
Nonlinear programming without

a penalty function or a filter

by N. I. M. Gould1 and Ph. L. Toint2

Report 07/02 13th April 2007

1 Oxford University Computing Laboratory,
Wolfson Building, Parks Road,
Oxford OX1 3QD, England.

Email: nick.gould@comlab.ox.ac.uk

2 Department of Mathematics,
FUNDP-University of Namur,

61, rue de Bruxelles, B-5000 Namur, Belgium.
Email: philippe.toint@fundp.ac.be

Nonlinear programming without a penalty function or a

filter

N. I. M. Gould and Ph. L. Toint

13th April 2007

Abstract

A new method is introduced for solving equality constrained nonlinear optimiza-
tion problems. This method does not use a penalty function, nor a barrier or a filter,
and yet can be proved to be globally convergent to first-order stationary points.
It uses different trust-regions to cope with the nonlinearities of the objective func-
tion and the constraints, and allows inexact SQP steps that do not lie exactly in
the nullspace of the local Jacobian. Preliminary numerical experiments on CUTEr
problems indicate that the method performs well.

Keywords: Nonlinear optimization, equality constraints, numerical algorithms, global con-

vergence.

1 Introduction

We consider the numerical solution of the equality constrained nonlinear optimization
problem

{

min
x

f(x)

c(x) = 0,
(1.1)

where we assume that f : IRn → IR and c : IRn → IRm are twice continuously differentiable
and that f is bounded below on the feasible domain.

The present paper introduces a new method for the solution of (1.1), which belongs to
the class of trust-region methods for constrained optimization, in the spirit of Omojokun
(1989) in a Ph.D. thesis supervised by R. Byrd, and later developed by several authors,
including Biegler, Nocedal and Schmid (1995), El-Alem (1995, 1999), Byrd, Gilbert and
Nocedal (2000a), Byrd, Hribar and Nocedal (2000b), Liu and Yuan (2000) and Lalee,
Nocedal and Plantenga (1998) (also see Chapter 15 of Conn, Gould and Toint, 2000).

The algorithm presented here has four main features. The first is that it attempts
to consider the objective function and the constraints as independently as possible by
using different models and trust regions for f and c. As is common to the methods
cited, the steps are computed as a combination of normal and tangential components, the
first aiming to reduce the constraint violation, and the second at reducing the objective
function while retaining the improvement in violation by remaining in the plane tangent
to the constraints, but only approximately so. This framework can thus be viewed as a
sequential quadratic programming technique that allows for inexact tangential steps, which
is the second main characteristic of our proposal (shared with Heinkenschloss and Vicente,
2001, and the recent paper by Byrd, Curtis and Nocedal, 2006). The third distinctive
feature is that the algorithm is not compelled to compute both normal and tangential steps
at every iteration, rather only to compute whichever is/are likely to improve feasibility
and optimality significantly. Thus if an iterate is almost feasible, there is little point in
trying to further improve feasibility while the objective value is far from optimal. The
final central feature is that the algorithm does not use any merit function (penalty, barrier,
or otherwise), thereby avoiding the practical problems associated with the setting of the

1

Gould, Toint: Nonlinear programming without a penalty function or a filter 2

merit function parameters, but nor does it use the filter idea first proposed by Fletcher
and Leyffer (2002). Instead, the convergence is driven by the trust funnel, a progressively
decreasing limit on the permitted infeasibility of the successive iterates.

It is, in that sense and albeit very indirectly, reminiscent of the “flexible tolerance
method” by Himmelblau (1972), but also of the “tolerance tube method” by Zoppke-
Donaldson (1995) and the SQP method by Bielschowsky and Gomes (2006). All these
methods use the idea of progressively reducing constraint violation to avoid using a penalty
parameter. Both of the more modern algorithms are of the trust-region type, but differ
significantly from our proposal. The first major difference is that they both require the
tangential component of the step to lie exactly in the Jacobian’s nullspace: they are
thus “exact” rather than “inexact” SQP methods. The second is that they both use a
single trust region to account simultaneously for constraint violation and objective function
improvement. The third is that both limit constraint violation a posteriori, once the true
nonlinear constraints have been evaluated, rather than attempting to limit its predicted
value a priori. The “tolerance tube” method resorts to standard second-order correction
steps when the iterates become too infeasible. No convergence seems to be available for
the method, although the numerical results appear satisfactory. At variance, the method
by Bielschowsky and Gomes (2006) is provably globally convergent to first-order critical
points. It however involves a “restoration” phase (whose convergence is assumed) to
achieve acceptable constraint violation in which the size of normal component of the step
is restricted to be a fraction of the current infeasibility limit. This limit is updated using
the gradient of the Lagrangian function, and the allowable fraction is itself computed from
the norm of exact projection of the objective function gradient onto the nullspace of the
constraints’ Jacobian.

The paper is organized as follows. Section 2 introduces the new algorithm, whose con-
vergence theory is presented in Section 3. Section 4 presents preliminary numerical results
on CUTEr test problems; conclusions and perspectives are finally outlined in Section 5.

2 A trust-funnel algorithm

Let us measure, for any x, the constraint violation at x by

θ(x)
def
= 1

2
‖c(x)‖2 (2.1)

where ‖·‖ denotes the Euclidean norm. Now consider iteration k, starting from the iterate
xk, for which we assume we know a bound θmax

k such that 1
2
‖c(xk)‖2 < θmax

k .
Firstly, a normal step nk is computed if the constraint violation is significant (in a sense

to be defined shortly). This is achieved by reducing the Gauss-Newton approximation

1
2
‖ck + Jkn‖2 (2.2)

to θ(xk +nk)—here we write ck
def
= c(xk) and Jk

def
= J(xk) is the Jacobian of c at xk—while

requiring that nk remains in the “normal trust region”, i.e.,

nk ∈ Nk
def
= {v ∈ IRn | ‖v‖ ≤ ∆c

k}. (2.3)

More formally, this Gauss-Newton-type step is computed by choosing nk so that (2.2) is
reduced sufficiently within Nk in the sense that

δc,n
k

def
= 1

2
‖ck‖2 − 1

2
‖ck + Jknk‖2 ≥ κnC‖JT

k ck‖min

[‖JT
k ck‖

1 + ‖Wk‖
,∆c

k

]

≥ 0, (2.4)

where Wk = JT
k Jk is the symmetric Gauss-Newton approximation of the Hessian of θ at

xk and κnC > 0. Condition (2.4) is nothing but the familiar Cauchy condition for problem
approximately minimizing (2.2) within the region Nk. In addition, we also require the

Gould, Toint: Nonlinear programming without a penalty function or a filter 3

normal step to be “normal”, in that it mostly lies in the space spanned by the columns of
the matrix JT

k by imposing that
‖nk‖ ≤ κn‖ck‖ (2.5)

for some κn > 0. These conditions on the normal step are very reasonable in practice, as
it is known that they hold if, for instance, nk is computed by applying one or more steps
of a truncated conjugate-gradient method (see Toint, 1981, and Steihaug, 1983) to the
minimization of the square of the linearized infeasibility. Note that the conditions (2.3),
(2.4) and (2.5) allow us to choose a null normal step (nk = 0) if xk is feasible.

Having computed the normal step, we next consider if some improvement is possible
on the objective function, while not jeopardizing the infeasibility reduction we have just
obtained. Because of this latter constraint, it makes sense to remain in Nk, the region
where we believe that our model of constraint violation can be trusted, but we also need
to trust the model of the objective function given, as is traditional in sequential quadratic
programming (see Section 15.2 of Conn et al., 2000), by

mk(xk + nk + t) = fk + 〈gN

k , t〉 + 1
2
〈t, Gkt〉 (2.6)

where
gN

n
def
= gk +Gknk, (2.7)

where fk = f(xk), gk = ∇f(xk) and where Gk is a symmetric approximation of the
Hessian of the Lagrangian `(x, y) = f(x) + 〈y, c(x)〉 given by

Gk
def
= Hk +

m
∑

i=1

[ŷk]iCik. (2.8)

In this last definition, Hk is a bounded symmetric approximation of ∇2f(xk), the matrices
Cik are bounded symmetric approximations of the constraints’ Hessians ∇xxci(xk) and the
vector ŷk may be viewed as an approximation of the local Lagrange multipliers, in the
sense that we require that

‖ŷk‖‖ck‖ ≤ κy (2.9)

for some κy > 0. Note that this condition does not impose any practical size restriction
on ŷk close to the feasible set, and therefore typically allows the choice ŷk = yk−1, for
suitable multiplier estimates yk−1 computed during the previous iteration, when xk is close
to feasibility. We assume that (2.6) can be trusted as a representation of f(xk + nk + t)
provided the complete step s = nk + t belongs to

Tk
def
= {s ∈ IRn | ‖s‖ ≤ ∆f

k}, (2.10)

for some radius ∆f
k . Thus our attempts to reduce (2.6) should be restricted to to the

intersection of Nk and Tk, which imposes that the tangential step tk results in a complete
step sk = nk + tk that satisfies the inclusion

sk ∈ Bk
def
= Nk ∩ Tk

def
= {s ∈ IRn | ‖s‖ ≤ ∆k}, (2.11)

where the radius ∆k of Bk is thus given by

∆k = min[∆c
k,∆

f
k]. (2.12)

As a consequence, it makes sense to ask nk to belong to Bk before attempting the com-
putation of tk, which we formalize by requiring that

‖nk‖ ≤ κB∆k, (2.13)

for some κB ∈ (0, 1). We note here that using two different trust-region radii can be
considered as unusual, but is not unique. For instance, the SLIQUE algorithm described

Gould, Toint: Nonlinear programming without a penalty function or a filter 4

by Byrd, Gould, Nocedal and Waltz (2004) also uses different radii, but for different models
of the same function, rather than for two different functions.

We still have to specify what we mean by “reducing (2.6)”, as we are essentially inter-
ested in the reduction in the hyperplane tangent to the constraints. In order to compute
an approximate projected gradient at xk + nk, we first compute a new local estimate of
the Lagrange multipliers yk such that

‖yk + [JT
k]IgN

k‖ ≤ ω1(‖ck‖) (2.14)

for some monotonic bounding function(1) ω1, the superscript I denoting the Moore-Penrose
generalized inverse, and such that

‖rk‖ ≤ κnr‖gN

k‖ (2.15)

for some κnr > 0, and
〈gN

k , rk〉 ≥ 0, (2.16)

where
rk

def
= gN

k + JT
k yk (2.17)

is an approximate projected gradient of the model mk at xk + nk. Conditions (2.14)–
(2.16) are reasonable since they are obviously satisfied by choosing yk to be a solution of
the least-squares problem

min
y

1
2
‖gN

k + JT
k y‖2, (2.18)

and thus, by continuity, by sufficiently good approximations of this solution. In practice,
one can compute such an approximation by applying a Krylov space iterative method
starting from y = 0. If the solution of (2.18) is accurate, rk is the orthogonal projection of
gN

k onto the nullspace of Jk, which then motivates that we then require the tangent step
to produce a reduction in the model mk which is at least a fraction of that achieved by
solving the modified Cauchy point subproblem

min
τ>0

xk+nk−τrk∈Bk

mk(xk + nk − τrk), (2.19)

where we have assumed that ‖rk‖ > 0. We know from Section 8.1.5 of Conn et al. (2000)
that this procedure ensures, for some κtC1 ∈ (0, 1], the modified Cauchy condition

δf,t
k

def
= mk(xk + nk) −mk(xk + nk + tk) ≥ κtC1πk min

[

πk

1 + ‖Gk‖
, τk‖rk‖

]

> 0 (2.20)

on the decrease of the objective function model within Bk, where we have set

πk
def
=

〈gN

k , rk〉
‖rk‖

≥ 0 (2.21)

(by convention, we define πk = 0 whenever rk = 0), and where

τk =
−βk +

√

β2
k + ∆2

k − ‖nk‖2

‖rk‖
(2.22)

is the maximal steplength along −rk from xk + nk which remains in the trust-region Bk,

where we have used the definition βk
def
= 〈nk, rk〉/‖rk‖. We then require that the length of

that step is comparable to the radius of Bk, in the sense that, for some κr ∈ (0,
√

1 − κ2
B
),

τk‖rk‖ ≥ κr∆k (2.23)

(1)Here and later in this paper, a bounding function ω is defined to be a continuous function from IR+

into IR with the property that ω(t) converges to zero as t tends to zero.

Gould, Toint: Nonlinear programming without a penalty function or a filter 5

When nk lies purely in the range of JT
k and the least-squares problem (2.18) is solved

accurately, then βk = 0 and (2.23) holds with κr =
√

1 − κ2
B

because of (2.13). Hence
(2.23) must hold with a smaller value of κr if (2.18) is solved accurately enough. As a
result, the modified Cauchy condition (2.20) may now be rewritten as

δf,t
k

def
= mk(xk + nk) −mk(xk + nk + tk) ≥ κtCπk min

[

πk

1 + ‖Gk‖
,∆k

]

(2.24)

with κtC

def
= κtC1κr ∈ (0, 1). We see from (2.24) that πk may be considered as an optimality

measure in the sense that it measures how much decrease could be obtained locally along
the negative of the approximate projected gradient rk. This role as an optimality measure
is confirmed in Lemma 3.2 below.

