because they involve factorizing a Hessian matrix defined on
the fine mesh. This is particularly limiting if one considers the discretization of variational
problems in three dimensions or more. Our objective in the present paper is to propose
two multilevel variants of this algorithm that are suitable for these large problems but
nevertheless guarantee convergence to second-order limit points. These variants are again
constructed using the multigrid principle.

The paper is organized as follows. Section 2 formally describes the problem and recalls
the Moré-Sorensen method for its solution in small dimensions. Multigrid methods for lin-
ear systems are then very briefly reviewed in Section 3. The multigrid trust-region solvers
are then introduced in Section 4 and their numerical efficiency compared in Section 5.
Some conclusions and perspectives are finally discussed in Section 6.

2 Problem Formulation

We consider the solution of an unconstrained optimization problem of the form

min
x∈IRn

f(x), f : IRn → IR, (2.1)

where f is a twice continuously differentiable function and bounded below. Trust-region
algorithms are iterative methods to compute this solution, which, given an initial guess
x0, construct a sequence of iterates xk (k ≥ 0) converging to the solution of problem (2.1).
At each iteration k, a step sk is obtained by minimizing a (typically quadratic) model mk

of f in the neighbourhood {x ∈ IRn | ‖x − xk‖ ≤ ∆k} defined for some radius ∆k and
some norm ‖·‖. The standard trust-region subproblem defining sk is then to solve

min
‖s‖≤∆

mk(xk + s)
def
= 〈gk, s〉 + 1

2
〈s, Hks〉, (2.2)

where gk = ∇xf(xk) and Hk is a bounded symmetric approximation of ∇xxf(xk). The
computed step sk is then accepted (in the sense that xk+1 = xk + sk) if a sufficient
reduction in the objective function is obtained at xk + sk or rejected otherwise. While
in general it is possible to choose any norm to define the neighbourhood in (2.2), we
focus here on the Euclidean case because it has the remarkable property that the solution
of (2.2) is computationally tractable even if Hk is indefinite (Vavasis and Zippel, 1990).
Approximate solutions of this subproblem may also be computed by applying iterative
methods such as the conjugate-gradients or generalized Lanczos-trust-region algorithms
(see Section 7.5 in Conn et al. (2000)), but we focus here on the exact solution of (2.2).

It is possible to show (Gay, 1981, Sorensen, 1982, or Corollary 7.2.2 in Conn et al.,
2000) that any global minimizer sM of (2.2) satisfies the system of linear equations(2)

H(λM )sM = −g, (2.3)

where H(λM )
def
= H + λM I is positive semidefinite, λM ≥ 0 and λM (‖sM‖ − ∆) = 0,

with sM being unique if H(λM ) is positive definite. This result indicates that sM can
be seen as the unconstrained minimizer of a quadratic model whose Hessian is made

(2)In what follows, since we will describe what happens within a single “outer” trust-region iteration, we
will drop the iteration indices k for simplicity.
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sufficiently positive definite by adding the term λM I . The Hessian curvature induced by
this additional term must thus be strong enough to force sM to lie within the trust region

B
def
= {s ∈ IRn | ‖s‖ ≤ ∆}.

We also know that, if λ > −λmin(H), the smallest eigenvalue of H , then H(λ) is positive
definite and the system (2.3) has a unique solution,

s(λ) = −H(λ)−1g, (2.4)

which must satisfy the nonlinear inequality

‖s(λ)‖ ≤ ∆ (2.5)

whenever λ = 0 or the nonlinear equality

‖s(λ)‖ = ∆ (2.6)

if λ > 0. The Moré-Sorensen method consists in finding the minimizer s(λM ) by solving
either (2.3) if (2.5) holds for λ = 0, or (2.3) and (2.6) together otherwise. An efficient way
to perform the latter calculation is to use the (one dimensional) secular equation

