
Recognizing Underlying Sparsity

in Optimization

by S. Kim1, M. Kojima2 and Ph. L. Toint3

Report 06/02 10 May 2006

1 Department of Mathematics,

Ewha Women’s University,

11-1 Dahyun-dong, Sudaemoon-gu, Seoul 120-750 Korea,

Email: skim@ewha.ac.kr

2 Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology,

2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan,

Email: kojima@is.titech.ac.jp

3 Department of Mathematics,

University of Namur,

61, rue de Bruxelles, B-5000 Namur, Belgium,

Email: philippe.toint@fundp.ac.be

Recognizing Underlying Sparsity in Optimization

Sunyoung Kim, Masakazu Kojima and Philippe L. Toint

10 May 2006

Abstract

Exploiting sparsity is essential to improve the efficiency of solving large optimiza-

tion problems. We present a method for recognizing the underlying sparsity structure

of a nonlinear partially separable problem, and show how the sparsity of the Hessian

matrices of the problem’s functions can be improved by performing a nonsingular linear

transformation in the space corresponding to the vector of variables. A combinatorial

optimization problem is then formulated to increase the number of zeros of the Hessian

matrices in the resulting transformed space, and a heuristic greedy algorithm is applied

to this formulation. The resulting method can thus be viewed as a preprocessor for

converting a problem with hidden sparsity into one in which sparsity is explicit. When it

is combined with the sparse semidefinite programming (SDP) relaxation by Waki et al.

for polynomial optimization problems (POPs), the proposed method is shown to extend

the performance and applicability of this relaxation technique. Preliminary numerical

results are presented to illustrate this claim.

Keywords: nonlinear optimization, problem structure, partial separability, sparsity, SDP relaxation,

polynomial optimization

Note: This manuscript was also issued as Research Report B-428, Department of Mathematical

and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 155-8552,

Japan.

1 Introduction

Sparsity plays a crucial role in solving large-scale optimization problems in practice because

its exploitation greatly enhances the efficiency of many numerical solution algorithms. This is

in particular the case for sparse SDP relaxation for polynomial optimization problems (POPs)

(Waki, Kim, Kojima and Muramatsu, 2006), our original motivation, but the observation is

much more widely relevant: it is indeed often highly desirable to find sparse formulations

of large optimization problems of interest. Sparsity is however fragile in the sense that it is

not invariant under linear transformations of the problem variables. This is in contrast with

another description of problem structure: partial separability, a concept originally proposed

by Griewank and Toint (1982b) in connection with the efficient implementation of quasi-

Newton methods for large unconstrained minimization. While these authors showed that

every sufficiently smooth sparse problem of this type must be partially separable, the present

1

paper explores the reverse implication: our objective is indeed to show that partial separability

can often be used to improve exploitable sparsity.

Let f be a real-valued and twice continuously differentiable (C2) function defined on the

n-dimensional Euclidean space IRn. f is said to be partially separable if it is represented as

the sum of element C2 functions f` : IRm → IR (` = 1, . . . , m) such that

f`(x) = f̂`(A`x) for every x ∈ IRn, (1.1)

where A` denotes an n`×n matrix with full row rank, n` < n for each ` and f` is a real-valued

and C2 function defined on IRn` . In pratice, the dimension n` of the domain (or range) of

each element function f̂` is often much smaller than the dimension n of the problem space

IRn. The vectors u` = A`x, called internal variables of the `-th element, are thus of much

smaller size than x. Since the Hessian matrices ∇u`u`
f̂`(u`) of the element functions f`(u`)

(` = 1, . . . , m) and ∇xxf(x) of f are such that

∇xxf(x) =

m
∑

`=1

AT
` ∇u`u`

f̂`(u`)A` for every x ∈ IRn, (1.2)

(where the superscript T denotes the transpose of a matrix), we see that, when the matri-

ces A` are known and constant, the Hessian ∇xxf(x) can be then obtained from the family

of small n` × n` element Hessians ∇u`u`
f̂`(u`). In partitioned quasi-Newton methods (e.g.

Griewank and Toint, 1982b, 1982c and 1982a), this observation is exploited by updating an

approximation B` of each element Hessian in its range IRn` , instead of an approximation B

of the n× n Hessian matrix ∇xxf(x) in the entire problem space. Under this assumption on

the size of the dimension n`, the size of each B` is much smaller than B, so that updates in

the smaller dimensional space associated with each element considerably improve the com-

putational efficiency of the resulting minimization methods. Research on partial separability

has focussed on local convergence of partitioned quasi-Newton methods (Griewank and Toint,

1982a), convex decompositions of partially separable functions (Griewank and Toint, 1984),

and a detection of partially separability using automatic differentiation (Gay, 1996). The

LANCELOT optimization package (Conn, Gould and Toint, 1992, Gould, Orban and Toint,

2003b) makes efficient numerical use of partial separability. See also Nocedal and Wright

(1999).

We now explore the links between partial separability and sparsity further. For every real

valued function h on IRn, we call w ∈ IRn an invariant direction of h if h(x + λw) = h(x)

for every x ∈ IRn and every λ ∈ IR. The set Inv(h) of all invariant directions of h forms a

subspace of IRn, which we call the invariant subspace of h, in accordance with Nocedal and

Wright (1999) (it is called the null space of h in Griewank and Toint (1982b)). We also see

that the condition

h(x + w) = h(x) for every x ∈ IRn and every w ∈ Inv(h)

is characterized by the existence of an nh × n matrix A (with nh = n − dim[Inv(h)]) and

a function ĥ : IRnh → IR such that h(x) = ĥ(Ax) for every x ∈ IRn (Griewank and Toint,

1984, Nocedal and Wright, 1999), where the rows of A form a basis of the nh-dimensional

subspace orthogonal to Inv(h). Obviously, 0 ≤ dim[Inv(h)] ≤ n. When the dimension of

2

the invariant subspace Inv(h) is positive, we call h partially invariant. Thus, every partially

separable function is described as a sum of partially invariant functions. Again, the desirable

and commonly occuring situation is that nh is small with respect to n.

Because we are ultimately interested in sparsity for Hessian matrices, we restrict our

attention to twice continuously differentiable partially invariant functions throughout the

paper. We first emphasize that the Hessian matrix ∇xxh(x) of a partially invariant function

h is not always sparse. However, it is easy to see (Griewank and Toint, 1982b) that the

invariant subspace Inv(h) is contained in the null space of the Hessian matrix ∇xxh(x),

which is to say that

∇xxh(x)w = 0 for every w ∈ Inv(h) and every x ∈ IRn.

Let N = {1, . . . , n} and ej denote the j-th unit coordinate column vector in IRn (j ∈

N). The case where ej ∈ Inv(h) for some j ∈ N is of particular interest in the following

discussion since h : IRn → IR, can then be represented as a function of the n − 1 variables

x1, . . . , xj−1, xj+1, . . . , xn, that is

h(x) = h((x1, . . . , xj−1, 0, xj+1, . . . , xn)T) for every x ∈ IRn.

Now define

K(h) = {j ∈ N : ej ∈ Inv(h)}. (1.3)

Then, h is a function of the variables xi for i ∈ N\K(h), and

∂2h(x)

∂xixj

= 0 for every x ∈ IRn if i ∈ K(h) or j ∈ K(h),

which is to say that each i ∈ K(h) makes all elements of the i-th column and i-th row of

the Hessian matrix ∇xxh(x) identically zero. The size of the set K(h) therefore provides a

measure of the amount of sparsity in the Hessian of h. The property just discussed may also

be reformulated as

{(i, j) ∈ N × N : i ∈ K(h) or j ∈ K(h)}

⊆

{

(i, j) ∈ N × N :
∂2h(x)

∂xixj

= 0 for every x ∈ IRn

}

,

where the latter set is, in general, larger than the former. For example, if h : IRn → IR

is a linear function of the form h(x) =
∑n

i=1 aixi for some nonzero ai ∈ IR (i ∈ N), the

former set is empty since K(h) = ∅ while the latter set coincides with N × N . Since the

two sets are equivalent in many nonlinear functions and because the former set is often

more important in some optimization methods, including in the sparse SDP relaxation for

polynomial optimization problems (POPs), we concentrate on the former set in what follows.

We are now ready to state our objective. Consider a family of partially invariant C2

functions f` : IRn → IR (` ∈ M) where M = {1, 2, . . . , m} and let P be an n× n nonsingular

matrix. Then, the family of transformed functions g`(z) = f`(P z) satisfies the properties

that

g` is a function of variables zi (i ∈ N\K(g`)) only

∂2g`(z)

∂zizj

= 0 (i ∈ K(g`) or j ∈ K(g`))











(` ∈ M). (1.4)

3

The purpose of this paper is to propose a numerical method for finding an n× n nonsingular

matrix P such that

the sizes of all K(g`) (` ∈ M) are large evenly throughout ` ∈ M . (1.5)

Note that this condition very often induces sparsity in the Hessian of the partially separable

function constructed from the transformed functions g`(z), but not necessarily so, as is shown

by the following (worst case) example: if we assume that M contains n(n− 1)/2 indices and

that corresponding sets K(g`) are given by

N \ {1, 2}, . . . , N \ {1, n}, N \ {2, 3}, . . . , N \ {2, n}, . . . , N \ {n − 1, n},

respectively, then every K(g`) is of size n − 2, yet the transformed Hessian is fully dense.