Our last requirement on the tangential step tk is to ensure that it does not completely
“undo” the improvement in linearized feasibility obtained from the normal step without
good reason. We consider two possible situations. The first is when the predicted decrease
in the objective function is substantial compared to its possible deterioration along the
normal step and the step is not to large compared to the maximal allowable infeasibility,
i.e. when both

δf,t
k ≥ −κ̄δδ

f,n
k

def
= −κ̄δ[mk(xk) −mk(xk + nk)] (2.25)

and
‖sk‖ ≤ κ∆

√

θmax
k , (2.26)

for some κ̄δ ∈ (0, 1) and some κ∆ > 0. In this case, we allow more freedom in the linearized
feasibility and merely require that

1
2
‖ck + Jk(nk + tk)‖2 ≤ κttθ

max
k (2.27)

for some κtt ∈ (0, 1). If, on the other hand, (2.25) or (2.26) fails, meaning that we cannot
hope to trade some decrease in linearized feasibility for a large improvement in objective
function value over a reasonable step, then we require that the tangential step satisfies

‖ck + Jk(nk + tk)‖2 ≤ κnt‖ck‖2 + (1 − κnt)‖ck + Jknk‖2 def
= ϑk, (2.28)

for some κnt ∈ (0, 1). Note that this inequality is already satisfied at the end of the normal
step since ‖ck + Jknk‖ ≤ ‖ck‖ and thus already provides a relaxation of the (linearized)
feasibility requirement at xk +nk. Figure 2.1 on the following page illustrate the geometry
of the various quantities involved in the construction of a step sk satisfying (2.28)

Finally, we observe that a tangential step does not make too much sense if rk = 0, and
we do not compute any. By convention we choose to define πk = 0 and tk = 0 in this
case. The situation is similar if πk is small compared to the current infeasibility. Given a
monotonic bounding function ω2, we thus decide that if

πk > ω2(‖ck‖), (2.29)

fails, then the current iterate is still too far from feasibility to worry about optimality, and
we also skip the tangential step computation by setting tk = 0.

In the same spirit, the attentive reader may have observed that we have imposed the
current violation to be “significant” as a condition to compute the normal step nk, but
didn’t specify what we formally meant, because our optimality measure πk was not defined
at that point. We now complete our description by requiring that, for some bounding
function ω3, we require the computation of the normal step only when

‖ck‖ ≥ ω3(πk−1) (2.30)

when k > 0. If (2.30) fails, we remain free to compute a normal step, but we may also
skip it. In this latter case, we simply set nk = 0. For technical reasons which will become
clear below, we impose the additional conditions that

ω3(t) = 0 ⇐⇒ t = 0 and ω2(ω3(t)) ≤ κωt (2.31)

Gould, Toint: Nonlinear programming without a penalty function or a filter 6

xk

nk

xk + nk

−rk

modified Cauchy
point on mk

tk

xk + sk

‖ck + Jks‖2 ≤ ϑk

∆k

∆c

k

−gk

−gk − Hknk

ck + Jks = 0

c(x) = 0

Figure 2.1: The components of a step sk satisfying (2.28) in the case where ∆f
k = ∆c

k.

for all t ≥ 0 and for some κω ∈ (0, 1).
While (2.29) and (2.30) together provide considerable flexibility in our algorithm in

that a normal or tangential step is only computed when relevant, our setting also produce
the possibility that both these conditions fail. In this case, we have that sk = nk + tk
is identically zero, and the sole computation in the iteration is that of the new Lagrange
multiplier yk; we will actually show that such behaviour cannot persist unless xk is optimal.

Once we have computed the step sk and the trial point

x+
k

def
= xk + sk (2.32)

completely, we are left with the task of accepting or rejecting it. Our proposal is based on
the distinction between f -iterations and c-iterations, in the spirit of Fletcher and Leyffer
(2002), Fletcher, Leyffer and Toint (2002b) or Fletcher, Gould, Leyffer, Toint and Wächter
(2002a). Assuming that sk 6= 0, we will say that iteration k is an f -iteration if a nonzero
tangential step tk has been computed and if

δf
k

def
= mk(xk) −mk(xk + sk) ≥ κδδ

f,t
k (2.33)

with κδ = 1 − 1/κ̄δ, and
θ(x+

k) ≤ θmax
k . (2.34)

If sk 6= 0 and one of (2.33) or (2.34) fails or if no tangential has been computed, because
(2.13) or (2.29) fails, iteration k is said to be a c-iteration. Inequality (2.33) indicates
that the improvement in the objective function obtained in the tangential step is not
negligible compared to the change in f resulting from the normal step, while at the same
time, keeping feasibility within reasonable bounds, as expressed by (2.34). Thus the
iteration’s expected major achievement is, in this case, a decrease in the value of the
objective function f , hence its name. If (2.33) fails, then the expected major achievement
(or failure) of iteration k is, a contrario, to improve feasibility, which is also the case when
the step only contains its normal component. Finally, if sk = 0, iteration k is said to be
a y-iteration because the only computation potentially performed is that of a new vector
of Lagrange multiplier estimates. The main idea behind the technique we propose for
accepting the trial point is to measure whether the major expected achievement of the
iteration has been realized.

Gould, Toint: Nonlinear programming without a penalty function or a filter 7

• If iteration k is a f -iteration, we accept the trial point if the achieved objective
function reduction is comparable to its predicted value. More formally, the trial
point is accepted (i.e., xk+1 = x+

k) if

ρf
k

def
=

f(xk) − f(x+
k)

δf
k

≥ η1 (2.35)

and rejected (i.e., xk+1 = xk) otherwise. The radius of Tk is then updated by

∆f
k+1 ∈







[∆f
k ,∞) if ρf

k ≥ η2,

[γ2∆
f
k ,∆

f
k] if ρf

k ∈ [η1, η2),

[γ1∆
f
k , γ2∆

f
k] if ρf

k < η1,

(2.36)

where the constants η1, η2, γ1, and γ2 are given and satisfy the conditions 0 < η1 ≤
η2 < 1 and 0 < γ1 ≤ γ2 < 1, as is usual for trust-region methods. The radius of Nk

is possibly increased if feasibility is maintained well within its prescribed bounds, in
the sense that

∆c
k+1 ∈ [∆c

k ,+∞) if θ(x+
k) ≤ η3θ

max
k and ρf

k ≥ η1 (2.37)

for some constant η3 ∈ (0, 1), or

∆c
k+1 = ∆c

k (2.38)

otherwise. The value of the maximal infeasibility measure is also left unchanged,
that is θmax

k+1 = θmax
k . Note that (2.33) implies that δf

k > 0 because δf,t
k > 0 unless xk

is first-order critical, and hence that condition (2.35) is well-defined.

• If iteration k is a c-iteration, we accept the trial point if the achieved improvement

in feasibility is comparable to its predicted value δc
k

def
= 1

2
‖ck‖2 − 1

2
‖ck + Jksk‖2, and

if the latter is itself comparable to its predicted decrease along the normal step, that
is if

δc
k ≥ κcnδ

c,n
k and ρc

k
def
=

θ(xk) − θ(x+
k)

δc
k

≥ η1 (2.39)

for some κcn ∈ (0, 1). If (2.39) fails, the trial point is rejected. The radius of Nk is
then updated by

∆c
k+1 ∈







[∆c
k,∞) if ρc

k ≥ η2 and δc
k ≥ κcnδ

c,n
k ,

[γ2∆
c
k,∆

c
k] if ρc

k ∈ [η1, η2) and δc
k ≥ κcnδ

c,n
k ,

[γ1∆
c
k, γ2∆

c
k] if ρc

k < η1 or δc
k < κcnδ

c,n
k .

(2.40)

and that of Tk is unchanged: ∆f
k+1 = ∆f

k . We also update the value of the maximal
infeasibility by

θmax
k+1 =

{

max
[

κtx1θ
max
k , θ(x+

k) + κtx2(θ(xk) − θ(x+
k))

]

if (2.39) holds
θmax

k otherwise,
(2.41)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).

• If iteration k is a y-iteration, we do not have any other choice than to restart with
xk+1 = xk using the new multipliers. We then define

∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k (2.42)

and keep the current value of the maximal infeasibility θmax
k+1 = θmax

k .

We are now ready to state our complete algorithm, Algorithm 2.1 on the next page.

Gould, Toint: Nonlinear programming without a penalty function or a filter 8

Algorithm 2.1: Trust-funnel Algorithm

Step 0: Initialization. An initial point x0, an initial vector of multipliers y−1

and positive initial trust-region radii ∆f
0 and ∆c

0 are given. Define θmax
0 =

max[κca, κcrθ(x0)] for some constants κca > 0 and κcr > 1. Set k = 0.

Step 1: Normal step. Possibly compute a normal step nk that sufficiently reduces
the linearized infeasibility (in the sense that (2.4) holds), under the constraint
that (2.3) and (2.5) also hold. This computation must be performed if k = 0 or
(2.30) holds when k > 0.

If (2.30) fails and nk has not been computed, set nk = 0.

Step 2: Tangential step. If (2.13) holds, then

Step 2.1: select a vector ŷk satisfying (2.9) and define Gk by (2.8);

Step 2.2: compute yk and rk satisfying (2.14)–(2.17) and (2.23);

Step 2.3: If (2.29) holds, compute a tangential step tk that sufficiently re-
duces the model (2.6) (in the sense that (2.24) holds), preserves linearized
feasibility enough to ensure either all of (2.25)–(2.27) or (2.28), and such
that the complete step sk = nk + tk satisfies (2.11).

If (2.13) fails, set yk = 0. In this case or if (2.29) fails, set tk = 0 and sk = nk.
In all cases, define x+

k = xk + sk.

Step 3: Conclude a y-iteration. If sk = 0, then

Step 3.1: accept x+
k = xk;

Step 3.2: define ∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k;

Step 3.3: set θmax
k+1 = θmax

k .

Step 4: Conclude an f-iteration. If tk 6= 0 and (2.33) and (2.34) hold,

Step 4.1: accept x+
k if (2.35) holds;

Step 4.2: update ∆f
k according to (2.36) and ∆c

k according to (2.37)–(2.38);

Step 4.3: set θmax
k+1 = θmax

k .

Step 5: Conclude a c-iteration. If sk 6= 0 and either tk = 0 or (2.33) or (2.34)
fail(s),

Step 5.1: accept x+
k if (2.39) holds;

Step 5.2: update ∆c
k according to (2.40);

Step 5.3: update the maximal infeasibility θmax
k using (2.41).

Step 5: Prepare for the next iteration. If x+
k has been accepted, set xk+1 = x+

k ,
else set xk+1 = xk. Increment k by one and go to Step 1.

Gould, Toint: Nonlinear programming without a penalty function or a filter 9

We now comment on Algorithm 2.1. If either (2.35) or (2.39) holds, iteration k is called

successful. It is said to be very successful if either ρf
k ≥ η2 or ρc

k ≥ η2, in which case none
of the trust-region radii is decreased. We also define the following useful index sets:

S def
= {k | xk+1 = x+

k }, (2.43)

the set of successful iterations,

Y def
= {k | sk = 0}, F def

= {k | tk 6= 0 and (2.33) and (2.34) hold} and C def
= IN\(Y∪F),

the sets of y-, f - and c-iterations. We further divide this last set into

Cw = C ∩ {k | tk 6= 0 and (2.25)–(2.27) hold} and Ct = C \ Cw. (2.44)

Note that (2.28) must hold for k ∈ Ct.
We first verify that our algorithm is well-defined by deducing a useful “Cauchy-like”

condition on the predicted reduction in the infeasibility measure θ(x) (whose gradient is
J(x)T c(x)) over each complete iteration outside Y ∪ Cw.

Lemma 2.1 For all k 6∈ Y ∪ Cw, we have that

δc
k ≥ κnC2‖JT

k ck‖min

[‖JT
k ck‖

1 + ‖Wk‖
,∆c

k

]

≥ 0, (2.45)

for some κnC2 > 0.

Proof. We first note that our assumption on k implies that (2.28) holds for each k
such that tk 6= 0. In this case, we easily verify that

2δc
k = ‖ck‖2 − ‖ck + Jksk‖2

≥ ‖ck‖2 − κnt‖ck‖2 − (1 − κnt)‖ck + Jknk‖2

= (1 − κnt)
[

‖ck‖2 − ‖ck + Jknk‖2
]

≥ 2(1− κnt)κnC‖JT
k ck‖min

[

‖JT
k ck‖

1 + ‖Wk‖ ,∆
c
k

]

,

where we have used (2.28) and (2.4) successively. The inequality (2.45) then results
from the definition κnC2 = (1 − κnt)κnC. If, on the other hand, tk = 0, then (2.45)
directly follows from (2.4) with κnC2 = κnC. 2

Note that, provided sk 6= 0, this result ensures that the ratio in the second part of (2.39)
is well defined provided ‖JT

k ck‖ > 0. Conversely, if ‖ck‖ = 0, then iteration k must be an
f -iteration, and (2.39) is irrelevant. If ‖JT

k ck‖ = 0, but ‖ck‖ = 0, then xk is an infeasible
stationary point of θ, an undesirable situation on which we comment below. We next show
a simple useful property of y-iterations.

Lemma 2.2 For all k ∈ Y,
πk ≤ κωπk−1.

Proof. This immediately results from the fact that both (2.30) and (2.29) must
fail at y-iterations, yielding that πk ≤ ω2(‖ck‖) ≤ ω2(ω3(πk−1)) where we used the
monotonicity of ω2. The desired conclusion follows from the second part of (2.31). 2

We conclude this section by stating an important direct consequence of the definition of
our algorithm.

Lemma 2.3 The sequence {θmax
k } is monotonically decreasing and the inequality

0 ≤ θ(xj) < θmax
k (2.46)

holds for all j ≥ k.