φ(λ)
def
=

1

‖s(λ)‖
−

1

∆
= 0, (2.7)

where s(λ) is given by (2.4). This formulation has been shown to have better numerical
properties than the more direct use of the constraint ‖s(λ)‖ = ∆. The solution of the
secular equation is then found by applying a root finding method, such as a safeguarded
Newton’s method. Assuming that H(λ) is positive definite, the Newton step from λ

happens to be (see Section 7.3.2 in Conn et al., 2000)

λnew = λ +

(

‖s‖ − ∆

∆

) (

‖s‖2

‖w‖2

)

where w solves Lw = s (2.8)

with L the lower Cholesky factor of H(λ). If H(λ) is not positive definite, then λ is
increased until this is the case. The safeguard consists in keeping the λ iterates in an
interval [λL, λU ], in order to guarantee convergence from arbitrary starting values. Thus,
if λnew is not inside the interval, this value is rejected and we choose a λnew as, for instance,
the geometric mean between λL and λU . The resulting algorithm is then given, for fixed
∆ > 0 and ε∆ > 0, by Algorithm 2.1.

There are many sophistications to this algorithm, in particular regarding the choice
of the initial λ, that of a new λ in the interval when λnew falls outside and suitable
termination rules. We refer the interested reader to Sections 7.3.4 to 7.3.11 of Conn et al.
(2000) for details.

In large problems, performing the Cholesky factorization to solve the linear system
can be very expensive. However, since we are dealing, for each λ, with a linear system
of equations, it might be possible to accelerate the solution of this system if we can take
advantage of the multilevel character of the problem. Our idea is thus to modify this
method so that we use the multigrid approach for the solution of the linear system.

3 Multigrid Methods for Linear Systems

Multigrid methods to solve linear systems of equations are well established, and have the
support of a solid convergence theory. We will not present a full explanation of these
methods here, since this is out of the scope of the present paper, but will only briefly
present the most important ideas for the construction of our method.
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Algorithm 2.1: Outline of the Moré-Sorensen algorithm

[s∗, λ∗] = MS(H, g, ∆, ε∆)

Step 1. If H(0) is positive definite and ‖s(0)‖ ≤ ∆(1+ε∆), terminate with s = s(0).

Step 2. Determine an interval [λL, λU ] and an initial λ in this interval.

Step 3. Attempt a Cholesky factorization of H(λ) = LLT . If this succeeds, solve
LLT s = −g. If ∆(1 − ε∆) ≤ ‖s‖ ≤ ∆(1 + ε∆), i.e. if s is near the boundary of
the trust region, terminate. If not s is not near the boundary, compute λnew by
(2.8).

Step 4. Update the interval [λL, λU ]:

• if ‖s‖ > ∆(1 + ε∆), or if the factorization has failed, redefine λL = λ;

• if ‖s‖ < ∆(1 − ε∆), redefine λU = λ.

Step 5. Choose λ sufficiently inside [λL, λU ] and as close as possible to λnew, if it
has been computed. Go to Step 3.

Consider any iterative method for the solution of the system (2.3). At some iteration
k of this method, we define the residual

rk
def
= −g − H(λ)sk (3.9)

and the error
ek

def
= sk+1 − sk. (3.10)

It is easy to see that the residual equation

H(λ)ek = rk (3.11)

is equivalent to the initial system, in the sense that the solution ek to this system gives
the new iterate for (2.3) if we set sk+1 = sk + ek. Multigrid methods are based in the
principle that some iterative methods for the solution of the linear system (3.11) (such as
Jacobi or Gauss-Seidel) will quickly eliminate oscillatory components of the error (3.10),
while leaving smooth components essentially unchanged. These methods are then referred
to as smoothing methods.

