
Numerical Experience with a Recursive Trust-Region

Method for

Multilevel Nonlinear Optimization

by S. Gratton1, A. Sartenaer2 and Ph. L. Toint2

Report 06/01 7 May 2006

1 CERFACS,

av. G. Coriolis, Toulouse, France,

Email: serge.gratton@cerfacs.fr

2 Department of Mathematics,

University of Namur,

61, rue de Bruxelles, B-5000 Namur, Belgium,

Email: annick.sartenaer@fundp.ac.be, philippe.toint@fundp.ac.be

Numerical Experience with a Recursive Trust-Region

Method for Multilevel Nonlinear Optimization

Serge Gratton, Annick Sartenaer and

Philippe L. Toint

7 May 2006

Abstract

We consider an implementation of the recursive multilevel trust-region algorithm

proposed by Gratton, Sartenaer and Toint (2004), and provide significant numerical ex-

perience on multilevel test problems. A suitable choice of the algorithm’s parameters is

identified on these problems, yielding a very satisfactory compromise between reliability

and efficiency. The resulting default algorithm is then compared to alternative optimiza-

tion techniques such as mesh refinement and direct solution of the fine-level problem. The

sensibility of the default variant with respect to most important algorithmic parameters

is finally investigated.

Keywords: nonlinear optimization, multilevel problems, simplified models, recursive algorithms,

numerical performance

1 Introduction

In a recent paper, Gratton et al. (2004) discuss preliminary experimental efficiency and con-

vergence properties of a new recursive multilevel trust-region algorithm for unconstrained

optimization, which is partly inspired by multigrid techniques in partial differential equations

(see Briggs, Henson and McCormick, 2000, for an introduction to this topic) and similar

ideas in linesearch-based optimization methods by Fisher (1998) or Nash (2000) and Lewis

and Nash (2005). The main feature of the new method is to allow the exploitation, in a trust-

region framework, of the fact that many large-scale optimization problems have a hierarchy

of different descriptions, possibly involving different number of variables. This is for instance

the case for applications that arise in an infinite-dimensional context and are subsequently

discretized on a hierarchy of fine to coarse meshes. Problems of this type are important

and do arise in practice, for instance in optimal surface design, variational data assimilation

(Fisher, 1998), e.g. for weather forecasting, multi-dimensional scaling (Bronstein, Bronstein,

Kimmel and Yavneh, 2005) or quantization schemes (Emilianenko, 2005). The purpose of our

paper is to present the numerical experience gained so far with a particular implementation

of the considered algorithm (and some variants) applied to a few significant test problems,

and to illustrate what we believe is the strong potential of methods of this type.

1

2 A recursive multilevel trust-region method

We consider the unconstrained optimization problem

min
x∈IRn

f(x), (2.1)

where f is a twice-continuously differentiable objective function which maps IRn into IR and

is bounded below. The trust-region method(1) that we consider here is iterative, in the sense

that, given an initial point x0, it produces a sequence {xk} of iterates. At each iterate, such

a method builds a model of f(x) around xk which is assumed to be adequate in a sphere

of radius ∆k > 0 centered at xk, called the trust region. A step sk is then computed that

induces a sufficient reduction in the model inside the trust region. The objective function is

computed at the trial point, xk + sk, and this trial point is accepted as the next iterate if and

only if ρk, the ratio of achieved reduction (in the objective function) to predicted reduction

(in its local model), is larger than a small positive constant η1. The radius of the trust region

is finally updated: it is decreased if the trial point is rejected and left unchanged or increased

if ρk is sufficiently large.

Many practical trust-region algorithms, including that presented here, use a quadratic

model. A sufficient decrease in this model inside the trust region is then obtained by (approx-

imately) solving

min
‖s‖≤∆k

mk(xk + s) = f(xk) + 〈gk, s〉+ 1
2
〈s,Hks〉, (2.2)

where gk
def
= ∇f(xk), Hk is a symmetric n×n approximation of ∇2f(xk), 〈·, ·〉 is the Euclidean

inner product and ‖ · ‖ the Euclidean norm.

An alternative model may however be chosen if a hierarchy of problem expressions is

known. To be more specific, suppose that a collection of functions {fi}
r
i=0 is available, each

fi being a twice-continuously differentiable function from IRni to IR (with ni ≥ ni−1). We

assume that nr = n and fr(x) = f(x) for all x ∈ IRn, giving back our original problem.

We also make the assumption that fi is “more costly” to minimize than fi−1 for each i =

1, . . . , r. This is typically the case if the fi represent increasingly finer discretizations of the

same infinite-dimensional objective. To fix terminology, we will refer to a particular i as a

level. We use the first subscript i in all subsequent subscripted symbols to denote a quantity

corresponding to the i-th level (meaning in particular, if applied to a vector, that this vector

belongs to IRni).

The construction of a cheap alternative model is then based on the idea of using fr−1

to derive a lower-level model hr−1 of f(x) = fr(x) in the neighbourhood of the current

iterate. This model is then used to define the step in the trust-region algorithm whenever

possible. If more than two levels are available (r > 1), we can apply this idea recursively, the

approximation process stopping at level 0, where the quadratic model is always used.

Some relation must of course exist between the variables of two successive functions of

the collection set {fi}
r
i=0 to ensure that fi−1 can be useful when minimizing fi, i = 1, . . . , r.

We thus assume that, for each i = 1, . . . , r, there exist a full-rank linear operator Ri from

(1)A comprehensive description and analysis of trust-region methods may be found in Conn, Gould and

Toint (2000).

2

IRni into IRni−1 (the restriction) and another full-rank operator Pi from IRni−1 into IRni (the

prolongation) such that

σiPi = RTi , (2.3)

for some known constant σi > 0, where Pi and Ri are interpreted as restriction and prolon-

gation between a fine and a coarse grid (see, for instance, Briggs et al., 2000). At variance

with the convergence analysis of Gratton et al. (2004) which is formally simplified by choosing

σi = 1 for every i, we no longer make this assumption below, but assume instead that the

restriction operators are normalized to ensure ‖Ri‖ = 1.

Let us now explain how we construct a lower-level model hi−1 based on fi−1. Consider

some iteration k at level i (with current iterate xi,k
(2)). We first need to restrict xi,k to create

the starting iterate xi−1,0 at level i − 1, that is, xi−1,0 = Rixi,k . The lower-level model can

then be defined as the function

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉, (2.4)

where vi−1 = Rigi,k −∇fi−1(xi−1,0) with gi,k
def
= ∇hi(xi,k). By convention, we set vr = 0,

such that, for all sr,

hr(xr,0 + sr) = fr(xr,0 + sr) = f(xr,0 + sr) and gr,k = ∇hr(xr,k) = ∇f(xr,k).

The model hi−1 thus results from a modification of fi−1 by a linear term that enforces the

relation gi−1,0 = ∇hi−1(xi−1,0) = Rigi,k. This first-order modification(3) ensures that the

first-order behaviours of hi and hi−1 are coherent in a neighbourhood of xi,k and xi−1,0,

respectively. Indeed, if si and si−1 satisfy si = Pisi−1, we then have that

〈gi,k, si〉 = 〈gi,k, Pisi−1〉 =
1

σi
〈Rigi,k, si−1〉 =

1

σi
〈gi−1,0, si−1〉, (2.5)

where we have also used (2.3). We refer the interested reader to Gratton et al. (2004) for

further details.

If the lower-level model hi−1 is used, the problem to be (possibly approximately) solved

becomes

min
‖si−1‖i−1≤∆i,k

hi−1(xi−1,0 + si−1), (2.6)

starting from xi−1,0 and where ‖ · ‖i−1 is a level-dependent norm defined by ‖ · ‖r = ‖ · ‖ and

‖si−1‖i−1 = ‖Pisi−1‖i (i = 1, . . . , r).

We now describe our recursive multilevel trust-region algorithm (see Algorithm RMTR

on page 4). We assume, in this algorithm, that the prolongations Pi and the restrictions

Ri are known, as well as the functions {fi}
r
i=0. We use the constants κg, η1, η2, γ1 and γ2

satisfying the conditions κg ∈ (0,min[1,mini ‖Ri‖]), 0 < η1 ≤ η2 < 1, and 0 < γ1 ≤ γ2 < 1.

An initial trust-region radius for each level, ∆s

i > 0, is also defined, as well as level-dependent

gradient-norm tolerances, εgi ∈ (0, 1), and trust-region tolerances, ε∆i ∈ (0, 1), for i = 0, . . . , r.

