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Abstract

A recursive trust-region method is introduced for the solution of bound-cons-

trained nonlinear nonconvex optimization problems for which a hierarchy of descrip-

tions exists. Typical cases are infinite-dimensional problems for which the levels of

the hierarchy correspond to discretization levels, from coarse to fine. The new method

uses the infinity norm to define the shape of the trust region, which is well adapted to

the handling of bounds and also to the use of successive coordinate minimization as

a smoothing technique. Some numerical tests are presented to motivate a theoretical

analysis showing convergence to first-order critical points irrespective of the given

starting point.

Keywords: Recursive methods, multilevel problems, nonlinear optimization, convergence
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1 Introduction

Trust-region methods are among the most popular and efficient methods for nonlinear
optimization, and they are supported by an extensive theory (see Conn, Gould and Toint,
2000 for a more complete coverage of this subject). Such methods proceed iteratively by
minimizing a model of the objective function in a region where the model can be trusted
and which is defined in a specific norm. When the problem at hand can be decomposed
into hierarchical levels, advantage can be taken of this structure. Several authors have
proposed methods that take multilevel hierarchies into account, such as Fisher (1998),
Nash (2000), Lewis and Nash (2002, 2005, and Oh, Milstein, Bouman and Webb, 2005).
Gratton, Sartenaer and Toint (2004) have proposed a recursive trust-region algorithm
that is tailored to the multilevel case and uses the Euclidean norm to define the trust
region. The initial numerical experiments with this algorithm are extremely promising
(see Gratton, Sartenaer and Toint, 2006a) and motivate further analysis of methods of
this type.

While theoretically satisfying and practically reasonable, the choice of the Euclidean
norm for the trust region definition is not without drawbacks. In particular, it implies the
definition of computationally expensive preconditioners that specify compatible norms at
the different levels. The technique used for updating the radius of the trust region also
has the consequence that steps may, in some cases, be unduly restricted at lower levels,
thereby potentially limiting the efficiency of the minimization. Moreover, the combination
of Gauss-Seidel-like smoothing iterations (a very common feature of multilevel algorithms)
with the Euclidean trust region is unnatural and complicates the practical implementa-
tions. Finally, and crucially for our concern in this paper, Euclidean trust regions do not
mix naturally with bound-constrained problems.

In order to avoid these difficulties, an alternative multilevel algorithm for bound-
constrained optimization can be defined using the infinity- (or max-) norm for the trust

1



Gratton et al. - Recursive trust-regions for problems with bound constraints 2

region definition. The first purpose of this paper is to describe this algorithm, which does
not require any imposed preconditioner and is much less restrictive for the lower-levels
steps than its Euclidean relative for the unconstrained case. Moreover, smoothing itera-
tions, which explore directions aligned with the coordinate vectors, are well integrated.

Unfortunately, the convergence theory presented in Gratton et al. (2004, 2006b) cannot
be applied to this case without significant modifications, not only because of the possible
presence of bounds, but also because the algorithm analyzed in these references is itself very
dependent on the choice of the Euclidean norm. Our second purpose is thus to prove global
convergence of the new algorithm to first-order critical points, that is convergence from
arbitrary starting points to limit points satisfying the first-order optimality conditions.

Remarkably, the algorithm and theory presented here also apply, with minimal adap-
tations, to the problem of solving sets of nonlinear equations. Indeed, one of the most
common techniques in this area is to consider the minimization of some (smooth) norm
of the residuals, which can then be viewed as an unconstrained minimization problem,
whose solution yields the desired roots if the residuals converge to zero. As a consequence,
the multilevel algorithm discussed in the paper also applies to the multilevel solution of
nonlinear equations, as does the associated global convergence proof.

The paper is organized as follows. Section 2 introduces the considered problem more
formally and describes the alternative algorithm. Section 3 presents some numerical mo-
tivation and Section 4 analyzes its convergence properties. Some conclusions and perspec-
tives are finally discussed in Section 5.

2 The problem and algorithm

In what follows, we wish to solve the bound-constrained minimization problem

min
x∈IRn

f(x),

such that l ≤ x ≤ u
(2.1)

where the ≤ signs (here and below) are understood componentwise, where l and u are
vectors in IRn such that l ≤ u, and where f : IRn → IR is a twice continuously differentiable
function which is bounded below on the feasible set {x ∈ IRn | l ≤ x ≤ u}.

This problem is viewed as an accurate representation of a more general underlying
problem (such as, for instance, a contact problem in infinite dimensions). Since our interest
is in the multilevel case, we also suppose that we know a set of functions {fi}r

i=0 which
give alternative and potentially less accurate descriptions of the same underlying problem.
Each of these fi is assumed to be itself a twice continuously differentiable function from
IRni to IR (with ni ≥ ni−1), nr = n and fr(x) = f(x) for all x ∈ IRn. Each of these
descriptions is said to define a level, which we index by i. As the existence of more than
one level would not be very useful without ways to relate them among themselves, we
also assume that, for each i = 1, . . . , r, there exists an operator Ri : IRni → IRni−1 (the
restriction) and another operator Pi : IRni−1 → IRni (the prolongation) such that

RT
i = σiPi (2.2)

for some known constant σi > 0. The prolongations and restrictions therefore define a
hierarchy of levels, from lowest (i = 0) to highest (i = r). These assumptions are common
to a number of multilevel approaches in optimization (Fisher, 1998, Nash, 2000, Gratton
et al., 2004)) or in the solution of nonlinear systems of equations (see Briggs, Henson and
McCormick, 2000 and the references therein). For simplicity of notations, and because
this is often the case in practice, we assume, without loss of generality, that ‖Ri‖∞ = 1
for all i.

As indicated above, trust-region methods compute a step by minimizing a model of
the objective function in the trust region, but we also choose to keep our iterates feasible
throughout the process, which implies that the model minimization must take place in
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the intersection of the feasible set of (2.1) with the trust region. In the classical (single
level) case, the step from the iterate xk (at iteration k) is thus obtained from the (possibly
approximate) solution of the subproblem

min
s∈Bk

mk(xk + s),

such that l ≤ xk + s ≤ u
(2.3)

where mk(xk + s) is the objective function’s model around xk and the trust region Bk is
defined as a ball in a suitable norm, whose radius is iteratively adapted by the method.
In what follows we will use the infinity norm in this definition, as motivated in the intro-
duction. In particular, if

F def
= {x ∈ IRn | l ≤ x ≤ u}, (2.4)

then the set Bk ∩F is also a n-dimensional box. Classical trust-region methods are based
on the Taylor’s quadratic model for f given by

mk(xk + s) = f(xk) + 〈∇f(xk), s〉 + 1
2
〈s, Hks〉,

where Hk is a symmetric approximation of ∇xxf(xk).
When the problem has two levels (r and r−1), the main idea is to use fr−1 to construct

a model hr−1 for fr = f in the neighbourhood of the current iterate, which is cheaper
than Taylor’s quadratic model at level r, and to use this “lower-level” model whenever
possible to define a step in a “feasible trust region” at level r−1. As this sentence suggests,
we really need to handle two types of constraints for this subproblem, which we consider
successively.

The first set of constraints are the “hard” bound constraints specified in the problem
statement (2.1) which define the feasible region (2.4) at the top level (i = r). Because
we wish to maintain all our iterates feasible with respect to these bounds and because the
concatenation PrRr of the restriction and prolongation operators may not be contractive,
the “feasible domain” at level r − 1 must be chosen with care. We choose here to follow
the proposal by Gelman and Mandel (1990) and to define this set by

Fr−1
def
= {xr−1 | lr−1 ≤ xr−1 ≤ ur−1} (2.5)

where Fr = F and where the vectors lr−1 and ur−1 are defined componentwise by

[lr−1]j
def
= [Rrxr,k ]j +

1

‖Pr‖∞
max

t=1,...,nr

{

[l − xr,k]t when [Pr ]tj > 0
[xr,k − u]t when [Pr ]tj < 0

}

(2.6)

and

[ur−1]j
def
= [Rrxr,k]j +

1

‖Pr‖∞
min

t=1,...,nr

{

[u − xr,k]t when [Pr]tj > 0
[xr,k − l]t when [Pr]tj < 0

}

(2.7)

for j = 1, . . . , nr−1. Gelman and Mandel (1990) show, in a less general case, that this
definition enforces the inclusion

xr,k + Pr(x − Rrxr,k) ∈ Fr for all x ∈ Fr−1.

We verify this property in our more general setting in Lemma 4.3 below.
The second set of constraints at level r− 1 are (infinity-norm) trust-region constraints

inherited from iterate xr,k at level r (for consistency, where we define Ar = IRnr ), which
we represent componentwise (t = 1, . . . , nr−1) by

Ar−1
def
= {xr−1 | vr−1 ≤ xr−1 ≤ wr−1},
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where

[vr−1]t =

nr
∑

u=1,[Rr]tu>0

[Rr]tu[max(vr , xr,k − ∆r,ke)]u

+

nr
∑

u=1,[Rr]tu<0

[Rr]tu[min(wr , xr,k + ∆r,ke)]u

and

[wr−1]t =

nr
∑

u=1,[Rr]tu>0

[Rr]tu[min(wr , xr,k + ∆r,ke)]u

+

nr
∑

u=1,[Rr]tu<0

[Rr]tu[max(vr , xr,k − ∆r,ke)]u

where ∆r,k is the radius of the trust region

Br,k
def
= {xr,k + s ∈ IRnr | ‖s‖∞ ≤ ∆r,k}

around the iterate xr,k at level r, and where e is the vector of all ones of appropriate
dimension and the min and max operators are understood componentwise when applied
on vectors. These constraints are essentially “softer” than the hard bound constraints in
the sense that it is not vital that they are satisfied exactly by all iterates: as will be shown
below, a bounded violation of the trust-region constraints is acceptable in our algorithm.