Gould, Toint: Nonlinear programming without a penalty function or a filter 10

Proof. This results from the initial definition of θmax
0 in Step 0, the inequality (2.34)

(which holds at f -iterations), the fact that θmax
k is only updated by formula (2.41) at

successful c-iterations, at which Lemma 2.1 ensures that δc
k > 0. 2

The monotonicity of sequence {θmax
k } is what drives the algorithm towards feasibility and,

ultimately, to optimality: the iterates can be thought as flowing towards a critical point
through a funnel centered on the feasible set. Hence the algorithm’s name. Note finally
that Lemma 2.3 implies that

xk ∈ L def
= {x ∈ IRn | θ(x) ≤ θmax

0 }

for all k ≥ 0.

3 Global convergence to first-order critical points

Before starting our convergence analysis, we recall our assumption that both f and c are
twice continuously differentiable. Moreover, we also assume that there exists a constant
κH such that, for all for all ξ in

⋃

k≥0[xk, x
+
k] ∪ L, all k and all i ∈ {1, . . . ,m},

1 + max [‖gk‖, ‖∇xxf(ξ)‖, ‖∇xxci(ξ)‖, ‖J(ξ)‖, ‖Hk‖, ‖Cik‖] ≤ κH. (3.1)

When Hk and Cik are chosen as ∇xxf(xk) and ∇xxci(xk), respectively, this last assump-
tion is for instance satisfied if the first and second derivatives of f and c are uniformly
bounded, or, because of continuity, if the sequences {xk} and {x+

k } remain in a bounded
domain of IRn.

We finally complete our set of assumptions by supposing that

f(x) ≥ flow for all x ∈ L. (3.2)

This assumption is often realistic and is, for instance, satisfied if the smallest singular
value of the constraint Jacobian J(x) is uniformly bounded away from zero. Observe that
(3.2) obviously holds by continuity if we assume that all iterates remain in a bounded
domain.

We first state some useful consequences of (3.1).

Lemma 3.1 For all k,
1 + ‖Wk‖ ≤ κ2

H
, (3.3)

‖gN
k ‖ ≤ (1 + κn

√

2θmax
0 +mκnκy)κH

def
= κg (3.4)

Proof. The first inequality immediately follows from

1 + ‖Wk‖ = 1 + ‖Jk‖2 ≤ (1 + ‖Jk‖)2 ≤ κ2
H
,

where the last inequality is deduced from (3.1). The bound (3.4) is obtained from
(2.7), the inequality

‖gN

k‖ ≤ ‖gk‖ + ‖Gk‖ ‖nk‖ ≤ ‖gk‖+ κn

[

‖Hk‖ ‖ck‖ +m‖ŷk‖ ‖ck‖ max
i=1,...,m

‖Ci,k‖
]

,

Lemma 2.3, (2.9) and (3.1). 2

We also establish a useful sufficient condition for first-order criticality.

Lemma 3.2 Assume that, for some infinite subsequence indexed by K,

lim
k→∞,k∈K

‖ck‖ = 0. (3.5)

Gould, Toint: Nonlinear programming without a penalty function or a filter 11

Then
lim

k→∞,k∈K
gN

k = lim
k→∞,k∈K

gk. (3.6)

If, in addition,
lim

k→∞,k∈K
πk = 0, (3.7)

then
lim

k→∞,k∈K
gk + JT

k yk = 0 and lim
k→∞,k∈K

‖Pkgk‖ = 0, (3.8)

where Pk is the orthogonal projection onto the nullspace of Jk, and all limit points of the
sequence {xk}k∈K (if any) are first-order critical.

Proof. Combining the uniform bound (3.4) with (2.15), we obtain that the se-
quence {‖rk‖}K is uniformly bounded and therefore can be considered as the union of
convergent subsequences. Moreover, because of (2.5), the limit (3.5) first implies that

lim
k→∞,k∈K

nk = 0, (3.9)

which then implies with (2.9) and (3.1) that (3.6) holds. This limit, together with
(2.14) and (2.17), ensures that

lim
k→∞,k∈P

rk = lim
k→∞,k∈P

[gk + JT
k yk] = lim

k→∞,k∈P
[gk − JT

k [JT
k]Igk] = lim

k→∞,k∈P
Pkgk,

(3.10)
where we have restricted our attention on a particular subsequence indexed by P ⊆ K
such that the limit in the left-hand side is well-defined. Assume now that this limit is a
nonzero vector. Then, using now (2.21), (3.9), (3.6) and the hermitian and idempotent
nature of Pk , we have that

lim
k→∞,k∈P

πk = lim
k→∞,k∈P

〈gk, rk〉
‖rk‖

= lim
k→∞,k∈P

〈gk, Pkgk〉
‖Pkgk‖

= lim
k→∞,k∈P

〈Pkgk, Pkgk〉
‖Pkgk‖

= lim
k→∞,k∈P

‖Pkgk‖.
(3.11)

But (3.7) implies that this latter limit is zero, and (3.10) also gives that rk must
converge to zero along P , which is impossible. Hence limk→∞,k∈P rk = 0 and the
desired conclusion then follows from (3.10). 2

This lemma indicates that all we need to show for first-order global convergence are the
two limits (3.5) and (3.7) for an index set K as large as possible. Unfortunately, and as
is unavoidable with local methods for constrained optimization, our algorithm may fail to
produce (3.5)–(3.7) and, instead, end up being trapped by a local infeasible stationary of
the infeasibility measure θ(x). If x� is such a point, then

J(x�)
T c(x�) = 0 with c(x�) 6= 0.

If started from x�, Algorithm 2.1 will fail to progress towards feasibility, as no suitable nor-
mal step can be found in Step 1. A less unlikely scenario, where there exists a subsequence
indexed by Z such that

lim
k→∞,k∈Z

‖JT
k ck‖ = 0 with lim inf

k→∞,k∈Z
‖ck‖ > 0, (3.12)

indicates the approach of such an infeasible stationary point. In both cases, restarting
the whole algorithm from a different starting point might be the best strategy. Barring
this undesirable situation, we would however like to show that our algorithm converges
to first-order critical points for (1.1), whenever uniform asymptotic convexity of θ(x) in

Gould, Toint: Nonlinear programming without a penalty function or a filter 12

the orthogonal of the nullspace of Jk is obtained when feasibility is approached. More
specifically, we assume from now on that, for some small constant κc ∈ (0, 1),

there exists κJ ∈ (0, 1) such that σmin(Jk) ≥ κJ whenever ‖c(xk)‖ ≤ κc, (3.13)

where σmin(A) is the smallest positive singular value of the matrix A. It is important
to note that this assumption holds by continuity if J(x) is Lipschitz continuous and
σmin(J(x)) uniformly bounded away from zero on the feasible set, in which case the Ja-
cobian of the constraints has constant rank over this set. This assumption also ensures
that, for any subsequence indexed by K such that (3.5) holds, k1 > 0 exists such that for
k ≥ k1, k ∈ K,

‖Jksk‖ ≥ κJ‖sR
k ‖ (3.14)

where sR
k

def
= (I −Pk)sk is the projection of sk onto the range space of JT

k . We also obtain
the following useful bound.

Lemma 3.3 There exists a constant κG > κH such that, 1 + ‖Gk‖ ≤ κG for every k.

Proof. In view of (2.14), of the monotonicity of ω1, (2.9) and (3.4), (3.13) yields,
when ‖ck‖ ≤ κc, that

‖ŷk‖ ≤ ω1(‖ck‖) +
‖gN

k‖
κJ

≤ ω1(κc) +
κg

κJ

.

On the other hand, if when ‖ck‖ ≥ κc, then (2.9) gives that

‖ŷk‖ ≤ κy

‖ck‖
≤ κy

κc

.

Hence the desired conclusion follows from (2.8) and (3.1), with

κG

def
= κH +mκH max

[

ω1(κc) +
κg

κJ

,
κy

κc

]

> κH.

2

As for most of the existing theory for convergence of trust-region methods, we also make
use of the following direct consequence of Taylor’s theorem.

Lemma 3.4 For all k,
|f(x+

k) −mk(x+
k)| ≤ κG∆2

k, (3.15)

and
| ‖c(x+

k)‖2 − ‖ck + Jksk‖2| ≤ 2κC[∆
c
k]2, (3.16)

with κC = κ2
H

+mκH

√

2θmax
0 > κH.

Proof. The first inequality follows from Lemma 3.3, the fact that f(x) is twice
continuously differentiable and the fact that (2.11) and (2.12) give the bound

‖sk‖ ≤ ∆k ≤ ∆c
k (3.17)

(see Theorem 6.4.1 in Conn et al., 2000). Similarly, the second inequality follows from
the fact that θ(x) is twice continuously differentiable with its Hessian given by

∇xxθ(x) = J(x)T J(x) +

m
∑

i=1

ci(x)∇xxci(x), (3.18)

(3.1), Lemma 2.3 and (3.17). 2

Gould, Toint: Nonlinear programming without a penalty function or a filter 13

The same type of reasoning also allows us to deduce that all c-iterations are in Ct for ∆c
k

sufficiently small.

Lemma 3.5 Assume that k ∈ C and that

∆c
k ≤ 2(1 − κtt)

κHκ∆(
√

2m+ (2m+ 1)κHκ∆)

def
= κC (3.19)

Then k ∈ Ct.

Proof. Consider some k ∈ C. Using the mean-value theorem, we obtain that

θ(x+
k) = θk + 〈J t

kck, sk〉 + 1
2
〈sk,∇xxθ(ξk)sk〉

for some ξk ∈ [xk , x
+
k], which implies, in view of (3.18), that

θ(x+
k) = θk + 〈ck, Jksk〉 + 1

2
‖J(ξk)sk‖2 + 1

2

m
∑

i=1

ci(ξk)〈sk ,∇xxci(ξk)sk〉. (3.20)

A further application of the mean-value theorem then gives that

ci(ξk) = ci(xk) + 〈ei, J(µk)(ξk − xk)〉 = ci(xk) + 〈J(µk)T ei, ξk − xk〉

for some µk ∈ [0, ξk]. Summing on all constraints and using the triangle inequality,
(3.1) (twice), the bound ‖ξk − xk‖ ≤ ‖sk‖ and Lemma 2.3, we thus obtain that

∣

∣

∣

∣

∣

m
∑

i=1

ci(ξk)〈sk ,∇xxci(ξk)sk〉
∣

∣

∣

∣

∣

≤
[

‖c(xk)‖1 + κH‖sk‖
]

κH‖sk‖2

≤ κH

√
m ‖c(xk)‖ ‖sk‖2 + κ2

H
‖sk‖3

≤ κH

√

2mθmax
k ‖sk‖2 + κ2

H
‖sk‖3

Substituting this inequality into (3.20), we deduce that

θ(x+
k) ≤ 1

2
‖ck + Jksk‖2 + 1

2

[

‖J(ξk)sk‖2 − ‖Jksk‖2
]

+ 1
2
κH

√

2mθmax
k ‖sk‖2 + 1

2
κ2

H
‖sk‖3

(3.21)

Define now φk(x)
def
= 1

2
‖J(x)sk‖2. Then a simple calculation shows that

∇xφk(x) =

m
∑

i=1

[J(x)sk]i∇xxci(x)sk.

Using this relation, the mean-value theorem again and (3.1), we obtain that

|φk(ξk) − φk(xk)| = |〈ξk − xk ,∇xφk(ζk)〉|
= |〈ξk − xk ,

∑m
i=1[J(ζk)sk]i∇xxci(ζk)sk〉|

≤
m

∑

i=1

‖ξk − xk‖ ‖∇xxci(ζk)‖ ‖J(ζk)‖ ‖sk‖2

≤ mκ2
H
‖sk‖3

for some ζk ∈ [xk , ξk] ⊆ [xk, xk + sk]. We therefore obtain that

1
2

∣

∣ ‖J(ξk)sk‖2 − ‖Jksk‖2
∣

∣ = |φk(ξk) − φk(xk)| ≤ mκ2
H
‖sk‖3. (3.22)

Gould, Toint: Nonlinear programming without a penalty function or a filter 14

Assume now that k ∈ Cw. Then, using (3.21), (2.27), (3.22), (2.26), (2.11) and (3.19)
successively, we obtain that

θ(x+
k) ≤ 1

2
‖ck + Jksk‖2 + 1

2

[

‖J(ξk)sk‖2 − ‖Jksk‖2
]

+ 1
2
κH

√

2mθmax
k ‖sk‖2 + 1

2
κ2

H
‖sk‖3

≤ κttθ
max
k + (m+ 1

2
)κ2

H
‖sk‖3 + 1

2
κH

√
2m

√

θmax
k ‖sk‖2

≤ κttθ
max
k + (m+ 1

2
)κ2

H
κ2

∆θ
max
k ∆c

k + 1
2
κ∆κH

√
2mθmax

k ∆c
k

≤ θmax
k .

(3.23)

On the other hand, the fact that k ∈ Cw ensures that (2.25) holds, and thus, using the
definition of κ̄δ, that

(1 − κδ)δ
f,t
k ≥ −δf,n

k ,

which in turn yields that
δf
k = δf,n

k + δf,n
k ≥ κδδ

f,t
k .

But this last inequality and (3.23) show that both (2.33) and (2.34) hold at iteration
k. Since a tangential step was computed at this iteration, we obtain that k ∈ F , which
is a contradiction because k ∈ C. Hence our assumption that k ∈ Cw is impossible and
the desired conclusion follows. 2

Lemmas 3.4 and 3.5 have the following useful consequences.

Lemma 3.6 Assume that k ∈ F and that

∆k ≤ κδκtCπk(1 − η2)

κG

. (3.24)

Then ρf
k ≥ η2, iteration k is very successful and ∆f

k+1 ≥ ∆f
k . Similarly, if k ∈ C and

∆c
k ≤ min

[

κC ,
κnC2‖JT

k ck‖(1 − η2)

κC

]

. (3.25)

Then ρc
k ≥ η2, iteration k is very successful and ∆c

k+1 ≥ ∆c
k.