The algorithm’s initial data consists of the level index i (0 ≤ i ≤ r), a starting point xi,0, the

(2)The second subscript, k, is the index of the current iteration within level i.
(3)It is not unusual to find the first-order modification (2.4) in multigrid applications in the context of the

“full approximation scheme”, where it is usually called the “tau correction” (see, for instance, Chapter 3 of

Briggs et al., 2000, or Hemker and Johnson, 1987).

3

gradient gi,0 at this point, the radius ∆i+1 of the level i + 1 trust region, the tolerances εgi
and ε∆i , and ∆s

i.

Algorithm 2.1: RMTR(i, xi,0, gi,0, ∆i+1, ε
g

i , ε
∆
i , ∆s

i)

Step 0: Initialization.

Compute vi = gi,0 −∇fi(xi,0) and hi(xi,0). Set ∆i,0 = min[∆s

i, ∆i+1] and k = 0.

Step 1: Model choice.

Go to Step 3 (Taylor step) if i = 0 or if the condition

‖Rigi,k‖ ≥ κg‖gi,k‖ and ‖Rigi,k‖ > εgi−1 (2.7)

fails. Otherwise, choose to go to Step 2 (recursive step) or to Step 3.

Step 2: Recursive step computation.

Call RMTR(i − 1, Rixi,k, Rigi,k, ∆i,k, ε
g

i−1, ε
∆
i−1, ∆s

i−1), yielding an approx-

imate solution xi−1,∗ of (2.6). Then define si,k = Pi(xi−1,∗ − Rixi,k), set

δi,k = hi−1(Rixi,k)− hi−1(xi−1,∗) and go to Step 4.

Step 3: Taylor step computation.

Choose Hi,k and compute a step si,k that sufficiently reduces the model

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉+ 1
2
〈si, Hi,ksi〉 (2.8)

and such that ‖si,k‖i ≤ ∆i,k. Set δi,k = mi,k(xi,k)−mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point.

Compute hi(xi,k+si,k) and define ρi,k = (hi(xi,k)−hi(xi,k+si,k))/δi,k. If ρi,k ≥ η1,

then define xi,k+1 = xi,k + si,k; otherwise define xi,k+1 = xi,k.

Step 5: Termination.

Compute gi,k+1. If ‖gi,k+1‖∞ ≤ ε
g

i or ‖xi,k+1 − xi,0‖i > (1− ε∆i)∆i+1, then return

with the approximate solution xi,∗ = xi,k+1.

Step 6: Trust-region radius update.

Set

∆+
i,k ∈

[∆i,k,+∞) if ρi,k ≥ η2,

[γ2∆i,k,∆i,k] if ρi,k ∈ [η1, η2),

[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(2.9)

and

∆i,k+1 = min
[

∆+
i,k, ∆i+1 − ‖xi,k+1 − xi,0‖i

]

. (2.10)

Increment k by one and go to Step 1.

Further motivation for this algorithm can be found in Gratton et al. (2004), together with

a proof that, under reasonable assumptions, every limit point of the sequence of produced

4

iterates must be a first-order critical point, in the sense that limk→∞∇fr(xr,k) = 0. In

particular, the functions fi must have uniformly bounded Hessians for i = 0, . . . , r. A few

additional comments are however helpful.

1. The minimization of f(x) = fr(xr) = hr(xr) (up to the gradient-norm tolerance εgr <

‖∇fr(xr,0)‖) is achieved by calling RMTR(r, xr,0, ∇fr(xr,0), ∆r+1,0, ε
g

r, ε
∆
r , ∆s

r), for

some starting point xr,0 and initial trust-region radius ∆s

r, and where we define ∆r+1,0 =

∞. For coherence of notations, we thus view this call as being made from some (virtual)

iteration 0 at level r + 1.

2. The two conditions in (2.7) ensure that the model hi−1 is considered only when it is

potentially useful. Indeed, the first condition requires that ‖gi−1,0‖ = ‖Rigi,k‖ be large

enough compared to ‖gi,k‖, to avoid that the current iterate appears to be first-order

critical for hi−1 in IRni−1 while it is not for hi in IRni . The second condition imposes

that first-order criticality for hi−1 has not been achieved yet.

3. The “sufficient decrease” in the model (2.8) imposed in Step 3 means, as usual for trust-

region methods, that the step si,k must satisfy two specific conditions (see Chapter 6

of Conn et al., 2000). The first is known as the Cauchy point condition and imposes

sufficient decrease relative to the local first-order behaviour of the objective function.

It requires that

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ κred‖gi,k‖min

[

‖gi,k‖

1 + ‖Hi,k‖
, ∆i,k

]

(2.11)

for some constant κred ∈ (0, 1). If one desires convergence to second-order critical points,

i.e., first-order critical points at which the Hessian of the objective function is positive

semi-definite, a second condition, the eigen point condition, is required. It imposes that,

if τi,k , the smallest eigenvalue of Hi,k, is negative, then

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ κeip|τi,k|min[τ2
i,k,∆

2
i,k] (2.12)

for some constant κeip ∈ (0, 1
2
). However, we will see below that we might settle for a

weaker condition, obviously leading to a weaker result.

4. The termination test ‖xi,k+1−xi,0‖i > (1−ε∆i)∆i+1 in Step 5 as well as (2.10) guarantee

that iterates at a lower level in a recursion remain in the trust region defined at the

calling level.

5. Iteration k at level i is said to be successful if ρi,k ≥ η1.

3 A practical algorithm

Our algorithm description so far leaves a number of practical choices unspecified. It is the

purpose of this section to provide the missing details for the particular implementation whose

numerical performance is reported in this paper. These details are of course influenced by our

focus on discretized problems, where the different levels correspond to different discretization

grids, from coarser to finer.

5

3.1 Taylor iterations: smoothing and solving

The most important issue is how to enforce sufficient decrease at Taylor iterations, that is,

when Step 3 is executed. At the coarsest level (i = 0), the cost of fully minimizing (2.8) inside

the trust region remains small, since the subproblem is of low dimension. We thus solve the

subproblem using the well-known method by Moré and Sorensen (1979) (see also Section 7.3

in Conn et al., 2000), whose cost is dominated by that of a small number of small-scale

Cholesky factorizations and is thus very acceptable. At finer levels (i > 0), we consider two

possibilities for the Taylor step computation. The first is based on the conjugate-gradient

method and the second uses an adaptation of multigrid smoothing techniques, as explained

below.

A first obvious way to compute a Taylor step is to use the TCG (Truncated Conjugate-

Gradient) algorithm designed for the standard trust-region algorithm for large-scale opti-

mization (Steihaug (1983), Toint (1981), see also Section 7.5 in Conn et al. (2000)). This

algorithm is known to ensure (2.11) and can be viewed as a conjugate-gradient process which

is applied regardless of the positive definiteness of the Hessian of the model, finding a useful

point at the boundary of the trust-region when a negative curvature is encountered or when

the iterate leaves the trust region.

Our second strategy for the Taylor step computation is based on multigrid solvers which

constitute a very interesting alternative to conjugate gradient(4) in our context of discretized

problems on successively finer grids. The main characteristics of multigrid algorithms (we refer

the reader to Briggs et al., 2000 for an excellent introduction) are based on the observation

that different “frequencies” are present in the solution of the finest grid problem (or even

of the infinite-dimensional one), and become only progressively visible in the hierarchy from

coarse to fine grids. Low frequencies are visible from coarse grids and up, but higher ones can

only be distinguished when the mesh-size of the grid becomes comparable to the frequency

in question. In multigrid strategies, some algorithms, called smoothers, are known to very

efficiently reduce the high frequency components of the error on a grid (that is, in most

cases, the components whose “wavelength” is comparable to the grid’s mesh-size). But these

algorithms have little effect on the low frequency error components. It is observed however

that such components on a fine grid appear more oscillatory on a coarser grid. They may

thus be viewed as high frequency components on some coarser grid and be in turn reduced

by a smoother. Moreover, this is done at a lower cost since computations on coarse grids

are typically much cheaper than on finer ones. The multigrid strategy consists therefore in

alternating between solving the problem on coarse grids, essentially annihilating low frequency

components of the error, and on fine grids, where high frequency components are reduced (at a

higher cost). This last operation is often called smoothing because the effect of reducing high

frequency components without altering much the low frequency ones has a “smoothing effect”

of the error’s behaviour. We next adapt, in what follows, the multigrid smoothing technique

to the computation of a Taylor step satisfying the requirements of Step 3 of Algorithm RMTR.