This situation is however uncommon in practice, and (1.5) very often induces sparsity in the

transformed Hessian, even if this sparsity pattern may not always be directly exploitable by

all optimization algorithms. In the unconstrained case, algorithms such as Newton method or

structured quasi-Newton methods (see Griewank and Toint, 1982c, or Yamashita, 2005) are

considerably more efficient when the Hessian of interest is sparse but also, whenever direct

linear algebra methods are used to solve the linearized problem, when this Hessian admits

a sparse Cholesky factorization. Our interest in methods of this type thus leads us to mea-

sure sparsity in terms of correlative sparsity (Waki et al., 2006): briefly stated, a symmetric

matrix is correlatively sparse when it can be decomposed into sparse Cholesky factors, see

Section 2 for a more formal definition. The ideal goal would thus be to find a nonsingu-

lar linear transformation P such that the family of transformed functions g`(z) = f`(Pz)

(` ∈ M) attains correlative sparsity. Unfortunately, achieving this goal for general problems

is very complex and extremely expensive. We therefore settle for the more practically rea-

sonable objective to propose a method that aims at the necessary condition (1.5) in the hope

of obtaining approximate correlative sparsity. This is also consistent with applications where

the Cholesky factorization is not considered, but sparsity nevertheless important, such as

conjugate-gradient based algorithms. As an aside, we note that optimizing the sparsity pat-

tern of the Hessian of partially separable function has been attempted before (Conn, Gould

and Toint, 1994), but without the help of the nonsingular linear transformation in the problem

space, which is central tool in our approach.

In addition to the unconstrained optimization problems mentioned in the previous para-

graph, the same technique can also be considered for uncovering correlative sparsity in the

constrained case. More precisely, we then wish to find P such that the family of transformed

functions g`(z) = f`(Pz) (` ∈ M) satisfies condition (1.5) in a constrained optimization

problem

minimize f1(x) subject to f`(x) ≤ 0 (` ∈ M\{1}). (1.6)

Here, each f` is assumed to be partially invariant or partially separable. Because the sparsity

of the Hessian matrices of the Lagrangian function and/or of some C2 penalty or barrier

function often determines the computational efficiency of many numerical methods for solving

(1.6), our objective in this context is thus to improve the sparsity of the Hessians of these

functions by applying a suitably chosen nonsingular linear transformation P .

4

Returning to our motivating application, we may view a POP as a special case of the

nonlinear optimization problem (1.6) in which all f` (` ∈ M) are polynomials in x =

(x1, x2, . . . , xn)T ∈ IRn. The SDP relaxation proposed by Lasserre (2001) is known to be

very powerful for solving POPs in theory, but so expensive that it can only be applied to

small-sized instances (at most 30 variables, say). A sparse SDP relaxation for solving cor-

relatively sparse POPs was proposed by Waki et al. (2006) to overcome this computational

difficulty, and shown to be very effective for solving some larger-scale POPs. The use of this

technique is also theoretically supported by the recent result by Lasserre (2005) who shows

convergence of sparse relaxation applied to correlatively sparse POPs. See also Kim, Kojima

and Waki (2005), Kojima, Kim and Waki (2005) and Kojima and Muramatsu (2006). We

should however point out that the sparse relaxation is known to be weaker than its dense

counterpart, as it considers fewer constraints on the relaxed problem. As a result, the solution

of the sparsely relaxed problem may be (and sometimes is, as we will discuss in Section 4)

less accurate than if the (potentially impractical) dense relaxation were used. The method

proposed in this paper nevertheless considers exploiting the practical advantages of sparse re-

laxation further by converting a given POP with partially invariant polynomial functions f`

(` ∈ M) into a correlatively sparse one, therefore increasing the applicability of the technique.

This is discussed further in Section 4.

We now comment briefly on the Cartesian sparse case, which was already studied in

Griewank and Toint (1984), where each f` is represented as in (1.1) for some n`×n submatrix

A` of the n × n identity matrix. In this case, we see that, for each ` ∈ M ,

Inv(f`) = {w ∈ IRn : wi = 0 (i ∈ N\K(f`))}.

Thus, #K(f`) = dim[Inv(f`)] for each `, where #S denotes the cardinality of the set S. On

the other hand, we know that for any n× n nonsingular matrix P , the transformed function

g`(z) = f`(Pz) is such that

#K(g`) = #{i ∈ N : ei ∈ Inv(g`)} ≤ dim[Inv(g`)] = dim[Inv(f`)] = #K(f`),

where the penultimate equality follows from the identity Inv(g`) = P−1Inv(f`), which is

shown in Section 2.1. This indicates that the choice of P as the identity is the best to attain

condition (1.5), and any further linear transformation is unnecessary.

The paper is organized as follows: Section 2 serves as a preliminary to the subsequent

sections. We first discuss how a linear transformation in the problem space affects its invariant

subspace, and then give a definition of correlative sparsity. An example is also presented for

illustrating some basic definitions. Section 3 contains the description of a numerical method

for finding a nonsingular linear transformation z ∈ IRn → Pz ∈ IRn such that the family

of transformed functions g`(z) = f`(Pz) (` ∈ M) satisfies condition (1.5). The method

consists of two algorithms: a heuristic greedy algorithm for a combinatorial optimization

problem, which is formulated to maximize the sizes of K(g`) (` ∈ M) lexicographically, and

an algorithm for testing the feasibility of a candidate solution of the optimization problem.

The latter algorithm is a probabilistic algorithm in the sense that the candidate solution

is determined to be feasible or infeasible with probability one. In Section 4, we describe

an application of the proposed method to POPs with some preliminary numerical results.

Section 5 is finally devoted to concluding remarks and perspectives.

5

2 Preliminaries

2.1 Linear transformations in the problem space

We first examine how a linear transformation z ∈ IRn → x = Pz ∈ IRn in the problem space

affects the invariant subspace of a partially invariant C2 function h and the sparsity of its

Hessian matrix, where P = (p1, p2, . . . , pn) denotes an n × n nonsingular matrix. The main

observation is that the transformed function g(z) = h(P z) satisfies

g(z + P−1w) = h(P (z + P −1w)) = h(P z + w) = h(P z) = g(z)

for every z ∈ IRn and every w ∈ Inv(h), which implies that

Inv(g) = P−1Inv(h). (2.7)

This simply expresses that the invariant subspace is a geometric concept which does not de-

pend on the problem space basis. Now suppose that some column vectors of P = (p1, p2, . . . , pn)

are chosen from Inv(h). Then,

K(g) = {j ∈ N : ej ∈ Inv(g)} =
{

j ∈ N : P−1pj ∈ Inv(g)
}

=
{

j ∈ N : pj ∈ Inv(h)
}

.
(2.8)

This means that g can be represented as a function of the variables zi (i ∈ N\K(g)) only. As a

result, we obtain from (1.4) and (2.8) that we can reduce the density (or increase the sparsity)

of the Hessian matrix ∇zzg(z) of the transformed function g(z) = h(Pz) by including more

linearly independent vectors from the invariant subspace Inv(h) in the columns of P .

2.2 Correlative sparsity

In order to define what we mean by correlative sparsity, we follow Waki et al. (2006) and

introduce the correlative sparsity pattern (csp) set of the family of partially invariant C2

functions g` (` ∈ M) as

E(g` : ` ∈ M) =
⋃

`∈M

(N\K(g`)) × (N\K(g`)) ⊂ N × N.

We know from (1.4) that

∂2g`(z)

∂zizj

= 0 ((i, j) 6∈ E(g` : ` ∈ M)) for every z ∈ IRn (` ∈ M).

Hence #E(g` : ` ∈ M), the cardinality of the csp set E(g` : ` ∈ M), measures the sparsity

of the family of functions g` (` ∈ M): a family of partially invariant functions g` : IRn → IR

(` ∈ M) is sparse if

the cardinality #E(g` : ` ∈ M) of the csp set E(g` : ` ∈ M) is small. (2.9)

We may assume without loss of generality that each j ∈ N is not contained in some K(g`);

otherwise some zj is not involved in any g` (` ∈ M). Hence (j, j) ∈ E(g` : ` ∈ M) for every

6

j ∈ M , which indicates that n ≤ #E(g` : ` ∈ M) ≤ n2. We may thus consider that (2.9)

holds if #E(g` : ` ∈ M) is of order n. This indicates that (2.9) is stronger than (1.5).

The correlative sparsity of a family of partially invariant C2 functions g` : IRn → IR

(` ∈ M) can then be defined in two ways. The first uses the csp graph G(g` : ` ∈ M), which

is defined as the undirected graph with node set N and edge set

E′ = {{i, j} : (i, j) ∈ E(g` : ` ∈ M), i < j}.

(For simplicity of notation, we identify the edge set E ′ with E(g` : ` ∈ M).) We then say

that a family of partially invariant functions g` : IRn → IR (` ∈ M) is correlatively sparse if

the csp graph G(g` : ` ∈ M) has a sparse chordal extension. (2.10)

See Blair and Peyton (1993) for the definition and some basic properties of chordal graphs.

The second definition uses the csp matrix R = R(g` : ` ∈ M) defined as

Rij =

{

? if i = j or (i, j) ∈ E(g` : ` ∈ M),

0 otherwise.

The family of partially invariant functions g` : IRn → IR (` ∈ M) is then said to be correlatively

sparse if

the csp matrix R with a simultaneous reordering of its rows and

columns can be factored into the product of a sparse lower triangular

matrix and its transpose (the symbolic Cholesky factorization).

(2.11)

This last condition indicates that computing the Cholesky factor of the Hessian associated

with a correlatively sparse family of invariant functions is inexpensive.

2.3 An illustrative example

Consider the partially separable function f : IRn → IR given by

f(x) =

n+1
∑

`=1

f`(x),

f`(x) = −x` + x2
` (` = 1, . . . , n) and fn+1(x) =

(

n
∑

i=1

xi

)4

.























(2.12)

Then a simple calculation shows that

Inv(f`) = {w ∈ IRn : w` = 0} , dim[Inv(f`] = n − 1 (` = 1, . . . , n),

Inv(fn+1) =

{

w ∈ IRn :

n
∑

i=1

wi = 0

}

and dim[Inv(fn+1)] = n − 1,

K(f`) = {1, . . . , ` − 1, ` + 1, . . . , n} (` = 1, . . . , n), K(fn+1) = ∅.