We then propose to take both sets of constraints into account at level r − 1, and
to minimize the (potentially nonquadratic) model hr−1 on the intersection of these two
domains, that is on the box

Lr−1
def
= Fr−1 ∩Ar−1,

starting from the initial point xr−1,0 = Rrxr,k. This minimization is again computed using
a trust-region algorithm. Thus we perform one or more steps of a trust-region method
starting from xr−1,0. This introduces a “level r − 1” trust region

Br−1,`
def
= {xr−1,` + s ∈ IRnr−1 | ‖s‖∞ ≤ ∆r−1,`}

for each step sr−1,p (p ≥ 0) in this lower minimization process. The effective domain
(working set) in which the p + 1-th iterate at level r − 1 is computed is thus, finally,

Wr−1,`
def
= Fr−1 ∩ Ar−1 ∩ Br−1,`. (2.8)

The minimization of hr−1 is then carried out using our trust-region algorithm until an
approximate constrained minimizer xr−1,∗ is found in Lr−1, and the resulting step xr−1,∗−
xr−1,0 is then prolongated to level r by computing sr,k = Pr(xr−1,∗ − xr−1,0).

If more than two levels are available (r > 1), this can be done recursively, the approxi-
mation process stopping at level 0, where Taylor’s model is always used. Let us reconsider
the details of this process in this more general situation. Consider iteration k at level i,
and assume that xi,k is an iterate in the minimization of hi initiated from iterate xi+1,q .
At level i, we know

Fi
def
= {x | li ≤ x ≤ ui} (2.9)

the “restricted” feasible domain at level i, where

[li]j
def
= [xi,0]j +

1

‖Pi+1‖∞
max

t=1,...,ni+1

{

[li+1 − xi+1,q ]t when [Pi+1]tj > 0
[xi+1,q − ui+1]t when [Pi+1]tj < 0

}

(2.10)

and

[ui]j
def
= [xi,0]j +

1

‖Pi+1‖∞
min

t=1,...,ni+1

{

[ui+1 − xi+1,q ]t when [Pi+1]tj > 0
[xi+1,q − li+1]t when [Pi+1]tj < 0

}

(2.11)
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for j = 1, . . . , ni. We also know

Ai = {x | vi ≤ x ≤ wi}, (2.12)

the restriction of the trust-region constraints inherited from levels r to i+1 through xi+1,q ,
where the t-th components of vi and wi are defined by

[vi]t =

ni+1
∑

u=1,[Ri+1]tu>0

[Ri+1]tu[max(vi+1, xi+1,q − ∆i+1,qe)]u

+

ni+1
∑

u=1,[Ri+1]tu<0

[Ri+1]tu[min(wi+1, xi+1,q + ∆i+1,qe)]u

(2.13)

and

[wi]t =

ni+1
∑

u=1,[Ri+1]tu>0

[Ri+1]tu[min(wi+1, xi+1,q + ∆i+1,qe)]u

+

ni+1
∑

u=1,[Ri+1]tu<0

[Ri+1]tu[max(vi+1, xi+1,q − ∆i+1,qe)]u

(2.14)

(as indicated above, we define vr = −∞ and wr = +∞ for consistency). We finally know

Bi,k = {xi,k + s ∈ IRni | ‖s‖∞ ≤ ∆i,k},

the current trust region at level i associated with xi,k. We then have to find a step si,k

which sufficiently reduces a model of hi in the region

Wi,k = Fi ∩ Ai ∩ Bi,k. (2.15)

Observe that the set Wi,k can either be viewed both as

Wi,k = Li ∩ Bi,k, (2.16)

the intersection of a level dependent domain Li
def
= Fi ∩ Ai with an iteration dependent

trust-region Bi,k, or as
Wi,k = Fi ∩ Si,k ,

the intersection of Fi, the feasible set for hard constraints, with Si,k = Ai∩Bi,k, the feasible
set for soft ones. Figure 2.1 illustrates this decomposition. Note that all the involved sets
are boxes, which makes their representation and intersection computationally easy.

Once Wi,k is known, we then choose a model for hi between

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉 + 1
2
〈si, Hi,ksi〉, (2.17)

the usual truncated Taylor series for hi (with gi,k = ∇xhi(xi,k) and Hi,k being a symmetric
approximation of ∇xxhi(xi,k)), or

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈Rigi,k −∇xfi−1(xi−1,0), si−1〉. (2.18)

Observe that this last definition implies that gi−1,0 = Rigi,k.
If one chooses the model (2.18) (which is only possible if i > 0), the determination of the

step then consists in (possibly approximately) solving the lower-level bound-constrained
problem

min
xi−1,0+si−1∈Li−1

hi−1(xi−1,0 + si−1). (2.19)

This minimization produces a step si−1 such that hi−1(xi−1,0+si−1) < hi−1(xi−1,0) which
must be then brought back to level i by the prolongation Pi, i.e. si = Pisi−1. We then
obtain that

〈gi,k, si〉 = 〈gi,k, Pisi−1〉 =
1

σi

〈Rigi,k, si−1〉. (2.20)
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xi,0

xi,k

Bi,k

Li

Bi−1,`

Li−1

xi−1,0

xi−1,`

Ai

Ai−1

level i level i − 1

Fi
Fi−1

Si−1,`Si,k

Figure 2.1: The various sets at levels i and i− 1. The region infeasible with respect to the
bounds defining Fi and Fi−1 are shaded and the effect of the Gelman-Mandel restriction
operator between levels is shown by the arrows on top of the figure. The sets Wi,k and
Wi−1,` are delineated in bold and the sets Ai and Ai−1 in dashed. The sets Si,k and
Si−1,` are lightly shaded. The effect of the restriction operator Ri between Si,k and Ai−1

is illustrated by the (lower set of) dashed arrows.

But does it always make sense to use the lower level model (2.18)? The answer ob-
viously depends on the benefit expected from the solution of (2.19). In Gratton et al.
(2004), it sufficed to test if ‖gi−1,0‖2 = ‖Rigi,k‖2 was large enough compared to ‖gi,k‖2.
However, this criticality measure is inadequate in our context because (2.19) is now a
bound-constrained problem. In the sequel of this paper, we choose to follow Conn et al.
(2000) and use, for each xi,k ∈ Li, the criticality measure(1) defined by

χi,k
def
= χ(xi,k) = | min

xi,k+d∈Li

‖d‖
∞

≤1

〈gi,k, d〉| def
= |〈gi,k, di,k〉|. (2.21)

If the restriction of the problem from the non-critical iterate xi,k at level i to level i− 1 is
not already first-order critical, that is if

χi−1,0 ≥ κχχi,k, (2.22)

for some constant κχ ∈ (0, 1), then we may proceed at this lower level. Otherwise, the
recursion is useless and we should use (2.17) instead.

Once we have decided to approximately solve (2.19), we must also decide what we mean
by “approximately”. In the spirit of (2.22), we choose to terminate the minimization at
level r if χr,k ≤ εr for some εr > 0 and to terminate the lower level minimization at iterate
(i − 1, `) as soon as the inequality

χi−1,` < εi−1
def
= κχχi,k, (2.23)

holds. We then define xi−1,∗ = xi−1,`, si−1 = xi−1,∗ − xi−1,0 and si,k = Pisi−1.
If, on the other hand, we decide at iteration (i, k) to use Taylor’s model mi,k given by

(2.17), a step si,k is then computed that produces a sufficient decrease in the value of this
model in its usual meaning for trust-region methods with convex constraints (defined here
by the set Li), that is, si,k is such that it satisfies

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ κredχi,k min

[

1,
χi,k

βi,k

, ∆i,k

]

, (2.24)

(1)Other criticality measures are possible, such as µi,k = ‖Proji,k(xi,k − gi,k) − xi,k‖2 where Proji,k is
the orthogonal projection onto the box Li but we will not investigate this alternative here.
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for some constant κred ∈ (0, 1
2
) and βi,k

def
= 1 + ‖Hi,k‖2. Despite its apparently techni-

cal character, this requirement, known as the modified Cauchy condition, is not overly
restrictive and can be guaranteed in practical algorithms, as described for instance in
Section 12.2.1 of Conn et al. (2000).

We now specify our algorithm formally, as Algorithm RMTR∞. As most trust-region
methods, it uses the constants 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1.

Algorithm 2.1: RMTR∞(i, xi,0, gi,0, χi,0,Fi,Ai, εi)

Step 0: Initialization. Compute hi(xi,0) and gi,0 −∇xfi(xi,0). Set

Li = Fi ∩ Ai and Wi,0 = Li ∩ {x | ‖x − xi,0‖∞ ≤ ∆i,0},
with ∆i,0 = ∆s

i and k = 0.

Step 1: Model choice. If i = 0, go to Step 3. Else, compute Li−1 and χi−1,0. If
(2.23) holds, go to Step 3. Otherwise, choose to go to Step 2 or to Step 3.