A very well-known multigrid smoothing technique is the Gauss-Seidel method, in which

(4)Indeed, if one assumes that the model (2.8) is strictly convex and the trust-region radius ∆i,k sufficiently

large, minimizing (2.8) is equivalent to (approximately) solving the classical Newton equations Hi,ksi = −gi,k.

6

each equation of the Newton system is solved in succession(5). To extend this procedure to

our case, rather than successively solving equations, we perform successive one-dimensional

minimizations of the model (2.8) along the coordinate axes, provided the curvature of this

model along each axis is positive. More precisely, if j is an index such that the jth diagonal

entry of Hi,k is strictly positive, we perform the following updates

αj = −[g]j/[Hi,k]jj , [s]j ← [s]j + αj and g ← g + αjHi,kei,j ,

which correspond to the minimization of (2.8) along the j-th axis (starting each minimization

from s such that ∇mi,k(xi,k + s) = g), where we denote by [v]j the j-th component of the

vector v and by [M]ij the (i, j)-th entry of the matrixM , and where ei,j is the jth vector of the

canonical basis of IRni . This process is the well-known Sequential Coordinate Minimization

(see, for instance, Ortega and Rheinboldt (1970), Section 14.6), which we abbreviate here as

SCM smoother. Note that a SCM smoothing may consist of one or more cycles(6), a cycle

being defined as a succession of ni (at level i) one-dimensional minimizations of the model

(i.e., one minimization along each coordinate axis).

In order to enforce convergence to first-order points, we still have to ensure that a sufficient

model decrease (2.11) has been obtained within the trust region after a SCM smoother has

been applied. To do so, we start the first smoothing cycle by selecting the axis corresponding

to the largest component of the gradient, gi,k, in absolute value. Indeed, if this component is

the `-th one and if d` = −sign([gi,k]`)ei,`, minimization of the model mi,k along d` within the

trust region is guaranteed to yield a Cauchy step α`d` such that (2.11) holds (see Gratton

et al. (2004) for details). Since the remaining minimizations in the first SCM smoothing

cycle (and the following ones, if any) only decrease the value of the model further, (2.11) still

holds for the complete step. We also check, after each cycle of a SCM smoothing, if the step

obtained is outside the trust region. If this is the case, we stop the smoothing process and

apply a variant of the dogleg strategy (see Powell, 1970, or Conn et al., 2000, Section 7.5.3),

by minimizing the model mi,k along the segment [α`d`, s] restricted to the trust region. The

final step is then given by α`d` + αs(s − α`d`), where αs is the multiple of s − α`d` that

achieves the minimizer.

To complete the description of our adapted smoothing technique, we need to specify what

is done if a negative curvature is encountered along one of the coordinate axis during a cycle

of a SCM smoothing. Assume that this axis is the j-th one, the model minimizer along ej thus

lies on the boundary of the trust region. It is then very easy to compute the associated model

reduction. We then remember the largest of these reductions (along with the corresponding

step) if negative curvature is met along more than one axis within the cycle, and this largest

reduction is compared to the reduction obtained by minimizing the model along the axes with

positive curvature so far. The smoothing process is stopped (i.e., no new cycle is started),

and the step giving the maximum reduction is finally selected.

Note that the above SCM smoothing technique does not guarantee that the eigen point

condition (2.12) holds, since it limits its exploration of the model’s curvature to the coordinate

(5)See Briggs et al., 2000, page 10, or Golub and Van Loan, 1989, page 510, or Ortega and Rheinboldt, 1970,

page 214, amongst many others.
(6)We will discuss the number of cycles choice in Section 4.

7

axes. We merely have that

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ 1
2
|µi,k|∆

2
i,k ,

where µi,k is now the most negative diagonal element of Hi,k. As a consequence, there is little

hope that the resulting algorithm can be proved convergent to second-order critical points

without additional assumptions on the problem. Convergence can however be proved to first-

order critical points at which the diagonal of objective function’s Hessian is non-negative (see

Gratton, Sartenaer and Toint, 2006).

The details of the choice between TCG and SCM for the Taylor iterations are given in

Section 3.6.

3.2 Linesearch

The implementation whose numerical performance is discussed in Section 4 uses a version that

combines the traditional trust-region techniques with a linesearch, in the spirit of Toint (1983,

1987), Nocedal and Yuan (1998) and Gertz (1999) (see Conn et al., 2000, Section 10.3.2).

More precisely, if ρi,k < η1 in Step 4 of Algorithm RMTR and the step is “gradient related”

in the sense that

|〈gi,k, si,k〉| ≥ εgr‖gi,k‖ ‖si,k‖

for some εgr ∈ (0, 1), the step corresponding to a new iteration and a smaller trust-region

radius can be computed by backtracking along si,k, instead of recomputing a new one using a

TCG iteration or a SCM smoothing. On the other hand, if some iteration at the topmost level

is successful and the minimizer of the quadratic model in the direction sr,k lies sufficiently far

beyond the trust-region boundary, then an optional doubling of the step can be performed

until the objective function stops decreasing, a strategy reminiscent of the “internal doubling”

procedure of Dennis and Schnabel (1983) (see Conn et al., 2000, Section 10.5.2), or the

“magical step” technique of Conn, Vicente and Visweswariah (1999) and Conn et al. (2000),

Section 10.4.1. The theoretical arguments developed in these references guarantee that global

convergence of the modified algorithm to first-order critical points is not altered.

3.3 Second-order and Galerkin models

The gradient correction vi−1 in (2.4) ensures that hi and hi−1 coincide at first order (up to

the constant σi) in the range of the prolongation operator, since

〈gi,k, Pisi−1〉 =
1

σi
〈Rigi,k, si−1〉 =

1

σi
〈gi−1,0, si−1〉.

We can also achieve coherence of the models at second order by choosing

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉+ 1
2
〈si−1,Wi−1si−1〉, (3.13)

where Wi−1 = Ri∇
2hi(xi,k)Pi −∇

2fi−1(xi−1,0), since we then have that

〈Pisi−1,∇
2hi(xi,k)Pisi−1,〉 =

1

σi
〈si−1,∇

2hi−1(xi−1,0)si−1〉.

8

The second-order model (3.13) is of course more costly, as the matrix Wi−1 must be computed

when starting the minimization at level i − 1 and must also be used to update the gradient

of hi−1 at each successful iteration at level i− 1.

Another strategy consists to choose fi−1(xi−1,0 + si−1) = 0 for all si−1 in (3.13). This

strategy amounts to consider the lower-level objective function as the “restricted” version of

the quadratic model at the upper level (this is known as the “Galerkin approximation”) and

is interesting in that no evaluation of fi−1 is required. When this model is strictly convex and

the trust region is large enough, one minimization in Algorithm RMTR (without premature

termination) corresponds to applying a Galerkin multigrid linear solver on the associated

Newton’s equation. Note that this choice is allowed within the theory presented in Gratton

et al. (2004), since the zero function is obviously twice-continuously differentiable, bounded

below and has uniformly bounded Hessians.

3.4 Hessian of the models

Computing a model Hessian Hi,k is often one of the heaviest task in Algorithm RMTR.

Our choice in the experiments described in Section 4 is to use the exact second derivative

matrix of the objective functions fi. However, we have designed an automatic strategy that

avoids recomputing the Hessian at each iteration when the gradient variations are still well

predicted by the available Hi,k−1. More specifically, we choose to recompute the Hessian at

the beginning of iteration (i, k) (k > 0) whenever the preceding iteration was unsuccessful

(i.e. ρi,k−1 < η1) or when

‖gi,k − gi,k−1 −Hi,k−1si,k−1‖ > εH‖gi,k‖,

where εH ∈ (0, 1) is a small user-defined constant. Otherwise, we use Hi,k = Hi,k−1. A

default value of εH = 0.15 appears to give satisfactory results in most cases.

3.5 Prolongations and restrictions

We have chosen to define the prolongation and restriction operators Pi and Ri as follows.

The prolongation is chosen as the linear interpolation operator, and the restriction is its

transpose normalized to ensure that ‖Ri‖ = 1. These operators are never assembled, but

are rather applied locally for improved efficiency. Cubic interpolation could also be used in

principle, but it produces denser Galerkin models, and our experience is that the algorithm

is computationally less efficient.