The fact that K(fn+1) is empty makes the Hessian matrix ∇xxf(x) fully dense, although f

is partially separable. Increasing the size of K(fn+1) is a key to find a nonsingular linear

7

transformation P that reduces the density of the Hessian matrix ∇zzg(z) of the transformed

function g(z) = f(P z) =
∑n+1

`=1 f`(P z). Let

P = (p1, p2, . . . , pn), with pj = ej − ej+1 (j = 1, . . . , n − 1), pn = en. (2.13)

We then see that

pj ∈ Inv(f1) (j = 2, . . . , n), pj ∈ Inv(f2) (j = 3, . . . , n),

pj ∈ Inv(f`) (j = 1, . . . , ` − 2, ` + 1, . . . , n) (` = 3, . . . , n − 1),

pj ∈ Inv(fn) (j = 1, . . . , n − 2), pj ∈ Inv(fn+1) (j = 1, . . . , n − 1).















(2.14)

If we apply the nonsingular linear transformation P , the transformed functions g`(z) =

f`(P z) (` = 1, . . . , n + 1) are such that

K(g1) = {2, . . . , n}, g1 is a function of z1,

K(g2) = {3, . . . , n}, g2 is a function of z1 and z2,

K(g`) = {1, . . . , ` − 2, ` + 1, . . . , n}, g` is a function of z`−1 and z`

(` = 3, . . . , n − 1),

K(gn) = {1, . . . , n − 2}, gn is a function of zn−1 and zn,

K(gn+1) = {1, . . . , n − 1}, gn+1 is a function of zn.























































(2.15)

Condition (1.5) therefore holds.

From the relations above, we also see that the csp set of the family of transformed functions

g` (` ∈ M) is given by E(g` : ` ∈ M) = {(i, j) ∈ N × N : |i − j| ≤ 1}. As a consequence,

the csp matrix R(g` : ` ∈ M) and the Hessian matrix ∇zzg(z) are tri-diagonal, and their

Cholesky factorization can therefore be performed without any fill-in. Consequently, the

family of transformed functions g` (` ∈ M) is correlatively sparse. Rewriting the nonsingular

linear transformation x = P −1z as x1 = z1, xi = zi − zi−1 (i = 2, . . . , n) confirms the

observation above, since we have that

g1(z) = −z1 + z2
1 ,

g`(z) = −(z` − z`−1) + (z` − z`−1)
2 (` = 2, . . . , n), gn+1(z) = z4

n,

g(z) =

n+1
∑

`=1

g`(z) = −zn +

n−1
∑

i=1

(

2z2
i − 2zizi+1

)

+ z2
n + z4

n.























(2.16)

Because of its tridiagonal Hessian, the transformed function g can clearly be more efficiently

minimized by Newton method for minimization than the original function f .

3 A numerical method for improving sparsity

Throughout this section we consider a family of partially invariant C2 functions f` : IRn → IR

(` ∈ M). For every index set S ⊆ M , we define the subspace

Inv[S] =
⋂

`∈S

Inv(f`),

8

and its dimension δ(S). (Notice the square bracket notation in Inv[·] indicating that its

argument is a set of partially invariants functions.) Inv[S] is the intersection of the invariant

subspaces over all partially invariant functions f` whose index ` is in S, and each w ∈ Inv[S]

is thus an invariant direction for this particular collection of partially invariant functions.

In addition, Inv[∅] = IRn, δ(∅) = n and e1, . . . , en are a basis of Inv[∅]. In the following

discussion, the problem of finding an n × n nonsingular matrix P such that the family of

transformed functions g`(z) = f`(Pz) (` ∈ M) satisfies condition (1.5) is reformulated as a

problem of choosing a basis p1, . . . , pn of IRn from Inv[S1], . . . , Inv[Sn] for some family of

index sets S1, . . . , Sn ⊆ M . For simplicity, we use the notation S = (S1, . . . , Sn) ⊆ Mn in

what follows.

We organize the discussion by first describing the feasible set for our problem, that is

which S are admissible. We then motivate its reformulation as a combinatorial maximization

problem, and finally outline an algorithm for its solution.

3.1 Feasibility

In order to describe the feasible set for our maximization problem, we consider the following

combinatorial condition on S:

F(n) : there exists a set of linearly independent vectors pj (j = 1, . . . , n)

such that, for all j, Sj = {` ∈ M : pj ∈ Inv(f`)}.

We immediately note that S = ∅n (i.e., Sj = ∅ (j ∈ N)) satisfies this condition. Indeed, we

have to find a basis p1, . . . , pn of IRn such that none of these vectors belong to any invariant

subspace Inv(f`) (` ∈ M), which is clearly possible because the union of all these invariant

subspaces is of measure zero in IRn.

For any S, now define

L`(S) = {j ∈ N : ` ∈ Sj} (` ∈ M), (3.17)

which identifies the particular collection of index sets Sj that contain `. Then, obviously, if

S satisfies F(n) with P = (p1, . . . , pn),

L`(S) =
{

j ∈ N : pj ∈ Inv(f`)
}

= K(g`), (3.18)

where the last equality follows from (2.8). Combining this identity with (1.4), we thus deduce

that

L`(S) = K(g`),

g` is a function of variables zi (i ∈ N\L`(S)) only,

∂2g`(z)

∂zizj

= 0 (i ∈ L`(S) or j ∈ L`(S))























(` ∈ M). (3.19)

We illustrate these concepts with the example of Section 2.3, where we let

M = {1, . . . , n + 1},

S1 = {3, 4, . . . , n, n + 1}, S2 = {1, 3, 4, . . . , n, n + 1},

Sj = {1, . . . , j − 1, j + 2, . . . , n, n + 1} (j = 3, . . . , n − 2),

Sn−1 = {1, 2, . . . , n − 2, n + 1}, Sn = {1, . . . , n − 1}.



























(3.20)

9

Then, S satisfies condition F(n) with pj (j ∈ N) given in (2.13). We then see from (2.14)

that
L1(S) = {2, . . . , n}, L2(S) = {3, . . . , n},

L`(S) = {1, . . . , ` − 2, ` + 1, . . . , n} (` = 3, . . . , n − 1),

Ln(S) = {1, . . . , n − 2}, Ln+1(S) = {1, . . . , n − 1},















(3.21)

which coincide with the K(g`) (` = 1, . . . , n + 1) given in (2.15), respectively. Recall that the

nonsingular linear transformation P in the problem space of the partially invariant functions

f` (` ∈ M) given in (2.12) yields the transformed functions g` given in (2.16). We easily verify

that the relations (3.19) hold.

3.2 The lexicographic maximization problem

In view of the discussion above, we may replace the requirement (1.5) on the nonsingular

linear transformation P by the following: for an S satisfying condition F(n),

the sizes of L`(S) (` ∈ M) are large evenly throughout ` ∈ M . (3.22)

We now formulate an optimization problem whose solutions will achieve this requirement.

For every r ∈ N and every (S1, . . . , Sr) ⊆ Mr, define, in a manner similar to (3.17),

L`(S1, . . . , Sr) = {j ∈ {1, . . . , r} : ` ∈ Sj} (` ∈ M) (3.23)

and also

σ(S1, . . . , Sr) = (#Lπ(1)(S1, . . . , Sr), . . . , #Lπ(m)(S1, . . . , Sr)), (3.24)

which is an m-dimensional vector where (π(1), . . . , π(m)) denotes a permutation of (1, . . . , m)

such that

#Lπ(1)(S1, . . . , Sr) ≤ · · · ≤ #Lπ(m)(S1, . . . , Sr).

Each component of σ(S1, . . . , Sr) is therefore associated with a partially invariant function

and gives the number of linearly independent vectors pj (j = 1, . . . , r) invariant for this

function for any choice of these vectors associated to S1, . . . , Sr by F(r), these numbers being

sorted in increasing order. We therefore aim at finding a σ(S1, . . . , Sr) with uniformly large

components, if possible.

To illustrate the definition of the sets L`(S1, . . . , Sr) and of σ(S1, . . . , Sr), we return once

more to the example of Section 2.3. If r = 1 and S1 = {3, 4, . . . , n + 1}, then

L1(S1) = L2(S1) = ∅ and L`(S1) = {1} (` = 3, . . . , n + 1),

#L1(S1) = #L2(S1) = 0, #L`(S1) = 1 (` = 3, . . . , n + 1),

(π(1), π(2), . . . , π(n + 1)) = (1, 2, . . . , n + 1),

σ(S1) = (#L1(S1), #L2(S1), . . . , #Ln+1(S1)) = (0, 0, 1, . . . , 1).



























(3.25)

If, on the other hand, r = 2, S1 = {3, 4, . . . , n + 1} and S2 = {1}, then

L1(S1, {1}) = 2, L2(S1, {1}) = ∅ and L`(S1, {1}) = {1} (` = 3, . . . , n + 1),

#L1(S1, {1}) = 1, #L2(S1, {1}) = 0, #L`(S1, {1}) = 1 (` = 3, . . . , n + 1),

(π(1), π(2), . . . , π(n + 1)) = (2, 1, . . . , n + 1),

σ(S1, {1}) = (#L2(S1, {1}), #L1(S1, {1}), . . . , #Ln+1(S1, {1})) = (0, 1, 1, . . . , 1).



























(3.26)

10

Finally, when r = n and S is given by (3.20), we have observed that (3.21) holds. It then

follows that

#L1(S) = #Ln+1(S) = n − 1, #L`(S) = n − 2 (` = 2, . . . , n),

(π(1), . . . , π(n), π(n + 1)) = (2, . . . , n, 1, n + 1),

σ(S) = (#L2(S), , . . . , #Ln(S), #L1(S), #Ln+1(S))

= (n − 2, . . . , n − 2, n − 1, n− 1).



