Step 2: Recursive step computation. Call Algorithm

RMTR∞(i − 1, Rixi,k , Rigi,k, χi−1,0,Fi−1,Ai−1, κχχi,k),

yielding an approximate solution xi−1,∗ of (2.19). Then define si,k = Pi(xi−1,∗−
Rixi,k), set δi,k = 1

σi

[

hi−1(Rixi,k) − hi−1(xi−1,∗)
]

and go to Step 4.

Step 3: Taylor step computation. Choose Hi,k and compute a step si,k ∈ IRni

that sufficiently reduces the model mi,k given by (2.17) in the sense of (2.24)
and such that xi,k + si,k ∈ Wi,k. Set δi,k = mi,k(xi,k) − mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point. Compute hi(xi,k + si,k) and

ρi,k =
[

hi(xi,k) − hi(xi,k + si,k)
]

/δi,k. (2.25)

If ρi,k ≥ η1, then define xi,k+1 = xi,k + si,k; otherwise, define xi,k+1 = xi,k.

Step 5: Termination. Compute gi,k+1 and χi,k+1. If χi,k+1 ≤ εi or xi,k+1 6∈ Li,
then return with the approximate solution xi,∗ = xi,k+1.

Step 6: Trust-Region Update. Set

∆i,k+1 ∈











[∆i,k, +∞) if ρi,k ≥ η2,

[γ2∆i,k, ∆i,k] if ρi,k ∈ [η1, η2),

[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(2.26)

and Wi,k+1 = Li ∩ {x | ‖x − xi,k+1‖∞ ≤ ∆i,k+1}. (2.27)

Increment k by one and go to Step 1.

Some comments are now necessary for a full understanding of this algorithm.

1. As usual in trust-region algorithms, iterations at which ρi,k ≥ η1 are called successful.
At such iterations, the trial point xi,k + si,k is accepted as the new iterate and
the radius of the correponding trust region is possibly enlarged. If the iteration is
unsuccessful, the trial point is rejected and the radius is reduced.

2. The test for the value of i at the begining of Step 1 is designed to identify the lowest
level, at which no further recursion is possible. In this case, a Taylor’s iteration is
the only choice left.
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3. As we have observed above, we have that

‖xi,k+1 − xi,k‖∞ ≤ ‖Pi‖∞‖xi−1,∗ − xi−1,0‖∞,

which does not imply that xi,k+1 belongs to Ai. Even if this does not prevent
convergence, there is no point continuing the recursive iteration started from xi,k

since we have already taken a step which is too large. This is why we have included
the second termination condition in Step 5. Note that we always have by construction
that xi,k+1 ∈ Fi, while the inclusion xi,k+1 ∈ Ai may fail at a recursive iteration.

4. The difference between the “restriction formulae” (2.9)-(2.11) for the hard bounds
and (2.12)-(2.14) for the soft ones makes it necessary to pass both Ai and Fi to the
algorithm at level i, as it is necessary to compute Li at each level independently.

5. The choice left in Step 1 between recursive or Taylor’s iterations is important in
practice as it allows the exploitation of efficient multilevel techniques such as the
smoothing iterations mentioned above (see Briggs et al., 2000 for an excellent intro-
duction). In Gratton et al. (2006a), the same freedom is exploited (in the context
of an Euclidean-norm method) to introduce periodic Gauss-Seidel-type smoothing
iterations in the spirit of classical multigrid algorithms. The choice of the infinity
norm instead of the Euclidean one is in fact more consistent. Indeed this smoothing
process, which successively explores the coordinate directions, needs not be stopped
or modified when the boundary of the trust region is met, since the process can then
be continued in one of the faces of this boundary.

6. The original problem (2.1) is solved by calling RMTR∞ from a virtual (r + 1)-rst
level at which we assume the trust region to be infinite.

3 Numerical motivation

We now present some motivation and preliminary results showing the potential of this
new method as a bound constrained minimizer and also as an alternative to the original
Euclidean-norm RMTR algorithm by Gratton et al. (2004) for unconstrained problems.
This last comparison is possible because RMTR∞ may be applied with arbitrarily large
bounds to solve unconstrained problems.

Our purpose here is not to discuss an implementation of RMTR∞ or RMTR, but rather
to provide some numerical intuition. We therefore refer the reader to Gratton et al. (2006a)
for details beyond the brief description which follows (see also Herty and Thömmes, 2006).
A crucial ingredient of our implementation, inspired by multilevel/multigrid algorithms,
is the presence of smoothing iterations which reduce the oscillatory components of the
gradient. As in Gratton et al. (2006a), we use here the Sequential Coordinate Minimiza-
tion, which we abbreviate as SCM, since it is the exact equivalent of the Gauss-Seidel
process in our optimization setting. The SCM smoother consists in the minimization of
the model along each coordinate direction successively. Note that one SCM smoothing
may consist of one or more cycles, a cycle being defined as a succession of ni (at level
i) one-dimensional minimizations of the model. We use V-type recursions, analogous to
those defined for traditional multigrid (we discuss these in the context of RMTR at the end
of Section 4). However, recursive iterations are still subject to satisfying (2.22), and may
thus not always be possible. As alternative Taylor iterations, we then use the Projected
Truncated Conjugate Gradient (PTCG) algorithm (see, for instance, Calamai and Moré,
1987, Conn, Gould and Toint, 1988, Lin and Moré, 1999 or Conn, Gould and Toint, 1992).
Gratton et al. (2004) solved the coarsest level Euclidean-norm subproblem accurately by
the Hebden-Moré algorithm (Moré, 1978). However, this efficient technique is not appli-
cable when the infinity norm is used to define the trust-region, and we therefore chose to
also use the PTCG algorithm to obtain an approximate solution at this level.

The test problems presented here are three of the problems previously discussed in
Gratton et al. (2006a) and are defined on the two-dimensional unit square S2.
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Surf : A minimum surface problem. We want to find the solution to

min
v∈K

∫ 1

0

∫ 1

0

(1 + (∂xv)2 + (∂yv)2)
1
2 dx dy,

where K = {v ∈ H1(S2) | v(x, y) = v0(x, y) on ∂S2}. The boundary condition v0 is
chosen as

v0(x, y) =















f(x), for y = 0, 0 ≤ x ≤ 1,
0, for x = 0, 0 ≤ y ≤ 1,

f(x), for y = 1, 0 ≤ x ≤ 1,
0, for x = 1, 0 ≤ y ≤ 1.

where f(x) = x(1 − x). To do this, we discretize the problem using a finite element
basis, defined by a uniform triangulation of S2, with same grid spacing h along the
2 coordinate directions. We use the classical P1 functions which are linear on each
triangle and take value 0 or 1 at each vertex as basis functions.

Q2: A simple quadratic problem, where we consider the two-dimensional boundary value
problem defined by

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is

u(x, y) = sin(2πx(1 − x)) sin(2πy(1 − y)).

This problem is discretized using a 5-points finite-difference scheme, giving linear
systems Aix = bi at level i where each Ai is a symmetric positive-definite matrix.
This problem is the typical model problem for multigrid solvers. Here, we apply
Algorithm RMTR and RMTR∞ on its variational formulation

min
x∈IRnr

1

2
xT Arx − xT br.

NC: A nonconvex optimal control problem, defined as the nonlinear least squares problem

min
u,γ

I(u, γ) =

∫

S2

(u − u0)
2 +

∫

S2

(γ − γ0)
2 +

∫

S2

f2,

where

−∆u + γu − f0 = f in S2, (3.28)

u = 0 on ∂S2. (3.29)

The unknown functions u and γ are defined in the unit square S2, and γ0(x, y) and
u0(x, y) are also defined on S2 by γ0(x, y) = u0(x, y) = sin(x(1 − x)) sin(y(1 − y)).
The function f0 is such that −∆u0 + γ0u0 = f0 on S2. This problem corresponds
to a penalized version of a constrained optimal control problem, and is discretized
using finite differences.

The results obtained are shown in Tables 3.1 and 3.2. We first consider unconstrained
optimization problems. The first two problems were tested using 7 levels of discretization,
with 32 variables in the coarsest level and 2552 variables in the finest level, and for problem
NC we used 7 levels of discretization, with 18 variables in the coarsest level and 130050
variables in the finest level. Since in the highest level the cost is dominated by the number
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RMTR RMTR∞

f s/c f s/c
Surf 21 10/10 15 10/10
Q2 73 9/12 10 3/6
NC 18 9/33 14 5/15

Table 3.1: Computational work at the finest level for the ∞- and Euclidian-norm versions
of the RMTR algorithm

of evaluation of the cost function f and the number of smoothing iterations s and smooth-
ing cycles c, we report these numbers in the table for both algorithms using respectively,
f and s/c. All the tests reported were obtained using an experimental MATLAB code.