3.6 Free and fixed form recursions

An interesting feature of the RMTR framework of Gratton et al. (2004) is that its convergence

properties are preserved if the minimization at lower levels (i = 0, . . . , r− 1) is stopped after

the first successful iteration. The flexibility this induces allows to consider different recursion

patterns, namely fixed form and free form ones. In a fixed form recursion pattern, a maximum

number of successful iterations at each level is specified (like in V- and W-cycles in multigrid

algorithms, see Briggs et al. (2000)). If no such premature termination is used but the

9

minimization at each level is carried out until one of the classical termination conditions on

the gradient norm and step size (see Step 5 of Algorithm RMTR) is satisfied, then the actual

recursion pattern is uniquely determined by the progress of minimization at each level (hence

yielding a free form recursion pattern).

In Section 4, we compare three recursion forms. In the first form, which we call V-form, the

minimization at the lower levels consists in one successful SCM smoothing iteration, followed

by either a successful TCG iteration or a successful recursive iteration, itself followed by

a second successful SCM smoothing iteration(7). The second form is called W-form and is

defined as a V-form to which is added one successful TCG or recursive iteration, and a final

SCM smoothing iteration. The third form is the free form recursion as explained above,

in which we impose however that SCM smoothing iterations and other types of (successful)

iterations alternate at all levels but the coarsest. Indeed, during our experiments, we have

found this alternance very fruitful (and rather natural in the interpretation of the algorithm

as an alternance of high frequency reductions and low frequency removals).

Note that for each recursion form, any remaining iteration is skipped if one of the termi-

nation conditions in Step 5 of Algorithm RMTR is satisfied.

3.7 Computing the starting point at the fine level

We also take advantage of the multilevel recursion idea to compute the starting point xr,0 at

the finest level by applying Algorithm RMTR successively at levels 0 up to r − 1 (a starting

point at the lowest level being supplied by the user). In our experiments based on regular

meshes (see Section 4), the accuracy on the gradient norm that is required for termination at

level i < r is given by

εgi = min(0.01, εgi+1/ν
ψ
i), (3.14)

where εgr is the user-supplied gradient-accuracy requirement for the topmost level, ψ is the

dimension of the underlying continuous problem and νi is the discretization mesh-size along

one of these dimensions. Once computed, the solution at level i is then prolongated to level

i+ 1 using cubic interpolation.

3.8 Constants choice and recursive termination thresholds

We conclude the description of our practical algorithm by specifying our choice for the con-

stants, the level-dependent gradient thresholds εgi and the trust-region boundary thresholds

ε∆i that appear in Algorithm RMTR. We set

κg = 0.01, η1 = 0.01, η2 = 0.95, γ1 = 0.05 and γ2 = 1.00, (3.15)

as this choice appears most often appropriate. The value 1 is also often satisfactory for the ∆s

i.

The gradient thresholds are chosen according to the rule (3.14). The role of the tolerances ε∆i
on the steplength compared to the trust-region boundary (see Step 5 in Algorithm RMTR)

is less crucial. A default choice of 0.05 seems adequate and is used in our tests.

(7)A the coarsest level 0, SCM smoothing iterations are skipped and recursion impossible.

10

4 Numerical tests

The algorithm described above has been coded in MATLAB c© (Release 7.0.0) and all exper-

iments below were run on a Dell c© computer with 2 GBytes of RAM.

4.1 Test problems

We have considered a set of minimization problems in infinite-dimensional spaces, involving

differential operators. These operators are discretized on a hierarchy of regular grids such

that the coarse grid at level i − 1 is defined by taking every-other point in the grid at level

i: the ratio between the grid spacing of two consecutive levels in each coordinate direction

is therefore 2. The grid transfer operators Pi are defined as in classical geometric multigrid

settings, using interpolation operators. The restriction operators Ri are such that (2.3) holds,

where σi = ‖Pi‖
−1. Ensuring this condition requires the knowledge of ‖Pi‖

−1, which is easily

done for 1D problems by a direct computation using an eigenvalue solver. For dimension 2

or 3, the grid transfer operators consist in applying the 1D operators in the direction of each

coordinate axis (see Section A of the Appendix).

Given this hierarchy of discretized problems, we are initially interested in the solution of

the problem on the finest grid. All algorithms discussed below are applied to this problem.

Some of the test cases presented here are very close to the ones in Nash (2000) and Lewis

and Nash (2005): they are convex minimization problems whose solution is a 1D or 2D

function. We also additionally introduce a quadratic 3D problem, a 2D nonconvex problem,

an optimal control problem and an inverse problem. We denote by S2 and S3 respectively

the unit square and cube: S2 = [0, 1]× [0, 1] = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and S3 = [0, 1]×

[0, 1]× [0, 1] = {(x, y, z), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. Some of the objective functions

of the test problems take the form of an integral over an infinite-dimensional space, which

we approximate using a straightforward averaging scheme: for example, for 2D problems, the

contribution of a square of vertices (xi, yi), (xi+1, yi), (xi+1, yi+1) and (xi, yi+1) is (ui,j +

ui+1,j + ui+1,j+1 + ui,j+1)h
2/4, where ui,j is the value of the function to be integrated at

vertex (xi, yi), and h is the grid spacing in the x− and y−directions.

4.1.1 DN: a Dirichlet-to-Neumann transfer problem

Let S be the square [0, π]× [0, π] and let Γ be its lower edge defined by {(x, y), 0 ≤ x ≤ π, y =

0}. The Dirichlet-to-Neumann transfer problem (Lewis and Nash, 2005) consists in finding

the function a(x) defined on [0, π], that minimizes

∫ π

0

(∂yu(x, 0)− φ(x))2 dx,

where ∂yu is the partial derivative of u with respect to y, and where u is the solution of the

boundary value problem

∆u = 0 in S,

u(x, y) = a(x) on Γ,

u(x, y) = 0 on ∂S\Γ.

11

The problem is a 1D minimization problem, but the computations of the objective function,

gradient and Hessian involve a partial differential equation in 2D. To introduce oscillatory

components in the solution, we define φ(x) =
∑15

i=1 sin(i x) + sin(40x). The discretization of

the problem is performed by finite differences with the same grid spacing in the two directions.

The discretized problem is a linear least-squares problem.

4.1.2 Q2: a simple quadratic example

We consider here the two-dimensional model problem for multigrid solvers in the unit square

domain S2

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is u(x, y) = 2y(1−y)+2x(1−x).

This problem is discretized using a 5-point finite-difference scheme, giving linear systems

Aix = bi at level i where each Ai is a symmetric positive-definite matrix. Algorithm RMTR

will be used on the variational minimization problem

min
x∈IRnr

1
2
xTArx− x

T br, (4.16)

which is obviously equivalent to the linear system Arx = br. The main purpose of this

example is to illustrate that Algorithm RMTR exhibits performances similar to traditional

linear multigrid solvers on a quadratic model problem.

4.1.3 Q3: a 3D quadratic example

This example is a 3D version of Example 4.1.2. We consider the differential equation

−(1 + sin(3πx)2)∆u(x, y, z) = f in S3,

u(x, y, z) = 0 on ∂S3.

The right-hand side f is chosen such that u(x, y, z) = x(1− x)y(1− y)z(1− z) is the desired

solution. We consider Āix = b̄i, a finite-difference discretization of the problem at level i,

where the Laplacian is discretized using the standard 7-point finite-difference approximation

on a uniform 3D mesh. The system is then made symmetric by multiplying Āi and b̄i by a

diagonal matrix Di which is the discretization of the function 1 + sin(3πx)2. The discretized

problem reads then Aiy = bi, where Ai is a symmetric positive-definite matrix and the

solutions x and y are related by Diy = x. As for Example 4.1.2, Algorithm RMTR is applied

to the variational formulation (4.16).

4.1.4 Surf: the minimum surface problem

The domain of calculus of variation consists in finding stationary values v of integrals of the

form
∫ b

a
f(v, v̇, x) dx, where v̇ is the first-order derivative of v. Algorithm RMTR can be

applied to discretized versions of problems of this types. As a representative of these, we

consider the minimum surface problem

min
v∈K

∫ 1

0

∫ 1

0

(

1 + (∂xv)
2 + (∂yv)

2
)

1
2 dx dy,

12

whereK =
{

v ∈ H1(S2) s.t. v(x, y) = v0(x, y) on ∂S2

}

. The boundary condition v0 is chsoen

as

v0(x, y) =

f(x), y = 0, 0 ≤ x ≤ 1,

0, x = 0, 0 ≤ y ≤ 1,

f(x), y = 1, 0 ≤ x ≤ 1,

0, x = 1, 0 ≤ y ≤ 1,

where f(x) = x(1 − x). This convex problem is discretized using a finite element basis

defined using a uniform triangulation of S2, with same grid spacing h along the 2 coordinate

directions. The basis functions are the classical P1 functions which are linear on each triangle

and take value 0 or 1 at each vertex.

