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Abstract 
 
The estimation of random parameters by means of mixed logit models is becoming current practice 
amongst discrete choice analysts, one of the most straightforward applications being the derivation 
of willingness to pay distribution over a heterogeneous population. In many practical cases, 
parametric distributions are a priori specified and the parameters for these distributions are 
estimated. This approach can however lead to many practical problems. Firstly, it is difficult to 
assess which is the more appropriate analytical distribution. Secondly, unbounded distributions 
often produce values ranges with difficult behavioral interpretation. Thirdly, little is known about 
the tails and their effects on the mean of the estimates. (Hess et al, 2005; Cirillo and Axhausen, 
2006) 
 
This paper extends the nonparametric methods in a classical context of mixed logit models. The 
random variables of the objective functions are assumed to be continuous, bounded, and 
independent, and we are interested by the inverse cumulating distribution functions. These 
functions are modeled by means of cubic B-splines with strictly increasing base coefficients, a 
sufficient condition to construct monotonic (increasing) functions. As a result, the number of 
parameters that have to be estimated increases; the information on the tails and on the shape of the 
random variables however should help the analyst to find the right parametric distribution for the 
random parameters (if this exists). 
 
This technique is applied to simulated data and the ability to recover both parametric and non-
parametric random vectors is tested. The non-parametric mixed logit model is also used on real data 
derived from a survey on electric car, whose prototype has been realized and tested in a number of 
cities in Europe. The data set, which is part of a European study called “Cybercar” is a Stated 
Preference experiment conducted in Brussels in 2002. The model presents multiple choices and is 
estimated on repeated observations. 
 
 
1. Introduction 
 
In mixed logit models estimation, investigators traditionally use parametric models involving 
specific functional forms and a finite number of unknown parameters. The early applications of 
mixed logit have used normal distributions for partworths. The use of unbounded distributions 
appears inappropriate in many cases: certain attributes are assumed to be positively (or negatively) 
valued by all individuals; moreover, a zero cost coefficient causes problems for the evaluation of 
the willingness to pay. In order to circumvent these difficulties, more recent and sophisticated 
models propose the adoption of bounded distributions, often obtained as simple transformations of 
normals. Train and Sonnier (2003) specify mixed logit models with lognormal, censored normal 
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and Sb distributions bounded on both sides. They also suggest to adopt Bayesian procedure in order 
to avoid estimation problems encountered with log-normal distributions parameters. 
Some investigators have questioned whether the underlying theory is capable of conveying 
sufficient information to enable a correct and successful specification of parametric models and 
have instead proposed the less restrictive nonparametric or semiparametric approaches to the 
problem. In that context, Dong and Koppelman (2003) assume that distributions are represented by 
a finite number of points and use the Bayesian method to recover their mass and the associated 
probabilities. They assert that Maximum Likelihood Mixed logit failed to recover the true mass 
points from simulated data, although no reasons are given to explain that failure. The empirical 
analysis reported by the authors show that Mass Point Mixed logit is superior to Parametric Mixed 
logit; however, those results are limited by the use of only two points along each of the parameter 
dimensions. 
Hess et al. (2005) propose discrete mixture of GEV models over a finite set of distinctive support 
points. The major advantage of this approach is the lack of need for simulation processes. However, 
it should be noted that when the number of discrete points to be estimated increases numerical 
problems related to the nature of the log-likelihood function to be maximized can be encountered. 
Hensher (2006) resolves the problem of behaviorally sign changes by imposing a global sign 
condition on the marginal disutility expression and gives an application on the valuation of travel-
time savings for car commuters. He adopts a globally constrained Rayleigh distribution for total 
travel time parameterization, although his focus is not on the specific analytical distribution, but on 
the behavioral appeal of the imposition of a global sign condition. 
Train and Weeks (2004) place distributional assumptions on the willingness to pay and derive the 
distribution of the coefficients. They major finding is that models using normal and lognormal 
distributions for coefficients (models in preference space) fit the data better than those in 
willingness to pay space but provide less reasonable distribution for the willingness to pay. They 
also conclude that it is not possible to identify the distribution to use in all situations and that the 
best distribution-fit is highly situation-dependent.  
Fosgerau (2006) employs various non-parametric techniques to investigate the distribution of the 
travel-time savings from a stated choice experiment. The adopted methodology relies on a two-step 
estimation procedure; first a Klein & Spady (1993) estimator is used to estimate parameters in a 
linear index binary choice model with no assumptions on the error term distribution; then the 
distribution of the error term is estimated. The proposed method does not account for repeated 
observations and applies only to binomial choices. 
 