Proof. The proof of both statements is identical to that of Theorem 6.4.2 of Conn et
al. (2000) for the objective functions f(x) and θ(x), respectively. In the first case, one
uses (2.24), (2.33) and (3.15). In the second, one first notices that (3.25) implies, in
view of Lemma 3.5, that k ∈ Ct and thus that (2.45) holds. This last inequality in then
used together with (3.1), (3.16) and the bound (3.3) to deduce the second conclusion.
2

The mechanism for updating the trust-region radii then implies the next crucial lemma,
where we show that the radius of either trust region cannot become arbitrarily small
compared to the considered criticality measure for dual and primal feasibility.

Lemma 3.7 Assume that, for some εf > 0,

πk ≥ εf for all k ∈ F . (3.26)

Then, for all k,

∆f
k ≥ γ1 min

[

κδκtCεf (1 − η2)

κG

,∆f
0

]

def
= εF . (3.27)

Similarly, assume that, for some εθ > 0,

‖JT
k ck‖ ≥ εθ for all k ∈ C. (3.28)

Then, for all k,

∆c
k ≥ γ1 min

[

κC ,
κnC2εθ(1 − η2)

κC

,∆c
0

]

def
= εC . (3.29)

Gould, Toint: Nonlinear programming without a penalty function or a filter 15

Proof. Again the two statements are proved in the same manner, and immediately
result from the mechanism of the algorithm, Lemma 3.6 and the inequality ∆k ≤ ∆f

k ,

given that ∆f
k is only updated at f -iterations and ∆c

k is only updated at c-iterations.
2

We now start our analysis proper by considering the case where the number of successful
iterations is finite.

Lemma 3.8 Assume that |S| < +∞. Then there exists an x∗ and a y∗ such that xk = x∗
and yk = y∗ for all sufficiently large k, and either

J(x∗)
T c(x∗) = 0 and c(x∗) 6= 0,

or
P∗g(x∗) = 0 and c(x∗) = 0,

where P∗ is the orthogonal projection onto the nullspace of J(x∗).

Proof. The existence of a suitable x∗ immediately results from the mechanism of
the algorithm and the finiteness of S, which implies that x∗ = xks+j for all j ≥ 1,
where ks is the index of the last successful iteration.

Assume first that there are infinitely many c-iterations. This yields that ∆c
k is decreased

in (2.40) at every such iteration for k ≥ ks and therefore that {∆c
k} converges to zero,

because it is never increased at y-iterations or unsuccessful f -iterations. Lemma 3.5
then implies that all c-iterations are in Ct for k large enough. Since, for such a k,
‖JT

k ck‖ = ‖J(x∗)
T c(x∗)‖ for all k > ks, this in turn implies, in view of the second

statement of Lemma 3.7, that ‖J(x∗)
T c(x∗)‖ = 0. If x∗ is not feasible, then we

obtain the first of the two possibilities listed in the lemma’s statement. If, on the
other hand, c(x∗) = 0, we have, from (2.5), that nk = 0 and thus that δf

k = δf,t
k ≥ 0

for all k sufficiently large. Hence (2.33) holds for k large. Moreover, we also obtain
from (2.28) (which must hold for k large because C is asymptotically equal to Ct) that
‖ck + Jksk‖ = 0 and also, since θmax

k is only reduced at successful c-iterations, that
θmax

k = θmax
∗ > 0 for all k sufficiently large. Combining these observations, we then

obtain from Lemma 3.4 that

θ(x+
k) = θ(x+

k) − 1
2
‖ck + Jksk‖2 ≤ κ2

H
[∆c

k]2 ≤ θmax
k

(and (2.34) holds) for all sufficiently large k. Thus we have that tk must be zero for all
k ∈ C sufficiently large. Since we already know that nk = 0 for all k large enough, we
thus obtain that sk = 0 for these k and all iterations must eventually be y-iterations.
Hence our assumption that there are infinitely many c-iterations is impossible.

Assume now that C is finite but F infinite. Since there must be an infinite number
of unsuccessful f -iterations ks, and since the radii are not updated at y-iterations, we
obtain that {∆f

k}, and hence {∆k}, converge to zero. Using now the first statement of
Lemma 3.7, we conclude that, for all k sufficiently large, πk = 0 and, because (2.29)
holds at f -iterations, ‖ck‖ = 0. Thus c(x∗) = 0. As above, the second of the lemma’s
statements then holds because of this equality, the fact that πk = 0 for all large k and
Lemma 3.2.

Assume finally that C ∪ F is finite. Thus all iterations must be y-iterations for k large
enough. In view of Lemma 2.2, we must then obtain that π∗ = 0. But the fact that
nk = 0 for all large k, the first part of (2.31) and (2.30) then imply that c(x∗) = 0.
The second of the lemma’s statements then again holds because of Lemma 3.2.

2

This bound is central in the next result, directly inspired of Lemma 6.5.1 of Conn et al.
(2000).

Gould, Toint: Nonlinear programming without a penalty function or a filter 16

Lemma 3.9 Assume that (3.13) holds and that K is the index of a subsequence such that
(3.5) holds and K ∩ Cw ∩ Y = ∅. Then there exists a k2 > 0 such that, for k ≥ k1, k ∈ K,

‖sR
k ‖ ≤ 2

κ2
J

‖JT
k ck‖ (3.30)

and
δc
k ≥ κR‖sR

k ‖2, (3.31)

where κR is a positive constant.

Proof. The proof of (3.30) is identical to that of Lemma 6.5.1 in Conn et al. (2000)
(applied on the minimization of θ(x) in the range space of JT

k), taking into account
that the smallest eigenvalue of Wk is bounded below by κ2

J
for k ≥ k1 because of (3.14).

Substituting now (3.30) in (2.45) (which must hold since k 6∈ Y ∪ Cw) and using (3.3)
then yields that

δc
k ≥ 1

2
κ2

J
κnC2‖sR

k ‖min

[

κ2
J
‖sR

k ‖
2κ2

H

,∆c
k

]

,

which in turn gives (3.31) by using the bound ‖sR
k ‖ ≤ ‖sk‖ ≤ ∆c

k with

κR

def
= 1

2
κ2

J
κnC2 min

[

κ2
J

2κ2
H

, 1

]

.

2

We then prove that iterations in Ct must be very successful when the feasible set is ap-
proached.

Lemma 3.10 Assume and (3.13) holds and that K is the index of a subsequence such that
(3.5) holds and K ∩ Y = ∅. Then, for all k ∈ K ∩ Ct sufficiently large, ρc

k ≥ η2, iteration
k is very successful and ∆c

k+1 ≥ ∆c
k.

Proof. The limit (3.5) and (3.1) imply that ‖JT
k ck‖ converges to zero in K. Since

k 6∈ Cw, (3.30) holds and we may use it to obtain that

lim
k→∞,k∈K∩Ct

‖sR
k ‖ = 0.

Combining this limit with (3.31) and using Lemma 6.5.3 of Conn et al. (2000), we
deduce that ρc

k ≥ η2 for k ∈ K ∩ Ct sufficiently large. This implies that ∆c
k is never

decreased for k ∈ K ∩ Ct large enough. 2

We now return to the convergence properties of our algorithm, and, having covered in
Lemma 3.8 the case of finitely many successful iterations, we consider the case where
there are infinitely many of those. We start by assuming that they are all f -iterations for
k large.

Lemma 3.11 Assume that (3.13) holds, that |S| = +∞ and that | C ∩ S| < +∞. Then
there exists an infinite subsequence indexed by K such that

lim
k→∞,k∈K

‖ck‖ = 0. (3.32)

and
lim

k→∞,k∈K
πk = 0. (3.33)

Gould, Toint: Nonlinear programming without a penalty function or a filter 17

Proof. As a consequence of our assumptions, we immediately obtain that all suc-
cessful iterations must belong to F for k sufficiently large, and that there are infinitely
many of them. We also deduce that the sequence {f(xk)} is monotonically decreasing
for large enough k. Assume now, for the purpose of deriving a contradiction, that
(3.26) holds. Then (2.24), (2.33), (3.1) and (3.27) together give that, for all k ∈ S
sufficiently large,

δf
k ≥ κδκtCεf min

[

εf
κG

,min[∆c
k , εf]

]

. (3.34)

Assume now that there exists an infinite subsequence indexed by Kf ⊆ S such that
{∆c

k} converges to zero in Kf . Since ∆c
k is only decreased at unsuccessful c-iterations,

this in turn implies that there is a subsequence of such iterations indexed Kc ⊆ C \ S
with ∆c

k converging to zero. Because of Lemma 3.5, we may also assume, without loss
of generality, that Kc ⊆ Ct \ S. Lemma 3.10 then gives that ‖ck‖, and thus, because
of (3.13), ‖JT

k ck‖, must be bounded away from zero along Kc. The second statement
of Lemma 3.6 and the fact that ∆c

k is arbitrarily small for k sufficiently large in Kc

then ensure that iteration k must be very successful for k ∈ Kc large enough, which is
impossible. We therefore conclude that the sequence Kf described above cannot exist,
and hence that there is an ε∗ > 0 such that ∆c

k ≥ ε∗ for k ∈ S. Substituting this bound
in (3.34) yields that

δf
k ≥ κδκtCεf min

[

εf
κG

,min[ε∗, εf]

]

> 0. (3.35)

But we also have that

f(xk0
) − f(xk) =

k−1
∑

j=k0 ,j∈S

[f(xj) − f(xj+1)] ≥ η1

k−1
∑

j=k0 ,j∈S

δf
j . (3.36)

This bound combined with (3.35) and the identity |F ∩ S| = +∞ then implies that
f is unbounded below, which, in view of (2.46), contradicts (3.2). Hence (3.26) is
impossible and we deduce that

lim inf
k→∞

πk = 0, (3.37)

Let K be the index of a subsequence such that (3.37) holds as a true limit, immediately
giving (3.33). The fact that all successful iterations must eventually be f -iterations
implies (2.29) and we may thus deduce from (3.37), that (3.32) must hold. 2

After considering the case where the number of successful c-iterations is finite, we now
turn to the situation where it is infinite. We first deduce, in the next two lemmas, global
convergence for the problem of minimizing θ.

Lemma 3.12 Assume that | C ∩ S| = +∞. Then,

lim inf
k→∞,k∈C

‖JT
k ck‖ = 0. (3.38)

Proof. Assume, for the purpose of deriving a contradiction, that (3.28) holds.
Observe that the value of θmax

k is updated (and reduced) in (2.41) at each of the
infinitely many iterations indexed by C ∩ S.

Let us first assume that the maximum in (2.41) is attained infinitely often by the first
term. Since κtx1 < 1, we deduce that

lim
k→∞

θmax
k = 0.

Using the uniform boundedness of the constraint Jacobian (3.1) and (2.46), we then
immediately deduce from this limit that

lim
k→∞

‖JT
k ck‖ ≤ κH lim

k→∞
‖ck‖ ≤ κH lim

k→∞
θmax

k = 0,

Gould, Toint: Nonlinear programming without a penalty function or a filter 18

which is impossible in view of (3.28). Hence the maximum in (2.41) can only be
attained a finite number of times by the first term. Now let k ∈ C ∩ S be the index
of an iteration where the maximum is attained by the second term. Combining (2.45),
(3.3), (3.28) and (3.29), we obtain that

θmax
k − θmax

k+1 ≥ θ(xk) − θmax
k+1

≥ (1 − κtx2)
[

θ(xk) − θ(xk+1)
]

≥ (1 − κtx2)η1δ
c
k

≥ (1 − κtx2)η1κnC2εθ min

[

εθ
κ2

H

, εC

]

> 0.

(3.39)

Since the value of θmax
k is monotonic, this last inequality and the infinite nature of | C∩S|

implies that the sequence {θmax
k } is unbounded below, which obviously contradicts

(2.46). Hence, the maximum in (2.41) cannot either be attained infinitely often by
the second term. We must therefore conclude that our initial assumption (3.28) is
impossible, which gives (3.38). 2

Lemma 3.13 Assume that | C ∩ S| = +∞. Then either there exists a subsequence of
iterates approaching infeasible stationary point(s) of θ(x) in the sense that there is a sub-
sequence indexed by Z such that (3.12) holds, or we have that

lim
k→∞

‖ck‖ = 0. (3.40)

and there exists an ε∗ > 0 such that

∆c
k ≥ ε∗, (3.41)

for all k ∈ C sufficiently large.

Proof. Assume that no Z exists such that (3.12) holds. Then Lemma 3.12 implies
that there must exist an infinite subsequence indexed by G ⊆ C ∩ S such that

lim
k→∞,k∈G

‖JT
k ck‖ = lim

k→∞,k∈G
‖ck‖ = lim

k→∞,k∈G
θ(xk) = 0. (3.42)

As above, we immediately conclude from the inequality κtx1 < 1 and (2.41) that

lim
k→∞

θmax
k = 0 (3.43)

and thus, in view of (2.46) that (3.40) holds if the maximum in (2.41) is attained
infinitely often in G by the first term. If this is not the case, we deduce from (2.41)
that

lim
k→∞,k∈G

θmax
k+1 ≤ lim

k→∞,k∈G
θ(xk) = 0.

and thus, because of the monotonicity of the sequence {θmax
k }, that (3.43) and (3.40)

again hold.