(3.27)

Now suppose that (S1
1 , . . . , S1

r1
) ⊆ Mr1 and (S2

1 , . . . , S2
r2

) ⊆ Mr2 satisfy F(r1) and F(r2),

respectively. Then, we say that σ(S1
1 , . . . , S1

r1
) is lexicographically larger than σ(S2

1 , . . . , S2
r2

)

if

σ`(S
1
1 , . . . , S1

r1
) = σ`(S

2
1 , . . . , S2

r2
) (` = 1, . . . , k − 1) and

σk(S1
1 , . . . , S1

r1
) > σk(S2

1 , . . . , S2
r2

)

for some k ∈ M . Recall that, because of F(r), each component ` of σ(S1, . . . , Sr) gives

the numbers #L`(S1, . . . , Sr) of linearly independent vectors pj (j = 1, . . . , r) which are

invariant directions for f` (` ∈ M), these components appearing in σ(S1, . . . , Sr) in increasing

order. Hence σ(S1
1 , . . . , S1

r1
) (or p1

j (j = 1, . . . , r)) is preferable to σ(S2
1 , . . . , S2

r2
) (or p2

j (j =

1, . . . , r)) for our criterion (3.22). (Comparing σ(S1), σ(S1, {1}) and σ(S), respectively given

in (3.25), (3.26) and (3.27), we see that σ(S1, {1}) is lexicographically larger than σ(S1), and

σ(S) is lexicographically largest among the three.)

It is thus meaningful, in view of our objective (3.22), to find a set vector S that makes

σ(S) lexicographically as large as possible. As a consequence, finding good solutions of the

optimization problem

P(n) : lexicographically maximize σ(S)

by choosing S subject to condition F(n)

is of direct interest.

3.3 A combinatorial algorithm

We now consider a heuristic greedy algorithm to (approximately) solve problem P(n). The

main idea is to consider a family of subproblems of P(n), defined, for r = 1, . . . , n, by

P(r) : lexicographically maximize σ(S1, . . . , Sr)

by choosing (S1, ..., Sr) subject to condition F(r).

Having introduced all the necessary ingredients, we are now in position to provide a first

motivating description of our algorithm.

1. We start with r = 1, Sj = ∅ (j ∈ N) and L`(S1) = ∅ (` ∈ M), where r is the outer-loop

iterations counter. Suppose that r = 1 or that a (S1, . . . , Sr−1) satisfying F(r − 1) and

the corresponding L`(S1, . . . , Sr−1) have been determined in iterations 1, . . . , r−1 with

11

2 ≤ r ≤ n. At the r-th iteration, we first compute a permutation (π(1), . . . , π(m)) of

(1, . . . , m) such that

#Lπ(1)(S1, . . . , Sr) ≤ · · · ≤ #Lπ(m)(S1, . . . , Sr)

with Sr = ∅. Thus (S1, . . . , Sr−1, Sr) is a feasible solution of P(r) with the objective

value

σ(S1, . . . , Sr) = (#Lπ(1)(S1, . . . , Sr), . . . , #Lπ(m)(S1, . . . , Sr)).

2. We then attempt to generate lexicographically larger feasible set vectors for P(r) by

adding π(k) to Sr, for k = 1, . . . , m, each time enlarging Sr provided (S1, . . . , Sr)

satisfies the condition

Fw(r) : there exists a set of linearly independent vectors pj (j = 1, . . . , r)

such that pj ∈ Inv(f` : ` ∈ Sj) (j = 1, . . . , r),

which is a weaker version of condition F(r).

For example, suppose that we have σ(S1) = (0, 0, 1, . . . , 1) with S1 = {3, 4, . . . , n, n+1}

as shown in (3.25). Let r = 2 and S2 = ∅. Then, σ(S1, S2) = σ(S1) = (0, 0, 1, . . . , 1).

In order to increase σ(S1, S2) lexicographically, we first try to add π(1) = 1 to S2 =

∅, then the resulting σ(S1, {1}) = (0, 1, 1, . . . , 1) as shown in (3.26) would become

lexicographically larger than σ(S1). Note that we could choose π(2) = 2 instead of

π(1) = 1 since

#L1(S1, ∅) = #L2(S1, ∅) = 0 < #L`(S1, ∅) = 1 (` > 2),

but the choice of any other index ` > 2 would result in σ(S1, {`}) = (0, 0, 1, . . . , 1, 2),

which is lexicographically smaller than σ(S1, {1}) = σ(S1, {2}) = (0, 1, 1, . . . , 1). There-

fore, the index π(1) is the best first choice among M = {1, . . . , n+1} for lexicographically

increasing σ(S1, S2), which is why we include it in S2 first, before trying to include π(2),

π(3), . . . , π(m).

3. For each k = 1, . . . , m, we then update (S1, . . . , Sr) with fixing (S1, . . . , Sr−1) and

choosing

Sr =

{

Sr ∪ {π(k)} if (S1, . . . , Sr−1, Sr ∪ {π(k)}) satisfies Fw(r),

Sr otherwise.
(3.28)

If Sr is augmented in (3.28), we also update

Lπ(k)(S1, . . . , Sr) = Lπ(k)(S1, . . . , Sr) ∪ {r}

accordingly.

4. At the end of this inner loop (i.e. for k = n), we have computed a set vector (S1, . . . , Sr)

which satisfies Fw(r) by construction, as well as an associated set of linearly independent

vectors p1, . . . , pr. We prove below that it also satisfies F(r), and is hence feasible for

problem P(r).

12

5. Note that (S1, . . . , Sn) with S` = ∅ (` = r + 1, . . . , n) is a feasible solution of problem

P(n). If Sr = ∅, we know that there is no feasible solution S′ = (S′

1, . . . , S
′

n) of P(n)

satisfying (S′

1, . . . , S
′

r−1) = (S1, . . . , Sr−1) except the feasible solution (S1, . . . , Sn) just

computed; hence (S1, . . . , Sn) is the best greedy feasible solution of problem P(n) and

we terminate the iteration. If r = n, we have obtained the best greedy feasible solution

of problem P(n), and we also terminate the iteration. Otherwise, the (r + 1)-th outer

iteration is continued.

For making the above description coherent, we still need to prove the result anounced in

item 4.

Theorem 3.1 Assume that the algorithm described above produces the set vector (S1, . . . , Sr)

at the end of inner iteration r. Then (S1, . . . , Sr) is feasible for problem P(r).

Proof. By construction, we know that (S1, . . . , Sr) satisfies Fw(r) for a set of linearly

independent vectors p1, . . . , pr. We will show that

Sj = {` ∈ M : pj ∈ Inv(f`)} (j = 1, . . . , r), (3.29)

which implies that F(r) holds with these pj (j = 1, . . . , r) and therefore that (S1, . . . , Sr)

is feasible for problem P(r), as desired. First note that the inclusion

pj ∈ Inv[Sj] (j = 1, . . . , r) (3.30)

(which is ensured by property Fw(r)) implies that Sj ⊆ {` ∈ M : pj ∈ Inv(f`)} for

j = 1, . . . , r. We now prove that the reverse inclusion holds. Assume, on the contrary,

that Sq 6⊇ {` ∈ M : pq ∈ Inv(f`)} for some q ∈ {1, . . . , r}. Then there exists an ` ∈ M such

that ` 6∈ Sq and pq ∈ Inv(f`). We now recall the mechanism of the q-th outer iteration.

We first set Sq = ∅ and computed a permutation π such that #Lπ(1)(S1, . . . , Sq) ≤ · · · ≤

#Lπ(m)(S1, . . . , Sq). Because (π(1), . . . , π(m)) is a permutation of (1, . . . , m), there is a

unique k such that ` = π(k), and we thus have that

π(k) 6∈ Sq and pq ∈ Inv(fπ(k)). (3.31)

Let us focus our attention on the (k − 1)-th and k-th inner iterations of the q-th outer

iteration. At inner iteration (k − 1), the set Sk−1
q = {π(s) ∈ Sq : 1 ≤ s ≤ k − 1} must

have been generated since Sk−1
q is a subset of Sq and is expanded to Sq as the inner

iteration proceeds(1). We then updated Sk−1
q to Sk

q according to (3.28) and depending

on whether there exists a set of linearly independent pk
j (j = 1, . . . , q), say, such that

(S1, . . . , Sq−1, S
k−1
q ∪ {π(k)}) satisfies Fw(q) with these vectors, that is

pk
j ∈ Inv[Sj] for j = 1, . . . , q − 1

and pk
q ∈ Inv[Sk−1

q ∪ {π(k)}] = Inv[Sk−1
q] ∩ Inv(fπ(k)).

Now observe that the vectors pj (j = 1, . . . , q) satisfy these conditions. They are indeed

linearly independent, as we noted above, and

pj ∈ Inv[Sj] for j = 1, . . . , q − 1 (by (3.30)),

pq ∈ Inv[Sq] ⊆ Inv[Sk−1
q] (by (3.30) and Sk−1

q ⊆ Sq),

pq ∈ Inv(fπ(k)) (by the second relation of (3.31)).

(1)Here S
k−1
q denotes the value of the set Sq at the end of the (k − 1)-th inner iteration.

13

The existence of suitable vectors pk
j (j = 1, . . . , q) is therefore guaranteed, giving that

(S1, . . . , Sr−1, S
k−1
q ∪ {π(k)}) satisfies Fw(q) with the pk

j = pj (j = 1, . . . , q). Thus

Sk−1
q must have been updated to Sk

q = Sk−1
q ∪ {π(k)} in (3.28) and, as a consequence,

π(k) ∈ Sk
q ⊆ Sq , which yields the desired contradiction with the first relation of (3.31).

2

Observe that, while this theorem shows that (S1, . . . , Sr) is feasible for problem P(r) at the

end of the inner iteration, its proof indicates why it may not be the case before this inner

iteration is completed.

Of course, for our approach to be practical, we still need to check property Fw(r) for

problem P(r) in item 2 of our algorithmic outline. This is the object of the next paragraph.

3.4 A probabilistic method for checking Fw(r)

The main idea behind our method for checking Fw(r) is that a random linear combination

of basis vectors almost surely does not belong to a proper subspace. To express this more

formally, consider any S ⊆ M and let b(S)1, . . . , b(S)δ(S) ∈ IRn denote a basis of Inv[S]. Each

vector in Inv[S] can then be represented as a linear combination of this basis. If we use the

notation

Er =

r
∏

k=1

IRδ(Sk) and pS(α) =

δ(S)
∑

i=1

αib(S)i

for every S ⊆ M and every α ∈ IRδ(S), we may then prove the following geometric result.

