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Abstract 
 
Mixed Multinomial Logit Models (MMNL) are now a popular and efficient framework in discrete 
choice theory. However, it is well known that the numerical cost associated to the evaluation of 
multidimensional integrals in MMNL models remains high even if Monte Carlo (MC) or quasi-
Monte Carlo (QMC) techniques are used instead of classical quadrature methods, while no 
analytical solution can be found. Our current approach, developed in the context of modern trust-
region optimization techniques at FUNDP (Facultés Universitaires Notre Dame de la Paix), uses 
statistical inference of Monte-Carlo approximations to speed up computations. We have shown that 
numerical efficiency is considerably increased by the exploitation of new results on the accuracy 
and bias estimates relative to the objective function. The crucial ingredient of our algorithm is that, 
at each iteration, we are able to use only a subset of the random draws, whose size is adapted from 
iteration to iteration. Convergence of the algorithm has been also demonstrated, towards points 
satisfying first- and second-order optimality conditions (Bastin et al., 2004b). The methodolgy has 
been successfully applied to both simulated and real data sets. The results, even on large-scale 
model estimation, show that the proposed optimization algorithm is competitive with existing tools, 
including softwares based on quasi-Monte Carlo techniques using Halton sequences. 
 

In this paper, we propose to extend our study and to compare our variable sample size 
Monte Carlo algorithm with randomized quasi-Monte Carlo sequences. We use Sobol sequences, 
that are expected to perform better than Halton ones, as suggested by Garrido (2003). There are 
different ways to randomize quasi-random sequences; some of them have been already explored by 
the transportation community. Bhat (2003) has suggested that scrambled Halton sequences avoid 
the problem of poor coverage of the integration domain in high dimensions, and has used random 
shifts to evaluate the quality of the sequences in the context of MMNL estimation. Hess et al. 
(2003) have proposed the use of randomly shifted and shuffled uniform vectors and have reported 
better performances. Garrido (2003) has also proposed to use Owen scrambling technique for Sobol 
sequence. 
 

Since the sequences used in QMC approaches are deterministic, it is not possible to use the 
classical analytical tools for error estimation as we have done in the MC variable sample size 
strategy by using the delta method. It is, therefore, desirable to develop techniques, which combine 
the potential higher accuracy of QMC approximation with the practical error estimation ability of 
MC methods. By introducing some randomness in low discrepancy sequences, one can use 
statistical methods for error analysis. Our objective is to investigate how those techniques can be 
applied in the mixed logit model estimation. In particular, we are interested in seeing how 
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randomized QMC sequences can reduce the variance in comparison with MC methods and how 
they can improve the performance of the original deterministic sequences, in combination with the 
variable sample size strategy. 
 

We will apply the methodologies on both simulated and real data sets. In particular our real 
case study is a mode choice model based on stated preference data, collected in 2003 in the 
Walloon Region (Belgium). 
 
1. Introduction 
 
This paper gives some new insights into the problem of mixed logit model estimation using both 
Monte-Carlo and quasi-Monte Carlo methods. Our research group has investigated the problem 
from the optimisation perspective and found that the choice of the appropriate method can reduce 
drastically the computation time. We have also developed an adaptive algorithm that uses MC 
statistical properties to reduce the number of draws needed to estimate the multi-dimensional 
integrals that are present in the objective function, when a smaller accuracy is sufficient. Transport 
modelers are however more familiar with QMC methods, in particular Halton sequences (which 
have been implemented for instance into Gauss by Kenneth Train, 1999) are probably the most used 
in our environment. The difficulty to extend their validity to high dimensional problems has raised 
new interests in more recent QMC developments and in their randomizations. Recently Sándor and 
Train have studied the performance of (t,m,s)-nets in MMNL estimation, while Garrido has 
proposed the use of Sobol sequences (which are a particular case of (t,m,s)-nets) for their good 
uniformity in the integration space.  
This paper represents a first step towards the adoption of this approach for QMC sequences. In 
particular, we adopt Sobol sequences and we review three different randomization methods, that 
have been proposed to provide unbiased estimators of multi-dimensionals integrals and to estimate 
error (Hong and Hickernell, 2003).  
 