Lemma 3.10 (with K = IN) and (3.40) then imply that ∆c
k+1 ≥ ∆c

k for all k ∈ Ct. In
addition, Lemma 3.5 ensures that ∆c

k is bounded below by a constant for all k ∈ Cw =
C \ Ct. These two observations and the fact that ∆c

k is only decreased for k ∈ C finally
imply (3.41). 2

Observe that it is not crucial that θmax
k is updated at every iteration in C ∩ S, but rather

that such updates occur infinitely often in a subset of this set along which ‖JT
k ck‖ converges

to zero. Other mechanisms to guarantee this property are possible, such as updating θmax
k

Gould, Toint: Nonlinear programming without a penalty function or a filter 19

every p iteration in C∩S at which ‖JT
k ck‖ decreases. Relaxed scheme of this type may have

the advantage of not pushing θmax
k too quickly to zero, therefore allowing more freedom

for f -iterations.
Our next result analyzes some technical consequences of the fact that there might

be an infinite number of c-iterations. In particular, it indicates that feasibility improves
linearly at c-iterations for sufficiently large k, and hence that these iterations must play a
diminishing role as k increases.

Lemma 3.14 Assume that (3.13) holds, that | C ∩ S| = +∞ and that no subsequence
exists such that (3.12) holds. Then (3.40) holds and

lim
k→∞

nk = 0, (3.44)

and
lim

k→∞
δf,n
k = 0, (3.45)

where δf,n
k

def
= mk(xk) −mk(xk + nk). Moreover (3.41) holds for k ∈ C sufficiently large.

In addition, we have that for k ∈ C ∩ S sufficiently large,

θk+1 < κθθk (3.46)

and
θmax

k+1 ≤ κθmθ
max
k (3.47)

for some κθ ∈ (0, 1) and some κθm ∈ (0, 1).

Proof. We first note that (3.40) holds because of Lemma 3.13. The limit (3.40) and
(2.5) then give that (3.44) holds, while (3.45) then follows from the identity

δf,n
k = 〈gk, nk〉 + 1

2
〈nk, Gknk〉, (3.48)

the Cauchy-Schwarz inequality, (3.40), Lemma 3.3 and (3.4). Finally, Lemma 3.13
implies that (3.41) holds for all k ∈ C sufficiently large.

If we now restrict our attention to k ∈ C ∩S, we also obtain, using (2.39), (3.40), (2.4),
(3.13) and (3.41), that

θk − θk+1 ≥ η1κcnκnC‖JT
k ck‖min

[

‖JT
k ck‖

1 + ‖Wk‖ ,∆
c
k

]

≥ η1κcnκnCκ
2
J

κ2
H

‖ck‖2

=
2η1κcnκnCκ

2
J

κ2
H

θk,

(3.49)

which gives (3.46) with κθ
def
= 1 − 2η1κcnκnCκ

2
J
/κ2

H
∈ (0, 1), where this last inclusion

follows from the fact that θk ≥ θk − θk+1 and (3.49). We now observe that θmax
k is

decreased in (2.41) at every successful c-iteration, yielding that, for k ∈ C ∩ S large
enough,

θmax
k+1 = max

[

κtx1θ
max
j , θ(xk) − (1 − κtx2)(θ(xk) − θ(x+

k))
]

≤ max
[

κtx1θ
max
k , θ(xk) − (1 − κtx2)(1 − κθ)θ(xk)

]

≤ max[κtx1, 1 − (1 − κθ)(1 − κtx2)]θ
max
k

= κθmθ
max
k ,

where we have used (3.46) and Lemma 2.3 to deduce the last inequalities, and where

we have defined κθm
def
= max[κtx1, 1− (1−κθ)(1−κtx2)] ∈ (0, 1). This yields (3.47) and

concludes the proof. 2

Gould, Toint: Nonlinear programming without a penalty function or a filter 20

Convergence of the criticality measure πk to zero then follows for a subsequence of
iterations, as we now prove.

Lemma 3.15 Assume that (3.13) holds and that | C ∩ S| = +∞. Then either there is a
subsequence indexed by Z such that (3.12) holds, or (3.40) holds and

lim inf
k→∞

πk = 0. (3.50)

Proof. Assume that no subsequence exists such that (3.12) holds. We may then
apply Lemma 3.14 and deduce that (3.40), (3.44), (3.45) hold and that (3.41) also hold
for all k ∈ C sufficiently large.

Assume now, again for the purpose of deriving a contradiction, that the inequality
(3.26) is satisfied for all k sufficiently large. This last inequality and Lemma 3.7 then
guarantee that (3.27) holds for all k sufficiently large, which, with (3.41), also yields
that, for k ∈ C large enough,

∆k ≥ min[ε∗, εF] > 0. (3.51)

The next step in our proof is to observe that, if iteration k is a successful c-iteration,
then (2.34) must hold because of (2.46). The successful c-iterations thus asymptotically
come in two types:

1. iterations for which the tangential step has not been computed,

2. iterations for which (2.33) fails.

Assume first that there is an infinite number of successful c-iterations of type 1. Itera-
tions of this type happen because either (2.13) or (2.29) fails, the latter being impossible
since both (3.26) and (3.40) hold. But (2.13) cannot fail either for k sufficiently large
because of (3.44) and (3.51). Hence this situation is impossible.

Assume otherwise that there is an infinite number of successful c-iterations of type 2.
Since (2.33) does not hold, we deduce that, for the relevant indices k,

δf
k = δf,t

k + δf,n
k < κδδ

f,t
k

and thus, using the fact that (2.24) ensures the non-negativity of δf,t
k , that

0 ≤ δf,t
k ≤ |δf,n

k |
1 − κδ

def
= κ̂δ |δf,n

k |. (3.52)

We may then invoke (3.45) to deduce that δf,t
k converges to zero. However this is

impossible since δf,t
k satisfies (2.24) and thus must be bounded away from zero because

of (3.1), (3.26) and (3.51).

We may therefore conclude that an impossible situation occurs for infinite subsequences
of each of the two types of successful c-iterations. This in turn implies that | C ∩ S|
is finite, which is also a contradiction. Our assumption (3.26) is therefore impossible,
and (3.50) follows. 2

We now combine our results so far and state a first important convergence property of our
algorithm.

Theorem 3.16 As long as infeasible stationary points are avoided, there exists a subse-
quence indexed by K such that (3.5), (3.7) and (3.8) hold, and thus at least one limit point
of the sequence {xk} (if any) is first-order critical. Moreover, we also have that (3.40)
holds when | C ∩ S | = +∞.

Gould, Toint: Nonlinear programming without a penalty function or a filter 21

Proof. The desired conclusions immediately follow from Lemmas 3.2, 3.8, 3.11,
3.13, 3.15. 2

Our intention is now to prove that the complete sequences {πk} and {‖Pkgk‖} both con-
verge to zero, rather than merely subsequences. The first step to achieve this objective
is to prove that the projection P (x) onto the nullspace of the Jacobian J(x) is Lipschitz
continuous when x is sufficiently close to the feasible domain.

Lemma 3.17 There exists a constant κP > 0 such that, for all x1 and x2 satisfying
max

[

‖c(x1)‖, ‖c(x2)‖
]

≤ κc, we have that

‖P (x1) − P (x2)‖ ≤ κP‖x1 − x2‖. (3.53)

Proof. Because of (3.13) and our assumption on c(x1) and c(x2), we know that

P (xi) = I − J(xi)
T [J(xi)J(xi)

T]−1J(xi) (i = 1, 2) (3.54)

Denoting J1
def
= J(x1) and J2

def
= J(x2), we first observe that

[J1J
T
1]−1 − [J2J

T
2]−1 = [J1J

T
1]−1

(

(J1 − J2)J
T
1 − J2(J1 − J2)

T
)

[J2J
T
2]−1. (3.55)

But the mean-value theorem and (3.1) imply that, for i = 1, . . . ,m,

‖∇xci(xk1
) −∇xci(gk2

)‖ ≤
∥

∥

∥

∥

∫ 1

0

∇xxci(xk1
+ t(xk2

− xk1
)(xk1

− xk2
) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖∇xxci(xk1
+ t(xk2

− xk1
)‖ ‖xk1

− xk2
‖

≤ κH‖xk1
− xk2

‖,
which in turn yields that

‖(J1 − J2)
T ‖ = ‖J1 − J2‖ ≤ mκH‖x1 − x2‖. (3.56)

Hence, using (3.55), (3.1) and (3.13), we obtain that

‖[J1J
T
1]−1 − [J2J

T
2]−1‖ ≤ 2mκ2

H

κ4
J

‖x1 − x2‖. (3.57)

Computing now the difference between P (x1) and P (x2) and using (3.54), we deduce
that

P (x1) − P (x2) = JT
1 [J1J

T
1]−1(J1 − J2) + (J2 − J1)

T [J2J
T
2]−1J2

+JT
1

(

[J1J
T
1]−1 − [J2J

T
2]−1

)

J2

and thus, using (3.1) and (3.13) again with (3.56) and (3.57),

‖P (x1) − P (x2)‖ ≤ mκ2
H

κ2
J

‖x1 − x2‖ +
mκ2

H

κ2
J

‖x1 − x2‖ +
2mκ4

H

κ4
J

‖x1 − x2‖.

This then yields (3.53) with κL =
2mκ2

H

κ2
J

(

1 +
κ2
H

κ2
J

)

. 2

We now refine our interpretation of the criticality measure πk, and verify that it approxi-
mates the norm of the projected gradient when the constraint violation is small enough.

Lemma 3.18 Assume that

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

> κHκGκn‖ck‖ + ω1(‖ck‖). (3.58)

Then we have that
πk = ψk‖Pkgk‖ (3.59)

for some ψk ∈ [1
9
, 11

3
].

Gould, Toint: Nonlinear programming without a penalty function or a filter 22

Proof. From (2.17) and (2.14), we know that

rk = Pk(gk +Gknk) + ω1(‖ck‖)u

for some normalized u, and thus, using (2.21),

πk

(

‖Pkgk + PkGknk + ω1(‖ck‖)u‖
)

= πk‖rk‖ = 〈gk, rk〉 + 〈Gknk, rk〉. (3.60)

Now, using the triangle inequality, (3.1), (2.5), (3.58) and the bound κH ≥ 1, we verify
that

‖Gknk + ω1(‖ck‖)u‖ ≤ κGκn‖ck‖ + ω1(‖ck‖) < 1
2
‖Pkgk‖

and hence

‖rk‖ = ‖Pkgk + PkGknk + ω1(‖ck‖)u‖ = ‖Pkgk‖(1 + αk)

with |αk| < 1
2
. Substituting this relation in (3.60) and using the symmetric and idem-

potent nature of the orthogonal projection Pk, we obtain that

πk = 1
1 + αk

〈gk, Pkgk〉
‖Pkgk‖ +

〈gk, PkGknk + ω1(‖ck‖)u〉
(1 + αk)‖Pkgk‖ +

〈Gknk, rk〉
‖rk‖

But the Cauchy-Schwarz inequality, (2.5), (3.1), the bounds ‖Pk‖ ≤ 1 and κH ≥ 1 and
(3.58) then ensure that

∣

∣

∣

∣

〈Gknk, rk〉
‖rk‖

∣

∣

∣

∣

≤ κGκn‖ck‖ < 1
2
‖Pkgk‖

and that
∣

∣

∣

∣

〈gk, PkGknk + ω1(‖ck‖)u〉
(1 + αk)‖Pkgk‖

∣

∣

∣

∣

≤ κHκGκn‖ck‖ + ω1(‖ck‖)
(1 + αk)‖Pkgk‖

<
1

12(1 + αk)
‖Pkgk‖.

Hence we deduce that, for some βk ∈ [− 1
2
, 1

2
] and some ζk ∈ [− 1

12
, 1

12
],

πk =
1 + ζk
1 + αk

‖Pkgk‖ + βk‖Pkgk‖ =
1 + ζk + βk + αkβk

1 + αk
‖Pkgk‖.

This in turn yields (3.59) because

ψk
def
=

1 + ζk + βk + αkβk

1 + αk
∈ [1

9
, 11

3
]

for all (αk, βk) ∈ [− 1
2
, 1

2
] × [− 1

2
, 1

2
] × [− 1

12
, 1

12
]. 2

The preceding result ensures the following simple but useful technical consequence.

Lemma 3.19 Assume that ε > 0 is given and that

κHκGκn‖ck‖ + ω1(‖ck‖) ≤ ε. (3.61)

Then, for any α > 1
5
,

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 5αε implies that πk ≥ αε.

Proof. Assume first that (3.58) fails. We then obtain, using (3.61), that

5αε ≤ min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≤ κHκGκn‖ck‖ + ω1(‖ck‖) ≤ ε,

which is impossible because α > 1
5
. Hence (3.58) must hold. In this case, we see, using

Lemma 3.18, that

1
2
πk = 1

2
ψk‖Pkgk‖ ≥ ψk min

[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 5
9
αε > 1

2
αε,

as desired. 2

Gould, Toint: Nonlinear programming without a penalty function or a filter 23

We now examine the consequences of the existence of a subsequence of consecutive f -
iterations where πk is bounded away from zero.

Lemma 3.20 Assume that there exist k1 ∈ S and k2 ∈ S with k2 > k1 such that all
successful iterations between k1 and k2 − 1 are f -iterations, i.e.

{k1, . . . , k2 − 1} ∩ S ⊆ F , (3.62)

with the property that

πj ≥ ε for all j ∈ {k1, . . . , k2 − 1} ∩ S (3.63)

for some ε > 0. Assume furthermore that

f(xk1
) − f(xk2

) ≤ η1κδκtCε
2

2κG

. (3.64)

Then

‖xk1
− xk2

‖ ≤ 1

η1κδκtCε

[

f(xk1
) − f(xk2

)
]

. (3.65)

Proof. Consider a successful iteration j in the range k1, . . . , k2 − 1 and note that
the sequence {f(xj)}k2

j=k1
is monotonically decreasing. We then deduce from (2.11),

(2.24), (2.33) and (3.63) that

δf
j ≥ κδκtCπj min

[

πj

1 + ‖Gj‖
,∆j

]

≥ κδκtCεmin

[

ε

κG

,∆j

]

.

