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Abstract

A class of trust-region methods is presented for solving unconstrained nonlin-
ear and possibly nonconvex discretized optimization problems, like those arising
in systems governed by partial differential equations. The algorithms in this class
make use of the discretization level as a mean of speeding up the computation
of the step. This use is recursive, leading to true multilevel/multiscale optimiza-
tion methods reminiscent of multigrid methods in linear algebra and the solution
of partial-differential equations. Global convergence of the recursive algorithm
is proved to first-order stationary points on the fine grid. A new theoretical
complexity result is also proved for single- as well as multiscale trust-region al-
gorithms, that gives a bound on the number of iterations that are necessary to
reduce the norm of the gradient below a given threshold.

Keywords: nonlinear optimization, multiscale problems, simplified models, recursive al-

gorithms, convergence theory.

1 Introduction

Many large-scale finite-dimensional optimization problems arise from the discretiza-
tion of infinite-dimensional problems, a primary example being optimal-control prob-
lems defined in terms of either ordinary or partial differential equations. While the
direct solution of such problems for a discretization level yielding the desired accuracy
is often possible using existing packages for large-scale numerical optimization, this
technique typically does make very little use of the fact that there is an underlying
infinite-dimensional problem for which several discretization levels are possible, and
the approach thus rapidly becomes cumbersome. This observation motivates the de-
velopments presented here, where we explore the theoretical properties of a class of
algorithms which, at variance with the technique just described, makes explicit use of
this fact in the hope to allow better efficiency and, possibly, enhance reliability.



Using the different possible levels of discretization for an infinite-dimensional prob-
lem is not a new idea. A simple first approach is to use coarser grids in order to compute
approximate solutions which can then be used as starting points for the optimization
problem on a finer grid (see Griewank and Toint, 1982, Bank, Gill and Marcia, 2003,
Betts and Erb, 2003 or Benson, McInnes, Moré and Sarich, 2004, for instance). How-
ever, potentially more efficient techniques are inspired from the multigrid paradigm in
the solution of partial differential equations and associated systems of linear algebraic
equations (see, for example, Brandt, 1977, Bramble, 1993, Hackbusch, 1994, Hack-
busch, 1995 or Briggs, Henson and McCormick, 2000, for descriptions and references
for this much studied topic), and have only been discussed relatively recently in the
optimization community. The work presented in this note was in particular motivated
by the “generalized truncated Newton algorithm” presented in Fisher (1998), a talk by
Moré (2003) and the contributions by Nash (2000) and Lewis and Nash (2002, 2005).
These latter three papers present the description of MG/OPT, a linesearch-based re-
cursive algorithm, an outline of its convergence properties and impressive numerical
results. The generalized truncated Newton algorithm and MG/OPT are very similar
and, like many linesearch methods, naturally suited to convex problems, although their
generalization to the nonconvex case is possible. Further motivation is also provided
by the computational success of the low/high-fidelity model management techniques of
Alexandrov and Lewis (2001) and Alexandrov, Lewis, Gumbert, Green and Newman
(2001).

The class of algorithms discussed in this note can be viewed as an alternative where
one uses the trust-region technology whose efficiency and reliability in the solution of
nonconvex problems is well-known (we refer the reader to Conn, Gould and Toint,
2000 for a more complete coverage of this subject). Our developments are organized as
follows. We first describe our class of multiscale trust-region algorithms in Section 2,
and show in Section 3 that it is well defined and globally convergent to first-order critical
points. A new complexity result for local minimization by trust-region methods is also
derived. Some conclusions are drawn and perspectives presented in Section 4.

2 Recursive multiscale trust-region algorithms
We start by considering the solution of the unconstrained optimization problem

min_ f(z), (2.1)

where f is a twice-continuously differentiable objective function which maps IR" into IR
and is bounded below. The trust-region methods which we investigate are iterative and,
given an initial point zy, produce a sequence {zy} of iterates (hopefully) converging to
a local stationary point for the problem, i.e., to a point where g(z) Ly, f(z) =0. At
each iterate xy, classical trust-region methods build a model my(z, + s) of f(z + s).
This model is then assumed to be adequate in a “trust region”, defined as a sphere of
radius A > 0 centered at xy, and a step sj is then computed that sufficiently reduces



this model in the region. The objective function is computed at the trial point x + s
and this trial point is accepted as the next iterate if and only if the ratio

o = J(zr) — ok + s)
mg(zr) — mg(zk + si)

is larger than a small positive constant 7;. The value of the radius is finally updated to
ensure that it is decreased when the trial point cannot be accepted as the next iterate,
and is increased or unchanged if py, is sufficiently large. In many practical trust-region
algorithms, the model my (z + s) is quadratic and takes the form

m(zk +8) = f(zr) + (g, 5) + 1(s, Hgs), (2.2)

where gg def V. f(zk), Hy is a symmetric n X n approximation of Vg, f(zg) and (-, -) is
the Euclidean inner product. Obtaining sufficient decrease on this model then amounts
to (approximately) solving

min mg(zr +5) = min xk) + (9, s) + 1 (s, Hys), 2.3
Bicr k(Tk + 5) ||S||§Akf( k) + {9k, ) + 1(s, Hys) (2.3)
where || - || is the Euclidean norm.

Such methods are known to be efficient and reliable. They provably converge to
first-order critical points whenever the sequence {||Hg||} is uniformly bounded above,
i.e., when there is a constant kz > 1 such that 1+ || Hy|| < kg for all k. Besides comput-
ing the value f(xy + si), the cost per iteration is dominated by the numerical solution
of the subproblem (2.3), which involves either a few symmetric matrix factorizations
or the application of a (preconditioned) conjugate gradient procedure. In both cases,
the dimension n of the problem is crucial. If we now assume that (2.1) results from
the discretization of some infinite-dimensional problem on a relatively fine grid, it is
clear that n is typically large, since it usually grows as some power of the inverse of
the mesh-size. The cost of solving (2.1) by the approach described above is therefore
often significant.

In what follows, we investigate what can be done to reduce this cost if one attempts
to exploit the knowledge of alternative simplified expressions of the objective function,
when available. More specifically, we assume that we know a collection of functions
{fi}i—, such that each f; is a twice-continuously differentiable function from IR™ to
IR (with n; > m;_1), the connection with our original problem being that n, = n and
fr(z) = f(z) for all z € IR™. We will also assume that, foreachi =1,...,r, f; is “more
costly” to minimize than f; ;. This may be because f; has more variables than f; ;
(as would typically be the case if the f; represent increasingly finer discretizations of
the same infinite-dimensional objective), or because the structure (in terms of partial
separability, sparsity or eigenstructure) of f; is more complex than that of f;_;, or for
any other reason. To fix terminology, we will refer to a particular i as a level. We
use the first subscript 4 in all subsequent subscripted symbols to denote a quantity
corresponding to the i-th level (meaning in particular, if applied to a vector, that this
vector belongs to IR™).