We see that RMTR requires more work (function evaluations and smoothing) at the
finest level, that is where these calculations are more costly. RMTR∞, on the other hand,
tends to exploit lower levels more, where computation is cheap. Although this is not
visible in the table, our experience indicates that the comparative advantage of RMTR∞

becomes even more pronounced when the number of variables at the finest level grows.
We now compare RMTR∞ with mesh refinement optimization, a technique for multi-

level optimization problems, where the discretized problems are solved in turn from the
coarsest level to the finest one (see, for example, Frese, Bouman and Sauer, 1999, Lemarc-
hand, Pironneau and Polak, 2001, or Borzi and Kunisch, 2006). This technique is known
to be considerably more efficient that the solution of the problem using its fine level repre-
sentation only. The successive solutions are obtained, in our test, by a classical single-level
trust-region algorithm in which PTCG is used to solve the trust-region subproblem. The
starting point at level i+1 is obtained by prolongating (using Pi+1) the solution obtained
at level i. The following results are obtained on the minimal surface problem Surf with
an obstacle defined by the lower bound

l =

{

2 if 4
9 ≤ x ≤ 5

9 and 4
9 ≤ y ≤ 5

9
0 else

.

As previously, the problem was tested using 7 levels of discretization, with 32 variables
in the coarsest level and 2552 variables in the finest level. We present the number of
function evaluation f on the finest level and we also compare the number of SCM cycles
for RMTR∞ with the number of PTCG iterations for the mesh refinement on the finest
level (note that the work for these procedures is comparable, since they both require a
number of operations proportional to the number of nonzeros in Hr).

Mesh refinement RMTR∞

f PTCG f s/c
Surf 145 5553 246 182/182

Table 3.2: Compared results for the mesh refinement and RMTR∞

We see that RMTR∞ requires considerably less iterations than the mesh refinement
technique. Conversely, RMTR∞ needs more objective function evaluations. As the cost of
an evaluation is the same order as a smoothing cycle, we conclude that the total amount
of work required by RMTR∞ to solve the problem remains significantly smaller.

As can be seen from these (admittedly limited) examples, the new algorithm is both
more efficient than its Euclidean-norm predecessor, and even more advantageous compared
to mesh-refinements techniques.
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4 Convergence theory

Having motivated our interest in the new method, both as an efficient solver for bound-
constrained problems and as a significant improvement on the existing RMTR algorithm
for the unconstrained case, we are now interested in obtaining a theoretical guarantee that
RMTR∞ converges to a first-order critical point of the problem from any starting point.
The theory proposed in this section differs significantly from the proof for the RMTR
algorithm in Gratton et al. (2004), mostly because of the form of the new criticality
measure (imposed by the bounds and the choice of the infinity norm) and because the
new algorithm allows for potentially very asymmetric trust regions.

We start by making our assumptions more formal. First, we assume that the Hessians
of each hi and their approximations are bounded above by the constant κH ≥ 1, i.e., more
formally, that for i = 0, . . . , r,

1 + ‖∇xxhi(xi)‖2 ≤ κH (4.30)

for all xi ∈ Fi. and
βi,k ≤ κH (4.31)

for all k. We also assume that all gradients at all levels remain uniformly bounded, which
is to say that there exists κg ≥ 1 such that

‖∇xhj(xi)‖2 ≤ κg for all j = 0, . . . , r, and all xi ∈ Fi. (4.32)

This assumption is not overly restrictive and, for instance, automatically holds by conti-
nuity if all iterates xj,` remain in a bounded domain, which is the case if both l and u are
finite in (2.1).

We also define some additional notation and concepts. We first choose the constant
κP ≥ 1 such that

‖Pi‖∞ ≤ κP for all i = 1, . . . , r. (4.33)

If we choose to go to Step 2 (i.e. we choose to use the model (2.18)) at iteration (i, k) , we
say that this iteration initiates a minimization sequence at level i−1, which consists of all
successive iterations at this level (starting from the point xi−1,0 = Rixi,k) until a return is
made to level i within iteration (i, k). In this case, we say that iteration (i, k) is the prede-
cessor of the minimization sequence at level i−1. If (i−1, `) belongs to this minimization
sequence, this is written as (i, k) = π(i − 1, `). We also denote by pi−1 the index of the
penultimate iterate in the minimization sequence {xi−1,0, . . . , xi−1,pi−1

, xi−1,∗}. Note that
(2.15) implies that Wi,k ⊆ Bi,k.
We first prove a useful property of the criticality measure χ(·) in our context.

Lemma 4.1 Consider the optimization problem (2.1) and define the function χ(x) by

χ(x) = | min
x+d∈F
‖d‖

∞
≤1

〈∇xf(x), d〉| (4.34)

(as in (2.21)). Then, for all x, y ∈ F , we have that

|χ(x) − χ(y)| ≤ (nκH + κg)
√

n‖x − y‖∞.

Proof. Denote by d(x) the argument of the minimum in (4.34) and consider the
continuous feasible path from x to y given by the segment [x, y]. At any point z on this
path, the vector d(z) can be chosen as an extreme point of the polytope P(z) = {z + d ∈
F | ‖d‖∞ ≤ 1} which is determined by the set of bounds from F or from the inequality
‖d‖∞ ≤ 1 which are active at z + d(z). It is always possible to decompose the segment
[x, y] into a (possibly infinite) set of subsegments such that the set of active constraints
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(for (4.34)) is constant along each subsegment. Consider now z1 and z2 the endpoints of
one such subsegment. Then

|χ(z1) − χ(z2)| = |〈∇xf(z2), d(z2)〉 − 〈∇xf(z1), d(z1)〉|
= |〈∇xf(z2) −∇xf(z1), d(z2)〉 − 〈∇xf(z1), d(z1) − d(z2)〉|
≤ ‖∇xf(z2) −∇xf(z1)‖2‖d(z2)‖2 + ‖∇xf(z1)‖2‖d(z1) − d(z2)‖2

(4.35)
From the mean-value theorem, we know that ∇xf(z1) = ∇xf(z2)+G[z1,z2](z1−z2), where,
from (4.30)

‖G[z1,z2]‖2 = ‖
∫ 1

0

∇xxf(z1 + t(z2 − z1)) dt‖2 ≤ max
z∈[z1,z2]

‖∇xxf(z)‖2 ≤ κH

√
n

Hence, since ‖d(z2)‖2 ≤ √
n‖d(z2)‖∞ ≤ √

n,

|χ(z1) − χ(z2)| ≤ nκH‖z1 − z2‖2 + κg‖d(z1) − d(z2)‖2.

Now, remembering that the set of active constraints is the same at z1 and z2, we consider
the j-th component of z1 and distinguish two cases. The first is when a bound from F ,
[u]j say, is active at both z1 + d(z1) and z2 + d(z2). In this case,

[z1 + d(z1)]j = [z2 + d(z2)]j = [u]j

and we deduce that
[d(z1) − d(z2)]j = −[z1 − z2]j .

The second case is when a unit bound from the inequality ‖d(z1)‖∞ ≤ 1 is active. Assum-
ing without loss of generality that the upper bound is active, we then have that

[d(z1)]j = [d(z2)]j = 1

yielding that [d(z1) − d(z2)]j = 0. Combining the two cases, we conclude that

‖d(z1) − d(z2)‖2 ≤ ‖z1 − z2‖2,

and hence, using (4.35) that, for zi in the path from x to y,

|χ(x) − χ(y)| =
∣

∣

∑

i

χ(zi) − χ(zi+1)
∣

∣

≤
∑

i

|χ(zi) − χ(zi+1)|

≤ nκH

∑

i

‖zi − zi+1‖2 + κg

∑

i

‖d(zi) − d(zi+1)‖2

≤ nκH

∑

i

‖zi − zi+1‖2 + κg

∑

i

‖zi − zi+1‖2

= (nκH + κg) ‖x − y‖2

≤ (nκH + κg)
√

n ‖x − y‖∞,

which gives the desired conclusion. 2

The algorithm also ensures the following technical lemma.

Lemma 4.2 There exists an εmin ∈ (0, 1] such that, for each iteration (i, k) 6= (i, ∗) (i.e.,
for all iterates at level i but the last one),

χi,k ≥ εmin. (4.36)
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Proof. The inequality (2.23), which is the stopping criteria for minimization at level
j, in Step 5 of the algorithm, implies that for all (i, k) and all (j, `) ∈ R(i, k),

χj,` ≥ εj = κχχπ(j,`) ≥ κχεj+1 = κ2
χ
χπ2(j,`) ≥ · · · ≥ κi−j

χ
χi,k ≥ · · · ≥ κr

χ
εr.

This proves (4.36) with εmin = min[1, κr
χ
εr]. 2

We now prove the general version of the Gelman and Mandel’s result stating that “bound
constraints are preserved” by the prolongation operator.

Lemma 4.3 The definitions (2.10)–(2.11) enforce the inclusion

xi,k + Pi(xi−1 − xi−1,0) ∈ Fi for all xi−1 ∈ Fi−1 (4.37)

for i = 1, . . . , r. As a consequence xi,k ∈ Fi for all i = 0, . . . , r and all k ≥ 0.