Sobol sequences are indicated as low-discrepancy point sets, this definition implying that 
those points are more regularly distributed than a typical set of i.i.d. uniform points. For this reason, 
researchers indicate that QMC usually approximate the integral with a smaller error than MC. 
However the dimensions of the problem need to be not too large, which is in general true in real 
transport models. The idea of randomizing QMC point sets has been an important contribution that 
has extended the practical use of these methods, since this allows us to view them as variance 
reduction techniques.  
 

We are also interested in the applicability of these methods to practical problems in 
transport modeling. We see many advantages in the use of statistical inference on the objective 
function. The accuracy (the error made by solving the approximated problem) and the simulation 
bias can be implemented into a dynamic algorithm that adapt the sample size to the optimization 
problem and save computing time. (for more accurate definition of those parameters see Bastin et 
al, 2004). The analyst can check the quality of the results and decide to stop if log-likelihood 
improvements are too small to be significant with comparison to the error. 
 

Finally, in order to underline the motivations that have lead this research work we would 
like to cite L’Ecuyer and Lemieux (2002): “The success of QMC methods in practice is due to a 
clever choice of point sets exploiting the features of the functions that are likely to be encountered, 
rather than to an unexplainable way of breaking the curse of dimensionality”. 
 

The paper is organized as follow: Section 2 briefly introduces the MMNL model 
specification and estimation; in particular basic concepts to understand Sobol sequences and the 
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relative randomization techniques are described. We dedicate Section 3 to the algorithm. Results on 
simulated data are on Section 4, while the application to the SP model developed for the Walloon 
Region is described in Section 5. Section 6 ends the paper and proposes some further research 
directions. 
 
2. Mixed Multinomial Logit Model formulation (MMNL) 
 
The mixed logit formulation is nowadays extensively used in transport modeling for its flexibility. 
In particular, MMNL models estimate taste variation, avoid the problem of restricted substitution 
pattern in standard logit model and account for state dependency across observations.  
Mixed logit probabilities are expressed by means of the integral of standard logit probabilities over 
a density of parameters: 

( ) ( ) ,∫= βββ dfLP ijij  (1) 
where: 

),,1( Iii K= is the individual index, 
),,1( Jjj K= is the alternative index,  

( )βijL is the logit probability and,  
( )βf  is a density function. 

 
The mixed logit derivation that we will use in our application is based on random coefficients, 

with a joint distribution ( )βf  that is usually assumed to be continuous. The choice probability is in 
this case: 

( ) ( ) ,|)( ∫= βθβφβθ dLP ijij  (2) 
where ( )θβφ |  is the density with parameters vector θ .  
 

In the case an individual i chooses among alternatives ,,,1 Jj K= in choice situations 
,,,1 iTt K=  (panel data) its utility can be expressed as: 

,ijtijtiijt xU εβ +=
 

(3) 
where ijtε

 
is iid extreme value, ( )θββ |gi =  is the vector of parameters randomly distributed in 

the population and ijtx  is the vector independent variables. We observe for each individual the 

sequence of choices ( )iiTii jjy ,,1 K= . The probability to observe the individuals’ choices is given 
by the product of logit probabilities itL   (Train, 2003): 

( ) ( ) ββββ dfyLxyP
i

i

T

t
ititiiiy )(|,|
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2.1 MMNL Model estimation 
 
The vector of unknown parameters is estimated by maximizing the log-likelihood function, i.e. by 
solving the equation: 

( ) ( )θθ
θθ ∑

=

=
I

i
iyi

P
I

LL
1

ln1maxmax ,  (5) 

where iy is the vector of alternative choices made by the individual i. This involves the computation 
of ( )θ

iiyP  for each individual ),,1( Iii K= , which is impractical since it requires the evaluation of 

one multidimensional integral per individual. To approximate the integral of the value ( )θ
iiyP  a 
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frequently used approach is to choose a point set , { } ( )s
RR uuS 1,0,,1 ⊂= K , where s is the problem 

dimension, and then take the average value of the function over RS . This leads to the simulated 
probability 