The idea of multigrid methods is that we try to solve the residual equation not for H(λ),
but for some simpler approximation of this matrix in a lower dimensional space where
smooth components of the error appear oscillatory. Assume that we have a collection
of full rank operators Ri : IRni → IRni−1 and Pi : IRni−1 → IRni for i = 1, . . . , p (the
restriction and the prolongation, respectively) such that Pi = σiR

T
i , with σi > 0, for all

i = 1, . . . , p. We will call each i a level, with np = n such that Hp(λ) = H(λ). In this
case, we can construct a simpler representation of the matrix as the Galerkin operator for
Hi(λ) defined by

Hi−1(λ) = RiHi(λ)Pi. (3.12)

This operator is not the only choice possible. However, it has many interesting properties,
such as keeping the i− 1 level operator symmetric and positive definite, if that is the case
for the original Hi(λ), and maintaining the structure created by the discretization.

Once this is done, we may redefine the residual equation in the lower level. Given si,k,
the step in the current level, and call the right hand side of the equation we want to solve
in this level by bi,k. We then compute ri,k , the residual, as in (3.9), by

ri,k = bi,k − Hi(λ)si,k .
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The residual equation (3.11) at this level then takes the form

Hi(λ)ei,k = ri,k . (3.13)

If we now restrict this equation to level i− 1, the right-hand side at this level is now given
by Riri,k and the residual equation at level i − 1 becomes

Hi−1(λ)ei−1 = Hi−1(λ)Risi,k − Riri,k
def
= ri−1,0. (3.14)

If the norm of this restricted residual is not large enough compared with the norm of the
residual at level i, i.e. if ‖ri−1,0‖ < κr‖ri,k‖ for some κr < 1, then there is no advantage
in trying to solve the lower level system. In this case, we perform smoothing iterations
similar to those used in classical multigrid methods. Otherwise, if

‖ri−1,0‖ ≥ κr‖ri,k‖, (3.15)

we then compute a solution ei−1 of the lower level residual equation (3.14). The corre-
sponding upper level step can now be recovered by si,k+1 = si,k + Piei−1. This procedure
can be applied recursively, in that the solution of the residual equation in level i− 1 itself
can be computed recursively. At the coarsest level, which corresponds to the smallest
system and where recursion is no longer possible, the solution may be computed exactly,
for instance by using matrix factorization.

4 The Multi-level Moré-Sorensen Algorithm

We now wish to develop an algorithm for the solution of (2.1) that follows the general
pattern of the Moré-Sorensen method but which, at the same time, exploits the ideas
and techniques of multigrid. If the problem is convex and the multiplier λ∗ is known, we
propose to use a multigrid solver for the system (2.3), thereby exploiting the hierarchy of
level-dependent problem formulations described in the previous section. If the multiplier
is not known, we also face, as in the standard Moré-Sorensen method, the task to find
its value, again exploiting the multi-level nature of the problem. Thus, in addition to the
multigrid solution of (2.3), we must, as in Algorithm 2.1, find a new value of λ if the step
computed as the solution of (2.3) does not satisfy our stopping conditions. Finding the
value of λ∗ may in practice be considered as a two-stages process. We first need to find a
lower bound λL ≥ 0 such that Hp(λ) is positive-semidefinite for all λ ≥ λL. Assuming that
λ∗ = 0 does not solve the problem (in the sense of (2.5)), the second is then to determine
λ∗ ≥ λL such that

‖sp(λ
∗)‖2 = ‖Hp(λ

∗)−1g‖2 = ∆, (4.16)

where we have simply rewritten (2.4) and (2.6) at level p, the topmost in our hierarchy.
In our multigrid context, we intend to exploit the restriction of that problem on the ith
level where

‖si(λ
∗)‖i = ‖Hi(λ

∗)−1gi‖i = ∆, (4.17)

where, as in Gratton et al. (2007b),

Mi
def
=

p
∏

`=i+1

R`, Qi
def
=

i+1
∏

`=p

P`, gi = Mig and ‖x‖i
def
= ‖Qix‖2.

The linear system implicit in (4.17) is then solved using the multigrid technique discussed
in the previous section.
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4.1 Exploiting the Level Structure to Find Bounds on λ
∗

Consider ensuring positive-semidefiniteness of Hp(λ) first. Our structure exploiting ap-
proach for this question is based on the simple observation that Hi(λ) (i = 2, . . . , p) cannot
be positive-semidefinite if Hi−1(λ) is not, as expressed by the following property.