Proof. For t = 1, . . . , ni, define φi,t =
∑ni−1

j=1 |[Pi]t,j | and observe that φi,t ≤ ‖Pi‖∞
for all t. Consider now any xi−1 ∈ Fi−1 and the corresponding lower level step si−1 =
xi−1 − xi−1,0. Then (2.10) and (2.11) imply that

[xi,k ]t +

ni−1
∑

j=1

[Pi]tj [si−1]j

= [xi,k]t +

ni−1
∑

j=1,[Pi]tj<0

|[Pi]tj |(−[si−1]j) +

ni−1
∑

j=1,[Pi]tj>0

|[Pi]tj |[si−1]j

≥ [xi,k]t +

ni−1
∑

j=1,[Pi]tj<0

|[Pi]tj |
(−mint[xi,k − li]t)

‖Pi‖∞
+

ni−1
∑

j=1,[Pi]tj>0

|[Pi]tj |
maxt[li − xi,k]t

‖Pi‖∞

≥ [xi,k]t +

ni−1
∑

j=1,[Pi]tj<0

|[Pi]tj |
[li − xi,k]t
‖Pi‖∞

+

ni−1
∑

j=1,[Pi]tj>0

|[Pi]tj |
[li − xi,k]t
‖Pi‖∞

≥ [xi,k]t + φi,t

[li − xi,k]t
‖Pi‖∞

=
φi,t

‖Pi‖∞
[li]t +

(

1 − φi,t

‖Pi‖∞

)

[xi,k ]t

≥ [li]t

where the last inequality results from the fact that [xi,k ]t ≥ [li]t. A similar reasoning gives
that

[xi,k ]t +

ni−1
∑

j=1

[Pi]t,j [si−1]j ≤ [ui]t

for all t, thereby concluding the proof of (4.37). The feasibility of every iterate with respect
to the level-dependent bound constraints then results from the fact that all trial points at
level i belong to Li ⊆ Fi by construction. 2

We next show that the distance from all iterates in a single minimization sequence at level
i to the starting point of that sequence is bounded above by a multiple of the trust-region
radius at the predecessor’s level.

Lemma 4.4 The definitions (2.13)-(2.14) imply that, for 0 ≤ j < r,

‖x − xj,0‖∞ ≤ 2∆π(j,0) (4.38)

for all x ∈ Lj .
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Proof. Consider an x ∈ Lj ⊆ Aj . If we now denote the bounds defining the set
Sπ(j,0) by

vj+1
def
= max

[

vj+1, xπ(j,0) − ∆π(j,0)e
]

and wj+1
def
= min

[

wj+1, xπ(j,0) + ∆π(j,0)e
]

,

we then verify that

[wj − vj ]t =

nj+1
∑

q=1,[Rj+1]tq>0

[Rj+1]tu[wj+1]u +

nj+1
∑

q=1,[Rj+1]tq<0

[Rj+1]tu[vj+1]u

−
nj+1
∑

q=1,[Rj+1]tq<0

[Rj+1]tu[vj+1]u −
nj+1
∑

q=1,[Rj+1]tq<0

[Rj+1]tu[wj+1]u

=

nj+1
∑

q=1,[Rj+1]tq>0

[Rj+1]tu[wj+1 − vj+1]u +

nj+1
∑

q=1,[Rj+1]tq<0

[Rj+1]tu[vj+1 − wj+1]u

def
= [Rj+1z(t)]t,

where we have used (2.13) and (2.14), and where, for t = 1, . . . , nj+1,

[z(t)]u = sign([Rj+1]tu)[wj+1 − vj+1]u.

This last definition implies that ‖z(t)‖∞ = ‖wj+1 − vj+1‖∞ for t = 1, . . . , nj+1. Taking
norms and using the identity ‖Rj+1‖∞ = 1, we therefore obtain that

‖wj − vj‖∞ = maxt |[Rj+1z(t)]t|
≤ maxt ‖Rj+1z(t)‖∞
≤ maxt ‖z(t)‖∞
= ‖wj+1 − vj+1‖∞.

(4.39)

Remembering now the definition of wj+1 and vj+1, we see that

‖wj+1 − vj+1‖∞ = ‖min
[

wj+1, xπ(j,0) + ∆π(j,0)e
]

− max
[

vj+1, xπ(j,0) − ∆π(j,0)e
]

‖
∞

≤ ‖min
[

wj+1, xπ(j,0) + ∆π(j,0)e
]

− xπ(j,0)‖∞
+ ‖xπ(j,0) − max

[

vj+1, xπ(j,0) − ∆π(j,0)e
]

‖
∞

≤ 2∆π(j,0).

Combining now this bound with (4.39) and our assumption that x ∈ Aj , we obtain that

‖x − xj,0‖∞ ≤ ‖wj − vj‖∞ ≤ 2∆π(j,0).

2

To each iteration (i, k) at level i, we now associate the set

R(i, k)
def
= {(j, `) | iteration (j, `) occurs within iteration (i, k)}.

This set always contains the pair (i, k) and only contains that pair if a Taylor step is used
at iteration (i, k). If we choose a recursive step, then it also contains the pairs of level and
iteration number of all iterations that occur in the potential recursion started in Step 2 and
terminating on return within iteration (i, k), but it does not contain the pairs of indices
corresponding to the terminating iterates (j, ∗) of its internal minimization sequences. It
is easy to verify that j ≤ i for every j such that (j, `) ∈ R(i, k) for some non-negative k
and `. Note also that R(i, k) contains at most one minimization sequence at level i − 1,
but may contain more than one at level i− 2 and below, since each iteration at level i− 1
may generate its own. Associated with R(i, k), we also define

T (i, k)
def
= {(j, `) ∈ R(i, k) | (j, `) is a Taylor iteration}.

Our next proposition indicates that, if ∆i,k becomes too small, then the method reduces,
at level i, to the standard trust-region method using Taylor’s iterations only.
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Lemma 4.5 Assume that, for some iteration (i, k),

∆i,k ≤ 1

2
min

[

1,
εmin

2κg

√
nr

, ∆s
min

]

def
= κ2 ∈ (0, 1), (4.40)

where ∆s
min

def
= mini=0,...,r ∆s

i Then no recursion occurs in iteration (i, k) and R(i, k) =
T (i, k) = {(i, k)}.

Proof. Assume that iteration (i, k) is recursive and that iteration (i − 1, 0) exists.
Since (4.40) implies that 2∆i,k < 1, we deduce from (4.38) that Li−1 ⊂ {xi−1,0 + d |
‖d‖∞ ≤ 1} and thus that

χi−1,0 = | min
xi−1,0+d∈Li−1

〈gi−1,0, d〉| = |〈gi−1,0, di−1,0〉| (4.41)

with
‖di−1,0‖∞ ≤ 2∆i,k. (4.42)

Using (4.40), (4.36), the Cauchy-Schwarz inequality, (4.41), (4.42) and (4.32) successively,
we conclude that

∆i,k ≤ εmin

4κg

√
nr

≤ χi−1,0

4κg

√
nr

=
|〈gi−1,0, di−1,0〉|

4κg

√
nr

≤ κg

√
ni−1 ‖di−1,0‖∞

4κg

√
nr

≤ 1
2
∆i,k

which is impossible. Hence our initial assumption that iteration (i, k) is recursive cannot
hold and the proof is complete. 2

This lemma essentially states that when the trust-region becomes too small compared to
the current criticality level, then too little can be gained from lower level iterations to
allow recursion. This has the following important consequence.

Lemma 4.6 Consider an iteration (i, k) for which χi,k > 0 and

∆i,k ≤ min [κ2, κ3χi,k] , (4.43)

where κ2 is defined in (4.40) and κ3 ∈ (0, 1) is given by

κ3 = min

[

1,
κred(1 − η2)

nrκH

]

.

Then iteration (i, k) is very successful and ∆i,k+1 ≥ ∆i,k.

Proof. Because of (4.40) and Lemma 4.5, we know that iteration (i, k) is a Taylor
iteration. Thus, using (2.24),

δi,k ≥ κredχi,k min

[

1,
χi,k

βi,k

, ∆i,k

]

.

But, because κred(1 − η2)/nr ≤ 1 and (4.31), (4.43) implies that ∆i,k ≤ min
[

1,
χi,k

βi,k

]

and

hence that
δi,k ≥ κredχi,k∆i,k. (4.44)

We now observe that the mean-value theorem, (2.17) and the definition of gi,k ensure that

hi(xi,k + si,k) − mi,k(xi,k + si,k) = 1
2
〈si,k, [∇xxhi(ξi,k) − Hi,k]si,k〉

for some ξi,k ∈ [xi,k, xi,k + si,k], and thus, using (4.30), (4.31), the Cauchy-Schwartz
inequality and the bound ‖si,k‖2 ≤ √

ni‖si,k‖∞ ≤ √
ni∆i,k, that

|hi(xi,k + si,k) − mi,k(xi,k + si,k)| ≤ 1
2

[

‖∇xxhi(ξi,k)‖2 + ‖Hi,k‖2

]

‖si,k‖2
2 ≤ niκH∆2

i,k.
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Combining now (4.43), (4.44) and this last inequality, we verify that

|ρi,k − 1| ≤
∣

∣

∣

∣

hi(xi,k + si,k) − mi,k(xi,k + si,k)

δi,k

∣

∣

∣

∣

≤ niκH

κredχi,k

∆i,k ≤ 1 − η2.

Thus iteration (i, k) must be very successful and, because of (2.26), the trust-region radius
cannot decrease. 2

This last result implies the following useful consequence.

Lemma 4.7 Each minimization sequence contains at least one successful iteration.

Proof. This follows from the fact that unsuccessful iterations cause the trust-region
radius to decrease, until (4.43) is eventually satisfied and a (very) successful iteration
occurs because of Lemma 4.6. 2

The attentive reader will have noticed that the term in ∆s
min in the minimum defining κ2

in (4.40) has not been used in Lemma 4.5. This term is however crucial in the following
further consequence of (4.40).