( )∑
= =

=
R

r

T

t
ritij

R
iy

i

i
L

R
SP

1 1

,1
C θβ , (6) 

where R is the number of random draws rβ , taken from the distribution function of β . More 
precisely, ),(1

rr uF −=β  where F is the cumulative function corresponding to the distribution 
).(βf  As a result, θ  is now computed as one solution of the simulated log-likelihood problem  

( ) ( )∑
=

=
I

i

R
iy

R
i

SP
I

SLL
1

ln1maxmax θθ
θθ

. (7)          

We will denote by ∗
Rθ  one solution of this last approximation (often called Sample Average 

Approximation, or SAA), while ∗θ  denotes the solution of the true problem (5). 
 

Monte Carlo method (MC) is usually appropriate to solve the problem (7), it amounts to 
choosing RS  as a set of R i.i.d. distributed points over ( )s1,0 . ( )θSLL  is an asymptotically unbiased 
estimator (bias) of ( )θLL  whose error can be approximated with the delta method. In a previous 
work we use the error calculation to increase the numerical efficiency of an adaptive algorithm, 
developed in the context of trust region techniques, to estimate mixed logit model. (Bastin et al., 
2004b). 
 

Quasi-Monte Carlo (QMC) methods can be seen as the deterministic counterpart to the MC 
method. They are based on the idea of using more regularly distributed point sets RS  to construct 
the approximation (6) than the random point sets associated with MC. In order to measure the 
accuracy of QMC methods, analysts use a set A of functions and a definition of discrepancy D(SBRB). 
Once A and ( )RSD  are determined, one can usually derive upper bounds on the deterministic error, 
of the following form: 

                                  ( ) ( ) AffVSDPSP R ∈≤− ,     (8) 
 
It is clear that a small value of ( )RSD  is desirable (low-discrepancy sequence notion). 
To give an example, we consider the case in which ( )RSD  is the rectangular-star discrepancy. To 
compute this particular definition of ( )RSD  one can consider all rectangular boxes in ( )s1,0 , aligned 
with the axes and with a “corner” of origin, and then take the supremum, over all these boxes, of the 
absolute difference between the volume of a box and the fraction of points that fall in it. In this case 
( ) )log( nnOSD s1−=  where n is the number of draws and s the number of dimensions. This error 

bound, for a fixed s, is a better asymptotic rate than the 21n− rate associated to MC. 
 
2.3 Sobol Sequences  
 
Sobol sequences belong to the digital nets family, which has been investigated for application to the 
mixed logit problem by Sandor and Train (2003). While a more general definition can be found in 
L’Ecuyer and Lemieux (2002), we will used the more restricted, but more practical, definition given 
by Hong and Hickernell (2003). Let b be a prime number superior or equal to 2, and consider the 
algebra { },1,,1,0 −= bZb K  with the corresponding operations. For any nonnegative integer 

) (base 1231
1 biiibii

k
k

k K==∑∞

=
− define the 1×∞  vector ( )iψ  as the vectors of its digits, that is 
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( ) ( ) .,, 21
Tiii K=ψ  For any point )1,0[) (base z0.z  

1 21 ∈==∑∞

=
−

k
k

k bbiz , let ( ) ( )Tzzz K,, 21=φ  denote 

the 1×∞ vector of the digits of z. Let also sCC ,,1 K be predetermined ∞×∞  generator matrices. 

The digital sequence in base b is { }K,,, 210 aaa , where each ( ) sT
isii aaa )1,0[,,1 ∈= K is defined by 

( ) KK 1,0,,,1 ,)( === isjiCa jij ψφ  (9) 
Here and through the remaining of this section, all arithmetic operations take place modulo b and 
the indices of all vectors and matrices are positive. 
 