4.1.5 Inv: an inverse problem from image processing

We consider the image deblurring problem stated on page 130 of Vogel (2002). In this case,

the columns of the unknown deblurred image are stacked into a vector f . A doubly block

Toeplitz matrix T is computed using the blur function of Hansen’s toolbox (Hansen 1994),

which also yields the blurred image d. The image deblurring problem can be written

minJ (f) where J (f) =
1

2
‖Tf − d‖22 + TV (f),

where TV (f) is the discretization of the total variation function

∫ 1

0

∫ 1

0

(

1 + (∂xf)2 + (∂yf)2
)

1
2 dx dy.

The discretization scheme for TV (f) is the same as for the minimum surface problem. The

problem is convex.

4.1.6 Opt: an optimal control problem

We consider the following optimal control problem, introduced by Borzi and Kunisch (2006),

and related to the solid ignition model:

min
f
J (u(f), f) =

∫

S2

(u− z)2 +
β

2

∫

S2

(eu − ez)2 +
ν

2

∫

S2

f2,

where
−∆u+ δeu = f in S2,

u = 0 on ∂S2.

This convex problem is discretized using finite differences in the square S2. For the numerical

tests, we chose the following numerical values: ν = 10−5, δ = 6.8, β = 6.8 and z = 1
π2 .

4.1.7 NC: a nonconvex example

We introduce the nonlinear least-squares problem

min
u,γ
J (u, γ) =

∫

S2

(u− u0)
2 +

∫

S2

(γ − γ0)
2 +

∫

S2

f2,

13

where
−∆u+ γu− f0 = f in S2,

u = 0 on ∂S2,

with the unknown functions u and γ being defined on the unit square S2. The functions

γ0(x, y) and u0(x, y) are defined on S2 by γ0(x, y) = u0(x, y) = sin(x(1 − x)) sin(y(1 − y)).

The function f0 is such that −∆u0 + γ0u0 = f0 on S2. This problem corresponds to a

penalized version of a constrained optimal control problem, and is discretized using finite

differences. The nonconvexity of the resulting discretized fine-grid problem has been assessed

by a direct eigenvalue computation on the Hessian of the problem.

4.2 Performance of the multilevel Algorithm RMTR

In a first set of experiments, we focus on the comparison of the following three algorithms:

• the “all on finest” (AF) algorithm, which is a standard Newton trust-region algorithm

(with TCG as subproblem solver) applied at the finest level, without recourse to coarse-

level computations;

• the mesh refinement technique (MR), where the discretized problems are solved in turn

(from the coarsest level (level 0) to the finest one (level r)), using the same standard

Newton trust-region method. The starting point at level i+1 is obtained by prolongating

(using Pi+1) the solution obtained at level i;

• the full multilevel (FM) Algorithm RMTR.

The starting point of each algorithm is a random vector of appropriate size generated, on

the coarsest level (which is also the finest for Algorithm AF), by the Matlab command rand

with initial seed set to zero. The algorithms were terminated when the infinity norm of the

gradient at the finest level was below 5× 10−9 for Q2, Surf and Opt, below 10−7 for Q3, DN

and NC, and below 5× 10−5 for Inv.

The performance of these algorithms (and of their variants in Section 4.3) is analyzed in

terms of number of objective function, gradient and Hessian evaluations as it is often the

case in optimization, but we also provide an analysis in terms of calls to basic computational

kernels (the typical relative cpu-time costs of all these kernels are reported in Section B of the

Appendix). Even if they broadly confirm our analysis, we do not report the exact Matlab cpu-

times for two reasons. First because they are subject to significant fluctuation depending on

machine load. Secondly because, as resulting from the execution of an interpreted language,

they penalize function calls more than is typical from a less experimental implementation in

a compiled language.

4.2.1 The default full multilevel (FM) algorithm

Our first task has consisted in selecting reasonable values for the parameters of Algorithm

RMTR. This was achieved by intensive testing on all our test cases, which indicated that

excellent results in terms of computational cost are obtained when the algorithmic parameters

are set as follows.

14

The Newton quadratic model is taken at the finest level. The Galerkin models, obtained

by setting fi = 0 and by ensuring the second order coherence, as in Section 3.3, are chosen

on the coarse levels i for i < r. A fixed form recursion pattern is chosen, where a recursive

iteration (Step 2) is always attempted whenever allowed by condition (2.7). Our experience

shows that the best results are obtained when a W-form recursion is performed at each level

(see Section 3.6). A single smoothing cycle is allowed at SCM smoothing iterations (see

Section 3.1). The algorithm starts with the initialization phase described in Section 3.7.

4.2.2 Performance results on quadratic problems

We start by showing that, for the quadratic convex problems DN, Q2 and Q3, our default

algorithm has the same behaviour as the linear multigrid approach on the equivalent linear

system. In Table 4.1, we report the total number of smoothing cycles (for Algorithm FM) and

the total number of matrix-vector products (for Algorithms MR and AF), needed at the finest

level, to solve a quadratic problem for a given problem size. These operations are relevant

because they constitute the dominant computational kernels for the three algorithms: we have

already indicated the role played by smoothing cycles in Algorithm RMTR, while Hessian-

vector products occur at the core of the TCG subproblem solver in both Algorithms AF and

MR(8). Moreover, they provide a meaningful comparison framework because one smoothing

cycle requires approximately the same number of floating-point operations as a matrix-vector

product (see Section B in the Appendix for a cpu-time comparison). For quadratic problems,

the gradient and the cost function are cheap by-products of the TCG algorithm and of a

smoothing cycle, and may thus be ignored in the comparison. The Hessian at the finest level

is computed prior to the call to the algorithm, and kept in memory for the computations.

Problem Method Problem size

DN 15 31 63 127 255 511

FM 8 8 9 9 9 9

MR 19 41 49 94 177 359

AF 24 36 55 95 197 341

Q2 152 312 632 1272 2552 5112 10232

FM 11 11 10 9 7 4 4

MR 45 89 175 336 650 502 737

AF 53 96 208 370 823 1017 1604

Q3 153 313 633

FM 17 13 9

MR 71 48 85

AF 98 124 176

Table 4.1: Quadratic problems: number of smoothing cycles or Hessian-vector products (at

finest level) versus problem size.

We observe in Table 4.1 that Algorithm FM is clearly superior to both Algorithms MR and

(8)TCG iterations are also possible in principle (for i > 0) in Step 3 of Algorithm FM whenever (2.7) fails.

However, this situation has never been observed in our experiments.

15

AF. For Problem DN, these last algorithms perform almost equally bad, while the number of

smoothing cycles remains very stable for Algorithm FM. For Problems Q2 and Q3, Algorithms

MR and AF require significantly more matrix-vector products as dimension increases, with

AF needing twice as many as MR. The behaviour of Algorithm FM is stable and even improves

for large problem sizes.

For an ideal multigrid algorithm on a quadratic problem, we expect the number of smooth-

ing cycles to be fairly independent of the mesh size and dimension. We see that this holds for

Algorithm FM, which indicates that the trust-region machinery introduced in the multigrid

setting does not alter this property.

4.2.3 Performance results on non-quadratic problems

For non-quadratic problems, the significant computational kernels now include objective func-

tion, gradient and Hessian evaluations, in addition to those already accounted for in the case

of quadratic problems. The results are shown in Tables 4.2 to 4.5. The problem size at the

finest level is the largest possible which could be solved in less than one day on our computer

and within the limits of available memory. Observe first that, in terms of computational cost,

the rightmost columns of the tables are the most significant. Also note that the results no

longer include Algorithm AF, whose performance is significantly worse, as shown above.