Theorem 3.2 Assume that (S1, . . . , Sr) ⊆ Mr satisfies Fw(r). Then the set

Λ(S1, . . . , Sr) =

{

(α1, . . . , αr) ∈ Er :
pS1

(α1), . . . , pSr
(αr)

are linearly independent

}

(3.32)

is open and dense in Er.

Proof. Let (ᾱ1, . . . , ᾱr) ∈ Λ(S1, . . . , Sr), which is nonempty by assumption. Then,

pS1
(ᾱ1), . . . , pSr

(ᾱr) are linearly independent, and the n×r matrix
(

pS1
(α1), . . . , pSr

αr)
)

contains an r× r submatrix V (α1, . . . , αr), say, which is nonsingular at (ᾱ1, . . . , ᾱr). By

continuity of the determinant of V (·) with respect to its arguments, it remains nonsingu-

lar, and hence pS1
(α1), . . . , pSr

(αr) are linearly independent, in an open neighborhood

of (ᾱ1, . . . , ᾱr). We have thus proved that Λ(S1, . . . , Sr) is an open subset of Er. To

prove that it is dense in this space, let (α̂1, . . . , α̂r) be an arbitrary point in Er. We

show that, in any open neighborhood of this point, there is a (α1, . . . , αr) such that

pS1
(α1), . . . , pSr

(αr) are linearly independent. Let (ᾱ1, . . . , ᾱr) ∈ Λ(S1, . . . , Sr). As dis-

cussed above, we assume that an r×r submatrix V (ᾱ1, . . . , ᾱr) of
(

pS1
(ᾱ1), . . . , pSr

(ᾱr)
)

is nonsingular. For every t ∈ IR, let

φ(t) = det [V ((1 − t)α̂1 + tᾱ1, . . . , (1 − t)α̂r + tᾱr)] .

Then, φ(t) is a polynomial which is not identically zero because φ(1) 6= 0. Hence φ(t) = 0

at most a finite number of t’s, so that φ(ε) 6= 0 for every sufficiently small positive ε.

14

Therefore the vectors

pS1
((1 − ε)α̂1 + εᾱ1), . . . , pSr

((1 − ε)α̂r + εᾱr)

are linearly independent for every sufficiently small positive ε. 2

The main interest of Theorem 3.2 is that it provides a (probabilistic) way to test whether

a given (S1, . . . , Sr) ⊆ Mr does not satisfy Fw(r). Consider indeed a random choice of

(α1, . . . , αr) ∈ Er and compute

pSj
(αj) =

δ(Sj)
∑

i=1

(αj)ib(Sj)i ∈ Inv[Sj] (j = 1, . . . , r).

Then, the vectors pS1
(α1), . . . , pSr

(αr) are almost surely linearly independent whenever

(S1, . . . , Sr) satisfies Fw(r). Thus, if these vectors turn out to be linearly dependent, Fw(r)

almost surely fails. These observations are embodied in the following algorithm.

Algorithm 3.1: a probabilistic method for checking Fw(n).

Step 1. Compute a basis b(Sj)1, . . . , b(Sj)δ(Sj) of Inv[Sj] for (j = 1, . . . , r).

Step 2. For j = 1, . . . , r, randomly choose a vector αj from a uniform distribution over

the box

Bj = [−1, 1]δ(Sj). (3.33)

and compute the vector pSj
(αj) =

∑δ(Sj)
i=1 (αj)ib(Sj)i.

Step 3. Check if the computed pSj
(αj) (j = 1, 2, . . . , r) are linearly independent. If

this is the case, (S1, . . . , Sr) satisfies Fw(r) by definition. Otherwise, the decision

that (S1, . . . , Sr) does not satisfy this property is correct with probability one.

Observe that, when (S1, . . . , Sr) satisfies Fw(r), the above algorithm provides an associated

set of linearly independent vectors pj = pSj
(αj) (j = 1, . . . , r) as a by-product. At the end of

the algorithm outlined in the previous paragraph, this property and Theorem 3.1 thus imply

that the desired nonsingular matrix P is given by P =
(

pS1
(α1), . . . , pSn

(αn)
)

.

We now make an important observation. Assume that we successively wish to check

Fw(r − 1) for (S1, . . . , Sr−1) and Fw(r) for (S1, . . . , Sr−1, Sr), as is the case in the algorithm

outlined in the previous paragraph: we then may view the vectors p1, . . . , pr−1 randomly

generated for S1, . . . , Sr−1 in the first of these two tasks in a suitable choice of random

vectors for the same collection of subsets S1, . . . , Sr−1 in the second task. As a consequence,

the verification of Fw(r) for (S1, . . . , Sr−1, Sr) by Algorithm 3.1 (the second task) may be

replaced, in these conditions and given p1, . . . , pr−1, by the following simpler procedure.

15

Algorithm 3.2: a simpler probabilistic method for checking Fw(n)

Step 1. Compute a basis b(Sr)1, . . . , b(Sr)δ(Sr) of Inv[Sr].

Step 2. Randomly choose a vector αr from a uniform distribution over the box Br

defined by (3.33) and compute p =
∑δ(Sr)

i=1 (αr)ib(Sr)i.

Step 3. Check if p1, . . . , pr−1, p are linearly independent. If this is the case, (S1, . . . , Sr)

satisfies Fw(r). Otherwise, (S1, . . . , Sr) almost surely does not satisfy this property.

We will make use of this simplified verification algorithm in the next section.

We conclude this discussion with a comment. Instead of Algorithm 3.1, we could consider

deterministic algorithms for checking Fw(r). One such algorithm is as follows. Suppose that

a collection of bases B(Sj) = {b(Sj)1, . . . , b(Sj)δ(Sj)} of Inv(f` : ` ∈ Sj) (j = 1, . . . , r) has

been computed. Then we can prove that (S1, . . . , Sr) satisfies Fw(r) if and only if there exist

b(Sj) ∈ B(Sj) (j = 1, . . . , r) that are linearly independent. This can be reformulated as the

problem of finding a maximal common independent set of two matroids over a finite index set

E = ∪r
j=1Ej , where Ej = {(j, i) : i = 1, . . . , δ(Sj)} (j = 1, . . . , r). One is a partition matroid

M1 = (I1, E) where

I1 = {I ⊆ E : #(I ∩ Ej) ≤ 1 (j = 1, . . . , r)}.

The other is a linear matroid M2 = (I2, E) where

I2 = {I ⊆ E : b(Sj)i ((j, i) ∈ I) are linearly independent}.

If we apply a basic matroid intersection algorithm from Lawler (1976) to the pair M1 and

M2, then the theoretical computational cost is of O((#E)2r + (#E)r2c(r, n)) arithmetic

operations, where c(r, n) stands for the cost for checking whether r n-dimensional column

vectors are linearly independent. Note that c(r, n) = O(r2n) arithmetic operations if we use

the standard Gaussian elimination scheme. On the other hand, the probabilistic algorithm

(more precisely, Steps 3 and 4 of Algorithm 3.1) consists of O((#E)n) arithmetic operations

for computing the n-dimensional column vectors pSj
(αj) (j = 1, . . . , r) at Step 3 and c(r, n)

arithmetic operations for checking out their linear independence at Step 4. As we have

just observed, the cost is reduced further in the context of our lexicographic minimization

problem: when Algorithm 3.2 is used instead of Algorithm 3.1, the term O((#E)n) is reduced

to O((#Er)n) since the random vectors pj (j = 1, . . . , r− 1) have been computed previously.

The probabilistic algorithm is thus expected to be computationally much cheaper than the

matroid intersection formulation. Another motivation for using the probabilistic algorithm is

that it is very simple and easy to implement for preliminary numerical experiments.

3.5 The complete algorithm

We finally combine Algorithm 3.2 with the greedy algorithm given in Section 3.1 for the

combinatorial optimization problem P(n), in order to generate a nonsingular matrix P that

16

improves sparsity of our initial family of partially invariant functions. This gives the following

computational procedure.

Algorithm 3.3: finding a transformation that improves sparsity

Step 0. Let r = 1, Sj = ∅ (j ∈ N) and L`(S1) = ∅ (` ∈ M).

Step 1. Let k = 1 and compute a permutation π(1), . . . , π(m) of 1, . . . , m by sorting

#L`(S1, . . . , Sr) (` ∈ M) such that

#Lπ(1)(S1, . . . , Sr) ≤ · · · ≤ #Lπ(m)(S1, . . . , Sr).

Step 2. Let Sr = Sr ∪ {π(k)} and Lπ(k)(S1, . . . , Sr) = Lπ(k)(S1, . . . , Sr) ∪ {r}.

2-1. Compute a basis b(Sr)1, . . . , b(Sr)δ(Sr) of Inv[Sr].

2-2. Randomly choose a vector αr from a uniform distribution over the box Br

defined by (3.33) and compute p =
∑δ(Sr)

i=1 (αr)ib(Sr)i.

2-3. Check if the vectors pj (j = 1, . . . , r − 1) and p are linearly independent. If

it is the case, jump to Step 4.

Step 3. Reset Sr = Sr\{π(k)} and Lπ(k)(S1, . . . , Sr) = Lπ(k)(S1, . . . , Sr)\{r}.

Step 4. If k < m, increment k by one and return to Step 2. Else, go to Step 6 if Sr = ∅.

Step 5. Define pr = p. If r = n, then output (S1, . . . , Sn) and P = (p1, p2, . . . , pn),

and stop. Otherwise let r = r + 1 and return to Step 1.

Step 6. Randomly choose vectors pr, . . . , pn uniformly distributed over the box

B = {p ∈ IRn : −1 ≤ pi ≤ 1 (i = 1, 2, . . . , n)} .

Output (S1, . . . , Sn) and P = (p1, . . . , pn) and stop.

Upon termination, the hopefully sparse dependence of the transformed functions g` on the

new transformed variables z can be uncovered from the sets L`(S) and the relations (3.19).

Some comments on this algorithm are now in order.