For Sobol sequences, we consider that the base is b = 2. The specification of each 
generating matrix CP

j
P is given by a primitive polynomial ( )zf j  over 2Z  and integers mBj,q B for 

( )( )zfq1 jdeg≤≤ , to initialize a recurrence based on ( )zf j  that generates the direction numbers 

defining CP

j
P. The method specifies that the polynomial ( )zf j  should be the jth one in the list of 

primitive polynomials over 2Z sorted by increasing degree, while within each degree a specific 
order must be given. In order to define the parameters mBj,q B, assume ( ) kj

k
j

k
j czczzf ,

1
1, +++= − K , 

where 2, Zc lj ∈  for each j, l. The direction numbers K,, 2,1, jj vv  are rationals of the form 

∑
=

−==
q

l

l
lqjq

qj
qj v

m
v

1
,,

,
, ,2

2
 (10) 

where mBj,q B is an odd integer smaller than q2 , for .1≥q  For the success of this method, the initial 
values ,,, ,1, kjj vv K  for the direction numbers must to carefully chosen. The following ones are 
obtained through the recurrence 

,2,,1,1,1,1,,
k

kqjkqjkqjkjqjjqj vvvcvcv −
−−+−−− ⊕⊕⊕⊕= K  (11) 

where ⊕ denotes a bit-by-bit exclusive-or operation. These direction numbers are then used to 
define CP

j
P, whose entry in the lth row and qth column is given by lqjv ,, . 

For our application we have implemented within AMLET the primitive polynomials 
proposed by Joe and Kuo (2003), allowing to manage up to 1111 number of dimensions. We also  
exclude each vector containing a component equal to 0 as it could produce components equal to 
minus infinite, when using inverse cumulative functions to transform random distributions. 
  
 
2.4 Randomizations 
 
We now consider the problem of the error estimation in QMC methods. Upper bounds given by (8) 
are in general not very useful since they are usually much too conservative, in addition to being 
hard to compute and restricted to a possible small set of functions (L’Ecuyer and Lemieux, 2002). 
Instead, we randomize the set RS  so that: 
1. each point in the randomized point set RS  has a uniform distribution over ( )10, ; 
2. the regularity (or low discrepancy property) of RS , as measured by a specific quality criterion, 

is preserved under the randomization. 
 
Randomized QMC can be viewed as variance reduction techniques; in practice the variance 

of integral estimator can be estimated by generating i.i.d. copies of the estimator through 
independent replications of the randomization. This estimator can be compared with the estimated 
variance of the MC estimator to assess the effectiveness of QMC for any particular problem. 
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 Let { },,,, 210 Kddd  denote the randomly scrambled version of the original sequence 
{ }K,,, 210 aaa  as proposed by Owen. Let ijka denote the kth digit of the jth component of ,ia  and 
similarly for .ijkd  Then 

( ) ( ) ( ) ( ), ,, , ,
121211 ,,,13,12111 ijkaaaijijaaijijaijijjij adadadad

ijkijijijijij −
==== KK ππππ  (10) 

where the K21zzπ  are random permutations of the elements in bZ  chosen uniformly and mutually 
independently. Owen (1995) has shown that a randomized net preserves the property of 
( )−smt ,, nets almost surely. In this paper we use three randomizations methods, that we describe 
below. 
 
2.4.1 Owen-scrambling 
 
This first sampling technique that we consider is due to Hong and Hickernell (2003), that however 
called this Owen-technique since it is a particular application of the original Owen proposal (1998). 
Let sLL ,,1 K be nonsingular lower triangular ∞×∞ matrices and let see ,,1 K be an 1×∞ vector. The 
elements of the jL  and je  are chosen randomly over 2Z . A particular Owen-scrambling 
{ },,,, 210 Kddd  of a digital sequence { }K,,, 210 aaa  is defined as 

( ) ( ) KK ,1,0 ,,,1   ,)( ==+=+= isjeiCLeaLx jjjjijjij ψϕϕ  (11) 
The scrambled sequence benefits from strong theoretical properties that are analyzed by 

Hong and Hickernell; we refer the reader to their paper (2003) since this discussion goes beyond the 
purposes of this paper. We just note here that it can be shown that the scrambled sequence is also a 
digital ( )st, -sequence with the same t-value as the original sequence. 
 