Of course, for f;_1 to be useful at all in minimizing f;, there should be some
relation between the variables of these two functions. We henceforth assume that, for
each ¢ = 1,...,r, there exist a full-rank linear operator R; from IR™ into IR™~! (the
restriction) and another full-rank operator P; from IR™-! into IR™ (the prolongation)
such that

P, =RT. (2.4)

This last assumption is realistic and is often expressed, in the context of multigrid
algorithms, in the form o; P; = RZT for some known constants o; > 0, where P; and R;
are interpreted as restriction and prolongation between a fine and a coarse grid (see, for
instance, Briggs et al., 2000). This alternative form was also used in Nash (2000). In
order to keep our notation simple, we nevertheless prefer to use condition (2.4), which
can be directly obtained from the more usual form by scaling P; and/or R;.

The idea is then to use f._1 to construct an alternative model h,._1 for f,. = f in
the neighbourhood of the current iterate, that is cheaper than (2.2), and to use this
alternative model to define the step in the trust-region algorithm whenever possible. If
more than two levels are available (r > 1), this can be done recursively, the approxima-
tion process stopping at level 0, where (2.2) is always used. The notation necessary to
fully describe this procedure is unfortunately very cumbersome, and we have decided
to use a simple technique where quantities of interest have a double subscript i, k. The
first, i, is the level index (0 < 4 < r) and the second, k, the index of the current
iteration within level i, and is reset to 0 each time level i is entered(®).

Consider now some iteration k at level ¢ (with current iterate z;j) and suppose
that one decides to use the lower level model h;_; based on f;_; to compute a step.
The first task is to restrict x; to create the starting iterate z;_1 o at level ¢ — 1, that
is

Ti 1,0 = Rimi g. (2.5)

We then define the lower level model as the function
hi—1(zi—1,0 + si-1) def fi—1(@i—1,0 + si—1) + (vie1,8i-1) (2.6)

where
Vi—1 = Rigik — Va,_, fic1(ziz1,0) (2.7)

with g; 1 def Ve hi(zi k). By convention, we set v, = 0, such that
hr(.’ET’o + 31‘) = fT(xT,O + 51‘) = f(xr,O + 57') and grik = erhr(mr,k) = Vzrf(wr,k)-

The function h; therefore corresponds to a modification of f; by a linear term that
enforces the relation
9i-1,0 = Va,_1hi—1(zi—10) = Rigik- (2.8)

(DWe are well aware that this creates some ambiguities, since a sequence of indices 7,k can occur
more than once if level ¢ (¢ < 7) is used more than once, implying the existence of more than one
starting iterate at this level.



The first-order modification (2.6) is not unusual in multigrid applications in the context
of the “full approximation scheme” (see, for instance, Chapter 3 of Briggs et al., 2000 or
Hemker and Johnson, 1987) and was also used in Fisher (1998) and Nash (2000). It will
play a crucial role in our development, since it ensures that the first-order behaviours
of h; and h;_, are coherent in a neighbourhood of z; ; and z;_1 ¢, respectively: indeed,
one verifies that, if s; and s;_; satisfy

S; = Pisi_l, (2.9)

then
(9iks 8i) = (Gik, Pisi—1) = (Riik, si—1) = (gi—1,0, Si—1) (2.10)

where we have used (2.9), (2.4) and (2.8) successively. This coherence was indepen-
dently imposed in Lewis and Nash (2002) and, in a slighly different context, in Alexan-
drov and Lewis (2001) and other papers on first-order model management.

Our task, when entering level i =0, ...,r, is then to (locally) minimize h; starting
from z; 0. At iteration k of this minimization, we first choose, at iterate z; , a model
between h;_1(z;—1,0 + si—1) (given by (2.6)) and

Mk (Tik + 8i) = hi(Tik) + (gik, 5i) + 3(si, Hik5s) (2.11)

where the latter is the usual truncated Taylor series in which H; j is a symmetric n; xn;
approximation to the second derivatives of h; (which is also the second derivative of
fi) at x; ) such that, for some Ky > 1,

L+ [[Hikll < ku (2.12)

for all k and all 4 = 0,...,r. Once the model is chosen (we will return to the conditions
of this choice below), we then compute a step s;j that generates a decrease on this
model within a trust region defined by

Big = {si ] [lsills < Ass}, (2.13)

for some trust-region radius A;; > 0. The norm || - ||; in this last expression is level-
dependent and defined, for some symmetric positive definite matrix M;, as

def def
llsilli = V/(si, Misi) = ||silla- (2.14)

If the model (2.11) is chosen(®, this is nothing but a usual ellipsoidal trust-region
subproblem solution yielding a step s; ;. The decrease of the model m;} is then
understood in its usual meaning for trust-region methods, which is to say that s; is
such that

||9i,k||

_Ngakll A 2.15
T4 [Hag” ok (2:15)

M ke(ZTik) — Mk (Ti ke + Sik) = Keeal|Gi k|| min

for some constant ..q € (0,1). This condition is known as the “sufficient decrease” or
“Cauchy point” condition. Chapter 7 of Conn et al. (2000) reviews several techniques

(2)Observe that this is the only possible choice for 7 = 0.



that enforce it, including the exact minimization of m;j within the trust region or
an approximate minimization using (possibly preconditioned) Krylov space methods.
On the other hand, if the model h; ; is chosen, minimization of this latter model
(hopefully) produces a new point z;_j . such that h;_1(z;—1,) < hi—1(®i_1,0) and a
corresponding step z;_1 .« — Z;—1,0 which must then be brought back to level i by the
transformation (2.9). Since

def

lIsilli = llsillar; = (1Pisi- 1l = lsiallprase, = lsioalla_, = llsiallin (2.16)

(which is well-defined since P; is full-rank), the trust-region constraint (2.13) at level
i — 1 then becomes

lzim1, = Ti—1,0lli-1 < Ai, (2.17)

which then shows that the lower level subproblem consists in (possibly approximately)
solving

min hi—1(zi—1,0 + 8i-1)- 2.18
[lsic1llic1<Agk B 1( i—1,0 i 1) ( )

The relation (2.16) also implies that, for i =0...,7 — 1,
M; = QTQ; where Q; = P,...Py2Piy1, (2.19)

while we define M, = I for consistency. Preconditioning can also be accommodated
by choosing M, more elaborately.

Is the cheaper model h;_; always useful? The answer to this question is obviously
negative, as it may happen for instance that g;  lies in the nullspace of R; (assuming for
this example that n;—_1 < n;) and thus that R;g; j is zero while g;  is not. In this case,
the current iterate appears to be first-order critical for h;_1 in IR™~* while it is not for
h; in IR™ . Using the model h;_; is hence potentially useful only if ||gi—1,0|| = ||Rigs,xl|
is large enough compared to ||g;,x||- The developments below show that the appropriate
technical condition turns out to be that

|R:gikll > kellgikll and [|Rigikll > €§_, (2.20)

for some constant k, € (0, min[1, min; ||R;||]) and where € ; € (0,1) is a measure of
the first-order criticality for h;_; that is judged sufficient at level ¢ — 1. Note that,
given g; , and R;, this condition is easy to check before even attempting to compute a
step at level ¢ — 1.