Lemma 4.8 For every iteration (j, `), with j = 0, . . . , r and ` > 0, we have that

∆j,` ≥ ∆min
def
= γ1 min[κ2, κ3εj ]. (4.45)

Proof. Suppose that (j, `) is the first iteration such that

∆j,` < γ1 min[κ2, κ3εj ]. (4.46)

Since γ1 < 1 and κ2 ≤ ∆s
min, we then obtain that

∆j,0 = ∆s
j ≥ ∆s

min ≥ γ1∆
s
min ≥ γ1 min[κ2, κ3εj ],

and, because of (4.46), we have that ` > 0. This in turn implies that ∆j,` is computed using
Step 6 of the algorithm. But, the mechanism of the algorithm imposes that ∆j,` ≥ γ1∆j,`−1

an thus (4.46) also yields that

∆j,`−1 < min[κ2, κ3εj ] ≤ min[κ2, κ3χj,`−1],

where we have used the mechanism of the algorithm to derive the last inequality. Hence,
we may apply Lemma 4.6 to conclude that iteration (j, ` − 1) is very successful and that
∆j,` ≥ ∆j,`−1. Thus, iteration (j, `) cannot be the first such that (4.46) holds. This
implies that (4.46) is impossible, which completes the proof. 2

We next show the crucial result that the algorithm is well defined, and that all the recur-
sions are finite.

Theorem 4.9 The number of iterations in each level is finite. Moreover, there exists
κh ∈ (0, 1) such that, for every minimization sequence at level i = 0, . . . , r and every
t ≥ 0,

hi(xi,0) − hi(xi,t+1) ≥ τi,tµ
i+1κh,

where τi,t is the total number of successful Taylor iterations in

t
⋃

`=0

R(i, `) and µ = η1/σmax

with σmax = maxi=1,...,r σi.

Proof. We will show this by induction on the levels, starting from level 0. First, let
us define ωi,t as the number of successful Taylor iterations in R(i, t). Thus,

τi,t =

t
∑

`=0

ωi,`.
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Note that, if iteration (i, `) is successful, then ωi,` ≥ 1.
Consider first a minimization sequence started at level 0, and assume without loss of

generality, that it belongs to R(r, k) for some k ≥ 0. Every iteration in this minimization
sequence has to be a Taylor iteration, which implies the sufficient decrease condition (2.24)
is satisfied, and in particular, for all successful iterations,

h0(x0,`) − h0(x0,`+1) ≥ η1δ0,` ≥ η1κredχ0,` min

[

1,
χ0,`

β0,`

, ∆0,`

]

≥ ω0,`η1κredεmin min

[

1,
εmin

κH

, ∆min

] (4.47)

where we used Lemma 4.8, (4.31), (4.36) and the fact that ω0,` = 1 for every successful
iteration (0, `), since R(0, `) = {(0, `)}. Since we know from Lemma 4.7 that every min-
imization sequence has at least one successful iteration, we can sum up the reductions
obtained at level 0, which gives us

h0(x0,0) − h0(x0,t+1) =

t
∑

`=0

(S)

[h0(x0,`) − h0(x0,`+1)] ≥ τ0,tη1κh ≥ τ0,tµκh (4.48)

where the superscript (S) indicates that the sum is restricted to successful iterations and
where

κh

def
= κredεmin min

[

1,
εmin

κH

, ∆min

]

= κredεmin min

[

εmin

κH

, ∆min

]

, (4.49)

where the last equality results from the inequalities εmin ≤ 1 and κH ≥ 1. If r = 0, since
h0 = f is bounded below by assumption, then (4.48) implies that τ0,t is finite. If r > 0,
f0 is continuous implies that h0 is also continuous, and thus it is bounded below on the
set {x ∈ IRn0 |‖x − x0,0‖∞ ≤ 2∆r,k}, and again, τ0,t has to be finite. Since τ0,t accounts
for all successful iterations in the minimization sequence, we obtain that there must be a
last finite successful iteration (0, p0). If, on the contrary, the sequence is infinite, then all
iterations (0, `) would be unsuccessful for ` > p0, causing ∆0,` to converge to zero, which
is impossible in view of Lemma 4.8. Hence, the minimization sequence is finite. The same
reasoning may be applied to every such sequence at level 0.

Now, consider an arbitrary minimization sequence at level i within R(r, k) for some
k > 0, and assume that each minimization sequence at level i−1 is finite and also that each
successful iteration (i − 1, u) in every minimization sequence at this lower level satisfies

hi−1(xi−1,u) − hi−1(xi−1,u+1) ≥ ωi−1,uµiκh. (4.50)

Consider a successful iteration (i, `), whose existence is ensured by Lemma 4.7. If it is a
Taylor iteration, we obtain that

hi(xi,`) − hi(xi,`+1) ≥ η1κh ≥ µi+1κh = ωi,`µ
i+1κh, (4.51)

since η1 ∈ (0, 1), σmax > 1 and ωi,` = 1 for every successful Taylor iteration (i, `). If, on
the other hand, iteration (i, `) uses Step 2, then we obtain that

hi(xi,`) − hi(xi,`+1) ≥
η1

σi

[hi−1(xi−1,0) − hi−1(xi−1,∗)]

≥ µ

pi−1
∑

u=0

(S)

[hi−1(xi−1,u) − hi−1(xi−1,u+1)] .

Since ωi,` = τi−1,pi−1
, the definition of τi−1,t and (4.50) give that

hi(xi,`) − hi(xi,`+1) ≥ µi+1κh

pi−1
∑

u=0

ωi−1,u = τi−1,pi−1
µi+1κh = ωi,`µ

i+1κh. (4.52)
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Combining (4.51) and (4.52), we see that (4.50) again holds at level i instead of i − 1.
Moreover, as above,

hi(xi,0) − hi(xi,t+1) =

t
∑

`=0

(S)

[hi(xi,`) − hi(xi,`+1)] ≥ τi,tµ
i+1κh, (4.53)

for the minimization sequence including iteration (i, `). If i = r, hi = f is bounded below
by assumption and (4.53) imposes that the number of successful iterations in this sequence
must again be finite. The same conclusion holds if i < r, since hi is continuous and hence
bounded below on the set {x ∈ IRni |‖x − xi,0‖∞ ≤ 2∆r,k} which contains xi,t+1 because
of Lemma 4.4. As for level 0, we may then conclude that the number of iterations (both
successful and unsuccessful) in the minimization sequence is finite. Moreover, the same
reasoning holds for every minimization sequence at level i, and the induction is complete.
2

Corollary 4.10 Assume that one knows a constant flow such that hr(xr) = f(x) ≥ flow

for every x ∈ IRn. Then Algorithm RMTR∞ needs at most

⌈

f(xr,0) − flow

θ(εmin)

⌉

(4.54)

successful Taylor iterations at any level to obtain an iterate xr,k such that χr,k < εr, where

θ(ε) = µr+1κredε min

[

ε

κH

, γ1 min [κ2, κ3ε]

]

. (4.55)

Proof. The desired bound directly follows from Theorem 4.9, (4.49), (4.45) and the
definition of εmin. 2

This complexity result for general nonconvex problems is similar to Corollary 3.8 in Grat-
ton et al. (2004), and may also be very pessimistic. It is of the same order as the corre-
sponding bound for the pure gradient method (see (Nesterov 2004), page 29). This is not
surprising given that it is based on the Cauchy condition, which itself results from a step
in the steepest-descent direction. Note that the bound is in terms of iteration numbers,
and only implicitly accounts for the cost of computing a Taylor step satisfying (2.24). As
was the case for the Euclidean norm, this suggests several comments.

1. The bound (4.54) is expressed in terms of the number of successful Taylor iterations,
that is successful iterations where the trial step is computed without resorting to
further recursion. This provides an adequate measure of the linear algebra effort
for all successful iterations, since successful iterations using the recursion of Step 2
cost little beyond the evaluation of the level-dependent objective function and its
gradient. Moreover, the number of such iterations is, by construction, at most equal
to r times that of Taylor iterations (in the worst case where each iteration at level
r includes a full recursion to level 0 with a single successful iteration at each level
j > 0). Hence the result shows that the number of necessary successful iterations, all
levels included, is of order 1/ε2 for small values of ε. This order is not qualitatively
altered by the inclusion of unsuccessful iterations either, provided we replace the
very successful trust-region radius update (top case in (2.26)) by

∆+
i,k ∈ [∆i,k, γ3∆i,k] if ρi,k ≥ η2,

for some γ3 > 1. Indeed, Lemma 4.8 imposes that the decrease in radius caused
by unsuccessful iterations must asymptotically be compensated by an increase at
successful ones. This is to say that, if α is the average number of unsuccessful
iterations per sucessful one at any level, then one must have that γ3γ

α
2 ≥ 1, and
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therefore that α ≤ − log(γ3)/ log(γ2). Thus the complexity bound in 1/ε2 for small
ε is only modified by a constant factor if all iterations (successful and unsucessful)
are considered. This therefore also gives a worst case upper bound on the number
of function and gradient evaluations.

2. Moreover, (4.54) involves the number of successful Taylor iterations summed up on all
levels (as a result of Theorem 4.9). Thus such successful iterations at cheap low levels
decrease the number of necessary expensive ones at higher levels, and the multilevel
algorithm requires (at least in the theoretical worst case) fewer Taylor iterations at
the upper level than the single-level variant. This provides theoretical backing for the
practical observation that the structure of multilevel bound-constrained optimization
problems can be used to advantage.