2.4.2 Faure-Tezuka-scrambling 
 
The Faure-Tezuka-scranbling (Faure and Tezuka, 2002) scrambles the digits of i before multiplying 
by the generator matrices. Let L be a nonsingular lower triangular ∞×∞ matrix and let e be an 

1×∞ vector with a finite number of nonzero elements. As before, the elements of L and e are 
chosen randomly. A particular Faure-Tezuka-scrambling { },,,, 210 Kddd  of a digital sequence 
{ }K,,, 210 aaa  is defined as 

( ) [ ] KK ,1,0 ,,,1   ,)( ==+= isjeiLCx T
jij ψϕ  (12) 

 
The effect of the Faure-Tezuka-scrambling can be thought as reordering the original sequence, 
rather than permuting its digits like the Owen-scrambling. For any ,,1,0, K=λm  let 

( ) .11,, −+= mm bbi λλ K  ( )iψ  then takes on all possible values in its top m rows, but not 
necessarily in the same order. 
 
2.4.3 Combined scrambling (Owen and Faure- Tezuka scrambling) 
 
The two previous scrambling techniques are simultaneously applied. Mathematically speaking, a 
particular Owen-Faure-Tezuka-scrambling { },,,, 210 Kddd  of a digital sequence { }K,,, 210 aaa  is 
defined as 

( ) [ ] KK ,1,0 ,,,1   ,)( ==++= isjeeiLCLx j
T

jjij ψϕ  (13) 
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3. The algorithm 
 
The maximisation of the log-likelihood function can be seen as a generalization of classical 
stochastic programming problems. A large number of different optimization algorithms can be used 
in the solution of such problems; classically, these have included Newton-Raphson, BHHH, and 
BFGS linesearch methods. The BHHH approach can be much faster than other methods, but can be 
occasionally fail to produce a solution; BFGS on the other hand is usually seen as good compromise 
between efficiency and robustness. 
 

In this paper, we use basic trust-region (BTR) methods, which have proved to be one of the 
most powerful approaches in non-linear programming (see Conn, Gould and Toint, 2000, for an 
exhaustive review of these methods). The main idea of a trust-region algorithm involves the 
calculation, at iteration k (with current estimate θBkB), of a trial point kk s+θ by maximizing a model 

km of the objective function inside a trust region defined as 
 

{ }kk
m

k RB ∆≤−∈= θθθ such that  , (10) 
 
where k∆  is called the trust-region radius. The predicted and actual increases in the value of the 
objective function are then compared. If the ratio between these two values is greater than a certain 
threshold, the trial point becomes the new iterate, and the trust-region radius is (possibly) enlarged. 
If the ratio is below the bound, the trust region is shrunk in order to improve the correspondence of 
the model to the true objective function. 

 
A major advantage of the trust-region approach is that it can easily be adapted to include a 

variable sample size strategy, as proposed by Bastin et al. (2004a). Such an approach is based on 
the idea of generating a full set of draws prior to optimisation, but to only use part of it during 
certain stages of the optimisation process. This is motivated by the understanding that the first steps 
in an optimisation process are rough steps in the general direction of the optimum, requiring a 
relatively lower level of precision in simulation. The full set of draws is used during the last few 
iterations; this not only guarantees maximum simulation-precision at this stage of the optimisation, 
but also means that the problem used at this stage of the optimisation is identical to that used in 
methods not based on variable sample size strategies. 