We are now in position to describe our recursive multiscale trust-region (RMTR)
algorithm more formally (see page 7). In this description, we use the constants 7y, 72,
71 and 7, satisfying the conditions

O<m <M<l and 0<y <1 <1

It is assumed that the prolongations/restrictions P; and R; are known, as the descrip-
tion of the levels ¢ = 0,...,r. An initial trust-region radius for each level A > 0 is also
defined, as well as level-dependent gradient norm tolerances € € (0,1) and trust-region



tolerances €2 € (0,1) for i = 0,...,r. The algorithm’s initial data consists of the level

index ¢ (0 <4 < r), a starting point x;0, the gradient g; at this point, the radius
Ajyq of the level i 4 1 trust region and the tolerances €f and X,

Algorithm 2.1: RMTR(i, 2;0, gi.0y Ait1, €, €2, AS)

Step 0: Initialization.
Compute v; = g5,0 — Vg, fi(®i0) and hi(zi0). Set A; o = min[A$, A;4;] and
k=0.

Step 1: Model choice.
If ¢ = 0 or if (2.20) fails, go to Step 3. Otherwise, choose to go to Step 2
(recursive step) or to Step 3 (Taylor step).

Step 2: Recursive step computation.
Call Algorithm RMTR(i — 1, Rizik, Rigik, Dik, €51, € |, A ), yielding
an approximate solution x;_; , of (2.18). Then define s;5, = Pi(%i—1,« —
Rz'.’l,'i,k), set 6i,k = hifl(Rimz',k) — hz',l(.fﬁz',l’*) and go to Step 4.

Step 3: Taylor step computation.
Choose H; j, in view of (2.12) and compute a step s;,, € IR™ that sufficiently
reduces the model m; j, (given by (2.11)) in the sense of (2.15) and such that
lIsiklli < Aijk. Set dik = mik(@ik) — Mk (Tigk + Sik)-

Step 4: Acceptance of the trial point.
Compute h;(z;  + s;,k) and define

_ hi(@ig) = hi(mi g + 5ik)
Pik = .
i,k

(2.21)

If pir > m, then define z; 11 = x; r + 5ix; otherwise define x; x+1 = x4 -

Step 5: Termination.
Compute gikr1- If ||giks1ll < € or [|zik1 — ziolli > (1 — €)Asya, then
return with the approximate solution z; « = ; j41-

Step 6: Trust-region radius update.

Set
[Aik, +00) if pik > 02,
Afieq Ak, Ak if pik € [m,m2), (2.22)
1Ak, 25k if pix <m,
and

Aipr =min [A, Ayt = [lziss — iolli] - (2.23)

Increment k by one and go to Step 1.




Some comments on this algorithm are now necessary.

1. The recursive nature of this Algorithm RMTR is clear from the fact that it calls
itself in Step 2. It is, in that sense, reminiscent of multigrid methods for the
solution of linear systems (see Hackbusch, 1994) and is close in spirit to the
MG/OPT method by Nash (2000). However, this latter method differs from ours
in two main respects: Algorithm RMTR is of trust-region type and does not
rely on performing Taylor’s iterations before or after a recursive one (at least in
theory, every iteration of Algorithm RMTR could be recursive).

2. The original task of minimizing f(z) = f-(z,) = h.(2,) (up to the gradient norm
tolerance €& < ||V, fr(2r0)|]) is achieved by calling RMTR(r, %0, Vi fr(2r0),
Arti,0, €8, €2, A%), for some starting point xr0 and initial trust-region radius
A%, and where we define

Ar+170 = . (224)

For coherence of notations, we thus view this call as being made from some
(virtual) iteration 0 at level r + 1.

3. In the case where r = 0, that is if there is only one level in the problem, the
algorithm reduces to the well-known usual trust-region method (see p. 116 of
Conn et al., 2000) and enjoys all the desirable properties of this method.

4. The choice
m =0.01, 79 =0.95 v =0.05 and v, = 0.25 (2.25)

is most often appropriate. The choice of A$, the initial trust-region radius at
level r, is slightly more problem dependent. Although the value 1 often gives
reasonable performance, more elaborate strategies exist for choosing it in the
context of single level algorithms (see, for instance, Powell, 1970, Sartenaer, 1997,
or Sections 10.5.1 and 17.2 in Conn et al., 2000).

5. As with usual trust-region methods, we call iteration k at level ¢ successful if
Pik > M, that is if the trial point x; ; + s; 1 is accepted as the next iterate ; yy1.
The iteration is said to be very successful if p; r, > 12, implying that Asz > Aig.

6. The motivation for (2.23) and the termination test ||z; g+1—Ziolli > (1—€2)Ais
in Step 5 is to guarantee that iterates at a lower level in a recursion remain in the
trust region defined at the calling level. We verify this property in Lemma 2.1.

7. When 7 > 0 and (2.20) holds, Step 1 offers the choice between the expensive and
cheap step computations. Instead of systematically choosing the cheap one, we
leave this option open to keep our class of algorithms as flexible as possible.

8. The class of algorithms described here can also be viewed as an extension of the
low /high-fidelity model management method of Alexandrov and Lewis (2001)
and Alexandrov et al. (2001). The main differences are that our framework



explicitly uses transfer operators (prolongation and restriction) between possibly
different variable spaces, allows more than two nested levels of fidelity and does
not require coherence of low-fidelity model values with the high-fidelity objective

function (zeroth-order model management).

Before we go any further in the analysis of Algorithm RMTR, we need to introduce
some additional concepts and notation.

1. Iteration k at level ¢, associated with the computation of the step s;, will be
referred to as iteration (i, k). It will be called a Taylor iteration if Step 3 is used
(that is if Taylor’s model m; i (z;  + s;) is chosen at Step 1). If Step 2 is used
instead, iteration (i, k) will then be called a recursive iteration.

2. When Step 2 is used at iteration (i, k), we say that it initiates a minimization
sequence at level ¢ — 1, which consists of all successive iterations at this level
(starting from the point x;_1,0 = R;z; ) until a return is made to level ¢ within
iteration (i, k). In this case, we also say that iteration (7, k) is the predecessor of
the minimization sequence at level i — 1. If (i — 1, £) belongs to this minimization

sequence, we use the notation
(i,k) =7(i—1,0)
to denote this relation. Observe that £ is arbitrary in the minimization sequence.
3. At a given iteration (i, k), we associate the set
R(i, k) € {(j,0) | iteration (j,£) occurs within iteration (i, k)}. (2.26)

The set R(i, k) always contains the pair (7, k) and only contains that pair if Step 3
is used at iteration (i, k). If Step 2 is used instead of Step 3, then it additionally
contains the pairs of level and iteration numbers of all iterations that occur in the
potential recursion started in Step 2 and terminating on return within iteration
(i, k). Because R(i,k) is defined in terms of iterations, it does not contain the
pairs of indices corresponding to the terminating iterates (j,*) of its (internal)
minimization sequences. One easily verifies that j < 4 for every j such that
(j,£) € R(i, k) for some non-negative k and £. The mechanism of the algorithm
also ensures that

Aj ¢ < A whenever (j,0) € R(i, k), (2.27)

because of the choice of Aj( in Step 0 and (2.23).