Hence, since j ∈ S, (2.35) implies that

f(xj) − f(xj+1) ≥ η1δ
f
k ≥ η1κδκtCεmin

[

ε

κG

,∆j

]

. (3.66)

But the bound (3.64) and the inequality f(xj) − f(xj+1) ≤ f(xk1
) − f(xk2

) yield
together that the minimum in the right-hand side of (3.66) must be achieved by the
second term. This in turn implies that

‖xj − xj+1‖ ≤ ∆j ≤ 1

η1κδκtCε

[

f(xj) − f(xj+1)
]

.

Summing now over all successful iterations from k1 to k2 − 1 and using the triangle
inequality, we therefore obtain that

‖xk1
− xk2

‖ ≤
k2−1
∑

j=k1 ,j∈S

‖xj − xj+1‖ ≤ 1

η1κδκtCε

k2−1
∑

j=k1 ,j∈S

[

f(xj) − f(xj+1)
]

and (3.65) follows. 2

Our next step is to extend Lemma 3.11 by showing that the constraint violation goes to
zero not only along the subsequence for which the criticality πk goes to zero, but actually
along the complete sequence of iterates.

Lemma 3.21 Assume that | C ∩ S | < +∞ and that | S | = +∞, and that ω2 is strictly
increasing on [0, tω] for some tω > 0. Then

lim
k→∞

‖ck‖ = 0.

Gould, Toint: Nonlinear programming without a penalty function or a filter 24

Proof. Let k0 be the index of the last successful iteration in C (or -1 if there is
none). Thus all successful iterations beyond k0 must be f -iterations. In this case, we
know that the sequence {f(xk)} is monotonically decreasing (by the mechanism of the
algorithm) and bounded below by flow because of (3.2); it is thus convergent to some
limit f∗ ≥ flow. Assume first that there exists a subsequence indexed by Kc ⊆ F ∩ S
such that

‖ck‖ ≥ ε0

for some ε0 > 0 and all k ∈ Kc with k > k0. Because of (2.29) and the monotonicity
of ω2, we then deduce that

πk ≥ ω2(ε0)

for all k ∈ Kc with k > k0. On the other hand, Lemma 3.11 implies the existence of an
infinite subsequence K such that (3.5) and (3.7) both hold. We now choose an ε > 0
small enough to ensure that

ε ≤ min [1
2
ω2(ε0), tω] and ω−1

2 (ε) + 1
4
ε ≤ 1

2
ε0. (3.67)

(Note that the first part of the condition and our assumption on ω2 ensures that this
bounding function is invertible for all t ≤ ε.) We next choose an index k1 ∈ Kc large
enough to ensure that k1 > k0 and also that

fk1
− f∗ ≤ min

[

η1κδκtCε
2

2κG

,
η1κδκtCε

2

4κH

]

, (3.68)

which is possible since {f(xk)} converges in a monotonically decreasing manner to f∗.
We finally select k2 to be the first index in K after k1 such that

πj ≥ ε for all k1 ≤ j < k2, j ∈ S, and πk2
< ε. (3.69)

Because f(x1) − f(xk2
) ≤ f(xk1

) − f∗ and (3.68), we may then apply Lemma 3.20 to
the iterations k1 and k2, and deduce that (3.65) holds, and therefore, using (3.64), that

‖xk1
− xk2

‖ ≤ ε

4κH

.

Thus, using the vector-valued mean-value theorem, we the obtain that

‖ck1
− ck2

‖ ≤
∥

∥

∥

∥

∫ 1

0

J(xk1 + t(xk2
− xk1

))(xk1
− xk2

) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖J(xk1 + t(xk2
− xk1

))‖ ‖xk1
− xk2

‖

≤ κH‖xk1
− xk2

‖

≤ 1
4
ε

As a consequence, using the triangle inequality, the fact that ω2(‖ck2
‖) ≤ πk2

(since
k2 ∈ F) and the second part of (3.67), we deduce that

ε0 ≤ ‖ck1
‖ ≤ ‖ck2

‖ + 1
4
ε ≤ ω−1

2 (πk2
) + 1

4
ε ≤ ω−1

2 (ε) + 1
4
ε ≤ 1

2
ε0

which is a contradiction. Hence our initial assumption on the existence of the subse-
quence Kc is impossible and ‖ck‖ must converge to zero, as required. 2

We finally strengthen the convergence results obtained in Theorem 3.16 by avoiding taking
limits along subsequences.

Gould, Toint: Nonlinear programming without a penalty function or a filter 25

Theorem 3.22 Assume that (3.13) holds and that ω2 is strictly increasing in [0, tω] for
some tω > 0. Then, we have that, either there exists a subsequence indexed by Z such that
(3.12) holds, or

lim
k→∞

‖ck‖ = 0 and lim
k→∞

‖Pkgk‖ = 0, (3.70)

and all limit points of the sequence {xk} (if any) are first-order critical.

Proof. Assume that no subsequence exists such that (3.12) holds. If there are
only finitely many successful iterations, the desired conclusion directly follows from
Theorem 3.8. Assume therefore that |S| = +∞ and immediately note that the first
limit in (3.70) follows from Theorem 3.16. Thus we only need to prove the second limit
in (3.70) when they are infinitely many successful iterations.

For this purpose, assume, with the objective of deriving a contradiction, that there
exists an infinite subsequence indexed by K such that, for some ε ∈ (0, 1

5
),

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 10ε for all k ∈ K. (3.71)

Now choose k1 ∈ K large enough to ensure that, for all k ≥ k1, (3.61) holds,

‖ck‖ ≤ min

[

2κH

κnκG

, κc

]

, (3.72)

and
ω2(‖ck‖) ≤ 1

2
ε. (3.73)

If | C ∩ S | = +∞, we also require that the conclusions of Lemma 3.14 apply, that

|δf,n
k | ≤ κtCε

2

2κ̂δκG

(3.74)

for all k ≥ k1, and that

√

2θmax
k1

≤ η1κδκtC(1 −√
κθm)ε2

4κ3
H
(κP + 1)κnκ0

(3.75)

(where κ0
def
= max

[

1, 2κ̂δκH

κtCε

]

), which is possible because of Lemma 3.14. Conversely,

if | C ∩ S | < +∞, we require that k1 is larger than the index of the last successful
c-iteration. Observe that, because of (3.61) and Lemma 3.19 (with α = 2), (3.71)
implies that

πk1
≥ 2ε > 0. (3.76)

We now choose k2 to be the (first) successful iteration after k1 such that

πk2
< ε, (3.77)

which we know must exist because of Theorem 3.16. Note that this last inequality,
(3.61) and Lemma 3.19 (with α = 1) then give that

min
[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2

]

≤ 5ε. (3.78)

Our choice of k1 and k2 also yields that

πj ≥ ε for k1 ≤ j < k2. (3.79)

Assume now that | C ∩ S | = +∞ and consider an iteration j ∈ C ∩S with k1 ≤ j < k2,
and note that (2.29) must hold at such an iteration because of (3.73) and (3.79).
Assume first that (2.13) also holds and thus that the tangential step tj is computed.

Gould, Toint: Nonlinear programming without a penalty function or a filter 26

We know from (3.46) and Lemma 2.3 that θ+
j ≤ κθθj ≤ κθθ

max
j . Hence (2.34) holds.

As a consequence (2.33) must fail and we obtain that

κ̂δ|δf,n
j | > δf,t

j ≥ κtCεmin

[

ε

κG

,∆j

]

where we used (2.24), (3.52), (3.79) and Lemma 3.3. But (3.74) then implies that the
minimum in the last right-hand side must be achieved by the second term, and hence,
using (2.11), that

‖sj‖ ≤ ∆k ≤ κ̂δ

κtCε
|δf,n

j |. (3.80)

Using now successively the definition of δf,n
j (as in (3.48)), the Cauchy-Schwarz in-

equality, (3.1), (2.5) and (3.72), we deduce that

|δf,n
j | = |〈gj , nj〉 + 1

2
〈nj , Gjnj〉|

≤ ‖gj‖ ‖nj‖ + 1
2
‖Gj‖ ‖nj‖2

≤ (κH + 1
2
κGκn‖cj‖)‖nj‖

≤ 2κH‖nj‖.

Combining the last bound with (3.80), we find that

‖sj‖ ≤ 2κ̂δκH

κtCε
‖nj‖.

Conversely, if (2.13) does not hold, we have that tj = 0 and hence sj = nj . As a
consequence, we obtain that, for every j ∈ C ∩ S such that k1 ≤ j < k2,

‖sj‖ ≤ max

[

1,
2κ̂δκH

κtCε

]

‖nj‖ ≤ κnκ0‖cj‖ ≤ κnκ0

√

2θmax
j (3.81)

where (2.5) and Lemma 2.3 are used to obtain the last two inequalities. Remembering
now Lemma 3.14 and the fact that θmax

j is unchanged at iterations outside C ∩ S, we
thus deduce that, for any k3 ≥ k1,

k3
∑

j=k1 ,j∈C∩S

‖sj‖ ≤ κnκ0

k3
∑

j=k1,j∈C∩S

√

2θmax
j

≤ κnκ0

√

2θmax
k1

k3
∑

j=k1 ,j∈C∩S

κ
1
2
|C∩{kc

1,...,k3}|

θm

≤ κnκ0

√

2θmax
k1

∞
∑

j=0

κ
j/2
θm

≤ κnκ0

1 −√
κθm

√

2θmax
k1

(3.82)

But this last bound, (3.75) and the inequality η1κδκtCε ≤ 4κH then yield that, for any
k3 ≥ k1,

k3
∑

j=k1 ,j∈C∩S

‖sj‖ ≤ ε

κ2
H
(κP + 1)

. (3.83)

Note that this bound is valid irrespective of k3. Using the mean value theorem, we
now obtain that

| f(xj) − f(xj+1) | = | 〈gj , sj〉 + 1
2
〈sj ,∇xxf(ξj)sj〉 | ≤ κH‖sj‖ + 1

2
κH‖sk‖2

for some ξj ∈ [xj , xj+1), and where we have used the Cauchy-Schwarz inequality and
(3.1) to deduce the last inequality. But (2.5), (3.81) and condition (3.72) then imply
that

‖sj‖ + 1
2
‖sk‖2 ≤ ‖sj‖(1 + 1

2
κ0‖nj‖) ≤ ‖sj‖(1 + 1

2
κ0κn‖cj‖) ≤ 2‖sj‖

Gould, Toint: Nonlinear programming without a penalty function or a filter 27

and hence, using (3.82), that

k3
∑

j=1,j∈C∩S

| f(xj) − f(xj+1) | ≤ 2κH

k3
∑

j=k1,j∈C∩S

‖sj‖ ≤ 2κnκHκ0

1−√
κθm

√

2θmax
k1

.

Taking the limit for k3 going to infinity, we see, using (3.75), that

∞
∑

j=k1,j∈C∩S

| f(xj) − f(xj+1) | ≤
2κnκHκ0

1 −√
κθm

√

2θmax
k1

≤ η1κδκtCε
2

2κ2
H
(κP + 1)

. (3.84)

Note that this bound remains valid if | C ∩ S | < +∞ since the sum on the left-hand
side is empty in that case.

We now observe that the objective function is decreased at every successful f -iteration
and the total decrease, from iteration k1 on, cannot exceed the maximum value of f(xk)
for k ≥ k1 minus the lower bound flow specified by (3.2). Moreover the maximum of
f(xk) beyond iteration k1 cannot itself exceed f(xk1) augmented by the total increase
occuring at all c-iterations beyond k1, which is given by (3.84). As a consequence, we
may conclude that

∞
∑

j=k1,j∈S

| f(xj) − f(xj+1) | =
∞
∑

j=k1,j∈F∩S

[

f(xj) − f(xj+1)
]

+
∞
∑

j=k1,j∈C∩S

| f(xj) − f(xj+1) |

≤
[

f(xk1
) +

η1κδκtCε
2κ2

H
(κP + 1)

− flow

]

+
η1κδκtCε

2κ2
H
(κP + 1)

,

which in turn implies that

∞
∑

j=0,j∈S

| f(xj) − f(xj+1) | < +∞ and lim
`→∞

∞
∑

j=`,j∈S

| f(xj) − f(xj+1) | = 0.

Because of this last limit, we may therefore possibly increase k1 ∈ K (and k2 accord-
ingly) to ensure that

∞
∑

j=k1,j∈S

| f(xj) − f(xj+1) | ≤ min

[

η1κδκtCε
2

2κG

,
η1κδκtCε

2

2κ2
H
(κP + 1)

]

(3.85)

in addition to (3.61), (3.72), (3.73), as well as the conclusions of Lemma 3.14, (3.74)
and (3.75) if | C ∩ S | = +∞.

Consider now a range of consecutive successful f -iterations (i.e. a range containing at
least one successful f -iteration and no successful c-iteration), indexed by {ka, . . . , kb −
1}. Observe that (3.85) gives that

f(xka
) − f(xkb

) ≤ η1κδκtCε
2

2κG

.

Then, using Lemma 3.20 (which is applicable because of (3.79) and this last bound),
we deduce that

‖xka
− xkb

‖ ≤ 1
η1κδκtCε

[

f(xka
) − f(xkb

)
]

.