3. The definition of θ(ε) in (4.55) is interesting in that it does not depend on the
problem dimension, but rather on the properties of the problem or of the algorithm
itself. Thus, if we consider the case where different levels correspond to different
discretization meshes and make the mild assumption that r and κH are uniformly
bounded above, we deduce that our complexity bound is mesh-independent.

A second important consequence of Theorem 4.9 is that the algorithm is globally conver-
gent, in the sense that, if εr is “driven to zero”, it generates a subsequence of iterates
that are asymptotically first-order critical. More specifically, we examine the sequence
of iterates {xr,k} generated as follows. We consider, at level r, a sequence of tolerances
{εr,j} ∈ (0, 1) monotonically converging to zero, start the algorithm with εr = εr,0 and
alter slightly the mechanism of Step 5 (at level r only) to reduce εr from εr,j to εr,j+1 as
soon as χr,k+1 ≤ εr,j . The calculation is then continued with this more stringent threshold
until it is also attained, εg

r is then again reduced and so on.

Theorem 4.11 Assume that εr is “driven to zero” in Algorithm RMTR∞. Then

lim inf
k→∞

χr,k = 0. (4.56)

Proof. Since ∆r+1,0 = ∞ ensures that Lr = Fr, Lemma 4.3 implies that each
successive minimization at level r can only stop at iteration k if

χr,k+1 ≤ εr,j . (4.57)

Theorem 4.9 then implies that there are only finitely many successful iterations between
two reductions of εr. We therefore obtain that for each εr,j there is an arbitrarily large k
such that (4.57) holds. The desired result then follows immediately from our assumption
that {εr,j} converges to zero. 2

Of course, the interest of this result is mostly theoretical, since most practical applications
of Algorithm RMTR∞ consider a nonzero gradient tolerance εr.

Observe that our definition of εi in (2.23) implies that, if εr is driven to zero, then so
is εi = κr−i

χ
εr. As for the Euclidean case, and assuming the trust region becomes asymp-

totically inactive at every level (as is most often the case in practice), each minimization
sequence in the algorithm becomes infinite (as if it were initiated with a zero gradient
threshold and an infinite initial radius). Recursion to lower levels then remains possible
for arbitrarily small gradients, and may therefore occur arbitrarily far in the sequence of
iterates. Moreover, we may still apply Theorem 4.11 at each level and deduce that, if the
trust region becomes asymptotically inactive,

lim inf
k→∞

χi,k = 0 (4.58)

for all i = 0, . . . , r.
As is the case for single-level trust-region algorithms, we now would like to prove that

the limit inferior in (4.56) and (4.58) can be replaced by a true limit. This requires the
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notion of recursively successful iteration. We say that iteration (j, `) ∈ R(i, k) is recursively
successful for (i, k) whenever iterations (j, `), π(j, 0), π2(j, 0), . . . , πi−j(j, 0) = (i, k) are all
successful. This is to say that the decrease in objective function obtained at iteration (j, `)
effectively contributes to the reduction obtained at iteration (i, k). We start by stating a
result on the relative sizes on the objective function decreases in the course of a recursive
iteration.

Lemma 4.12 Assume that some iteration (j, `) ∈ R(i, k) is recursively successful for
(i, k). Then

hj(xj,`) − hj(xj,`+1) ≤ hj(xj,0) − hj(xj,∗) ≤ µj−i [ hi(xi,k) − hi(xi,k+1) ]. (4.59)

Proof. The first inequality immediately results from the monotonicity of the sequence
of objective function values in a minimization sequence. To prove the second inequality,
consider iteration (j + 1, q) = π(j, 0). Then

hj(xj,0) − hj(xj,∗) = σj+1δj+1,q ≤ η−1
1 σmax [ hj+1(xj+1,q) − hj+1(xj+1,q+1) ]

where we used the definition of δj+1,q , the definition of σmax and the fact that iteration
(j+1, q) must be successful since (j, `) is recursively successful for (i, k). But this argument
may now be repeated at level j + 2, . . . , i, yielding the desired bound, given that µ =
η1/σmax < 1. 2

This lemma then allows us to express a simple relation between the size of Taylor steps
at recursively successful iterations and the associated objective decrease.

Lemma 4.13 Assume that the Taylor iteration (j, `) ∈ R(i, k) is recursively successful
for (i, k) and that, for some ε ∈ (0, 1),

χj,` ≥ ε (4.60)

and

hi(xi,k) − hi(xi,k+1) <
µrη1κredε

2

κH

. (4.61)

Then

‖xj,` − xj,`+1‖∞ ≤ 1

κredη1ε
[ hj(xj,`) − hj(xj,`+1) ]. (4.62)

Proof. We know from (2.24), (4.31), (4.60) and the successful nature of iteration
(j, `) that

hj(xj,`) − hj(xj,`+1) ≥ η1κredχj,` min
[

χj,`
κH

, ∆j,`, 1
]

≥ η1κredε min
[

ε
κH

, ∆j,`, 1
]

= η1κredε min
[

ε
κH

, ∆j,`

]

(4.63)

where we used (4.31) and the inequality ε < 1 to deduce the last equality. But Lemma 4.12
gives that

hj(xj,`) − hj(xj,`+1) ≤ µj−i [ hi(xi,k) − hi(xi,k+1) ]

≤ µ−r [ hi(xi,k) − hi(xi,k+1) ]

≤ η1κredε
2

κH
,

where we used (4.61) to deduce the last inequality. Hence we see that only the second
term in the last minimum of (4.63) can be active, which gives that

hj(xj,`) − hj(xj,`+1) ≥ η1κredε∆j,`.

We then obtain (4.62) from the observation that xj,`+1 = xj,` + sj,` ∈ Wj,` ⊆ Bj,`. 2

We next prove the following useful technical lemma.
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Lemma 4.14 Assume that a minimization sequence at level j (0 ≤ j ≤ r) is such that

χj,0 ≥ ε♣ (4.64)

for some ε♣ ∈ (0, 1), but also that

‖sj,`‖∞ ≤ κ♣ [ hj(xj,`) − hj(xj,`+1) ] (4.65)

for some κ♣ > 0 as long as iteration (j, `) is successful and χj,` ≥ 1
2
ε♣. Assume finally

that
hj(xj,0) − hj(xj,∗) ≤

ε♣
2κ♣(nrκH + κg)

√
nr

. (4.66)

Then χj,` ≥ 1
2
ε♣ and (4.65) hold for all ` ≥ 0.

Proof. Assume that there exists a (first) successful iteration (j, s) such that

χj,s < 1
2
ε♣, (4.67)

which implies that χj,` ≥ 1
2
ε♣ for all 0 ≤ ` < s. We now use (4.65) and the triangle

inequality, and sum on all successful iterations (at level j) from 0 to s − 1, yieding

‖xj,0 − xj,s‖∞ ≤
s−1
∑

`=0

(S)‖xj,` − xj,`+1‖∞ ≤ κ♣ [ hj(xj,0) − hj(xj,s) ]. (4.68)

Applying now Lemma 4.1, the monotonicity of hj within the minimization sequence, the
bound nj ≤ nr and (4.66), we obtain from (4.68) that

|χj,0 − χj,s| ≤ κ♣(njκH + κg)
√

nj [ hj(xj,0) − hj(xj,s) ]

≤ κ♣(nrκH + κg)
√

nr [ hj(xj,0) − hj(xj,∗) ]

≤ 1
2
ε♣.

But this last inequality is impossible since we know from (4.64) and (4.67) that χj,0−χj,s >
1
2
ε♣. Hence our assumption (4.67) is itself impossible and we obtain that, for all ` ≥ 0,

χj,` ≥ 1
2
ε♣. This and the lemma’s assumptions then ensure that (4.65) also holds for all

j ≥ 0. 2

We now consider the case of recursive iterations.

Lemma 4.15 Assume that, for some recursive successful iteration (i, k),

χi,k ≥ ε♦ (4.69)

and
hi(xi,k) − hi(xi,k+1) ≤

κχε♦
2κ♦(nrκH + κg)

√
nr

(4.70)

for some ε♦ ∈ (0, 1) and some κ♦ > 0. Assume also that

‖si−1,`‖∞ ≤ κ♦ [ hi−1(xi−1,`) − hi−1(xi−1,`+1) ] (4.71)

for all (recursively) successful iterations in the minimization sequence initiated at level
i − 1 by iteration (i, k) as long as

χi−1,` ≥ 1
2
κχε♦. (4.72)

Then
‖si,k‖∞ ≤ µ−1κPκ♦ [ hi(xi,k) − hi(xi,k+1) ]. (4.73)
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Proof. Consider the minimization sequence initiated at level i− 1 by iteration (i, k).
Because of (2.22) and (4.69), we have that χi−1,0 ≥ κχε♦. We may now apply Lemma 4.14
with ε♣ = κχε♦ and κ♣ = κ♦, given that (4.70) ensures (4.66). As a result, we know that
χi−1,` ≥ 1

2
κχε♦ and (4.71) hold for all successful iterations (i − 1, `) (` ≥ 0). Using the

triangle inequality and summing on all successful iterations at level i − 1, we find that

‖xi−1,0 − xi−1,∗‖∞ ≤
pi−1
∑

`=0

(S)‖xi−1,` − xi−1,`+1‖∞ ≤ κ♦ [ hi−1(xi−1,0) − hi−1(xi−1,∗) ].