 
Formally, at each iteration of the trust-region algorithm, the estimation software evaluates 

whether a significant rising of the objective function at the next iterate is obtained by comparison to 
the accuracy of the objective function itself, depending on the current number of draws used and on 
the fitting between the model and the objective function. If the step between successive iterates is 
large enough by comparison to the error on the objective function, the number of draws is reduced 
on the basis that an inferior number of draws should be sufficient. If, on the other hand, the step 
length is significantly smaller than the actual precision of the objective function, the sample size is 
increased in an attempt to correct this deficiency, and is computed on base of the bias and the 
variance of the simulated log-likelihood.  
 
4. The simulations 
 
In this section, we compare the effectiveness of the three quasi-Monte-Carlo methods against pure 
Monte Carlo by means of simulations. The experiment simulates 1000 synthetic individuals giving 
5 multiple responses; hypothetic scenarios are built on 5 alternatives, each of them containing 5 
continuous variables (drawn from normal distribution N[0,1]). All the parameters are supposed to 
be normally distributed N[0.5,1].   



 
Monte Carlo accuracy and bias are calculated analytically, as explained in Bastin et al. 

(2004b). For quasi-Monte Carlo runs we repeat ten times the evaluation of the log-likelihood 
function at each iteration, and we then deduce the simulation bias and error from the variance 
observed for the ten i.i.d. runs. Experiments have been conducted varying the number of draws 
from 100 to 2000, with steps of 100 draws. We plot on Graphs 1 and Graphs 2 the final error on the 
log-likelihood function and the relative bias. In terms of accuracy and bias quasi-Monte Carlo 
methods always perform better than Monte Carlo methods, except for Sobol with Owen and Tezuka 
scrambling methods for very low number of draws (100 and 200). The shape of the curb is 
irregular: when increasing the number of draws we sometimes get worse results in terms of 
accuracy and bias. We assume that this is due, at least partially, to the fact that 10 repetitions are not 
enough to estimate those parameters. It is also difficult to say in this case which is the QMC method 
that performs better; the effectiveness becomes stable after 1000 draws and half of the equivalent 
MC draws. 
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Simulation bias
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5. Real case study 
 
5.1 The data set: SP survey in the Walloon Region (B) 
 
The data sets used for this study, have been extracted from two stated preference surveys (for more 
details on the project see Bernard and al., 2003), collected to study individual mode choice for trips 
on distances longer than 5 km. Both data sets were executed in the Walloon Region (Belgium) in 
June 2003, during the morning peak hours (from 6:30 to 9:30). The surveys were assisted by 
personal computer and administrated face-to-face. The first game, called SP1, is a within mode 
survey (unlabelled experiment), in which we proposed the choice against two different public 
transport alternatives; the second (SP2 game) gives to private car users the choice between car and 
public transport service. We collected a total number of 677 responses, of which 286 at home, 207 
at the exit of the main train stations of the Region (Namur, Charleroi, Liège, Nivelles, Ottignies) 
and 184 at the exit of bus stations (same locations). 
 

Those intercepted at the exit of the station were questioned about their trips; then the stated 
preference games were generated using the revealed trip characteristics. Those travelers evaluated 4 
SP1 and 4 SP2 scenarios. People interviewed at home were asked about a trip randomly selected 
from their displacements longer than 5 km performed during the week before the day of the survey; 
car users evaluated 8 SP2 scenarios, while public transport users were again submitted to 4 
scenarios for both experiments. 
 

The choice experiment contains five variables:  
1. in vehicle time,  
2. cost,  
3. frequency,  
4. number of changes,  
5. comfort. 
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The experimental design is a 34 x 51 profile (cost being the only variable with 5 levels of 
variation). An orthogonal design was then constructed to reduce to 16 the number of alternatives. 
Details for the level of variations for each variable are reported in Table 1 for the SP1 game and in 
Table2 for the SP2 game. 
 