We now sum on all disjoint sequences {ka,`, . . . , kb,`}p
`=1 of this type between k1 and

k2 − 1 (if any), and find that

k2−1
∑

j=k1 ,j∈F∩S

‖xj−xj+1‖ =

p
∑

`=1

‖xka,`
−xkb,`

‖ ≤ 1

η1κδκtCε

p
∑

`=1

[

f(xka,`
)−f(xkb,`

)
]

. (3.86)

Gould, Toint: Nonlinear programming without a penalty function or a filter 28

We now decompose this last sum and obtain, using (3.84) and (3.85), that

p
∑

`=1

[

f(xka,`
) − f(xkb,`

)
]

≤
∞
∑

`=1

[

f(xka,`
) − f(xkb,`

)
]

=

∞
∑

j=k1,j∈F∩S

[

f(xj) − f(xj+1)
]

=

∞
∑

j=k1 ,j∈S

[

f(xj) − f(xj+1)
]

−
∞
∑

j=k1,j∈C∩S

[

f(xj) − f(xj+1)
]

≤
∞
∑

j=k1 ,j∈S

|f(xj) − f(xj+1)| +
∞
∑

j=k1,j∈C∩S

∣

∣f(xj) − f(xj+1)
∣

∣

≤ η1κδκtCε
2

κ2
H
(κP + 1)

Substituting this inequality in (3.86), we obtain that

k2−1
∑

j=k1 ,j∈F∩S

‖xj − xj+1‖ ≤ ε

κ2
H
(κP + 1)

and thus, using the triangle inequality and (3.83) with k3 = k2 − 1, that

‖xk1
− xk2

‖ ≤
k2−1
∑

j=k1 ,j∈C∩S

‖xj − xj+1‖+

k2−1
∑

j=k1 ,j∈F∩S

‖xj − xj+1‖ ≤ 2ε

κ2
H
(κP + 1)

. (3.87)

We now return to considering the sizes of the projected gradients at iterations k1 and
k2. We know from (3.71), (3.78) and the triangle inequality that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ ‖Pk1
gk1

− Pk2
gk2

‖
≤ ‖(Pk1

− Pk2
)gk1

‖ + ‖Pk2
(gk1

− gk1
)‖

≤ ‖Pk1
− Pk2

‖ ‖gk1
‖ + ‖Pk2

‖ ‖gk1
− gk1

‖.

In view of (3.72), we may now apply Lemma 3.17 and, recalling that the norm of an
orthogonal projection is bounded above by one, deduce that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ κPκH‖xk1
− xk2

‖ + ‖gk1
− gk1

‖, (3.88)

where we have used (3.1) to bound ‖gk1
‖. But the vector-valued mean-value theorem

ensures that

‖gk1
− gk2

‖ ≤
∥

∥

∥

∥

∫ 1

0

∇xxf(xk1
+ t(xk2

− xk1
))(xk1

− xk2
) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖∇xxf(xk1
+ t(xk2

− xk1
))‖ ‖xk1

− xk2
‖

≤ κH‖xk1
− xk2

‖,

where we also used (3.1). Substituting this last inequality in (3.88) and using (3.87),
we finally obtain that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ κH(κP + 1)‖xk1
− xk2

‖ ≤ 2ε

κH

. (3.89)

Observe now that the inequality ε ≤ 1
5

and (3.78) imply together that

‖Pk2
gk2

‖ ≤ 10ε ≤ 2 or ‖Pk2
gk2

‖2 ≤ 60ε ≤ 12 < 16,

Gould, Toint: Nonlinear programming without a penalty function or a filter 29

which in turn implies that
‖Pk2

gk2
‖ < 4 (3.90)

and thus that
min

[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2

]

= 1
12
‖Pk2

gk2
‖2. (3.91)

Suppose now that
‖Pk1

gk1
‖ ≤ 6, (3.92)

in which case
min

[

1
2
‖Pk1

gk1
‖, 1

12
‖Pk1

gk1
‖2

]

= 1
12
‖Pk1

gk1
‖2. (3.93)

Then, successively using (3.71), (3.78), (3.93), (3.91), the bound of one on the norm of
orthogonal projections, (3.1) and (3.89), we conclude that

5ε ≤ min
[

1
2
‖Pk1

gk1
‖, 1

12
‖Pk1

gk1
‖2

]

− min
[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2

]

= 1
12

[

‖Pk1
gk1

‖2 − ‖Pk2
gk2

‖2
]

= 1
12

[

‖Pk1
gk1

‖ + ‖Pk2
gk2

‖
][

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖
]

≤ 1
6
κH

[

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖
]

≤ 1
3
ε

which is impossible. Hence (3.92) must be false. Combining now this observation with
(3.90), we obtain that

2 < ‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ 2ε

κH

,

which is again impossible. Hence our assumption (3.71) is itself impossible and the
second limit of (3.70) must hold. 2

We end our theoretical developments at this point, but the theory and results presented
so far suggest some comments.

1. Assumption (3.2) is not really crucial in the sense that one may apply c-iterations (by
temporarily setting f ≡ 0 and keeping ŷk = 0) a priori (hence reducing infeasibility)
to reduce the domain. If a global lower bound on the objective function value on the
feasible domain is known, a comparison of the infeasibility and objective function
value at the starting point may be useful to decide whether pure c-iterations should
be applied first, or if the complete algorithm can be applied directly from the starting
point.

2. When the Jacobian Jk is full-rank, we can rewrite the test (2.14) in the form

‖Jk(gN

k + JT
k yk)‖ ≤ ω1(‖ck‖),

which provides an implementable version of (2.14).

3. Remarkably, convergence of trust-region methods for unconstrained optimization
may be obtained as a by-product of the results presented here. Indeed, if there are
no constraints, the algorithm reduces to the basic trust-region method by setting
θmax
0 = κca, and, for every k, nk = 0, yk = 0, ŷk = 0, rk = gk. Since πk = ‖gk‖, we

have that πk > ω2(0) = 0 and a non-zero tk is always computed. Moreover, every

iteration is then an f -iteration with δf
k = δf,t

k at which we choose, as allowed by
(2.37), not to update the (irrelevant) ∆c

k.

4. Obviously, one could use Gk = Hk and still obtain global convergence. The vector
ŷk then becomes irrelevant. This is particularly apt when the constraints are linear.

Gould, Toint: Nonlinear programming without a penalty function or a filter 30

5. The tangential step is only required to satisfy the modified Cauchy condition (2.24),
but there is no theoretical need to compute the associated modified Cauchy point
(the solution of (2.19)). If one considers that tk results from an iterative process
starting (and possibly ending) at this modified Cauchy point, it is then necessary
to ensure that this point satisfies either (2.28) or (2.25)-(2.26)-(2.27). A possible
technique is to first solve (2.18) accurately enough to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ κttθ
max
k , (3.94)

which is possible since it holds trivially if (2.18) is solved exactly, because then
Jkrk = 0 by construction and ϑk < ‖ck + Jknk‖2. As soon as (3.94) holds, then
the modified Cauchy point can be computed and (2.26) and (2.25) tested. If any of
these fail, then the solution of (2.18) must be continued to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ ϑk

and a new, improved, modified Cauchy point can then be found along −rk at which
(2.28) holds.

6. It is interesting to observe that the conditions (2.27) or (2.28) happen to be irrelevant
for successful f -iterations in the theory discussed above. For such iterations, the
role of limiting the acceptable infeasibility is played by (2.34). Indeed (2.27) is only
used to show that (2.34) also holds for small enough ∆c

k, which then implies that
the considered iteration is an f -iteration. Condition (2.28) is crucial in establishing
(2.45) in Lemma 2.1, but this global Cauchy condition on the feasibility improvement
in only used for c-iterations (in Lemmas 3.6, 3.9 and 3.12). Finally, (2.28) is also
used in Lemma 3.8, but again only for c-iterations.

In a situation where evaluating the value of the infeasibility measure θ is cheap and
the tangential step is computed by an iterative process, it may be possible to detect
that (2.33) holds before the end of this process, and then simply replace conditions
(2.27)/(2.28) by the verification that (2.34) holds. Of course, if (2.35) then fails or
if (2.34) cannot be enforced, then the iteration has to be handled as an unsucessful
c-iteration, since we can no longer turn it into a successful c-iteration for which
(2.27)/(2.28) is meaningful.

7. The preliminary numerical experience discussed in the next section has shown that
our algorithm, like many SQP methods, might suffer from the Maratos effect. A
well documented cure for this problem (see Mayne and Polak, 1982, Coleman and
Conn, 1982, or Section 15.3.2 of Conn et al., 2000) is to use second-order correction
steps. In our context, we define a such a step sC

k as a step performed from xk + sk

to correct for an unsuccessful f -iteration, and such that

‖sk + sC

k‖ ≤ ∆k (3.95)

and
θ(xk + sk + sC

k) ≤ θmax
k . (3.96)

Of course, for the f -iteration using the augmented step sk + sC

k to be successful , we
still require, extending (2.35), that

ρC

k
def
=

f(xk) − f(xk + sk + sC

k)

mk(xk) −mk(xk + sk)
≥ η1. (3.97)

Using the comment just made on the irrelevant nature of (2.27) or (2.28) for suc-
cessful f -iterations, we may now verify that the convergence theory presented above
is not modified by the presence of these correction steps. Indeed, a successful iter-
ation using the augmented step satisfies all the conditions required for a successful
f -iteration where mk(x + sk) is then interpreted, in the spirit of Section 10.4.2 in

Gould, Toint: Nonlinear programming without a penalty function or a filter 31

Conn et al. (2000), as a prediction of f(xk + sk + sC

k) and where the infeasibility-
limiting condition (2.34) is replaced by (3.96).

In practice, a second-order correction is often computed by producing a step sC

k that
reduces infeasibility, typically by “projecting” the trial point lying in or close to the
nullspace of J(xk) onto the actual feasible set. In this case, sC

k not only improves
feasibility (ensuring (3.96)), but often makes mk(xk + sk) to be a better prediction
of the value of f(xk + sk + sM

k) than of f(xk + sk) (which tends to make the iteration
acceptable in (3.97)). Because ‖sC

k‖ is then of the order of ‖sk‖2, condition (3.95)
usually follows from (2.11).

The authors are well aware that many theoretical questions remain open at this stage of
analysis, such as convergence to second-order critical points, rate of convergence and worst-
case complexity analysis. Furthermore, the many degrees of freedom in the algorithm
provide considerable room for implementation.

4 Preliminary numerical experience

An initial (experimental) implementation of the method presented above has been pro-
duced, in which the following choices are made:

• The normal step nk is computed by applying the truncated conjugate-gradient al-
gorithm to attempt to minimize the Gauss-Newton model (2.2), stopping as soon as
the gradient of (2.2) has been reduced in norm by a factor 10−12, or an iterate crosses
the trust-region boundary—in which case the path of iterates is retraced to find the
point at which it crosses—or more than m+ 1 iterations have been performed.

• The multipliers yk are computed by solving the normal equations

JkJ
T
k yk = −Jkg

N

k

if Jk is of full rank, or approximated by applying the conjugate-gradient method to
(2.18) otherwise. In the latter case, as before the iteration is terminated as soon as
the gradient of (2.18) has been reduced in norm by a factor 10−12, or more than
m+ 1 iterations have been performed.

• An exact tangential step is computed using the generalized Lanczos trust-region
(GLTR) method of Gould, Lucidi, Roma and Toint (1999). In particular, the pro-
jected, preconditioned variant proposed by Gould, Hribar and Nocedal (2001), in
which iterates are kept in the null space of Jk by operations involving factors of the
coefficient matrix

(

I J̄T
k

J̄k 0

)

obtained from the sparse symmetric, indefinite factorization package MA57 (Duff,
2004), is used. Here J̄k comprises rows of Jk after redundancies have been identified
and removed, exactly as described in Cartis and Gould (2006).

• Of the many constants involved in the algorithm, we chose

κca = 1000, κcr = 2, κB = 0.9, κδ = 0.1, κtx1 = 0.9, κtx2 = 0.5,
κn = 102, κnC = 0.5, κtC1 = 0.5, η1 = 0.1, η2 = 0.9, and η3 = 0.5.

The other constants (κnr, κr, κtt, κnt, κcn) are not needed for our simplified algorithm.
Each bounding function used is ω(α) = 0.01 min(1, α2). The radius update (2.36) is
implemented as

∆f
k+1 ∈







2∆f
k if ρf

k ≥ η2,

∆f
k if ρf

k ∈ [η1, η2),

0.5∆f
k if ρf

k < η1,

Gould, Toint: Nonlinear programming without a penalty function or a filter 32

while that for (2.40) is

∆c
k+1 ∈







2∆c
k if ρc

k ≥ η2 and δc
k ≥ κcnδ

c,n
k ,

∆c
k if ρc

k ∈ [η1, η2) and δc
k ≥ κcnδ

c,n
k ,

0.5∆c
k if ρc

k < η1 or δc
k < κcnδ

c,n
k .

Thus, at this stage, the possibility of computing inexact SQP steps has not been imple-
mented, primarily because we have yet to finalise the details. Nevertheless, we believe
that it is of interest to see whether the basic trust-funnel convergence mechanism we have
developed shows promise.

Thus we give the results obtained by applying our algorithm to all of the equality
constrained problems from the CUTEr collection (see Gould, Orban and Toint, 2003);
for those whose dimensions may be adjusted, we chose small variants simply so as not
to overload our computing environment. For each problem, in Table 4.1 we report its
number of variables (n), its number of constraints (m), the number if iterations required for
convergence (iter), the number of gradient evaluations (ngeval), the final objective function
and constraint values (f and c) and the cpu-time spent (time). The algorithm is stopped
as soon as the norms of primal and dual infeasibility ‖c(xk)‖ and ‖g(xk) + JT (xk)yk‖ are
both smaller than 10−5. An upper limit on the number of iterations was set to 1000.