Note that R(i, k) contains at most one minimization sequence at level ¢ — 1, but
may contain more than one such sequence at level i — 2, since each iteration at

level ¢ — 1 may generate its own.

4. For any iteration (j,£) € R(i,k), there exists a unique path from (j, ) to (i, k)
defined by taking the predecessor of iteration (j,£), say (j + 1,q) = 7 (j,£), and
then the predecessor of (j + 1,¢) and so on until iteration (7, k).



We also define

. ) . 59
d(i, k) e P (2.28)

which is the index of the deepest level reached by the potential recursion of
iteration (i,%k). The path from (d(i,%),£) to (i,k) is the longest in all paths
defined in R(3, k).

5. We use the notation
T, k) % {(4,2) € R(i, k) | iteration (4, £) uses Step 3},

to denote the subset of Taylor iterations in R(4, k), that is iterations at which
Taylor’s model my ¢(x;,¢ + ;) is chosen.

We conclude this presentation of Algorithm RMTR by proving that it has a central
property of trust-region methods, namely that the steps remain in the trust region.

Lemma 2.1 The mechanism of Algorithm RMTR guarantees that, for each iteration
(i, k),

lIsiklli < Ak (2.29)

Moreover, if Aji1,4 is the trust-region radius of iteration (j + 1,q) = n(j,£), we have
that, for each (j,f) € R(i, k),

lzje — zj0ll; < Ajy1,g and ||« — Tjoll; < Ajia,g- (2.30)

Proof. The constraint (2.29) is explicit for Taylor iterations. We therefore only
have to verify that it holds if Step 2 is chosen at iteration (¢,k). If this is the
case, consider j = d(i, k), and consider the first time it occurs in R(i, k). Assume
furthermore that ;. = x;,. Because no recursion occurs to a level lower than j,

one must have (from Step 3) that

||8jal||j < Aj,f (ﬁ:o,,p— ]-) (231)

Then we obtain, for £ =1,...,p, that, if iteration (j,£ — 1) is successful,

lzje = zj0ll; = lzje—1 — j0 + 85,015 < Mwje—1 — zj0ll5 + 185,611l

because of the triangular inequality, while
i = zjolli = llwje—1 — Zjolli < llwje—1 — zj0lli + llsje-1lls,

if it is unsuccessful. Combining these two bounds and (2.31), we have that

lzje — zjoll; < llzje-1 — zj0ll; + Aje—1
< Nzje—1 = zj0lli + Ajrr,g = [1256-1 — 20l (2.32)
= AJ'+1,q

10



for £ =2,...,p, where the last inequality results from (2.23). The same result also
holds for ¢ = 1, since ||z;1 — zjoll; < Ajo < Ajy1,4 because of Step 0 in the
algorithm. We then verify, using (2.16), that

I8+ 1,9ll5+1 = I1Pj1 (i — 250) [lj+1 = |25« — @j0ll5 = 1250 — Zj0lli < Ajta,gs

which is nothing but the inequality of (2.31) at iteration (j + 1,¢). The same
reasoning may then be applied to each iteration at level j + 1 that uses Step 2.
Since the inequality in (2.31) is guaranteed for all other iterations of that level by
Step 3, we obtain that (2.31) also holds with j replaced by j + 1. The same must
therefore be true for (2.32). The induction can then be continued up to level 4,
yielding both (2.29) and (2.30) (for which the case £ = 0 is obvious). m|

In the same vein, the algorithm also ensures the following two properties.

Lemma 2.2 The mechanism of Algorithm RMTR guarantees that, for each iterate of
index (j,£) such that (j,€) # (4,%) (i.e., for all iterates at level j but the last one),

llgs.ell > € (2.33)

and
Iz.e — zj0ll; < (1 =€) Aji1,q0 (2.34)

where Aji1 4 is the trust-region radius of iteration (j +1,q) = n(j,£).

Proof. These bounds directly follow from the stopping criteria for minimization
at level j, in Step 5 of the algorithm. |

3 Global convergence

We now investigate the global convergence properties of our recursive multiscale al-
gorithm. Qur exposition starts with the analysis of properties that are specific to
Algorithm RMTR, and subsequently revisits the main concepts and developments of
Section 6.4 in Conn et al. (2000) to conclude in the specific case of the multiscale algo-
rithm. Interestingly, the techniques of proof are different and lead to a new complexity
result that is also valid in the classical single-level case.

We complete our assumptions by supposing that the Hessian of each h; is bounded
above by the constant kg (possibly increasing this constant), i.e., more formally, that

1+ ”vwﬂ,hz(wz)” S Ku (3.1)

for all ; € IR™ and all i. We also define the constants

Ker < max [1, max ||P,~||] = max [1, max ||Ri||] (3.2)
1= T =1,...,r

=1,...,

11



(where we used (2.4) to deduce the second equality), and

Ko 4 1nin 1, min omin(M;)| >0, (3.3)

1=0,...,7
where o, (A) denotes the smallest singular value of the matrix A. We finally define
the constants
AS

min

= min €. (3.4)

= min A}, €. = min & and ey
i i 1=0,...,7

min n
1=0,...,7 1=0,...,7

We start by proving some useful bounds on the gradient norms for all iterates that
belong to a recursion process initiated within a sufficiently small trust region.
Lemma 3.1 Assume that, for some iteration (i, k),

KoK

A < Vs 0 gt . 3.5
ik < o gkl = w1llgikll, (3.5)

where k1 € (0,1). Then one has that

36195kl < Nlgjell < moe (14 360 gi,nl (3.6)

for all (j,0) € R(i, k).

Proof.  The result is obvious for (j,¢) = (i, k) since, by definition, x, < 1 and
kpr > 1. Let us now consider some iteration (j,£) € R(i, k) with j < 3. From the
mean-value theorem, we know that, for any iteration (4, /),

gie = 95,0 + Gje(Tje — wj0) (3.7)
where .
Gj,g = / szzj hj(.Z'jJ) + t(xj,g — .Z'j,o)) dt. (3.8)
0
But
IGjell < o IVa;z;hi(zj0 + (@50 — 4,0))l] < K, (3-9)

and hence, by definition of the norms and (3.3),

K

195,61l > llgsoll = wullzse = j0ll > lgioll = —=llj.c = zj0ll; (3.10)

for all (4,£). On the other hand, if (j + 1,q) = 7(j,£), we have also that, for all
(4, 0) € R(i, k),

lzje — zj0lli < Ajyrg < Aig (3.11)

because of (2.30) and (2.27) (as (j + 1,q) € R(4,k)). Combining (3.10) and (3.11),
we obtain that, for all (j,¢) € R(4, k),

Ku
lgjell > llgjoll — \/?Ai,k- (3.12)

g
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Consider now the path from (j,£) to (i,k) in R(i, k). Let this path consists of the
iterations (j,£), (j + u,tj4y) foru=1,...,i —j—1 and (i, k). We then have that

K

) > | — BE_AL
”gJ,f” = ||g],0|| \/EAz,k
K
> 'ig||gj+1,tj+1|| - \/—E—aAi,k
> Kgllgirioll — 2;—:—0Ai,k
K
> K2lgit2.ts4all — 2\/—:—0Ai,k
K

> kgllgikll - T Ak,

where we successively used (3.12), (2.8), the first part of (2.20) and the inequality
ke < 1. We then deduce the first inequality of (3.6) from (3.5).