1. We have used the simplified Algorithm 3.2 in the body of Algorithm 3.3, exploiting

information already computed during outer iterations 1 to r − 1.

2. To execute Step 2-1, we have chosen to compute and update a q × n nonsingular upper

triangular matrix V whose row vectors form a basis of the space spanned by all the row

vectors of the matrices A` (` ∈ Sr) defined in (1.1). Since

Inv[Sr] = {w ∈ IR : A`w = 0 (` ∈ Sr)} = {w ∈ IR : V w = 0}

17

and V is an upper triangular matrix, a basis of Inv[Sr] is easily computed by solving

V w = 0. In particular, if V is an n×n square matrix, we know that Inv[Sr] reduces to

the origin; we can hence skip Steps 2-1 to 2-4 and immediately go to Step 3. When we

restart the inner iteration with k = 1 and Sr = ∅ at Step 1, V is set to the 0×n empty

matrix. If π(k) is added to Sr at Step 2, V is updated to a q′ × n upper triangular

matrix V ′ whose row vectors form a basis of the space spanned by all the row vectors

of the matrices A` (` ∈ Sr ∪ {π(k)}). This update is also obtained by applying a row

elimination process to transform the matrix

(

V

Aπ(k)

)

into an upper triangular matrix. Note that a procedure using orthogonal transforma-

tions instead of Gaussian elimination is also possible for improved numerical stability.

3. We have also chosen to carry out Step 2-4 by using the Gaussian elimination to compute

and update an r × n upper triangular matrix U r whose row vectors form a basis of the

space spanned by pj (j = 1, . . . , r). At step 0, U 0 is set to the 0×n empty matrix, and

U 1 = pT
1 at Step 2-4. For r = 2, . . . , n, the linear independence of the column vectors

pj (j = 1, . . . , r − 1) and p is tested at Step 2-4 by applying a row elimination process

to transform the r × n matrix
(

U r−1

pT

)

into an upper triangular matrix This yields an r × n nonsingular update U r for U r−1

if and only if the column vectors pj (j = 1, . . . , r − 1) and p are linear independent;

conversely, the column vectors are linearly dependent if and only if all components of

the r-th row of the updated triangular matrix are identically zero. Again, a variant

using orthogonal transformations is possible.

4. Step 6 exploits the fact that, if S = ∅, then Inv[S] = IRn. We then apply Theorem 3.2

to choose pr, . . . , pn.

4 Preliminary numerical experiments on polynomial op-

timization problems

We now intend to show that Algorithm 3.3 achieves its objective by applying it to several

instances of our motivating problem. We show, in particular, that it makes the sparse SDP

relaxation discussed by Waki et al. (2006) for solving optimization problems with partially

invariant polynomial functions applicable to a wider range of problems.

Let Mo 6= ∅ and Mc be a partition of the index set M = {1, . . . , m}; M = Mo ∪ Mc and

Mo ∩ Mc = ∅. Let f` : IRn → IR (` ∈ M) be polynomials. We consider a partially separable

POP of the form

(globally) minimize
∑

k∈Mo

fk(x) subject to f`(x) ≥ 0 (` ∈ Mc). (4.34)

18

Given a general POP of the form (4.34) with a family of partially invariant polynomial

functions f` : IRn → IR (` ∈ M), it is interesting to see whether there exists a nonsingular

linear transformation P on the problem space such that the family of transformed polynomial

functions g`(z) = f`(Pz) (` ∈ M) becomes correlatively sparse. We can use Algorithm 3.3

for this purpose and apply it to produce a nonsingular matrix P and a set vector S. As

indicated above, we may then use L(S) (` ∈ M) to construct the csp matrix R(g` : ` ∈ M),

and check condition (2.11) (or (2.10)) to see whether the resulting POP with the family of

transformed polynomials g`(z) (` ∈ M) is correlatively sparse.

As a first example, we start by considering the practical solution of our example (2.12),

which, as we already observed, is partially separable yet completely dense. However, the

application of a linear transformation P given in (2.13) to the problem space yields the

transformed functions (2.16), with a tridiagonal csp matrix, allowing for a trivial sparse

Cholesky factorization. The transformed problem is thus correlatively sparse, and the sparse

SDP relaxation is thus expected to work effectively for minimizing g(z). This expectation

is fulfilled in practice since SparsePOP (Waki, Kim, Kojima and Muramatsu, 2005, 2006),

an implementation of the sparse relaxation in Matlab(2) using SeDuMi (Sturm, 1999), could

solve this POP with n = 1, 000 in 20.3 seconds (15.4 seconds for converting the POP into an

SDP relaxation problem and 3.7 seconds for solving the resulting SDP by SeDuMi).

Three kinds of problems are tested in our numerical experiments: sparse POPs over

the unit simplex with objective functions from Gould, Orban and Toint (2003a) and Moré,

Garbow and Hillstrom (1981), concave quadratic minimization problems with transportation

constraints from Floudas, Pardalos, Adjiman, Esposito, Gümüs, Harding, Klepeis, Meyer and

Schweiger (1999), and randomly generated low-rank quadratic optimization problems. We

show how much efficiency is gained when solving the problems from the increased correlative

sparsity induced by the transformation.

Algorithm 3.3 was implemented in Matlab. After applying the transformation with the

algorithm, we use the SparsePOP package for solving the resulting POPs. All numerical

experiments were conducted using the Matlab toolbox SeDuMi by Sturm (1999) on a Mac-

intosh Dual 2.5GHz PowerPC G5 with 2GB DDR SDRAM. We use the notation described

in Table 4.1 for the description of numerical results. In all results reported, the relaxation

order (i.e. the highest degree of the moment matrices) is set to 2. We note that the inequality

and equality constraints of the POPs are satisfied at the approximate optimal solutions of all

POPs tested since all the constraints are linear.

4.1 Sparse POPs over the unit simplex

The sparse POPs over the unit simplex which we consider have the form

(globally) minimize f(x)

subject to x ∈ S = {x ∈ IRn :
∑n

i=1 xi = 1, xi ≥ 0 (i = 1, 2, . . . , n)},
(4.35)

in which we insert the following well-known objective functions (see, for instance, Moré et al.,

1981, and the CUTEr collection by Gould et al., 2003a):

(2)Copyright by The Mathworks, Inc.

19

n the number of variables of the POP

sizeA the size of SDP problem in the SeDuMi input format

#nzL the number of nonzeros in the sparse Cholesky factor of the

csp matrix, computed by Matlab functions symmad and chol

#nzA the number of nonzeros in the coefficient matrix A of SDP

problem to be solved by SeDuMi

m.sdp.b the maximum size of SDP blocks in the coefficient matrix A

a.sdp.b the average size of SDP blocks in the coefficient matrix A

rel.err the relative error of SDP and POP objective values

cpu cpu time consumed by SeDuMi in seconds

Table 4.1: Notation

• the Broyden tridiagonal function

fBt(x) = ((3 − 2x1)x1 − 2x2 + 1)
2

+

n−1
∑

i=2

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)
2

+ ((3 − 2xn)xn − xn−1 + 1)2 . (4.36)

• the chained Wood function

fcW(x) = 1 +
∑

i∈J

(

100(xi+1 − x2
i)

2 + (1 − xi)
2 + 90(xi+3 − x2

i+2)
2 + (1 − xi+2)

2

+10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)
2
)

, (4.37)

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4.

• the generalized Rosenbrock function

fgR(x) = 1 +

n
∑

i=2

{

100
(

xi − x2
i−1

)2
+ (1 − xi)

2
}

. (4.38)

Because these three functions have a banded csp matrix, their unconstrained minization

does not require any transformation for sparsity. In fact, the unconstrained problems were

(globally) solved up to n = 1000 by SparsePOP as shown in Waki et al. (2005), and their local

solution is known to be efficient for even larger sizes. However, the unit simplex constraint

added as in (4.35) makes the csp matrix induced by the resulting constrained minimization

problem fully dense, which implies that the performance of SparsePOP for global optimization

is then equivalent to that of the dense relaxation (Lasserre, 2001).

Table 4.2 shows the numerical results of (4.35) with f(x) = fBt(x) by SparsePOP. As

n increases, we notice that the numbers of nonzeros in the Cholesky factor (#nzL) rapidly

grow when no transformation is applied. The size of the SDP problems (sizeA), its number of

nonzeros (#nzA), its maximal and average block size (m.sdp.b and a.sdp.b) are much smaller

with the transformation than without it. As a result, the cpu time consumed is also much

smaller with the transformation than without.

20

Column rel.err indicates that accurate solutions were not obtained except for n = 4 since

the relative errors range from 1.1e-2 to 5.5e-3. The asterisk mark * in cpu time means that Se-

DuMi terminated, for reasons that are not clear, without achieving the desired accuracy given

in its parameter pars.eps whose default value is 1.0e-9, due to numerical problems. Instead,

the solution was obtained with accuracy 1.0e-3 specified with the parameter pars.bigeps.

Without transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 10 [69, 770] 1020 15 5.59 3.0e-10 0.29

8 36 [494, 5634] 7272 45 10.1 1.8e-02 ∗5.31

12 78 [1819, 20098] 25220 91 14.6 4.4e-02 ∗152.10

100 5050 – – – – – –

200 20100 – – – – – –

With transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 9 [69, 770] 1114 15 5.59 3.7e-08 0.24

8 28 [272, 3073] 3868 21 7.06 2.9e-02 ∗1.31

12 60 [863, 11434] 13988 36 10.7 3.7e-02 ∗8.63

100 419 [5811, 73905] 93717 28 9.70 1.1e-02 ∗50.75

200 819 [11711, 149205] 191773 28 9.75 5.5e-03 ∗111.09

Table 4.2: Minimization of the Broyden tridiagonal function (4.36) over the unit simplex

Numerical results of minimizing the chained Wood function (4.37) and the generalized

Rosenbrock function (4.38) over the unit simplex are given in Tables 4.3 and 4.4, respectively.