Problem Method Problem size

Surf 152 312 632 1272 2552 5112 10232

FM 15 17 16 19 27 30 33

MR 138 498 879 1620 2891 5829 14885

Inv 152 312 632 1272 2552

FM 36 58 127 163 231

MR 2380 7252 6853 11797 13827

Opt 152 312 632 1272 2552 5112

FM 14 26 37 40 42 39

MR 24 93 348 1207 4249 14826

NC 152 312 632 1272 2552 5112

FM 2 2 2 3 8 6

MR 0 246 0 0 3 11

Table 4.2: Non-quadratic problems: number of smoothing cycles or Hessian-vector products

(at finest level) versus problem size.

A general comment is that for Problems Surf, Inv and Opt, the number of smoothing

cycles in FM is drastically smaller than the number of matrix-vector products in MR. For

Problem NC, MR is performing very well in number of matrix-vector products, and there is

only a little margin for improvement for FM. We also see in Table 4.5 that the number of

Hessian evaluations, when it is not negligible, is much worse for MR.

We see in Tables 4.3 and 4.4 that the number of gradient evaluations does never exceed

the number of objective function evaluations for each problem and algorithm. This is due

to the fact that a gradient and an objective function value are evaluated each time a model

16

Problem Method Problem size

Surf 152 312 632 1272 2552 5112 10232

FM 21 26 24 30 150 161 167

MR 5 16 8 15 40 185 921

Inv 152 312 632 1272 2552

FM 143 222 332 498 575

MR 91 223 355 805 1046

Opt 152 312 632 1272 2552 5112

FM 18 41 61 70 72 62

MR 3 3 3 3 3 3

NC 152 312 632 1272 2552 5112

FM 4 4 4 5 16 13

MR 1 2 1 1 2 2

Table 4.3: Non-quadratic problems: number of objective function evaluations (at finest level)

versus problem size.

Problem Method Problem size

Surf 152 312 632 1272 2552 5112 10232

FM 21 24 23 27 35 37 40

MR 5 11 8 10 31 161 890

Inv 152 312 632 1272 2552

FM 59 83 158 201 271

MR 71 195 301 733 953

Opt 152 312 632 1272 2552 5112

FM 18 35 52 58 60 56

MR 3 3 3 3 3 3

NC 152 312 632 1272 2552 5112

FM 4 4 4 5 16 12

MR 1 2 1 1 2 2

Table 4.4: Non-quadratic problems: number of gradient evaluations (at finest level) versus

problem size.

for the trust-region algorithm is computed. Furthermore, some additional objective function

evaluations are made during the linesearch procedure. Considering again Surf and Inv, on

the one hand we see that, at the finest level, FM requires less evaluations than MR. On the

other hand, on problems Opt and NC, MR needs less evaluations than FM.

More globally, FM is clearly superior to MR on problems Surf and Inv: FM requires less

calls to all the kernels at the finest level and often at lower ones. For problem Opt, FM

requires much less linear algebra than MR, but more function and gradient evaluations. Let

us compare the cpu-time costs of an objective function and a gradient evaluation versus that

of a smoothing cycle on Opt. At the finest level, an objective function or gradient evaluation

17

Problem Method Problem size

Surf 152 312 632 1272 2552 5112 10232

FM 3 5 5 10 6 5 7

MR 4 10 7 10 31 164 891

Inv 152 312 632 1272 2552

FM 34 55 123 158 228

MR 72 198 306 742 962

Opt 152 312 632 1272 2552 5112

FM 1 1 1 1 1 1

MR 2 2 2 1 1 1

NC 152 312 632 1272 2552 5112

FM 1 1 1 1 1 2

MR 0 1 0 0 1 1

Table 4.5: Non-quadratic problems: number of Hessian evaluations (at finest level) versus

problem size.

involves approximatively 14nr and 56nr floating-point operations, respectively. Due to the

pentadiagonal structure of the Hessian, a smoothing cycle (or a matrix-vector product with

the Hessian) involves 10nr operations. These operations counts imply that MR is much more

expensive than FM on this example, since the gain in the number of smoothing cycles is

clearly much superior to the loss in objective function and gradient evaluations. However MR

is superior to FM on problem NC, because the number of calls to all kernels is nearly always

larger for FM than for MR.

4.3 Comparison of algorithmic variants

In our second set of numerical experiments, we compare variants of Algorithm RMTR in

terms of number of calls to the relevant kernels. The comparisons are made with respect to

the “default” Algorithm FM described in Section 4.2.1. We then consider eight additional

variants, obtained from the default version by changing one algorithmic parameter as follows:

W2: two smoothing cycles are allowed per SCM smoothing iteration, instead of one;

W3: three smoothing cycles are allowed per SCM smoothing iteration, instead of one;

V1: V-form recursions are performed instead of W-form recursions (see Section 3.6);

F1: free form recursion is considered instead of W-form recursion (see Section 3.6);

LMOD: the Galerkin model (with fi−1 = 0) is replaced by (2.4), which enforces coherence

of the linearized models between successive levels;

QMOD: the Galerkin model (with fi−1 = 0) is replaced by (3.13), which enforces coherence

of the full quadratic models between successive levels;

NOLS: no linesearch is performed (see Section 3.2);

18

LINT: the cubic interpolation that is used in the initialization phase is replaced by a linear

interpolation (see Section 3.7).

For each of the test problems, we display the number of calls to the different kernels in the

four finest levels, where most of the computational work is performed.

4.3.1 Performance of the variants

Tables 4.6 to 4.8 display the number of smoothing cycles/matrix-vector products and the

number of Hessian evaluations for the quadratic problems. The number of calls to all kernels

are reported in Tables 4.9 to 4.12 for the non-quadratic ones.

Variant Number of kernel calls Variant Number of kernel calls

Levels 63 127 255 511 63 127 255 511

default 35 22 16 9 default 35 22 16 9

W2 44 34 22 14 LMOD 131 66 30 12
Cycles/ W3 63 42 24 12 QMOD 35 22 16 9
mat.vec. V1 34 22 17 9 NOLS 34 21 14 8

F1 35 22 16 9 LINT 37 20 15 9

default 1 1 1 1 default 1 1 1 1

W2 1 1 1 1 LMOD 59 28 10 1
Hessian W3 1 1 1 1 QMOD 13 7 4 1
evals. V1 1 1 1 1 NOLS 1 1 1 1

F1 1 1 1 1 LINT 1 1 1 1

Table 4.6: Comparison of the algorithmic variants on Problem DN at level 511.

Variant Number of kernel calls Variant Number of kernel calls

Levels 1272 2552 5112 10232 1272 2552 5112 10232

default 18 11 6 4 default 18 11 6 4

W2 18 12 6 2 LMOD 79 38 9 3
Cycles/ W3 214 18 12 6 QMOD 25 11 6 3
mat.vec. V1 17 10 6 4 NOLS 18 11 6 4

F1 18 11 6 4 LINT 21 16 11 7

default 1 1 1 1 default 1 1 1 1

W2 1 1 1 1 LMOD 15 12 4 1
Hessian W3 1 1 1 1 QMOD 11 5 2 1
evals. V1 1 1 1 1 NOLS 1 1 1 1

F1 1 1 1 1 LINT 1 1 1 1

Table 4.7: Comparison of the algorithmic variants on Problem Q2 at level 10232.

We first compare the default, W2 and W3 variants, which differ only in the maximum

number of smoothing cycles per SCM smoothing iteration (the default variant may be thought

of as W1). In terms of linear algebra costs, the global conclusion support our default choice,

which is best on all problems but Q2, albeit the difference in this case remains small. The

picture is less clear if we consider the evaluations of the problem-dependent kernels: W3

19

Variant Number of kernel calls Variant Number of kernel calls

Levels 73 153 313 633 73 153 313 633

default 31 23 15 9 default 31 23 15 9

W2 32 34 24 12 LMOD 82 39 19 8
Cycles/ W3 36 42 24 12 QMOD 31 23 15 9
mat.vec. V1 29 23 15 9 NOLS 32 24 17 11

F1 31 23 15 9 LINT 36 27 18 9

default 1 1 1 1 default 1 1 1 1

W2 1 1 1 1 LMOD 23 10 4 1
Hessian W3 1 1 1 1 QMOD 11 7 4 1
evals. V1 1 1 1 1 NOLS 1 1 1 1

F1 1 1 1 1 LINT 1 1 1 1

Table 4.8: Comparison of the algorithmic variants on Problem Q3 at level 633.