All of our experiments were performed on a single processor of a 3.06 GHz Dell Precision
650 Workstation. Our algorithm, Algorithm 2.1 on page 8, was implemented as a Matlab
M-file, and the tests performed using Matlab 7.2.

Name n m iter ngeval f c time

ALLINITC 2 1 9 8 -1.00e+00 9.27e-06 0.10
BT1 2 1 211 182 -1.00e-00 3.55e-13 1.82
BT2 3 1 12 12 3.26e-02 4.47e-06 0.11
BT3 5 3 6 6 4.09e+00 4.22e-15 0.05
BT4 3 2 9 7 -4.55e+01 1.33e-08 0.07
BT5 3 2 11 8 9.62e+02 7.45e-09 0.11
BT6 5 2 21 11 2.77e-01 1.39e-06 0.17
BT7 5 3 31 20 3.06e+02 3.34e-07 0.23
BT8 5 2 10 10 1.00e+00 3.81e-06 0.07
BT9 4 2 19 16 -1.00e+00 5.04e-06 0.24
BT10 2 2 7 7 -1.00e+00 4.18e-09 0.06
BT11 5 3 10 9 8.25e-01 2.99e-08 0.09
BT12 5 3 7 7 6.19e+00 8.30e-08 0.07
BYRDSPHR 3 2 8 7 -4.68e+00 1.74e-10 0.09
DATA1 90 73 1000 735 -1.50e+01 2.49e-08 54.28
DIXCHLNG 10 5 11 10 2.47e+03 2.97e-07 0.14
EIGENA2 110 55 4 4 0.00e+00 0.00e+00 0.07
EIGENACO 110 55 4 4 0.00e+00 0.00e+00 0.11
EIGENB2 110 55 3 3 1.80e+01 0.00e+00 0.07
EIGENBCO 110 55 3 3 9.00e+00 0.00e+00 0.08
EIGENC2 462 231 14 9 6.51e-11 2.77e-06 25.90
EIGENCCO 462 231 30 19 6.81e-28 2.88e-06 79.93
ELEC 150 50 110 54 1.06e+03 2.32e-09 2.97
FCCU 19 8 5 5 1.11e+01 3.55e-15 0.06
GRIDNETE 60 36 7 7 3.96e+01 1.78e-15 0.33
GRIDNETH 264 144 7 7 5.71e+01 2.07e-07 1.49
HS6 2 1 12 10 3.41e-21 1.66e-07 0.08
HS7 2 1 10 8 -1.73e+00 9.67e-10 0.08
HS8 2 2 8 6 -1.00e+00 3.62e-11 0.06
HS9 2 1 4 3 -5.00e-01 0.00e+00 0.10
HS26 3 1 17 14 7.37e-11 4.86e-06 0.15
HS27 3 1 10 10 4.00e-02 1.61e-06 0.13
HS28 3 1 3 3 0.00e+00 1.33e-15 0.04

Table 4.1: Results for the Trust-funnel Algorithm

Gould, Toint: Nonlinear programming without a penalty function or a filter 33

Name n m iter ngeval f c time

HS39 4 2 19 16 -1.00e+00 5.04e-06 0.26
HS40 4 3 5 5 -2.50e-01 1.69e-06 0.06
HS42 4 2 6 6 1.39e+01 6.21e-06 0.06
HS46 5 2 16 16 1.11e-09 7.92e-06 0.16
HS47 5 3 22 16 4.06e-10 5.41e-07 0.21
HS47 5 3 22 16 4.06e-10 5.41e-07 0.21
HS48 5 2 3 3 0.00e+00 1.55e-15 0.02
HS49 5 2 16 16 6.96e-09 1.33e-15 0.12
HS50 5 3 9 9 4.93e-32 2.66e-15 0.08
HS51 2 1 6 6 0.00e+00 0.00e+00 0.04
HS51 5 3 3 3 0.00e+00 0.00e+00 0.02
HS52 5 3 3 3 5.33e+00 4.01e-15 0.03
HS55SIM 1 1 2 2 0.00e+00 0.00e+00 0.03
HS56 7 4 125 63 -3.46e+00 2.42e-09 1.51
HS61 3 2 8 7 -1.44e+02 7.57e-06 0.09
HS77 5 2 21 11 2.42e-01 1.03e-06 0.16
HS78 5 3 6 5 -2.92e+00 2.24e-08 0.05
HS79 5 3 6 6 7.88e-02 1.34e-08 0.05
HS100LNP 7 2 15 9 6.81e+02 2.00e-09 0.16
HS111LNP 10 3 17 13 -4.78e+01 1.63e-06 0.17
KOPPEL 12 6 4 3 4.50e+00 2.98e-09 0.03
LCH 150 1 101 43 -4.23e+00 3.01e-07 4.16
LUKVLE1 100 98 8 8 6.23e+00 1.00e-08 0.21
LUKVLE2 100 49 1000 998 -4.04e+41 3.85e-06 15.30
LUKVLE3 100 2 11 11 2.76e+01 3.63e-08 0.25
LUKVLE4 100 49 1000 741 -1.63e+16 5.43e-07 16.13
LUKVLE6 99 49 16 16 6.04e+03 3.62e-06 0.47
LUKVLE7 100 4 13 11 -2.59e+01 1.11e-07 0.24
LUKVLE8 100 98 285 284 1.06e+04 1.63e-06 10.73
LUKVLE9 100 6 248 106 1.12e+01 9.56e-06 4.25
LUKVLE10 100 98 24 14 3.49e+01 7.40e-07 0.60
LUKVLE11 98 64 44 31 5.97e+02 7.88e-07 1.34
LUKVLE12 97 72 1000 942 2.73e+03 6.92e-01 7.45
LUKVLE13 98 64 15 15 7.90e+02 8.55e-07 0.72
LUKVLE14 98 64 40 27 1.04e+03 2.55e-09 1.17
LUKVLE15 97 72 69 42 2.51e-09 2.19e-06 3.13
LUKVLE16 97 72 24 21 1.47e+02 4.44e-06 0.40
LUKVLE17 97 72 31 29 3.05e+02 2.44e-06 0.86
LUKVLE18 97 72 28 18 1.05e+02 1.59e-06 0.57
LUKVLESC 98 64 17 17 1.05e-03 6.25e-08 0.43
MARATOS2 2 1 5 4 -1.00e+00 3.19e-08 0.05
MARATOS 2 1 5 4 -1.00e+00 3.19e-08 0.04
MWRIGHT 5 3 14 10 1.29e+00 8.68e-06 0.10
ORTHRDM2 203 100 12 8 7.78e+00 5.96e-08 0.42
ORTHRDS2 103 50 43 36 1.22e+02 6.29e-06 1.43
ORTHREGA 133 64 55 33 3.50e+02 5.62e-08 1.94
ORTHREGB 27 6 3 3 0.00e+00 1.06e-09 0.05
ORTHREGC 105 50 36 11 1.98e+00 9.20e-07 0.89
ORTHREGD 103 50 17 10 1.56e+01 1.14e-10 0.30
ORTHRGDM 23 10 27 24 3.90e+01 5.32e-06 0.34
ORTHRGDS 155 76 13 11 2.34e+01 1.25e-12 0.56
ROBOT 14 2 11 6 1.03e-29 1.15e-06 0.09
S316-322 2 1 3 3 3.34e+02 2.22e-16 0.02
WOODSNE 4 4 1000 996 -8.93e+00 1.00e+00 8.15

Table 4.1: Results for the Trust-funnel Algorithm (continued)

Gould, Toint: Nonlinear programming without a penalty function or a filter 34

We are well aware that the numerical experience reported here is preliminary, and
does not yet exploit all the interesting features of the algorithm. The results are however
more than acceptable in most cases at this stage, which is encouraging and motivates
further numerical (and theoretical) developments. Nevertheless, the algorithm did not
solve five problems: of these LUKVLE2 and LUKVLE2 are reported to be unbounded from
below, while LUKVLE12 and WOODSNE are (at least locally) infeasible. Only DATA1 genuinely
failed, the algorithm not being able to reduce the dual feasibility below (roughly) 1.0e-4,
This problem (along with LUKVLE17, LUKVLE18, ORTHRDS2, ORTHREGD and ORTHRGDM) has
a severely rank-deficient Jacobian at the critical point found. One further problem BT1

proved difficult, but further investigation revealed that this is was to the Maratos effect—
adding a second-order correction along the lines discussed at the end of the previous section
cured this immediately (the problem was then solved in 12 iterations).

5 Conclusion and perspectives

We have presented a new SQP algorithm for the solution of the equality constrained
nonlinear programming problem, that avoids the use of penalty or barrier parameters and
that allows for inexact tangential steps. Convergence to first-order critical point has been
proved and preliminary numerical experience reported which motivates further research.

A first line of work is the inclusion of a multi-dimensional filter mechanism (see Gould,
Leyffer and Toint, 2005) in the algorithm, with the objective to make the constraint on
decreasing infeasibility more flexible. A second interesting development is the inclusion of
bound or more general inequalities in the present framework. On a more practical level,
further work is necessary to fully exploit the potentialities of the new method in allowing
for inexact tangential steps and also to refine the current implementation by better tuning
of the algorithmic parameters and the incorporation of preconditioning.

Acknowledgments

The authors are grateful to Professor Y. Yuan and his students at the Chinese Academy of Sciences for the

organization of the ICNAO2006 conference in Beijing, which provided an excellent environment for the

derivation of some of the results presented here. They are also pleased to acknowledge the hospitality of

CERFACS (Toulouse) where discussions with S. Gratton, D. Orban and A. Sartenaer stimulated the work

that led to this paper. The Matlab interface to MA57 developed by Mario Arioli (RAL) is also gratefully

acknowledged.

References

L. T. Biegler, J. Nocedal, and C. Schmid. A reduced Hessian method for large-scale
constrained optimization. SIAM Journal on Optimization, 5(2), 314–347, 1995.

R. H. Bielschowsky and F. A. M. Gomes. Dynamical control of infeasibility in nonlinearly
constrained optimization. Technical Report 23/06, Department of Applied Mathe-
matics, IMECC-UNICAMP, Campinas, Brasil, 2006.

R. H. Byrd, F. E. Curtis, and J. Nocedal. Inexact SQP methods for equality constrained
optimization. Technical report, Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, Illinois, USA, November 2006.

R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, Series A,
89(1), 149–186, 2000a.

R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for nonlin-
ear optimization using linear programming and equality constrained subproblems.
Mathematical Programming, Series B, 100(1), 27–48, 2004.

Gould, Toint: Nonlinear programming without a penalty function or a filter 35

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4), 877–900, 2000b.

C. Cartis and N. I. M. Gould. Finding a point in the relative interior of a polyhedron.
Technical Report RAL-TR-2006-016, Rutherford Appleton Laboratory, Chilton, Ox-
fordshire, England, 2006.

T. F. Coleman and A. R. Conn. Nonlinear programming via an exact penalty function
method : Asymptotic analysis. Mathematical Programming, 24(3), 123–136, 1982.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in
‘MPS-SIAM Series on Optimization’. SIAM, Philadelphia, USA, 2000.

I. S. Duff. MA57 - a code for the solution of sparse symmetric definite and indefinite
systems. ACM Transactions on Mathematical Software, 30(2), 118–144, 2004.

M. El-Alem. Global convergence without the assumption of linear independence for a
trust-region algorithm for constrained optimization. Journal of Optimization Theory
and Applications, 87(3), 563–577, 1995.

M. El-Alem. A global convergence theory for a general class of trust-region-based algo-
rithms for constrained optimization without assuming regularity. SIAM Journal on
Optimization, 9(4), 965–990, 1999.

R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, 91(2), 239–269, 2002.

R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global convergence
of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal on
Optimization, 13(3), 635–659, 2002a.

R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM Journal on Optimization, 13(1), 44–59, 2002b.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic problems arising in optimization. SIAM Journal on Scientific Computing,
23(4), 1375–1394, 2001.

N. I. M. Gould, S. Leyffer, and Ph. L. Toint. A multidimensional filter algorithm for
nonlinear equations and nonlinear least-squares. SIAM Journal on Optimization,
15(1), 17–38, 2005.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2), 504–525, 1999.

N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr, a constrained and unconstrained test-
ing environment, revisited. ACM Transactions on Mathematical Software, 29(4), 373–
394, 2003.

M. Heinkenschloss and L. N. Vicente. Analysis of inexact trust region SQP algorithms.
SIAM Journal on Optimization, 12(2), 283–302, 2001.

D. M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, New-York, 1972.

M. Lalee, J. Nocedal, and T. D. Plantenga. On the implementation of an algorithm
for large-scale equality constrained optimization. SIAM Journal on Optimization,
8(3), 682–706, 1998.

X. Liu and Y. Yuan. A robust trust-region algorithm for solving general nonlinear pro-
gramming problems. SIAM Journal on Scientific Computing, 22, 517–534, 2000.

Gould, Toint: Nonlinear programming without a penalty function or a filter 36

D. Q. Mayne and E. Polak. A superlinearly convergent algorithm for constrained opti-
mization problems. Mathematical Programming Studies, 16, 45–61, 1982.

E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA,
1989.

T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM Journal on Numerical Analysis, 20(3), 626–637, 1983.

Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. in
I. S. Duff, ed., ‘Sparse Matrices and Their Uses’, pp. 57–88, London, 1981. Academic
Press.

C. Zoppke-Donaldson. A Tolerance-Tube Approach to Sequential Quadratic Programming
with Applications. PhD thesis, Department of Mathematics and Computer Science,
University of Dundee, Dundee, Scotland, UK, 1995.