The numbers in the columns of #nzL, sizeA, #nzA, m.sdp.b and a.sdp.b decrease sharply

when solving the problems with the transformation. We notice that our technique maked

the solution of larger problems with n = 100 and n = 200 possible. Again, the effect of

the transformation on cpu time is very positive. The asterisk mark ∗ indicates SeDuMi

numerical problems, as mentioned before. The accuracy of the obtained solutions using the

transformation is relatively good, although the solutions with no transformation show smaller

relative errors.

4.2 Concave quadratic optimization problems with transportation

constraints

We next consider the following transportation problem (Test Problem 8 in Chapter 2 of

Floudas et al. (1999)):

minimize f(x) =
∑m

i=1

∑k
j=1

(

aijxij + bijx
2
ij

)

subject to

m
∑

i=1

xij = cj (j = 1, . . . , k),

k
∑

j=1

xij = di (i = 1, . . . , m)

xij ≥ 0 (i = 1, . . . , m, j = 1, . . . , n),























(4.39)

21

Without transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 10 [39, 549] 799 8 5.18 4.6e-06 0.22

12 78 [580, 10495] 15617 34 13.4 4.8e-08 5.09

20 210 [2485, 46217] 68435 76 21.7 3.8e-10 233.60

100 5050 – – – – – –

200 20100 – – – – – –

With transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 10 [34, 386] 569 10 4.40 2.2e-05 0.27

12 50 [268, 3292] 5022 13 6.94 2.1e-02 2.05

20 94 [459, 5163] 7971 13 6.66 4.8e-07 ∗3.18

100 473 [2976, 33975] 52137 23 7.44 1.1e-07 ∗29.02

200 936 [8267, 94524] 137705 18 8.54 9.7e-08 ∗104.12

Table 4.3: Minimization of the chained Wood function (4.37) over the unit simplex

Without transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 10 [49, 626] 876 11 5.35 1.2e-11 0.28

8 36 [374, 4738] 6376 37 9.85 1.4e-10 2.99

12 78 [1455, 17330] 22452 79 14.3 1.2e-10 111.93

100 5050 – – – – – –

200 20100 – – – – – –

With ransformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

4 9 [44, 495] 687 10 4.50 9.8e-08 0.32

8 26 [189, 2166] 2973 21 6.19 3.6e-08 0.81

12 43 [328, 3624] 4887 16 6.52 1.8e-07 1.36

100 317 [3678, 42761] 57487 16 7.68 6.5e-06 ∗19.30

200 606 [5017, 54363] 77170 16 6.41 2.7e-06 ∗21.69

Table 4.4: Minimization of the generalized Rosenbrock function (4.38) over the unit simplex

22

The coefficients aij , bij , cj , and di are randomly chosen with uniform distribution as

aij ∈ {200, 201, . . . , 800}, bij ∈ {−6,−5,−4,−3,−2},

dk ∈ {2, 3, . . . , 9}, cj ∈ {2, 3, . . . },
∑k

j=1 cj =
∑m

i=1 di,

}

(4.40)

where we impose m ≤ k.

The above values for the coefficients makes the problem less concave than those presented

in Floudas et al. (1999), so that the resulting SDP relaxation is more efficient. In particular,

small values for |bij |, cj and di weaken the influence of the concave quadratic terms in the

feasible region. As a result, the effects of the transformation obtained from Algorithm 3.3

are more clearly visible. We also note that the problem (4.39) without any transformation

is already correlatively sparse to some extent, but not enough for a successful application of

SparsePOP to a larger-scaled problem as we will see below.

The numerical results of the transportation problem with the coefficient values as in

Floudas et al. (1999), which is also listed in (Global Library) as ex2 1 8, are included in

Table 4.5. In this problem, m = 4 and k = 6, the number of variables being then 24. Note

Transformation #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

No 153 [1003, 13209] 19391 13 9.6 1.4e-05 4.41

Yes 124 [697, 7494] 14830 10 7.1 1.3e-01 ∗4.37

Table 4.5: The original transportation problem ex2 1 8

that the sparse SDP relaxation with relaxation order 2 is applied to both non-transformed and

transformed cases in Table 4.5. We notice in those results that solving this problem using the

transformation reduces the magnitude of #nzL, sizeA, #nzA, and a.sdp.b. However, it does

not provide an accurate solution when compared with solving without the transformation.

This may be partially due to SeDuMi numerical problem, which is indicated by the asterisk

mark in cpu time for the transformed case (note that when SeDuMi experiences numerical

difficulty, it usually consumes more cpu time before it provides an inaccurate solution). A

more fundamental reason for the larger relative error resulting from the sparse SDP relaxation

of the transformed problem is that the sparse SDP relaxation sometimes does not work

as effectively as the dense relaxation as shown numerically by Waki et al. (2006). This is

confirmed by the observation that the sparse SDP relaxation with the relaxation order 3

could solve the transformed problem with rel.err = 2.9e-04, albeit at a cost of in 1089.24

seconds. Moreover, the problem is too small to really show the effect of the transformation.

Larger and numerically stable problems are needed to see how the transformation works

for the problem. These observations have lead to the choices (4.40) of the coefficients for

numerical tests.

Figure 4.1 exhibits the Cholesky factor of the csp matrix before and after the transfor-

mation for (4.39) with m = 9 and k = 9. The pictures are obtained by reordering the rows

and columns of the csp matrix according to the symmetric approximate minimum degree

permutation (Matlab function “symamd”) before applying the Cholesky factorization to the

csp matrix. The transformation decreases the number of nonzero elements in the Cholesky

factor of the csp matrix from 1897 to 855. As shown by Waki et al. (2006), it is crucial to

23

have more sparsity in the Cholesky factor of the csp matrix to obtain a solution of POPs

efficiently. The transformation is very effective to recognize the sparsity of (4.39).

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 1897
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 855

Figure 4.1: Cholesky factor of the csp matrix of (4.39) before and after the transformation

with m = 9 and k = 9

Without transformation

m k #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

5 5 228 [1149, 15003] 22079 14 10.2 1.0e-09 4.74

5 10 981 [6328, 88584] 129312 27 17.1 9.7e-10 344.27

5 15 2187 – – – – – –

5 20 3802 – – – – – –

6 6 371 [3459, 49234] 72021 21 15.4 3.7e-10 82.61

7 7 687 [8303, 123012] 179297 29 21.0 2.3e-09 832.61

8 8 1177 – – – – – –

9 9 1897 – – – – – –

With transformation

m k #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

5 5 136 [713, 7750] 1376 10 7.10 1.3e-08 1.96

5 10 347 [2400, 24914] 46866 14 8.76 1.1e-09 18.33

5 15 599 [4672, 43766] 76813 17 9.16 2.5e-03 ∗89.65

5 20 757 [6024, 57920] 105231 16 9.23 7.9e-03 ∗160.86

6 6 282 [2478, 25190] 47627 17 10.2 2.4e-08 57.12

7 7 388 [2842, 27898] 51126 15 9.27 7.8e-10 21.63

8 8 702 [7217, 69925] 128576 22 12.5 3.5e-03 ∗662.96

9 9 855 [9585, 86186] 141775 25 11.6 5.5e-03 ∗947.87

Table 4.6: Modified transportation problems

We display numerical results for problem (4.39) using coefficients (4.40) in Table 4.6. The

24

number of variables is m×k. We notice that the numbers in the columns #nzL, sizeA, #nzA,

m.sdp.b, a.sdp.b are again much smaller with the transformation, the gain increasing with

the number of variables. Indeed, the transformation is a key for computing a solution for

large-sized problems as shown in the rows of (m,k)=(5, 15), (5, 20), (8, 8), and (9, 9). We see

under “With transformation” in Table 4.6 that the problem with (m, k) equal to (7,7) required

less cpu time than for (6,6). This is because the proposed method works more effectively in

reducing the density of problem (7,7) than for the problem (6,6), as is confirmed by the values

in the m.sdp.b and a.sdp.b. As expected, the relative errors reported by SparsePOP with the

transformation are larger than without when both solutions were obtained.

4.3 Low rank quadratic optimization problems

We finally consider a linearly constrained quadratic optimization problem (QOP) of the form

(globally) minimize xT Qx + cT x

subject to 1 − (aj)T x ≥ 0 (j = 1, . . . , m) 0 ≤ xi ≤ 1 (i = 1, . . . , n).

}

(4.41)

Here Q denotes an n × n symmetric matrix, c ∈ IRn and aj ∈ IRn (j = 1, . . . , m). Let r be

the rank of Q. The quadratic term xT Qx in the objective function can be written as

xT Qx =

r
∑

k=1

λk

(

(qk)T x
)2

, (4.42)

where λk (k = 1, . . . , r) denote the eigenvalues of Q, and qk denotes normalized eigenvectors

corresponding to the eigenvalue λk (k = 1, . . . , r). Letting

fk(x) = λk

(

(qk)T x
)2

(k = 1, . . . , r),

fr+1(x) = cT x,

fj+r+1(x) = 1 − (aj)T x (j = 1, . . . , m),

fi+r+1+m = xi (i = 1, . . . , n),

fi+r+1+m+n = 1 − xi (i = 1, . . . , n),

Mo = {1, . . . , r + 1}, Mc = {r + 2, . . . , r + 1 + m + 2n},

M = Mo ∪ Mc,

we can rewrite the QOP (4.41) in the form (4.34). We note that the problem is partially

separable, that each function fj is partially invariant with an invariant subspace of dimension

n − 1 (` ∈ M), and that Inv(fi+r+1+m) = Inv(fi+r+1+m+n) (i = 1, . . . , n). Therefore,

if r + 1 + m + n is moderate relative to the dimension n of the variable vector x ∈ IRn,

Algorithm 3.3 is expected to work effectively on the family f` (` ∈ M) for transforming the

QOP (4.41) into a correlatively sparse QOP.