Variant Number of kernel calls Variant Number of kernel calls

Levels 1272 2552 5112 10232 1272 2552 5112 10232

default 51 48 29 33 default 51 48 29 33

W2 63 47 55 49 LMOD 340 307 260 150
Cycles/ W3 87 61 48 33 QMOD 49 40 32 35
mat.vec. V1 51 48 29 33 NOLS 52 43 47 117

F1 51 48 29 33 LINT 43 38 40 28

default 29 44 34 167 default 29 44 34 167

W2 19 26 162 178 LMOD 617 560 458 335
Objective W3 21 27 24 35 QMOD 87 74 61 147
evals. V1 29 44 34 167 NOLS 29 29 45 131

F1 29 44 34 167 LINT 24 29 157 158

default 26 33 23 40 default 26 33 23 40

W2 16 16 32 43 LMOD 535 465 363 187
Gradient W3 18 16 16 24 QMOD 82 66 51 42
evals. V1 26 33 23 40 NOLS 28 28 42 125

F1 26 33 23 40 LINT 21 23 33 35

default 12 14 7 7 default 12 14 7 7

W2 7 6 10 17 LMOD 96 73 66 37
Hessian W3 10 8 9 17 QMOD 30 22 21 18
evals. V1 12 14 7 7 NOLS 12 9 6 84

F1 12 14 7 7 LINT 4 6 4 5

Table 4.9: Comparison of the algorithmic variants on Problem Surf at level 10232.

dominates here except on problem Inv. The observed trade-off between linear algebra and

evaluation of the nonlinear problem functions is therefore consistent with the intuition that

investing more effort in one benefits the other.

We now turn to the comparison of the recursion forms and consider the default variant

together with V1 and F1. All three variants compete closely in terms of linear algebra costs,

with the exception of the bad performance of V1 on problem Opt. On the nonlinear kernels,

20

Variant Number of kernel calls Variant Number of kernel calls

Levels 312 632 1272 2552 312 632 1272 2552

default 122 213 225 231 default 122 213 225 231

W2 129 607 459 412 LMOD 58 136 252 224
Cycles/ W3 279 207 241 462 QMOD 161 203 229 245
mat.vec. V1 142 195 188 225 NOLS 131 184 262 268

F1 122 213 225 231 LINT 146 247 252 219

default 97 204 433 575 default 97 204 433 575

W2 107 397 431 584 LMOD 181 321 669 626
Objective W3 173 225 358 679 QMOD 347 430 482 549
evals. V1 115 240 422 549 NOLS 50 107 213 341

F1 97 204 433 575 LINT 108 267 424 596

default 39 105 172 271 default 39 105 172 271

W2 48 298 271 328 LMOD 95 194 321 258
Gradient W3 131 107 154 361 QMOD 282 335 326 279
evals. V1 57 130 173 258 NOLS 48 99 200 316

F1 39 105 172 271 LINT 43 121 177 262

default 26 90 142 228 default 26 90 142 228

W2 35 270 238 289 LMOD 42 110 207 171
Hessian W3 115 87 126 324 QMOD 184 222 229 244
evals. V1 39 109 137 221 NOLS 31 78 155 244

F1 26 90 142 228 LINT 31 98 139 215

Table 4.10: Comparison of the algorithmic variants on Problem Inv at level 2552.

we note the similar performance of F1 and the default, while V1 is less predictable. These

results also indicate that our stopping rules in terms of gradient accuracy leave little room

for longer recursion patterns.

If we now consider the choice between the default Galerkin model and the linearly/quadra-

tically coherent models (2.4) and (3.13), the conclusion from our tests is easy: the Galerkin

model very often outperforms the others, and the linearly coherent model is typically the

worst. As expected, all these choices are essentially equivalent in terms of linear algebra on

quadratic problems, but differ in their use of the nonlinear kernels.

The effect of the linesearch is globally positive, as can be verified by comparing the NOLS

and default variants. The default variant is nearly always better in terms of linear algebra, at

the price of a moderate increase in objective function evaluations. The effect is most dramatic

on problem Surf, where the NOLS variant is clearly less effective.

Finally, the default variant, which uses cubic interpolation when prolongating lower grid

solutions in the initialization process, is in general comparable to the LINT variant, where

linear interpolation is used for these prolongations. The nonlinear nature of the objective

function seems to be the decisive factor: when strong nonlinearities occur (such as in Surf),

the advantage of cubic interpolation is reduced in that the prolongated solutions may contain

substantial high-frequency components and more smoothing is then necessary.

21

Variant Number of kernel calls Variant Number of kernel calls

Levels 632 1272 2552 5112 632 1272 2552 5112

default 406 207 102 39 default 406 207 102 39

W2 614 308 142 42 LMOD 1065 1614 2368 4208
Cycles/ W3 747 375 177 54 QMOD 292 176 112 50
mat.vec. V1 168 146 128 132 NOLS 396 204 101 42

F1 498 255 105 35 LINT 384 218 109 43

default 43 58 70 62 default 43 58 70 62

W2 26 39 39 45 LMOD 1698 2263 2782 4353
Objective W3 17 21 27 35 QMOD 534 318 190 75
evals. V1 61 80 98 179 NOLS 35 44 51 60

F1 43 55 65 55 LINT 52 61 68 69

default 34 46 55 56 default 34 46 55 56

W2 23 30 33 39 LMOD 1667 2214 2733 4343
Gradient W3 17 21 27 35 QMOD 518 302 174 68
evals. V1 40 56 74 168 NOLS 35 44 51 59

F1 34 43 50 47 LINT 40 49 56 59

default 1 1 1 1 default 1 1 1 1

W2 1 1 1 1 LMOD 385 309 237 10
Hessian W3 1 1 1 1 QMOD 93 52 20 3
evals. V1 1 1 1 1 NOLS 1 1 1 1

F1 1 1 1 1 LINT 1 1 1 1

Table 4.11: Comparison of the algorithmic variants on Problem Opt at level 5112.

5 Conclusion and perspectives

We have presented an implementation of the recursive multilevel trust-region algorithm pro-

posed by Gratton et al. (2004), as well as significant numerical experience on multilevel

test problems. A suitable choice of the algorithm’s parameters has been identified on these

problems, yielding a good compromise between reliability and efficiency. The resulting de-

fault algorithm has then be compared to alternative optimization techniques, such as mesh

refinement and direct solution of the fine-level problem. Finally, the sensibility of the de-

fault variant with respect to most important algorithmic parameters has been investigated,

allowing possible further improvements depending on the problem’s specific nature.

The authors are well aware that continued experimentation is needed on a larger spectrum

of applications, but the numerical experience gained so far is very encouraging. Further

algorithmic sophistications are of course possible, including, for example, a refined strategy

for the choice between smoothing and truncated conjugate-gradient iterations and possible

modifications in the norm used for defining the trust-region.

The extension of the method beyond geometric multigrid applications is also currently

considered in conjunction with algebraic multigrid techniques. A more ambitious development

involving the inclusion of constraints into the problem formulation is the object of ongoing

research.

22

Variant Number of kernel calls Variant Number of kernel calls

Levels 632 1272 2552 5112 632 1272 2552 5112

default 16 17 16 6 default 16 17 16 6

W2 52 42 24 15 LMOD 131 58 18 5
Cycles/ W3 75 57 31 13 QMOD 80 28 20 12
mat.vec. V1 47 47 28 7 NOLS 11 12 10 5

F1 17 20 20 6 LINT 18 14 14 5

default 6 5 14 13 default 6 5 14 13

W2 5 8 11 19 LMOD 216 103 40 13
Objective W3 5 8 10 10 QMOD 132 55 43 29
evals. V1 5 14 34 14 NOLS 5 2 12 10

F1 5 2 18 12 LINT 8 4 16 10

default 6 5 14 12 default 6 5 14 12

W2 5 8 10 17 LMOD 215 102 35 10
Gradient W3 5 8 10 9 QMOD 131 54 39 23
evals. V1 5 14 34 13 NOLS 5 2 12 8

F1 5 2 18 11 LINT 8 4 16 8

default 1 1 1 2 default 1 1 1 2

W2 1 1 1 1 LMOD 29 16 6 1
Hessian W3 1 1 1 1 QMOD 17 10 12 5
evals. V1 1 1 2 1 NOLS 1 1 1 1

F1 1 1 1 1 LINT 1 1 1 2

Table 4.12: Comparison of the algorithmic variants on Problem NC at level 632.