To prove the second, we re-use (3.7)—(3.9) to obtain that

K
llgsell < llgioll + kullzje — zj0ll < llgjoll + —%H%‘,e = zjoll;- (3.13)
o
Combining this with (3.11), we conclude that
K
llgj.ell < llgjoll + \/—:—Ai,k- (3.14)
o

We now retrack the iteration path from (4, £) back to (z, k) as above, and successively
deduce from (3.14), (2.8) and (3.2) that

llgsell < llgjoll + j—:—aAi,k
< ’iPR||gj+1,tj+1 Il + j—:—aAi,k
< kerllgj+1,0] + (Ker + 1)\7—:—0Ai,k
< K2 P12t 2fenfin A,
< Kerllgitatige |’|;‘_1ﬁ\/a i,k
< Kppllgikll + Tﬂ\/E—HAi,k
<

Kog ||9i,k||+7“j—:—Az',k )
o

using kpr > 1. We may now use the bound (3.5) to conclude that the second
inequality of (3.6) must hold. O

We now investigate what happens at non-critical points if the trust-region radius A;
is small enough. This investigation is conducted by considering the subset V(i, k) of
R(i, k) defined by

Vi, k) = {(G:0) € RG,K) | 850 > 3cad = P gl gk, (315)

where
re noel < 1. (3.16)

V(i, k) is the subset of iterations within the recursion at iteration (i, k) for which the
model decrease is bounded below by a (level-dependent) factor times the product of
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the gradient norm ||g; || and the trust-region radius A;,. Note that, if iteration (j, )
belongs to V(3, k), this implies that d;,, can be computed in a finite number of iterations,
and thus that R(7, £) is finite. The idea of the next two results is to show that V(i, k)
and R(i, k) coincide for a sufficiently small radius A; j.

Theorem 3.2 Consider an iteration (i,k) for which ||g; k|| > 0 and

Kreabo Kl Ky (1 —
A;r < min [Amm, min (I‘Cl, afiafiF( 772)> ||gz,k||:|

’ 2km (3.17)
L minfAL,, mallgiel,
where ko € (0,1). Then the following conclusions hold:
1. every iteration using Taylor’s model belongs to (3.15), that is
T, k) CV(i,k), (3.18)

2. idteration (j,0) is very successful for every (j,£) € V(i, k).

Moreover, if all iterations (j,£) of a minimization sequence at level j < i belong to
V(i,k) and if m(j,€) = (j + 1,q), then

3. the decrease in the objective function at level j satisfies
hj(25,0) = hj(@j,0) 2 3hecarrl L g ]| Mg (3.19)
for each £ > 0,

4. there are at most

Kre/Eo (24 KD) + Kok
pe & [ (24 5p) + ko Hl (3.20)
Kreakio KL KL
iterations in the minimization sequence at level j,
5. we have that
(j+1,9) € V(i, k). (3.21)

Proof. [1.] We start by proving (3.18). Note that, for (4,¢) € R(i, k), (2.27), the
fact that the positive constants k..q, ks, ke and 72 are all bounded above by one,
(3.17), the left inequality in (3.6) and (2.12) allow us to conclude that

’I"

_lgsell

Aje <A k:<
" + (1Hj el

”gzk” <7 (3.22)
If we now assume that (4,£) € T (i, k), the sufficient decrease condition (2.15) must
hold at this iteration, which, together with the left part of (3.6) and (3.22), gives
that

Oje =mje(xje) —my (@0 +55,0) > Keeall,el|Dje > 36ccak] |9kl A, (3.23)

which then implies (3.18) since &, < 1.

14



[2.] We prove item 2 separately for (j,¢) € T (i,k) and for (4,€) € V(i, k) \ T (i, k).
Consider the case where (j,£) € T (i, k) first. We deduce from Taylor’s theorem
that, for (j,£) € T (i, k),

2
). .
|hj(@je + sj,) = me(@je + 85,0)| < kn (”S’ e” ) A%, (3.24)
2:€112

(see, for instance, Theorem 6.4.1 on p. 133 of Conn et al., 2000). But, by definition
i > VEollsjell- Hence, (3.24) becomes

of the norms and (3.3), we know that ||s; |
K

[ (@s.e + 85,0) = me(@je + 85,0)] < =A%

o

Combining this last bound with (3.23), we obtain from (2.21) that

()0 + 85,0) = Mo (Tje + 8,) 2y

h .
pie— 1 < |- <
1P =1l my,e(Tj,e) — mye(Tje + 85 Kreako KT [|Gi k

Ajr<1—1p,

where the last inequality is deduced from (2.27) and the fact that (3.17) implies the
bound
Frealio by |9 k]| (1 — 12)

A <
ik 2/"3H

R =

since k. < 1. Hence
Pie = M2 (3.25)

and iteration (j,£) € T (i, k) is thus very successful, as requested in item 2 of the
theorem’s statement.

We next prove item 2 for (j,¢) € V(i, k) \ 7 (i, k), which implies, in particular, that
R(j,¥) is finite and x;_; . well-defined. If we consider iteration (j,£), we may still
deduce from the mean-value theorem that

hj(wj,e) = hj(2je +55,0) = =950 85.6) = 584,65 V2,05 (&5) 5,6)
for some &; € [z, ;¢ + 5], and also that
hj—1(2j-1,0) = hj—1(Tj—1,4) = =(gj-1,0,2j-1) = $(2j—1, Vi, _12;_1 hj—1(§5-1) 2j-1)
for some §;_1 € [zj_1,0,%j—1,0 + Zj—1], where
Zj—1 = Tj—1,x — Tj—1,0 = Tj—1,» — R;Tje.
Now, because s; ¢ = P;jz;_1, we deduce from (2.10) that
(95.6,85.0) = (9j-1,0,2j-1),
and therefore that
hj(zje) = hj(@je +550) = hj1(zj-1,0) = hj1(zj-1.4)

—3(85,6, Va,a;h; (&) 85.0) (3.26)
+3(2j-1, Vo, _1a;_1 hj—1(§j-1) 2j-1)-
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But Lemma, 2.1 implies that

i <Ay and ||zj—1]lj—1 < Aj,

which in turn, with the Cauchy-Schwarz inequality, gives that

2
8t
(510 ey &) 530 < malssal? < e (124 ) 22, < B0z, o)

llj.ell;

Similarly,
K
(2515 Vs aago i him1 (§-1) 2j-1)] < = AF, (3.28)

Combining (3.26), (3.27), (3.28) and the definition of d; ¢, we obtain that
Ky
hi(@se) = (@0 + 85,6) > 80 = A (3.29)

But since (j,£) € V(i, k) and k. < 1, we have that

i0 > ik b 2 3eeakig i [|gikl|Dje > 0

and we conclude from (3.29), the definition of p;, and this last bound that

hj(zje) = hi(zie + 850 o A7, 1 2kl ¢

pit = = = '
J 8i Kgdj.e Hredﬁa’i;":zngi,k”

Noting now that (3.17) implies the inequality

Keeakio kg K ||kl (1 — 12)
2Ky

Ay <

and using the bound (2.27), we obtain that p;, > 1. Iteration (j,¢) is thus very
successful, which completes the proof of item 2.