Lemma 4.1 Let P ∈ IRni×ni−1 be a full (column) rank matrix. If λi
1 ≤ . . . ≤ λi

ni
are

the eigenvalues of A ∈ IRni×ni , and λi−1
1 ≤ . . . ≤ λi−1

ni−1
are the eigenvalues of RAP ∈

IRni−1×ni−1 , where R = 1
σ
P T for some σ > 0, then we have that

λi−1
1 ≥

σ2
min

σ
λi

1, (4.18)

where σmin is the smallest singular value of P .

Proof. Using the extremal properties of eigenvalues (see Golub and Van Loan, 1983),
we see that

λi−1
1 = min

x∈IRni−1

‖x‖2=1

〈x, P T APx〉

σ
= min

x∈IRni−1

‖x‖2=1

〈Px, APx〉

σ
= min

y=Px
‖x‖2=1

〈y, Ay〉

σ
.

But, since ‖y‖2 = ‖Px‖2 ≥ σmin, we obtain that

λi−1
1 = min

y=Px
‖x‖2=1

σ2
min〈y, Ay〉

σσ2
min

≥ min
y=Px
‖x‖2=1

σ2
min〈y, Ay〉

σ‖y‖2
2

≥ min
y∈IRni

σ2
min〈y, Ay〉

σ‖y‖2
2

=
σ2

min

σ
λi

1.

2

This property thus implies that the value of the multiplier needed to make Hi−1(λ)
convex provides a computable lower bound on that needed to make Hi(λ) convex. In
many cases of interest, the value of σmin is known and larger that one. This is for instance
the case when P is the linear interpolation operator in 1, 2 or 3 dimensions. However the
exact value depends on the level considered and is typically costly to compute accurately,
which leads us to consider the simpler case where we only assume that σmin ≥ 1, in which
case (4.18) can be rewritten, at level i as

λi−1
1 ≥

λi
1

σi

.

Once this lower bound is computed, the algorithm then proceeds to increase λL (in a
manner that we describe below) if evidence of indefiniteness of Hp(λ) is found. We have
considered two ways to obtain this evidence. The first is to attempt to solve the system
Hp(λ)s = −g for the step at level p by a multigrid technique, and to monitor the curvature
terms 〈d, Hi(λ)d〉 occurring in the smoothing iterations at each level i. As soon as one of
these terms is shown to be negative, we know from Lemma 4.1 that the lower bound λL

must be increased. The second is to use a multilevel eigenvalue solver like the Rayleigh
Quotient Minimization Multigrid (RQMG) Algorithm (see Mandel and McCormick, 1989)
to compute λ

p
1, the smallest eigenvalue of Hp, associated with the eigenvector u

p
1. The

RQMG algorithm solves the variational problem

RQ(up
1) = min

u6=0
RQ(u) = min

u6=0

〈Hpu, u〉

〈u, u〉

by applying a smoothing strategy adapted to the Rayleigh quotient minimization at each
level i . The solution to this problem is an (upper) approximation to λ

p
1 which, if negative,

may therefore be used to deduce the bound λL ≥ −λ
p
1. Observe that the RQMG algorithm

(applied with sufficient accuracy) ensures that Hp(λ
L) is, at least in inexact arithmetic,

positive semidefinite.
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In addition to the lower bound λL (which applies to all levels), we compute an initial
upper bounds λU

i for each level i as in the Moré-Sorensen algorithm (observe that no
information can be obtained from lower levels about λU

i ). This therefore provides intervals
[λL, λU

i ] for acceptable λ at each level i.

4.2 Updating λ in the Positive Definite Case

If λL = 0, Hp(0) is positive-definite (in inexact arithmetic) and ‖s(0)‖2 ≤ ∆, our problem
is solved. If this is not the case, our second task is then to adjust λ ≥ λL such that (4.16)
holds. We now describe this adjustment procedure at level i, our final intention being to
solve it at level p.