Table 1 : Variables and variation levels in the SP1 game 
N. Variables RW-SP1 Within mode experiment 

 
  Public Transport Public Transport 
1 
 
2 
 
3 
 
4 
 
5 

In vehicle time 
 
Fare 
 
Frequency 
 
Number of changes 
 
Comfort 
 

-25, 0, +25 % compared  
to actual in vehicle time  
-50, -30, -15, 0, +15 % 
compared to actual fare 
 -1, 0, +1 number of 
train/bus per hour 
-1, 0, +1 changes on the 
same mode 
no seats, very crowded 
no seats, not very crowded 
seats available 

 

 
 

Table 2 : Variables and variation levels in the SP2 game 
N. Variables RW-SP2 Between mode experiment 
  Public Transport Car 
1 
 
2 
 
 
 
3 
 
4 
 
5 

In vehicle time 
 
Fare 
(if CAR user) 
(if PT user) 
 
Frequency 
 
Number of changes 
 
Comfort 

-30, -15, 0 % compared  
to actual in vehicle time  
 
-50, -30, -20, -15, 0 %  
-50, -30, 0, +15,+20% 
compared to actual fare 
-1, 0, +1 number of train/bus 
per hour 
-1, 0, +1 changes on the 
same mode 
no seats, very crowded 
no seats, not very crowded 
seats available 

0, +15 + 30 % compared  
to actual in vehicle time  
 
0, +25, +50 % compared  
to actual car cost  

 
5.2 Model results 
 
After data cleaning the number of observations available to estimate the model are 3792 belonging 
to 837 individuals. We estimate a binary mode choice model; variables include one alternative 
specific constant (public transport is the base), socio-economic characteristics (income, number of 
cars, size of party and number of season tickets) and level of service variables (time, cost, number 
of changes, frequency, comfort (on two levels of variation: level 1, crowded no seats, level 2, seats 
available), access + egress time, distance by car). 
 

We report in Table 3 the estimation results for both multinomial logit and mixed logit 
formulations. The mixed logit has got 5 dimensions, alternative specific constant is normal 
distributed, the remaining four parameters are all specified as log-normal. In earlier runs we have 
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specified all parameters as normal, but although we have estimated them with the right sign, they 
showed very large standard deviations (compared to the mean values) and consequently a large part 
of the population was assigned a parameter with the wrong sign. 
 

The model was estimated using AMLET; the same specification did not converge under 
GAUSS (Kenneth Train’s code) although we have been trying different optimization routine (Paul 
Ruud routine and Maxlik, BHHH and BFGS algorithms) and different starting values. The use of 
mixed logit model does improve the model fit, the rho-squared adjusted, based on the degrees of 
freedom, improves from 0.2640 to 0.4256. 
 

In the multinomial logit model we calculate a value of time of about 9.6 Euro per hour. For 
the mixed logit specification, the VOT is calculated by means of simulations (Hensher and Greene, 
2003). We generated 30.000 draws of time and cost parameters from their lognormal distributions 
and we computed the ratio over the two values. We obtain a VOT median of 6.4 Euro/hour and a 
median value for access and egress time of about 11.7 Euro/hour. Mean values are very large 
although we removed the last few percentiles of the distributions (highest and lowest two) as often 
suggested in the literature. 
 

We believe that the model specification should be improved by adding for example 
Revealed Preference data, already available from a national and regional travel surveys. Other 
random distributions rather than lognormals, such as Johnson’s Sb could be estimated. This however 
requires further developments in AMLET, that are currently pursued. 
 

In Table 4 we compare, for the real data set, the final log-likelihood values, the accuracy and 
the bias obtained with Monte-Carlo methods, Sobol sequences and randomly scrambled Sobol 
(Owen method). We observe that, as for the simulated data, QMC methods outperform standard 
Monte-Carlo methods. The estimation error is of great help to identify this superiority. In particular, 
we observe that the simulation error and bias decrease faster with QMC draws than with pseudo-
random draws. 
 

However, the error estimation associated to scrambled Sobol draws suffers from the same 
weakness than in the simulated data. More precisely, the small number of repetitions does not allow 
for highly accurate estimation of error and bias, but using a higher number of log-likelihood 
evaluations increases the associated numerical cost. This directly penalizes the application of 
variable sample size strategy to QMC algorithms. The first experiment, where simulation is 
estimated at each iteration takes indeed longer for the same level of accuracy on the final log-
likelihood function. However, these experiments have been conducted using the same algorithm as 
for MC draws. The predicted number of draws for subsequent iterations is then higher than needed. 
Moreover we argue that it is not necessary to compute the error at each iteration, especially during 
the last iterations, where the maximum number of draws is used. We are therefore exploring how to 
adapt such ideas to our dynamic accuracy algorithm in AMLET. 
 