[8.] We now assume that all iterations (7, £) of a minimization sequence at level j < 4
belong to V(i, k) with (5 + 1,¢) = w(j,£). We first notice that (j + 1,q) € R(i, k),
(2.27), (3.17) and (3.4) imply that

Ajir,g < App <AL, <AL

Hence Step 0 gives that Ajo = Aji1,, and since all iterations at level j are very
successful because of item 2, we have from Step 6 that, for all (j,£) with £ > 0,

Nje = min[Af,y, Aprrg = llege = a0ll;]
> min Ay, Agrrg = lzie = zjolls)
= min [mm[AJ v Bjitg — 12501 — zj0ll3], Ajyrg — Iz — xj,ollj]
> min [, Byrag — max i — 20l
> min 10 Ay = max s = 70l
= Ajyiq— pm?‘XJ”iUJ,p zjoll;
> € Aj+1,qa
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where we used (2.34) to deduce the last inequality. Note that Ajo = Aji1,, >
e]-AAjH,q, covering the case where £ = 0. Combining these bounds with the very
successful nature of each iteration at level j, we obtain that, for each (j,p) with
p=0,...,0-1,

hj(jp) — hi(@ip + 8jp) > Mbjp
> ikl g k1A
> %Hredﬂgﬁz_d(i’k)nzef||9z',k||Aj+1,q
> Rl (g, (1A 41,

where we used (3.4) and (3.16) to obtain the last inequality. Summing now over
iterations p=10,...,¢ — 1 at level j, we obtain that

-1
hi(xio0) —hi(ze) = Y [hi(ejp) = hi(@jp + 55p)]
p=0

%"&,edlﬂ;l‘ég_d(i’k)ﬂe lgs,ellAj11,q

v

yielding (3.19).

[4.] In order to prove item 4, we start by proving that the total decrease in h;
(the objective function for the considered minimization sequence at the j-th level)
is bounded above by some multiple of ||g; || and Ajy1,. We first note that the
mean-value theorem gives that

hj(j0 + 5j,min) = h;(2j0) + (95,05 8j,min) + 3(Sj.min; Va;a;h5(£;) 55,min)
for some &; € [x,0, %0 + 5jmin], Where we have defined
Simin = ar, min hi(z;o+ s;)-
— gIISJ'IIJ'SAJ'+1,<1 (5, i)

Hence, we obtain that, for all s; such that ||s;|[; < Aji1,q,

llgj.oll K
hj(zj0) = hj(zj0 + 85) < hi(zj0) — hj(zj0 + 8j,min) < \/JE Ajiig+ iA?-H,Q'

But we have that [|z;¢ — z;0|l; < Ajy1,4 because of (2.30) and therefore the right

inequality of (3.6), (2.27) and (3.17) now give that

K’;R + %HIT;RH; KoKn
VEo 2K,

for all (j,£) with £ > 0. Combining now this bound with (3.19) and remembering

that k. < 1, we deduce that item 4 must hold with (3.20).

hj(zj,0) — hj(zj,e) <

ll9:kl1Aj+1,q (3.30)

[6.] Finally, since the minimization sequence at level j is guaranteed to terminate
after a finite number of iterations 1 < £ < p,, we deduce from (3.19) and the

definition of d;41,, that
7 gHl—d(ik)|| ;. ,
6j+1,q > %K/redﬁg’ig ( )”gz,k”AJ+1,q7

and (3.21) then immediately follows. |
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We may deduce the following important corollary from this theorem.

Corollary 3.3 Assume (3.17) holds for some iteration (i,k) for which ||gi x| > 0.
Then all iterations (j,£) € R(i, k) are very successful. Moreover, the total number of
iterations in R(i, k) is finite and A;’,'k > Ak

Proof. As suggested above, we proceed by showing that V(i,k) = R(i, k),
working from the deepest recursion level upwards. Thus consider level j = d(i, k)
first. At this level, all iterations (j, £) belong to T (i, k) and thus, by (3.18), to V(i, k).
If j = i, we have achieved our objective. Assume therefore that j < i and consider
level j + 1. Using (3.21), we see that all iterations involving a recursion to level j
must belong to V(i, k), while the other (Taylor) iterations again belong to V(i, k) by
(3.18). If j + 1 = 4, we have thus proved that V(i, k) = R(i, k). If j+ 1 < i, we may
then apply the same reasoning to level j + 2, and so on until level ¢ is reached. We
may thus conclude that V(i, k) and R(i, k) always coincide and, because of item 2
of Theorem 3.2, only contain very successful iterations. Furthermore, using item 4
of Theorem 3.2, we see that the total number of iterations in R(i, k) is bounded
above by .

dopi<rpl+ 1

1=0
Finally, the fact that A:k > A;  then results from the mechanism of Step 6 of the
algorithm and the very successful nature of iteration (i, k) € R(i, k). O

This last result guarantees the finiteness of the recursion at iteration (i, k) (and thus
finiteness of the computation of s;;) if A;y is small enough. It also ensures the
following useful consequence.

Lemma 3.4 FEach minimization sequence contains at least one successful iteration.

Proof.  This follows from the fact that unsuccessful iterations cause the trust-
region radius to decrease, until (3.17) is eventually satisfied and a (very) successful
iteration occurs because of Corollary 3.3. O

We now investigate the consequence of the above results on the trust-region radius at
each minimization level.

Lemma 3.5 For every iteration (j,£), with j =0,...,r and £ > 0, we have that
Aje > ymin [Af, koed, €8 A1 ,], (3.31)
where (j +1,q) = 7(j, ).