Since we are looking for λ that solves the secular equation (2.7), we can apply the
Newton method to this end as we did in (2.8). However, in our case, the Cholesky factor
L for H(λ) is only available at the lowest level. Fortunately, note that

‖w‖2 = 〈w, w〉 = 〈L−1s, L−1s〉 = 〈s, L−T L−1s〉 = 〈s, (H(λ))−1s〉.

Thus, if we compute y as the solution to the positive-definite system

H(λ)y = s(λ), (4.19)

the Newton step for the secular equation at the current level then takes the form

λnew = λ +

(

‖s‖i − ∆

∆

) (

‖s‖2
i

〈s, y〉

)

. (4.20)

Since we may not rely on factorizations for an exact solution of the system (4.19), we
therefore apply a multigrid method to solve for w. However, this solution may be consid-
ered as costly. An alternative option is to update λ by applying a secant method to the
secular equation, which gives

λ+ = λ − φ(λ)

(

λ − λold

φ(λ) − φ(λold)

)

. (4.21)

(We use λold = λU to start the iteration.)
As in the Moré-Sorensen algorithm, if λnew lies outside the interval, we choose λ inside

the interval. One way to do this is to take λnew as the half of the interval [λL, λU ], which
corresponds to a simple bisection step. But we can expect better results by choosing to
follow (Moré and Sorensen 1979) and setting

λnew = max
[

√

λL, λU , λL + θ(λU − λL)
]

, (4.22)

for θ ∈ (0, 1), which ensures that λnew is closer to λL.

4.3 The Complete Algorithm

We need to introduce three further comments before the formal statement of the algorithm.
We first note that once a restricted trust-region problem (4.17) has been solved at level

i, this means that the corresponding λ can be used as a lower bound for all higher levels.
No further updating of λ is therefore necessary at this level and all lower ones, but we
may nevertheless continue to exploit level i in the multigrid solution of the linear systems
occurring at higher levels. The fact that a solution at level i has already been computed
is remembered in our algorithm by setting the flag issolvedi. (For coherence, we define
these flags for levels 1, . . . , p + 1.)

Our second comment is that we still need to define stopping criteria for the multigrid
solution of (4.17). A first criterion is obviously to terminate the iterations when the
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residual of the system is sufficiently small. In practice, we choose to stop the solution of
the system as soon as

‖ri,k‖ = ‖gi − Hi(λ)si,k‖ ≤ εr,

with εr ∈ (0, 1). However, we might need to introduce a second stopping rule. It may
indeed happen that, for a current λ (too small), the step resulting from the system has a i-
norm exceeding ∆. It is of course wasteful to iterate too long to discover, upon termination,
that we have to throw the solution away. In order to avoid this wasteful calculation, we
exploit the fact that the norm of the multigrid iterates is typically increasing as the
iterations proceed. Thus, if this norm exceeds ∆ by some threshold D++, we decide to
terminate the iterative process (and subsequently increase λ). However, we must be careful
not to alter the lower and upper bounds on λ in this subsequent update, because of the
possible inaccuracy generated by the early truncation of the system and the absence of
any monotonicity guarantee (at variance with methods like truncated conjugate-gradients,
see Steihaug, 1983). Unfortunately, it is also possible that no λ in the current interval
produces a sufficiently small step. In this case, λ grows and becomes arbitrarily close to
its upper bound. We avoid this situation by increasing our threshold whenever λ is within
ελ
i of λU

i .
Finally, we have to propagate changes in λ between levels. Thus, if we have just

updated λ and the old one was λ−, we have that

Hi(λ) = Hi(λ
−) + (λ − λ−)MiQi. (4.23)

Similarly, taking into account that each residual at level ` is computed with respect to the
linear system at level ` + 1, one may verify that the residual update satisfies

ri,k+1 = ri,k +

p
∑

`=i

(−1)(`−i)(λ − λ−)M`Q`s`,k+1, (4.24)

where s`,k+1 is the current iterate computed in level `.
We now present the complete multigrid algorithm for the solution of the trust-region

subproblem, the Multigrid Moré-Sorensen (MMS) Algorithm on 4.1 on the following page.
Note that for each level i, we start by unsetting issolvedi.