We report here on the minimization of low rank concave quadratic forms subject to the

unit box constraint with r = 4, m = 0 and n = 10, 20, 40, 60, 80, 100. The coefficients

of the quadratic form xT Qx described in (4.42) were generated as follows: vectors qk ∈ IRn

(k = 1, 2, . . . , m) and real numbers λk (k = 1, 2, . . . , m) were randomly generated such that

‖qk‖ = 1 (k = 1, . . . , m), (qj)T qk = 0 (j 6= k),

−1 < λk < 0 (k = 1, 3, 5, . . .), 0 < λk < 1 (k = 2, 4, 6, . . .).

25

The numerical results are shown in Tables 4.7.

No transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

10 55 [285, 5511] 7910 11 11.0 1.0e-10 1.01

20 210 [1770, 39221] 56820 21 21.0 5.9e-10 74.13

30 465 [5455, 127131] 184730 31 31.0 6.2e-10 3261.90

40 820 – – – – – –

60 1830 – – – – – –

80 3240 – – – – – –

100 5050 – – – – – –

Transformation

n #nzL sizeA #nzA m.sdp.b a.sdp.b rel.err cpu

10 46 [211, 2963] 7863 8 7.61 3.8e-07 0.89

20 120 [623, 7957] 21038 9 8.51 7.9e-02 ∗12.52

30 194 [1073, 12887] 34838 9 8.68 3.0e-07 7.30

40 238 [1523, 17817] 48638 9 8.76 1.7e-06 11.04

60 347 [2423, 27677] 76238 9 8.84 1.0e-01 ∗36.26

80 446 [3323, 37537] 103838 9 8.88 7.5e-02 ∗65.39

100 539 [4223, 47397] 131438 9 8.91 1.4e-03 ∗55.31

Table 4.7: Minimization of low rank quadratic forms subject to the unit box constraint, the

QOP (4.41) with r = 4 and m = 0

In this table, we observe that the transformation reduces #nzL, sizeA, #nzA, m.sdp.b, and

a.sdp.b for all dimensions tested, and makes the solution of the problems for n = 10, 20,

30 faster than without the transformation. In particular, we see a critical difference in the

size and cpu time between the transformed and untransformed problems for n = 30. The

problems of n ≥ 40 could not be handled without the transformation. As seen in the previous

numerical experiments, the accuracy of the obtained solutions using the transformation is

deteriorating as n becomes large, which is in accordance with the weaker nature of the sparse

SDP relaxation.

Summarizing our numerical experience, we may conclude that the use of the proposed

“sparsifying transformation” has a very positive impact of the sparsity structure of the trans-

formed problems, in turn making the solution of large but originally dense instances realistic.

5 Concluding remarks and perspectives

We have proposed a numerical method for finding a linear transformation of the problem

variables that reveals the underlying sparsity of partially separable nonlinear optimization

problems. This method can be applied to reformulate very general classes of unconstrained

and constrained optimization problems into a sparse equivalent. Its impact is potentially

significant, as many of the existing algorithms for optimization exploit sparsity for efficient

26

numerical computations.

We have shown in Section 4 that the method works effectively when incorporated into the

sparse SDP relaxation method for polynomial optimization problems (POPs), even within

the limits imposed by the weaker nature of the sparse relaxation. Used as a preprocessor

for converting a given POP described by a family of partially invariant functions into a

correlatively sparse formulation, it allows the sparse SDP relaxation method to solve the

converted POP more efficiently. This makes larger dimensional POPs solvable.

A potentially important issue in our technique is the conditioning of the problem space

linear transformation, as ill conditioned transformations could affect the numerical stability of

the transformed problem. As reported in Section 4, SeDuMi often terminated with numerical

errors when solving SDP relaxation problems of transformed POPs. However, we believe

that these difficulties may not be directly attributable to a poor conditioning of the problem

space transformation: the condition number of the computed transformations indeed ranged

roughly from the order of 102 to the order of 104, which remains moderate. The fact that

the sparse SDP relaxation is less expensive, but weaker than the dense one (Lasserre, 2001),

may be the main reason of the large relative errors in most cases; our technique can thus be

viewed as an additional incentive for further research on improving the efficiency of sparse

relaxations and understanding the numerical difficulties reported by SeDuMi.

Our ultimate objective is to find a nonsingular linear transformation in the problem space

that substantially enhances exploitable sparsity. This goal is clearly not restricted to methods

for solving POPs, and is probably very hard to achieve. It may vary in its details if different

classes of numerical methods are used: if we consider handling linearized problems by iterative

methods such as conjugate-gradients, the trade-off between the amount of sparsity and the

problem conditioning may become more important than correlative sparsity, a concept clearly

motivated by direct linear solvers and efficient Cholesky factorizations. It is also worthwhile

to note that our approach is not restricted to nonlinear problems either: the key object here

remains the matrix of the form (1.2) which may result from a partially separable nonlinear

problem as introduced here, or from a purely linear context such as the assembly of a finite

element matrix.

Thus the authors are very much aware that the present paper only constitutes a first step

towards this objective. Many challenging issues remain.

One such issue is the further developments of the formulation. Although the technique

of transforming the problem into a combinatorial lexicographic maximization problem has

indeed showed its potential, we do not exclude that other formulations could bring further

benefits, both in terms of the properties of the problem space transformation (which we

haven’t really touched here) and in terms of numerical efficiency. Alternative algorithms for

the present formulation are also of interest.

Even in the proposed framework, the current Matlab code is admittedly far from opti-

mized. It is for instance interesting to note that the current code required 598 seconds for

computing a 200× 200 transformation and 96 additional seconds for transforming the prob-

lem functions, when applied to the minimization of the Broyden tridiagonal function in 200

variables over the unit simplex. The total cpu time of 694 seconds for the transformation thus

currently largely exceeds the 111 seconds necessary for solving the SDP relaxation problem.

27

Is this inherent to our approach, or could the cost of finding and applying the transformation

be reduced and amortized better with respect to the repeated use of the simplified problem

in computationally intensive techniques such as SDP relaxation, interior point methods or

other algorithms?

Clearly, only continued investigation and numerical experience will assess the true poten-

tial of “sparsity enhancing” techniques of the type proposed here. But the authors feel that

the initial approach is promising.

Acknowledgements

The research of the first author was supported by the grant Kosef R01-2005-000-10271-0.

The research of the second author was supported by Grant-in-Aid for Scientific Research on

Priority Areas 16016234.

References

J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. in A. George,

J. R. Gilbert and J. W. H. Liu, eds, ‘Graph Theory and Sparse Matrix Computation’,

Heidelberg, Berlin, New York, 1993. Springer Verlag.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale

nonlinear optimization (Release A). Number 17 in ‘Springer Series in Computational

Mathematics’. Springer Verlag, Heidelberg, Berlin, New York, 1992.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Improving the decomposition of partially

separable functions in the context of large-scale optimization: a first approach. in W. W.

Hager, D. W. Hearn and P. M. Pardalos, eds, ‘Large Scale Optimization: State of the

Art’, pp. 82–94, Dordrecht, The Netherlands, 1994. Kluwer Academic Publishers.

C. Floudas, P. Pardalos, C. Adjiman, W. Esposito, Z. Gümüs, S. Harding, J. Klepeis,

C. Meyer, and C. Schweiger. Handbook of test problems in local and global optimiza-

tion. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

D. M. Gay. Automatically finding and exploiting partially separable structure in nonlinear

programming problems. Technical report, Bell Laboratories, Murray Hill, New Jersey,

USA, 1996.

Global library. http://www.gamsworld.org/global/globallib.htm.

N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr, a constrained and unconstrained testing

environment, revisited. ACM Transactions on Mathematical Software, 29(4), 373–394,

2003a.

N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe Fortran

90 packages for large-scale nonlinear optimization. ACM Transactions on Mathematical

Software, 29(4), 353–372, 2003b.

28

A. Griewank and Ph. L. Toint. Local convergence analysis for partitioned quasi-Newton

updates. Numerische Mathematik, 39, 429–448, 1982a.

A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable

functions. in M. J. D. Powell, ed., ‘Nonlinear Optimization 1981’, pp. 301–312, London,

1982b. Academic Press.

A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured

optimization problems. Numerische Mathematik, 39, 119–137, 1982c.

A. Griewank and Ph. L. Toint. On the existence of convex decomposition of partially separable

functions. Mathematical Programming, 28, 25–49, 1984.

S. Kim, M. Kojima, and H. Waki. Generalized lagrangian duals and sums of squares relaxation

of sparse polynomial optimization problems. SIAM Journal on Optimization, 15, 697–

719, 2005.

M. Kojima and M Muramatsu. A note on SOS and SDP relaxations for polynomial optimiza-

tion problems over symmetric ones. Technical Report B-414, Dept. of Mathematical and

Computer Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan,

January 2006.

M. Kojima, S. Kim, and H. Waki. Sparsity in sums of squares of polynomials. Mathematical

Programming, Series A, 102, 45–62, 2005.

J. B. Lasserre. Global optimization with polynomials and the problems of moments. SIAM

Journal on Optimization, 1, 796–817, 2001.

J. B. Lasserre. Convergent semidefinite relaxation in polynomial optimization with sparsity.

Technical report, LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse, France,

November 2005.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Saunders College Pub-

lishing, Fort Worth, 1976.

J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.

ACM Transactions on Mathematical Software, 7(1), 17–41, 1981.

J. Nocedal and S. J. Wright. Numerical Optimization. Series in Operations Research. Springer

Verlag, Heidelberg, Berlin, New York, 1999.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.

Optimization Methods and Software, 11& 12, 625–653, 1999.

H. Waki, S. Kim, M. Kojima, and M. Muramatsu. SparsePOP : a sparse semidefinite program-

ming relaxation of polynomial optimization problems. Technical Report B-414, Dept.

of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro-ku,

Tokyo 152-8552, Japan, March 2005.

29

H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite program-

ming relaxations for polynomial optimization problems with structured sparsity. SIAM

Journal on Optimization, (to appear), 2006.

N. Yamashita. Sparse quasi-newton updates with positive definite matrix completion. Tech-

nical Report 2005-0008, Applied Mathematics and Physics, Kyoto University, 606-8501,

Kyoto, Japan, August 2005.

30