Proof. Consider the minimization sequence at level j < r initiated from iteration
(j + 1, ¢), and assume, for the purpose of obtaining a contradiction, that iteration
(7, £) is the first such that

Aje < yimin [AS koef, €} A4 ] (3.32)
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Note that, because ejA <landy <1,
Ajo =min[A%, Aji ] > min[AS,, €5 A 41 ,0] > 71 min [Ad,, moed, €A1 ,4],

min»y ©j min> 3 %5

which ensures that £ > 0 and hence that A;, is computed by applying Step 6 of
the algorithm at iteration (j,£ — 1). Suppose now that

Aje=Aji1,g = l|lzje — zj0l5 (3.33)

i.e., the second term is active in (2.23). Our definition (2.24) and (3.32) then ensure
that j < r. Then, using (2.34), the definition of 7, and (3.32), we deduce that, for
Jj<r,

Aje > Ajirg = (1= €)0j11q = €5 Djirg > 1€ Djing > Aje,
which is impossible. Hence (3.33) cannot hold and we obtain from (2.23) that
Aje= A7, 21,

where the last inequality results from (2.22). Combining this bound with (3.32) and
(2.33), we deduce that

min>

Aje—1 < min [A} Koel, GJ'AAj+1,q] < min [ALin, K2(lg5,e-1]l] -

Hence we may apply Corollary 3.3 and conclude that iteration (j,£ — 1) is very
successful and that
Ajet SAT, =4,

As a consequence, iteration (j,£) cannot be the first such that (3.32) holds. This
contradiction now implies that (3.32) is impossible, which completes the proof. O

Thus trust-region radii are bounded away from zero by a level-dependent factor. We
now verify that this factor may be made independent of the level.

Theorem 3.6 There ezists a constant Amin € (0, min[AS; . 1]) such that
Aje > Anin (3.34)
for every iteration (j,£).
Proof. Observe first that Lemma 3.5 ensures the bound

Arge > 1 min[Aly,, koef] € yip (3.35)

for all £ > 0, because we have assumed that the call to the uppermost level is made
with an infinite trust-region radius. Note that

pe (0,1) (3.36)
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because k2 and €& both belong to (0,1). Suppose now that, for some iteration (3, £),
AJ ¢ < 'Y{‘+2( mm)rlu‘ (337)

If j = r, this contradicts (3.35). Hence 0 < j < 7. Lemma 3.5 and the definition of
u in (3.35) then imply that
minf 4, € Aji1,q] <Y (emin) "t (3.38)

where, as above, iteration (j + 1,q) = w(j,¢). If min[y, ejAAjH,q] = pu, then

p < it (e2,)" 1, which is impossible because 7] (€2, )" < 1. As a consequence,
A : A 1 1A
€; Aj+1aq = mll’l[/J,, € Aj‘i‘LQ] < ’YI+1( mm) < ’yr+ ( mm)r 16]’ K,

because of (3.4), and hence

7‘+1( A )r—l

Aj+1aq < 71 min M-

This condition is entirely similar to (3.37), but one level higher. We may therefore
repeat the reasoning at levels j + 1,...,r — 1, yielding the bound

r+2—(r— J)(

ATk < "N €min )r (r= ])/J’ 7J+2( mln) H < Y1 M-

But this last inequality contradicts (3.35), and we therefore deduce that (3.37) never
holds. This proves (3.34) with

Amin & 4742 (8" min[AL;,, Foef] (3.39)

and the bounds v, € (0,1), €2, € (0,1), k2 € (0,1) and €& € (0,1) together imply
that Apin € (0, min[A%; , 1]), as requested. O

This result must be compared to Theorem 6.4.3 on p. 135 of Conn et al. (2000), keeping
(2.33) in mind with the fact that we have called the uppermost minimization level with
some nonzero tolerance e&. Also note in (3.39) that Amiy, is linearly proportional to €8
for small enough values of this threshold.

The next crucial step of our analysis is to show that the algorithm is well-defined
in that all the recursions are finite.

Theorem 3.7 The number of iterations at each level is finite. Moreover, there exists
kn € (0,1) such that, for every minimization sequence at level 1 =0,...,r,

hi(xi0) — hi(Zipy1) > Tipnit s,
P
where T; ; is the total number of successful iterations in U T(i,2).
£=0
Proof. We prove the desired result by induction on higher and higher levels from
0 to r. We start by defining w; ¢ to be the number of successful iterations in 7 (3, £),
as well as the number of successful iterations in the set |Jj_, 7 (¢, ):

p
Tip = Z Wi - (3.40)
£=0
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Note that w; ¢ > 1 if iteration (i,£) is successful.

Consider first an arbitrary minimization sequence at level 0 (if any), and assume,
without loss of generality, that it belongs to R(r, k) for some k > 0. Every iteration
in this minimization sequence must be a Taylor iteration, which means that every

successful iteration in the sequence satisfies

.| €8
ho(zo,e) — ho(Zo,e41) > M1Keeall min [EO};, Amin

. (3.41)

. € i
> W0, M1 Krea€pyipy N [ Ko Amin] ;

where we have used (2.15), (2.33), (2.12), Theorem 3.6, (3.4) and the fact that
wo,e = 1 for every successful iteration (0,¢) because 7(0,¢) = {(0,£)}. Since we
know from Lemma 3.4 that there is at least one such iteration for every minimization
sequence, we may now sum the objective decreases at level 0 and obtain from (3.41)
that

P
ho(xo,0) — ho(xo,pt1) = Z S)[ho(z0,0) — ho(0,e41)] > Topm1Kn, (3.42)
=0

where the sum with superscript (S) is restricted to successful iterations and where

g .
rn Y k€8, min [emlﬂ, Amin] € (0,1). (3.43)

min
Ku

If r = 0, we know that hg = f is bounded below by assumption, and (3.42) implies
that 79, must be finite. If » > 0, our assumption that fy is continuous implies that
ho is also continuous and hence bounded below on the set {z € R™ | ||z — zq 0|0 <
Ay }. The relation (3.42), Lemma 2.1 and (2.27) therefore again impose the finite-
ness of 79,,. Since 79, accounts for all successful iterations in the minimization
sequence, we obtain that there must be a last finite successful iteration (0, £y). If
the sequence were nevertheless infinite, this would mean that every iteration (0, £)
is unsuccessful for all £ > £y, causing A;, to converge to zero, which is impossi-
ble in view of Theorem 3.6. Hence the minimization sequence is finite. The same
reasoning may be applied to every such sequence at level 0.

Now consider an arbitrary minimization sequence at level ¢ (again, without loss
of generality, within R(r, k) for some k£ > 0) and assume that each minimization
sequence at level ¢ — 1 is finite and also that each successful iteration (¢ — 1,u) in

every minimization sequence at this lower level satisfies
hic1(Tic1,u) = hic1 (Tim1,ut1) > Wie1,u M Kh, (3.44)

which is the direct generalization of (3.41) at level ¢ — 1. Consider a successful
iteration (i,£), whose existence is ensured by Lemma 3.4. If it is a Taylor iteration
(i-e., if (i,£) € T (i,£)), we obtain as above that

hi(@ie) — hi(Tier1) > mbn >0 ey = wieni s (3.45)
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since m € (0,1) and w;, = 1 for every successful Taylor iteration. If, on the other
hand, iteration (4, £) uses Step 2, then, assuming ;i « = &;—1,.+1, we obtain that

hi(zie) — hi(Tigr1) > mlhici(Tic1,0) — hic1(ziz1 )]