Some comments on this algorithm are necessary at this point.

1. The algorithm is called form the virtual level p + 1, after an initialization phase
which computes, once and for all and for every level, the values of D+ = (1 + ε∆)∆,
D− = (1 − ε∆)∆ and D++ = σiD

+ for some ε∆ ∈ (0, 1). A level-dependent feasible
interval [λL, λU

i ] is also computed at this stage. The (global) lower bound λL is set to
the maximum between 0 and the opposite of the approximation of the most negative
eigenvalue produced by the RQMG algorithm; the upper bound is calculated, for each
level, exactly as for the Moré-Sorensen algorithm (see Conn et al., 2000, page 192),
using the appropriate restrictions of the gradient and Hessian to the considered level.
An initial value of λ ∈ [λL, λU

i ] is finally computed using (4.22) before the call to
MMS proper.

2. We may essentially identify Steps 0 to 5 as a classical multigrid solver for a linear
system when issolvedi is set. The remaining contain the update to the λ parameter,
broadly following the Moré-Sorensen method.

3. As explained in Section 3, the linear system (2.3) is solved by computing a correction
at coarse levels to the steps already computed at finer ones. Our restriction strategy
produces an algorithm analog to the application, in our nonlinear context, of the
Full Multigrid Scheme (see Briggs et al., 2000, page 42).

4. We have not specified the details of the smoothing procedure in Step 4. In our
expriments, we have used the Gauss-Seidel smoother, a classic in multigrid solvers
(see Briggs et al., 2000, page 10).
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Algorithm 4.1: [si,∗,λi] = MMS(i, Hi, ri,0, ∆, λL, λ, si,0, issolvedi)

Step 0. Initialization. Set k = 0.

Step 1. Iteration Choice. If i = 1, go to Step 3. Otherwise, if (3.15) fails, go to
Step 4 (Smoothing iteration). Else, choose to go to Step 2 or to Step 4.

Step 2. Recursive Iteration. Call MMS recursively as follows:

[ei−1,∗, λi−1] = MMS(i − 1, Hi−1, ri−1,0, ∆, λL, λ, 0i−1, issolvedi−1)

where ri−1,0 is computed as in (3.14). Compute si,k+1 = si,k + Piei−1,∗. If
issolvedi is unset, i.e. this is the first time we perform a recursive iteration at
this level, set λL = λi−1, choose λ ∈ [λL, λU

i ] using (4.22), update Hi(λ) using
(4.23) and ri,k+1 using (4.24) and set issolvedi. Go to Step 5.

Step 3. Exact Iteration. If issolvedi+1 is unset, call the Moré-Sorensen algo-
rithm (2.1), returning with solution [si,∗,λi] = MS(Hi(λ),ri,0,∆,ε∆), and set
issolvedi. Otherwise, just solve the system Hi(λ)si,∗ = ri,0 exactly by
Cholesky factorization of Hi(λ) and return with solution (si,∗, λ).

Step 4. Smoothing Iteration. Apply µ smoothing cycles on the residual equation
(3.13) yielding si,k+1, set ri,k+1 = ri,k + Hi(λ)(si,k+1 − si,k) and go to Step 5.

Step 5. Termination. If ‖ri,k+1‖ < εr and issolvedi+1 is set, return si,k+1 and λ.
Else, go to Step 1 if issolvedi+1 is set or if ‖ri,k+1‖ ≥ εr and ‖si,k+1‖i ≤ D++.

Step 6. Parameter update after full system solution.
If ‖ri,k+1‖ < εr (and issolvedi+1 is unset),

Step 6.1: step threshold update. If λU
i − λ < ελ

i , set D++ = 2D++.