This paper proposes B-spline curves for non-parametric mixed logit models. In the literature B-
splines are known to provide a concise formulation for curves that are composed of many 
polynomial pieces, thereby automatically controlling the overall curve smoothness. (Farin,1991). 
Spline smoothing has been applied to a wide range of problems in many disciplines since Whittaker 
(1923) first introduces it. This technique is often used for nonparametric regression.  Recent 
applications in such areas as meteorology, medicine and price modeling can be found in Singh et al. 
(1997), Jarvis and Stuart (2001), and Bao and Wan (2004). To date there have only been a handful 
of applications of this approach in econometrics (Engle et al., 1986; Koenker et al., 1994; Craig and 
Ng, 2001). To our best knowledge, this approach is new for mixed logit models estimation. 
 
The paper is organized as follow. Section 2 briefly recalls the Mixed logit model formulation and 
the estimation techniques adopted to solve the related maximum log-likelihood problem. Non-
parametric estimation of continuous variables is developed on Section 3, together with a short 
review of the constrained optimization techniques adopted by the authors. Section 4 is dedicated to 
results obtained on simulated data and in particular we show the ability to recover both parametric 
and non-parametric random vectors. Preliminary results on a real case study are given on Section 5. 
Conclusions and future perspective of research are then presented. 
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2. Mixed Multinomial Logit Model (MMNL) formulation 
 
The mixed logit formulation is nowadays extensively used in transport modeling for its flexibility. 
In particular, MMNL models estimate taste variation, avoid the problem of restricted substitution 
pattern in standard logit model and account for state dependency across observations. Mixed logit 
probabilities are expressed by means of the integral of standard logit probabilities over a density of 
parameters: 

( ) ( ) ,∫= βββ dfLP ijij  (1) 
 
where: 

),,1( Iii K= is the individual index, 
),,1( Jjj K= is the alternative index,  

( )βijL is the logit probability and,  

( )βf  is a density function. 
 

The mixed logit derivation that we will use in our application is based on random coefficients, 
with a joint distribution ( )βf  that is usually assumed to be continuous. The choice probability is in 
this case: 

( ) ( ) ,|)( ∫= βθβφβθ dLP ijij  (2) 
 
where ( )θβφ |  is the density with parameters vector θ .  
 

In the case an individual i chooses among alternatives ,,,1 Jj K=  in choice situations 
 (panel data), the utility of alternative j at time t can be expressed as: iTt ,,1K=
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is an error term, assumed to follow the extreme value distribution and to be 

independently and identically distributed between alternatives, individuals and time periods, 
( )θββ |gi =  is the vector of parameters randomly distributed in the population and  is the 

vector independent variables. We observe for each individual the sequence of choices 
. The probability to observe the individuals’ choices is given by the product of 

logit probabilities   (Train, 2003): 
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2.1 MMNL Model estimation 
 
The vector of unknown parameters is estimated by maximizing the log-likelihood function, i.e. by 
solving the problem: 
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where is the vector of alternative choices made by the individual i. This involves the computation 
of 

iy
( )θ

iiyP  for each individual , which is impractical since it requires the evaluation of 
one multidimensional integral per individual. To approximate the integral of the value