This inequality, the definition of si,k, (4.33) and Lemma 4.12 in turn imply that

‖si,k‖∞ ≤ ‖Pi‖∞‖xi−1,0 − xi−1,∗‖∞
≤ κPκ♦ [ hi−1(xi−1,0) − hi−1(xi−1,∗) ]

≤ µ−1κPκ♦ [ hi(xi,k) − hi(xi,k+1) ].

2

Our next step is to consider the cumulative effect of all the complete recursion for an
iteration at the finest level.

Lemma 4.16 Assume that, for some successful iteration (r, k) (k ≥ 0),

χr,k ≥ ε (4.74)

and

f(xr,k) − f(xr,k+1) <
η1κred( 1

2
κχ)2rε2

2(nrκH + κg)
√

nr

(4.75)

for some ε ∈ (0, 1). Then

‖sr,k‖∞ ≤ κ♥ [ f(xr,k) − f(xr,k+1) ], (4.76)

where

κ♥
def
=

(

κP

µ

)r
1

κredη1( 1
2
κχ)rε

. (4.77)

Proof. Assume that (4.74) and (4.75) hold at the successful iteration (r, k) and
consider the subset of iterations given by R(r, k). If (r, k) is a Taylor iteration, then
R(r, k) = {(r, k)} and the desired result follows from Lemma 4.13 and the inequality

1

κredη1ε
≤ κ♥. (4.78)

If iteration (r, k) is recursive, consider a minimization sequence containing a recursively
successful iteration for (r, k) at the deepest possible level in R(r, k). Let the index of this
deepest level be d and note that every successful iteration in this minimization sequence
must be recursively successful for (r, k). Let now (d + 1, q) = π(d, 0) and assume that

χd+1,q ≥ ( 1
2
κχ)r−d−1ε, (4.79)

which gives, in view of (2.22), that χd,0 ≥ ( 1
2
)r−d−1κr−d

χ ε. Each (recursively) successful
iteration of our deepest minimization sequence must thus be a Taylor iteration. Because
of Lemma 4.13, we then obtain that, as long as χd,` ≥ ( 1

2
κχ)r−dε and iteration (d, `) is

successful, we have that

‖sd,`‖∞ = ‖xd,` − xd,`+1‖∞ ≤ 1

κredη1( 1
2
κχ)r−dε

[ hd(xd,`) − hd(xd,`+1) ], (4.80)
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We could then apply Lemma 4.15 for iteration (d + 1, q) = π(d, 0) with

ε♦ = ( 1
2
κχ)r−d−1ε and κ♦ =

1

κredη1( 1
2
κχ)r−dε

,

if (4.70) holds. But note that Lemma 4.12 implies that

hd+1(xd+1,q) − hd+1(xd+1,q+1) ≤ µd+1−r [ f(xr,k) − f(xr,k+1) ]

which in turn gives (4.70) in view of (4.75), as desired. As a result of Lemma 4.15, we
then deduce that

‖sd+1,q‖∞ ≤ µ−1κPκ♦ [ hd+1(xd+1,q) − hd+1(xd+1,q+1) ]

=
(

κP

µ

)

1
κredη1( 1

2
κχ)r−dε

[ hd+1(xd+1,q) − hd+1(xd+1,q+1) ].
(4.81)

Consider now a minimization sequence at level d + 1 and assume that d + 1 < r. Then
define (d + 2, t) = π(d + 1, 0) and assume, in line with (4.79), that χd+2,t ≥ ( 1

2
κχ)r−d−2ε

which yields in particular that χd+1,0 ≥ ( 1
2
)r−d−2κr−d−1

χ ε. The reasoning for level d + 1 is
entirely similar to that for level d, except that we now have to consider a possible mixture
of Taylor and recursive steps. As long as

χd+1,` ≥ ( 1
2
κχ)r−d−1ε (4.82)

and iteration (d + 1, `) is (recursively) successful, we have that, for Taylor steps,

‖sd+1,`‖∞ = ‖xd+1,` − xd+1,`+1‖∞ ≤ hd+1(xd+1,`) − hd+1(xd+1,`+1)

κredη1( 1
2
κχ)r−d−1ε

(4.83)

because of Lemma 4.13, while we know that (4.81) holds for recursive steps. But since
κP > µ( 1

2
κχ), we may deduce that (4.81) thus holds for successful iterations (d + 1, q) as

long as (4.82) is satisfied. As for level d + 1, we may now apply Lemma 4.15 for iteration
(d + 2, t), with

ε♦ = ( 1
2
κχ)r−d−2ε and κ♦ =

κP

µκredη1( 1
2
κχ)r−dε

,

since, as above, (4.70) results from Lemma 4.12 and (4.75). This new application of
Lemma 4.15 then ensures that

‖sd+2,t‖∞ ≤ µ−1κPκ♦ [ hd+2(xd+2,t) − hd+2(xd+2,t+1) ]

=
(

κP

µ

)2
1

κredη1( 1
2
κχ)r−dε

[ hd+1(xd+1,q) − hd+1(xd+1,q+1) ].
(4.84)

The proof is then completed by applying the argument repeatedly up to level r. 2

We finally prove the main result.

Theorem 4.17 Assume that εr is “driven to zero” in Algorithm RMTR∞. Then

lim
k→∞

χr,k = 0. (4.85)

Proof. As in Theorem 4.11, we identify our sequence of iterates with that generated
by considering a sequence of tolerances {εr,j} ∈ (0, 1) monotonically converging to zero.
We start our proof by observing that the monotonic nature of the sequence {f(xr,`)}`≥0

and the fact that f(x) is bounded below impose that

f(xr,k) − f(xr,k+1) → 0 (4.86)

for all successful iterations (r, k). Assume now, for the purpose of deriving a contradiction,
that

lim sup
k→∞

χr,k ≥ 3ε > 0 (4.87)
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for some ε ∈ (0, 1) and consider a k0 > 0 such that χr,k0
≥ 2ε and such that both (4.75)

and
f(xr,k) − f(xr,k+1) ≤

ε

κ♥(nrκH + κg)
√

nr

hold for all k ≥ k0. Without loss of generality, we may assume that the minimization
sequence at level r starts at iteration k0. But Lemma 4.16 ensures that (4.76) holds for
each successful iteration (r, k) (k ≥ k0) as long as (4.74) holds. We may therefore apply
Lemma 4.14 with

ε♣ = 2ε and κ♣ = κ♥

to the (truncated) minimization sequence at level r and deduce that (4.74) holds for all
k ≥ k0, which is impossible in view of Theorem 4.11. Hence (4.87) is impossible and our
proof complete. 2

Theorem 4.17 implies, in particular, that any limit point of the infinite sequence {xr,k}
is first-order critical for problem (2.1). But we may draw stronger conclusions: if we
additionally assume that the trust region becomes asymptotically inactive at all levels,
then, as explained above, each minimization sequence in the algorithm becomes infinite,
and we may apply Theorem 4.17 to each of them, concluding that

lim
k→∞

χi,k = 0

for every level i = 0, . . . , r. The behaviour of Algorithm RMTR∞ is therefore truly
coherent with its multilevel formulation, since the same convergence results hold for each
level.

The convergence results at the upper level are unaffected if minimization sequences
at lower levels are “prematurely” terminated, provided each such sequence contains at
least one successful iteration. Indeed, none of the proofs depends on the actual stopping
criterion used. Thus, one might think of stopping a minimization sequence after a preset
number of successful iterations: in combination with the freedom left at Step 1 to choose
the model whenever (2.22) holds, this strategy allows a straightforward implementation of
fixed lower-iterations patterns, like the V or W cycles in multigrid methods. This is what
we have done in Section 3.

Our theory also remains essentially unchanged if we merely insist on first-order co-
herence (i.e., definition (2.18)) to hold only for small enough trust-region radii ∆i,k , or
only up to a perturbation of the order of ∆i,k or ‖gi,k‖∆i,k. Other generalizations may
be possible. Similarly, although we have assumed for motivation purposes that each fi is
“more costly” to minimize that fi−1, we have not used this feature in the theory presented
above, nor have we used the form of the lower levels objective functions. In particular,
the choice of Section 3 to define fi as identically zero for i = 0, . . . , r − 1 satisfies all our
assumptions. Nonconstant prolongation and restriction operators of the form Pi(xi,k) and
Ri(xi,k) may also be considered, provided the singular values of these operators remain
uniformly bounded. We also refer the reader to (Gratton et al. 2006b) for a discussion of
convergence properties of multilevel trust-region methods to second-order critical points.

5 Conclusion and perspectives

We have presented a variant of the recursive multilevel RMTR algorithm for unconstrained
nonlinear optimization that clearly has advantages over the original method in terms of
computational costs and flexibility. The use of the infinity norm (as opposed to the Eu-
clidean norm used in the original algorithm) removes the need for costly preconditioning of
the trust-region and adapts very naturally to bound constrained problems. However, and
despite the conceptual similarity between RMTR and the new algorithm, their conver-
gence theory differ significantly. Fortunately, the same strong global convergence results
can be proved (with somewhat simpler arguments) for the new algorithm, which makes it
very attractive for practical use.
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C. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization problems. SIAM
Journal on Optimization, 9(4), 1100–1127, 1999.
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