A Some useful transfer operator properties

In our implementation, we use the level-dependent norms ‖ · ‖r = ‖ · ‖ and ‖si−1‖i−1 =

‖Pisi−1‖i (i = 1, . . . , r). Assuming that the 2-norm is chosen at the finest level, we then have

that ‖si−1‖i−1 =
√

〈si−1,Mi−1si−1〉, where Mi−1, for i = 1 . . . , r, is defined by

Mi−1 = P Ti P
T
i+1 . . . P

T
r Pr . . . Pi+1Pi.

The matrices Mi−1 and their inverse are useful for instance if a TCG iteration is performed

to solve the local subproblem (Conn et al. 2000, p.205). We shall see in this section that for

a 2D or 3D problem, the matrices Pi, Mi−1, M
−1
i−1, and the norm ‖Pi‖ (needed to compute

σi) are easily computed from their 1D counterparts provided that the 2D or 3D-interpolation

operator is obtained by applying the 1D operator in each direction.

For 2D problems, letX ∈ IRni×ni be a matrix representing the quantity x = vec(X) ∈ IRn2
i

to be interpolated. Here the vec operator stacks all the matrix columns into one vector. Let

pi ∈ IRni+1×ni be the matrix representing the 1D interpolation. The matrix piX ∈ IRni+1×ni

hence represents the vector obtained by interpolating x in the first direction. To interpolate

in the other direction, we perform the operation

Y = (pi(piX)T)T = piXp
T
i ,

and get the prolongation y = vec(Y) of x in the columns of the ni+1 × ni+1 matrix Y . But,

23

by definition of the Kronecker product, this can be written as

y = vec(Y) = vec(piXp
T
i) = (pi ⊗ pi)vec(X) = (pi ⊗ pi)x.

Therefore, the 2D interpolation operator Pi is simply the matrix pi ⊗ pi. From this and the

definition of Mi−1, it follows that

Mi−1 = (pi ⊗ pi)
T (pi+1 ⊗ pi+1)

T . . . (pr ⊗ pr)
T (pr ⊗ pr) . . . (pi+1 ⊗ pi+1)(pi ⊗ pi).

Now, since (pi ⊗ pi)
T = pTi ⊗ pTi , since for compatible dimensions, (A ⊗ B)(C ⊗ D) =

(AC) ⊗ (BD), and since for invertible matrices, (A ⊗ B)−1 = A−1 ⊗ B−1, we easily obtain

that

Mi−1 = mi−1 ⊗mi−1 and M−1
i−1 = m−1

i−1 ⊗m
−1
i−1,

where mi−1 = pTi p
T
i+1 . . . p

T
r pr . . . pi+1pi. It is therefore possible to represent Mi and M−1

i

compactly, using the 1D quantities. Observe finally that ‖Pi‖ = ‖pi ⊗ pi‖ = ‖pi‖
2 is also

easily computable. These results generalize to 3D problems.

B Time performance of the main computational kernels

We present here the costs in seconds of a call to the objective function, gradient and Hessian

evaluation, and the time needed to perform a smoothing cycle and a matrix-vector product

by the Hessian. These kernels are typically the most time-consuming parts in optimization

algorithms. The elapsed times for these kernels are reported in Table 2.13 for the finest level

of each problem. We observe that for all the considered problems, a smoothing cycle and a

matrix-vector product by the Hessian, require the same time. This is not surprising, because

both operations involve also the same amount of floating-point operations. We also notice

that for the non-quadratic problems, a cost evaluation is cheaper than a gradient evaluation,

which in turn is cheaper than a Hessian evaluation. Note also that, in our test cases, the linear

algebra operations are cheaper than the cost evaluations. This is due to the fact that the

former operations are built-in or compiled Matlab commands. For the quadratic problems,

the Hessian is constant and stored in memory, this is why accessing it is cheaper than a

gradient and a cost evaluation.

Problem size obj. funct. gradient Hessian Hessian × vect smooth. cycle

DN 511 7.6 10−3 3.3 10−2 1.7 10−3 3.3 10−3 2.4 10−3

Q2 10232 1.1 10+0 1.3 10+0 2.0 10−1 1.1 10−1 9.6 10−2

Q3 633 8.5 10−1 9.0 10−1 1.7 10−1 2.8 10−2 2.8 10−2

Surf 10232 3.5 10−1 5.9 10−1 7.4 10+0 1.2 10−1 1.2 10−1

Inv 2552 6.2 10−2 1.7 10−1 6.0 10−1 6.4 10−2 5.0 10−2

Opt 5112 4.5 10−1 4.4 10−1 2.6 10+0 4.7 10−2 4.1 10−2

NC 5112 5.1 10−1 1.1 10+0 4.1 10+0 9.3 10−2 7.9 10−2

Table 2.13: Elapsed time in seconds for objective function evaluation, gradient evaluation,

Hessian evaluation, Hessian-vector product and smoothing cycle.

24

References

A. Borzi and K. Kunisch. A globalisation strategy for the multigrid solution of elliptic optimal

control problems. Optimization Methods and Software, 21(3), 445–459, 2006.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia,

USA, 2nd edn, 2000.

M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh. A multigrid approach for

multi-dimensional scaling. Talk at the 12th Copper Mountain Conference on Multigrid

Methods, 2005.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in ‘MPS-

SIAM Series on Optimization’. SIAM, Philadelphia, USA, 2000.

A. R. Conn, L. N. Vicente, and C. Visweswariah. Two-step algorithms for nonlinear opti-

mization with structured applications. SIAM Journal on Optimization, 9(4), 924–947,

1999.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, USA, 1983. Reprinted as

Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.

M. Emilianenko. A nonlinear energy-based multilevel quantization scheme. Talk at the 12th

Copper Mountain Conference on Multigrid Methods, 2005.

M. Fisher. Minimization algorithms for variational data assimilation. in ‘Recent Developments

in Numerical Methods for Atmospheric Modelling’, pp. 364–385. ECMWF, 1998.

E. M. Gertz. Combination Trust-Region Line-Search Methods for Unconstrained Optimiza-

tion. PhD thesis, Department of Mathematics, University of California, San Diego,

California, USA, 1999.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, second edn, 1989.

S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale

nonlinear optimization. Technical Report 04/06, Department of Mathematics, University

of Namur, Namur, Belgium, 2004.

S. Gratton, A. Sartenaer, and Ph. L. Toint. Second-order convergence properties of trust-

region methods using incomplete curvature information, with an application to multigrid

optimization. Journal of Computational and Applied Mathematics, (to appear), 2006.

P. C. Hansen. Regularization tools: A Matlab package for analysis and solution of discrete

ill-posed problems. Numerical Algorithms, 6, 1–35, 1994.

P. W. Hemker and G. M. Johnson. Multigrid approach to Euler equations. in S. F. Mc-

Cormick, ed., ‘Multigrid methods’, Vol. 3 of Frontiers in Applied Mathematics, pp. 57–72,

Philadelphia, USA, 1987. SIAM.

25

M. Lewis and S. G. Nash. Model problems for the multigrid optimization of systems governed

by differential equations. SIAM Journal on Scientific Computing, 26(6), 1811–1837,

2005.

J. J. Moré and D. C. Sorensen. On the use of directions of negative curvature in a modified

Newton method. Mathematical Programming, 16(1), 1–20, 1979.

S. G. Nash. A multigrid approach to discretized optimization problems. Optimization Methods

and Software, 14, 99–116, 2000.

J. Nocedal and Y. Yuan. Combining trust region and line search techniques. in Y. Yuan, ed.,

‘Advances in Nonlinear Programming’, pp. 153–176, Dordrecht, The Netherlands, 1998.

Kluwer Academic Publishers.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. Academic Press, London, 1970.

M. J. D. Powell. A new algorithm for unconstrained optimization. in J. B. Rosen, O. L.

Mangasarian and K. Ritter, eds, ‘Nonlinear Programming’, pp. 31–65, London, 1970.

Academic Press.

T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.

SIAM Journal on Numerical Analysis, 20(3), 626–637, 1983.

Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. in

I. S. Duff, ed., ‘Sparse Matrices and Their Uses’, pp. 57–88, London, 1981. Academic

Press.

Ph. L. Toint. VE08AD, a routine for partially separable optimization with bounded variables.

Harwell Subroutine Library, 2, 1983.

Ph. L. Toint. VE10AD, a routine for large scale nonlinear least squares. Harwell Subroutine

Library, 2, 1987.

C. R. Vogel. Computational Methods for Inverse Problems, Vol. 23 of Computational Frontiers

in Applied Mathematics. SIAM, Philadelphia, USA, 2002.

26