),,1( Iii K=

( )θ
iiyP , a 

frequently used approach is to choose for each individual a point set , { } ( )sRR uuS 1,0,,1 ⊂= K , where 
s is the problem dimension, i.e. the number of random coefficients, convert the vectors 

ir
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(multivariate) distribution of β , and then take the average value of the function over . This 
leads to the simulated probability 
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where R is the number of random draws 

ir
β , taken from the distribution function of β . As a result, 

θ  is now computed as one solution of the simulated log-likelihood problem  
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We will denote by  one solution of this last approximation (often called Sample Average 

Approximation, or SAA), while  denotes the solution of the true problem (5). 
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3. Non-parametric estimation of continuous variables 
 
Most of the studies devoted to estimation of parameters without assumptions on the underlying 
distributions are concerned with discrete distributions. Such a discrete treatment could lead to an 
arbitrary population segmentation, which can be avoided if we turn to continuous distributions. 
 
If the parameters coefficients are random, a practical way to approximate the log-likelihood 
function is to construct the set , by sampling the random vector distribution, using Monte Carlo 
or quasi-Monte Carlo techniques. Each component of the random vector is itself random, and if we 
assume independence between these components, we can consider each one separately. Then all 
what we have to do is to draw from univariate random variables. If X is an univariate random 
distribution, a well-known technique to generate draws from its distribution consist to sample an 
uniform on [0,1], hereafter denoted by U[0,1], and to apply the inverse cumulative distribution 
function  to these draws: 

RS

1−
XF

 
( ){ },]1,0[~,1 UuuFS XX

−=  
 
where  represented the sample set drawn from the random variable X. It is usually assumed 
that  is available, the distribution X being known. 

XS

XF
 
We will capitalize on this technique by assuming that the distribution of the random variable X is 
not known, but that , or more precisely , can still be approximated in some way. If X is a 
random continuous variables, the only properties that  has to satisfy are: 

XF 1−
XF

1−
XF

•  ,]1,0[:1 ℜ→−
XF
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•  is monotonically increasing, 1−
XF

•  is continuous. 1−
XF

 
In other terms, we have to estimate an arbitrary continuous real function whose domain is [0,1], 
which is monotonically increasing. 
 
Functions approximation is a large field of mathematics, and various technique are possible. We 
however seek an adequate balance between estimation capabilities and satisfaction of the conditions 
ensuring that we can interpret the function as an inverse cumulative distribution function. If we 
furthermore assume that the random variable X has a bounded support, an elegant way to achieve 
such a balance is the use of B-spline functions. The bounded support assumption is not too much 
restrictive, since extreme behaviours, corresponding to values of X tending to plus or minus infinity, 
are usually not welcome since that are difficult to interpret, and may produce failures inside the 
optimization process. We therefore consider the bounded support assumption as an advantage rather 
than a drawback of the proposition. 
 
A B-spline function of degree p is a polynomial function of degree p, defined on the interval ,   
can be expressed as linear combination of n+1 basis functions 
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The spline construction is illustrated in Figure 1.  
 
Figure 1: Basis B-splines and monotonically increasing spline. 

  
 
 
There are several types of knot vectors, but one especially convenient for our purposes is the 
nonperiodic (or clamped or open) knot vector, which has the form 
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that is the first and last knots have multiplicity p+1. 
 
It is possible to show that the function  is p-1 continuously differentiable. In this paper, we 
will consider cubic B-splines, i.e. we will set p to 3. Another particularly nice property with respect 
to our needs is then that  is monotonically increasing if 

)(uC

)(uC nPPP ≤≤≤ K10 . As we will describe 
latter, this property that is quite easy to guarantee inside the estimation process. 
 
For a more complete review of B-splines properties, we refer the reader to Piegl and Tiller (1996). 
 
3.1 Constrained Optimization 
 
When estimating the log-likelihood function, we have to solve a problem of the form 

( ),min xf
Cx∈

 

where  is the feasible region. In our case, C will have the form  nC ℜ⊂
 

( ){ }ikmimmi xxxC ++ ≤≤≤= K)1( , 
 
That is C is the set of real numbers satisfying the monotonicity constraints. Such constraints can be 
easily dealt with projections. For simplicity, assume that we only have one non-parametric 
coefficient, so that C defines k ordered variables. C is then call the order-simplex; Figure 2 
illustrates the order-simplex in three dimensions. 
 