6. Conclusions 
 
In this paper we have studied the performance of Quasi Monte-Carlo methods for mixed logit 
model estimation. In particular, we see deterministic Sobol sequences as a valid alternative to 
Halton sequences for their good coverage of the integration domain in high dimension problems. 
Three randomization techniques have also been the object of our investigation; the randomization 
allows us to estimate error and bias of the log-likelihood function. We found that this additional 
information is very helpful to researchers and practitioners, in order to establish the right number of 
draws required to efficiently solve the optimization problem while ensuring a sufficient accuracy. 
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The application to both artificial and real data is consistent in results; for the same number of draws, 
QMC is superior to MC: error and bias are, in fact, found to decrease faster. The three 
randomizations methods perform equivalently. We also make use of error and bias estimation in an 
algorithm that adapts the number of quasi-random draws to the function to be estimated. However, 
our technique, which has been developed for MC simulations, still needs to be refined for QMC 
methods. 
 

We would like to conclude the paper by saying that QMC methods still have a good 
potential, but their properties must be well understood in order to be successfully applied to each 
case.         
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Table 3: Model results 

Parameter 

Alternative    Multinomial 

logit 

Mixed  

logit 

              β t-stat. β t-stat.

ASC Car (mean) CAR 0.609 3.6 0.314 0.3 

ASC Car  (s.d.) CAR - - 6.469 7.3 

Comfort lev. 1 PT -0.386 4.2 -0.883 5.2 

Comfort lev. 3 PT 0.504 5.8 1.172 7.5 

Distance by car  CAR -0.010 3.4 -0.094 3.5 

Access + Egress time  PT -0.010 2.0 -0.058 1.4 

Number of cars CAR 0.117 3.7 0.764 2.8 

Female with child(ren) CAR 0.634 7.9 3.541 4.5 

Size of party CAR 1.158 7.6 5.531 3.9 

Number of season 
tickets PT 1.081 8.3 3.980 3.4 

Time (mean) All -0.024 9.8 -3.475 9.9 

Time (s.d.) All - - 1.544 4.8 

Cost (mean) All -0.150 7.2 -1.258 3.1 

Cost (s.d.) All - - 2.632 6.5 

Number of changes 
(mean) PT -0.758 14.1 -5.184 1.7 

Number of changes 
(s.d.) PT  - - 10.49 2.5 

Frequency (mean) PT 0.142 6.0 -3.179 3.5 

Frequency (s.d.) PT - - 2.716 4.0 

Number of individuals  837 837  

Number of 
observations  3792 3792  

Log-likelihood at zero  -2628.41 -2628.41  

Log-likelihood final  -1921.63 -1491.82  

number of parameters  13 18  

rho-squared adjusted  0.2640 0.4256  

    
 
 
 
 
 



Table 4: Comparing MC and QMC 
 Number of Draws  Final log-likelihood Accuracy Bias

Monte-Carlo 125 -1499.23 8 -11.83

 250 -1501.31 5.94 -6.53

 500 -1508.08 4.63 -3.96

 1000 -1489.53 3.19 -1.89

 2000 -1493.43 2.19 -0.89

Sobol 125 -1499.30 N/A N/A

 250 -1491.36 N/A N/A

 500 -1497.81 N/A N/A

 1000 -1494.05 N/A N/A

 2000 -1489.52 N/A N/A

Sobol-Owen 125 -1507.51 6.92 -8.85

 250 -1494.81 5.57 -5.74

 500 -1495.88 2.95 -1.61

 1000 -1490.91 2.47 -1.13

 2000 -1488.15 1.42 -0.37
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