Step 6.2: interior solution test. If λ = 0 and ‖si,k+1‖i < D+, or if λ ≥ 0
and D− ≤ ‖si,k+1‖i ≤ D+, return with solution si,∗ = si,k+1 and λi = λ.

Step 6.3: parameter and interval updates. If ‖si,k+1‖i > D+, set λL =
λ. If ‖si,k+1‖i < D−, set λU

i = λ. Compute a new λ ∈ [λL, λU
i ] using

(4.20) or (4.21).

Step 6.4: reset the step. Set si,k+1 = 0, ri,k+1 = ri,0, update Hi(λ) using
(4.23), and go to Step 1.

Step 7: Parameter update after incomplete system solution.
If ‖ri,k+1‖ ≥ εr (and ‖si,k+1‖i > D++),

Step 7.1: parameter update. compute a new λ ∈ [λ, λU
i ] using (4.20) or

(4.21).

Step 7.2: reset the step. Set si,k+1 = 0, ri,k+1 = ri,0, update Hi(λ) using
(4.23), and go to Step 1.
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5 Preliminary Numerical Experience

In this section we present some numerical results obtained by two variants of the MMS
method applied in a trust-region algorithm (Algorithm BTR on page 116 of Conn et al.,
2000) for four different test problems involving three-dimensional discretizations. Some
of these problems were also tested in (Gratton et al. 2006a) in their two-dimensional
formulation. All problems presented here are defined on the unit three-dimensional cube S3

and tested with a fine discretization of 633 variables, and we used 4 levels of discretization.
The Laplacian operator is obtained from the classical 7-points pencil. The prolongation
operator is given by linear interpolation, and the restriction as its normalized (in the ‖ · ‖1

norm) transpose, thereby defining σi = ‖Pi‖1. We briefly review these test problems
below.

5.1 Optimization Test Problems

3D Quadratic Problem 1 (3D-1): A convex quadratic problem, where we consider
the three-dimensional boundary value problem defined by

−∆u(x, y, z) = f in S3

u(x, y, z) = 0 on ∂S3,

where f is chosen so that the analytical solution to this problem is u(x, y, z) = 8. This
gives linear systems Aix = bi at level i where each Ai is a symmetric positive-definite
matrix. This problem is the typical model problem for multigrid solvers. Here, we want
to find the solution to its variational formulation

min
x∈IRnp

1

2
xT Apx − xT bp.

3D Nonlinear Problem 2 (3D-2): Another convex quadratic problem, where we con-
sider the differential equation

−(1 + sin(3πx)2)∆u(x, y, z) = f in S3

u(x, y, z) = 0 on ∂S3,

where f is chosen so that the analytical solution to this problem is

u(x, y, z) = x(1 − x)y(1 − y)z(1 − z).

This problem is again considered in its variational formulation, as for problem 3D-1.

Convection-Diffusion problem (C-D): Here, minimize the variational formulation
of the following nonlinear partial differential equation

∆u − Ru

(

∂u

∂x
+

∂u

∂y
+

∂u

∂z

)

+ f(x, y, z) = 0, R = 20,

where f(x, y, z) = 2000x(1−x)y(1−y)z(1−z), over S3 with Dirichlet boundary conditions
u = 0 on ∂S3.

Boundary Value Problem (BV): This is a problem inspired by the one dimensional
two-point boundary value problem presented in Moré, Garbow and Hillstrom (1981) and
is defined by

−∆u(s, t, z) = 1

2
(u(s, t, z) + t + s + z + 1)3,

with
u(0, t, z) = u(1, t, z) = 0, 0 < t < 1,

u(s, 0, z) = u(s, 1, z) = 0, 0 < s < 1,

u(s, t, 0) = u(s, t, 1) = 0, 0 < z < 1.
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Here, we look for the solution of the least squares problem

min
s,t,z∈[0,1]

‖−∆u(s, t, z)− 1

2
(u(s, t, z) + t + s + z + 1)3‖2

2.