 
Figure 2: Order-simplex 

 
The projection onto the order-simplex can be performed easily and efficiently, since several 
algorithms of complexity O(n) have been designed (Best and Chakravarti, 1990). Moreover, it is 
possible to adapt the trust-region approach to benefit from such projections. The main idea of a 
trust-region algorithm involves the calculation, at iteration k (with current estimate θk), of a trial 
point kk s+θ by approximately minimizing a model of the objective function inside a trust 
region defined as 

km

 
{ kkkB Δ≤−= θθθ such that  }, [13] 

 
where kΔ  is called the trust-region radius. We will here use a quadratic model: 
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where Hk is a symmetric approximation of the Hessian ( )k
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If this ratio is greater than a certain threshold, set to 0.01 in our tests, the trial point becomes the 
new iterate, and the trust-region radius is (possibly) enlarged. More precisely, if ρk is greater than 
0.75, we set the trust-region to be the maximum between Δ k and 2sk, otherwise we set Δ k =0.5Δ k. If 
the ratio is below the bound, the trial point is rejected and the trust region is shrunk by a factor of 2, 
in order to improve the correspondence of the model with the true objective function. We have 
followed Conn et al. (10) in our choice of the parameters.  
 
The only difference between the unconstrained case and the constraint case using projections lies in 
the computation of the step s in [14]. An efficient technique for the unconstrained case is the 
computation of the Steihaug-Toint point, that is an approximate truncated conjugated gradient 
minimizer of the model [14]. More precisely, we let the conjugated gradient method running until a 
sufficient decrease of the model has been achieved, or the boundary of the trust-region has been hit. 
The constrained case is managed by projecting the conjugated-gradient path onto the order-simplex, 
as illustrated in Figure 3. 

 
Figure 3: Projected Conjugated Gradient Path 

 
 

4. Simulations 
 
In our simulated experiments we create two synthetic populations; the first data set is cross 
sectional and simulates 2000 individuals giving just one response, the second data set is a panel of 
1000 individuals contributing with 2 observations each. The design contains 4 alternatives and 1 
independent variable normally distributed with parameters N(0.5,1). We run two simulations on 
each of the data sets described; one supposing that the coefficient to be estimated was normally 
distributed with parameters N(0,4), the other assuming that the coefficient was lognormal 
distributed with parameters LN(1.133,0.604), where the first parameter is the mean of the 
lognormal distribution, and the second is its standard deviation. The main objective of our 
simulation study was to assess the ability of B-splines to recover the true (and known) distributions 
of our coefficient. 
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Results are represented on the following 8 Figures, we always report the cumulative distribution 
function (CDF) on the left and the inverse of the cumulative distribution function (ICDF) on the 
right.  
As far as normal distribution is concerned, we note that B-splines approximate quite well the true 
distribution of the coefficient except on the tails. This should be expected since we approximate an 
unbounded distribution with a bounded distribution. The approximation is less accurate when trying 
to reproduce a coefficient with lognormal distribution, but the general behaviour is captured. In 
both cases results are better with panel data. 
 
 
Figures 4 and 5: Spline reproducing normal distribution on cross-sectional data 

  
 
Figures 6 and 7: Spline reproducing normal distribution on panel data 

  
 
Figures 8 and 9: Spline reproducing lognormal distribution on cross-sectional data 

  
 
Figures 10 and 11: Spline reproducing lognormal distribution on panel data 
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5. Real case study: CyberCar survey. 
 
Stated preference data are used to validate our methodology on a real case. The survey was 
conducted in Brussels (Belgium) in the first trimester 2003. The study was financed by the EU IST 
project called CYBERCAR. A consortium of 15 European countries has worked with French 
research institution INRIA to develop a self-steering CyberCar, which is currently being tested 
along the Riviera in southern France. The development and adoption of vehicles running 
autonomously without a driver on city streets at low speed (up to 30 km/h at the moment), while 
avoiding fixed and mobile obstacles, is the main goal of that project. More specifically, the survey 
aimed at estimating travel demand and willingness to pay for small and automated electric cars. It is 
an adaptive questionnaire administrated by professionals with the aid of the personal computers. 
The respondents, interviewed at their domicile, analyzed up to 18 scenarios based on the reference 
trip indicated and expressed their choices. The design contains 4 games, each of them proposes up 
to 4 alternatives on the screen. In total seven alternatives where available: car as driver, car as 
passenger, public transport, cyber-car, car sharing, bike and walk.  
306 individuals completed the survey, giving a total number of 4824 observations for the estimation 
of the model. For the purpose of this paper we decided to estimate a model containing just time as 
independent variable. Although the model is partial, the extension to more complex specifications is 
quite straightforward. The levels adopted to derive travel time for each alternative in the 
experimental design are given in Table 1. 
 
              Table 1: Cybercar survey design 

Variables Level of variation 

Public Transport (PT) 
PT travel time 

Car 
Car travel time 

CyberCar 
CyberCar travel cost

 
Carsharing 

Carsharing cost 
 

 
0 
 
0 
 
 

= taxi fare 
 
 

0.30 EUR/km 
+ 10 EUR 

 
-15% 

 
+25% 

 
 

75% taxi fare 
 
 

0.30 EUR/km 
+ 15 EUR 

 
-30% 

 
+50% 

 
 

50% taxi fare 
 
 

0.30 EUR/km  
+ 20 EUR 

 
We report the estimation results in the following Figures; the three sets plot the time distribution 
estimated using respectively: normal distribution, lognormal distribution, B-spline. The final values 
of the log-likelihood are shown on Table 2. The goodness of fit indicator clearly indicates that the 
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best model is the one using B-spline to estimate time distribution. It is also evident that the three 
results are very different from each other, and that what we assume to be the more realistic 
distribution (non parametric distribution) is very difficult to recover with classical parametric 
distributions. The sign of the observation has been set to negative values for the lognormal 
distribution, in order to cope with the positive sign of the random variable. However the final log-
likelihood value suggests a poor adjustment of the distribution to the data. The value obtained with 
the normal distribution is much better, but an unexpected high number of respondents present a 
positive coefficient. The spline approximation manages to improve the log-likelihood value while 
giving a plausible behaviour of the coefficient sign, since nearly all individuals have a negative 
coefficient. 
Figures 12 and 13: Real data – Time assumed to be normal distributed 

  

Figures 14 and 15: Real data – Time assumed to be lognormal distributed 

  

Figures 16 and 17: Real data – Time estimated with B-splines 

  
 

Table 2: Real data – Final log-likelihood values for the three estimated models 

 10



Distribution Normal Lognormal B-Spline 

Final Log-likelihood -5161.33 -5673.43 -5120.72 

 

6. Conclusions 
 
Travel time variability has become one of the most debate full subjects in travel behavior.  This 
problem is often approached with advanced demand models that allow the estimation of random 
coefficients with parametric distribution. This approach is not without drawbacks, especially since 
the distribution choice is not always clear. We have proposed to turn to nonparametric methods by 
adopting B-spline curves as polynomial approximations of arbitrary distributions, and we have 
implemented them into classical mixed logit formulation. Constrained optimization methods are 
used to deal with the monotonicity of the inverse of the cumulative distribution functions.  
 
We have shown that parametric approach can fail to detect the real distribution and that non-
parametric random variables could guide the analysts in search for the real shape of time 
distribution. Preliminary results on real data are extremely encouraging; not only the goodness of fit 
of the non-parametric model is highly better, but it also gives time distribution that would be very 
difficult to recover with classic parametric distributions. 
 
Extension of that work to more complex models on real data is desirable. Comparison with bounded 
parametric distribution, such as censored normal and Sb-Johnson is also planned. 
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