5.2 Numerical Results

We discuss here results obtained by applying the simple BTR trust-region method for the
minimization of these problems, in which the subproblem is solved(3) at each iteration
by one of three multigrid variants of the Moré-Sorensen algorithm. The first variant
(MMS-secant) is the the MMS algorithm presented in this paper, where we use the secant
approach (4.21) to solve the secular equation. The second (MMS-Newton) is the same
method, but using Newton’s method (4.20) instead of (4.21). The third (naive MMS-
secant) is a simpler version of MMS-secant in which we do not use information on λ from
lower levels. In this variant, we solve the Moré-Sorensen system (2.3) by multigrid instead
of using Cholesky factorization of the Hessian, but we only change λ at the topmost level.
This is equivalent to setting issolvedi for all levels i < p + 1. We update λ by using the
secant method on the secular equation, as described above. All runs were performed in
Matlab v.7.1.0.183 (R14) Service Pack 3 on a 3.2 GHz Intel single-core processor computer
with 2 Gbytes of RAM, using the parameters

µ = 5, ε∆ = 0.1, εr = 10−6, θ = 10−4, and ελ
i = 0.01|λU

i − λL|.

Our results are shown in Table 5.1. In this table, #λ stands for the weighted number of
λ-updates, where each update is weighted proportionally to the dimension of the subspace
in which the update is performed. Similarly, #R stands for the weighted number of
restrictions performed by the algorithm. This last number indicates how many recursive
iterations were used to find the solution of the linear system over the course of optimization.
The CPU reported (in seconds) is the average trust-region subproblem solution time over
all optimization iterations.

Naive MMS-secant MMS-secant MMS-Newton
#λ CPU #R #λ CPU #R #λ CPU #R

3D-1 17.3 5.7 (5) 65.6 9.2 4.8 (5) 46.4 7.5 10.5 (5) 34.1
3D-2 17.2 6.1 (6) 85.8 11.2 5.3 (7) 72.8 11.1 14.8 (6) 59.4
C-D 17.3 6.9 (6) 73.3 8.6 5.4 (6) 53.6 7.9 11.9 (6) 42.0
BV 41.0 434.4 (18) 474.4 23.9 465.4 (20) 279.2 30.3 452.7 (18) 313.6

Table 5.1: Results for three variants of the MMS method.

These results clearly demonstrate that the MMS-secant version of our algorithm per-
forms much better than the naive version in terms of the number of λ-updates required to
solve all the trust-region subproblems in an optimization run. The conclusion in terms of
CPU time remains favourable for MMS-secant, even if care must be exercized here given
the inaccuracy of the Matlab timer. This suggests that information obtained at lower
levels is, in fact, useful for the solution of the problem and should therefore be exploited.
We also note that MMS-Newton does not offer a significant advantage over MMS-secant.
Even if less λ-updates are needed to find the solution, these updates are computationally
much more expensive than the simple secant ones since a linear system must be solved
by multigrid for in each update, resulting in an overall slower algorithm. It is also impor-
tant to note that the last problem is non-convex, and thus requires much more time to
be solved. This is also due to the fact that, in this case, we have to compute an initial
λL using an estimate of the smallest eigenvalue of the Hessian in each BTR iteration by
means of the RQMG algorithm.

(3)We require the Euclidean norm gradient of the objective function to be at most 10−6 for termination.
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6 Conclusions

We have developed a new method for the exact solution of the trust-region subproblem
which is suitable for large scale systems where the Moré-Sorensen method cannot be ap-
plied, for instance because factorizations are too costly or impossible. This method exploits
the multigrid structure in order to extract curvature information from the coarse levels to
speed up the computation of the Lagrange parameter associated with the subproblem.

We have presented some admittedly limited numerical experience, which shows the po-
tential for the new method, both because it demonstrates that sizeable three-dimensional
applications can be considered and because it outperforms a too naive multigrid imple-
mentation of the basic Moré-Sorensen algorithm.
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