¢
m Z Shi 1 (i1 0) — Bic1 (Tio1 ug1)]-
u=0

Observing that w; ¢ = 7;-1,¢, our induction assumption (3.44) and (3.40) then give
that

¢
hi(@ie) = hi(@ierr) 2 0i kR Y Wit =Ti1ani ke =wiemit ER (3.46)
u=0
Combining (3.45) and (3.46), we see that (3.44) again holds at level 7 instead of
1 — 1. Moreover, as above,

p
hi(zi0) — hi(Tipy1) = Z S [hi(ie) — hi(@ie1)] > Tipnit kn, (3.47)
=0

for the minimization sequence including iteration (7, £). If i = r, h; = f is bounded
below by assumption and (3.47) imposes that the number of successful iterations
in this sequence must again be finite. The same conclusion holds if i < r, since h;
llz — @iolli < Arg}

is continuous and hence bounded below on the set {z € IR™

which contains ;541 because of Lemma 2.1 and (2.27). As for level 0, we may
then conclude that the number of iterations (both successful and unsuccessful) in
the minimization sequence is finite. Moreover, the same reasoning holds for every

minimization sequence at level ¢, and the induction is complete. O

A first remarkable consequence of this theorem is an upper bound on the number of
iterations needed by the trust-region algorithm to reduce the gradient norm at level r
below a given threshold value.

Corollary 3.8 Assume that one knows a constant fiow such that hy.(z,) = f(x) > flow
for every x € IR™. Then Algorithm RMTR needs at most

successful Taylor iterations at any level to obtain an iterate x,y such that ||gr | < €2,
where
0(6) = 17+ i |-, 972" minfA g mad]|.
Ku
Proof. The desired bound directly follows from Theorem 3.7, (3.43), (3.39) and
the definition of €%

S in- (To keep the expression manageable, we have refrained from
substituting the value of k2 from (3.17) and, in this value, that of x; from (3.5), all

this values being independent of €.) m|
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Of course, the bound provided by this corollary may be very pessimistic and not all the
constants in the definition of #(¢) may be known in practice, but this loose complexity
result is nevertheless theoretically interesting as it applies to rather general nonconvex
problems. One should note that the bound is in terms of iteration numbers, and only
implicitly accounts for the cost of computing a Taylor step satisfying (2.15).

Corollary 3.8 suggests several comments.

1. The bound involves the number of successful Taylor iterations, that is successful

iterations where the trial step is computed without resorting to further recursion.
This provides an adequate measure of the linear algebra effort for all successful
iterations, since successful iterations using the recursion of Step 2 cost very little
beyond the evaluation of the level-dependent objective function and its gradient.
Moreover, the number of such iterations is, by construction, at most equal to r
times that of Taylor iterations (in the worst case where each iteration at level r
includes a full recursion to level 0 with a single successful iteration at each level
j>0).
Hence the result shows that the number of necessary successful iterations, all
levels included, is of order 1/€? for small values of e. This order is not qualitatively
altered by the inclusion of unsuccessful iterations either, provided we replace the
very successful trust-region radius update (top case in (2.22)) by

Aj,_k € [Ai,k7'73Ai,k] if pik > 12,

for some 3 > 1. Indeed, Theorem 3.6 imposes that the decrease in radius caused
by unsuccessful iterations must asymptotically be compensated by an increase
at successful ones, irrespective of the fact that A, depends on € by (3.39).
This is to say that, if a is the average number of unsuccessful iterations per
sucessful one at any level, then one must have that v3v$ > 1, and therefore that
a < —log(y3)/log(y2). Thus the complexity bound in 1/e? for small € is only
modified by a constant factor if all iterations (successful and unsucessful) are
considered. This therefore also gives a worst case upper bound on the number of

function and gradient evaluations.

2. This complexity bound is of the same order as the corresponding bound for the
pure gradient method (see Nesterov, 2004, page 29). This is not surprising given
that it is based on the Cauchy condition, which itself results from a step in the
steepest-descent direction.

3. It is also very interesting to note that the bound involves the number of successful
Taylor iterations summed up on all levels (as a result of Theorem 3.7). Thus
successful such iterations at cheap low levels decrease the number of necessary
expensive ones at higher levels, and the multiscale algorithm requires (at least in
the theoretical worst case) less Taylor iterations at the upper level than the single-
level variant. This provides some theoretical backing to the practical experience
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that the structure of multiscale unconstrained optimization problems can be used
to advantage.

4. Finally, we note that little effort has been made in the above proofs to keep the
value 0(¢) as large as possible (and hence the upper bound on the number of
iterations a small as possible) for a given €. However, we observe with interest
that the constants involved in this definition do not depend on the problem

dimension, but rather on the properties of the problem (r, ky, k) or of the
A s

algorithm itself (Kiea, Kas Y1, 15 M2y €Emins Aiyn)- If we consider the case where
different levels correspond to different discretization meshes and make the mild
assumption that r and kg are uniformly bounded above and that x, is uniformly
bounded below, we thus obtain the remarkable result that our complexity bound

is mesh-independent.

A second important consequence of Theorem 3.7 is that the algorithm is globally con-
vergent, in the sense that it generates a subsequence of iterates whose gradients con-

verge to zero if run with €& = 0.

Corollary 3.9 Assume that Algorithm RMTR is called at the uppermost level with
€ =0. Then
liminf ||g, || = 0. (3.48)
k—o0

Proof.  We first observe that the sequence of iterates {z,;} generated by the
algorithm called with €& = 0 is identical to that generated as follows. We consider,
at level r, a sequence of gradient tolerances {ef,j} € (0,1) monotonically converging

to zero, start the algorithm with €& = €£; and alter slightly the mechanism of

g

Step 5 (at level 7 only) to reduce € from €% ; to €

g
j+1 as soon as [|gr k1] < €7 ;.
The calculation is then continued with this more stringent threshold until it is also
attained, €& is then again reduced and so on. Since A,41,0 = 00, each successive

minimization at level r can only stop at iteration k if

Ngrp+1ll <€ ;. (3.49)

Theorem 3.7 then ensures that there are only finitely many successful iterations
between two reductions of 5. We therefore obtain that for each €} ; there is an ar-
bitrarily large k such that (3.49) holds. The desired result then follows immediately
from our assumption that {€} ;} converges to zero. O

The interest of this result is mostly theoretical, since most practical applications of
Algorithm RMTR consider a nonzero gradient tolerance €.

The attentive reader may have noticed that our theory still applies when we modify
the technique described at the start of Corollary 3.9 by allowing a reduction of all
the €¢ to zero at the same time(®) | instead of merely reducing the uppermost one. If
this modified technique is used, and assuming the trust region becomes asymptotically

(3)The ratios e% / €% could for instance be fixed or kept within prescribed bounds.
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inactive at every level (as is most often the case in practice), each minimization sequence
in the algorithm becomes infinite (as if it were initiated with a zero gradient threshold
and an infinite initial radius). Recursion to lower levels then remains possible for
arbitrarily small gradients, and may therefore occur arbitrarily far in the sequence of
iterates. Moreover, we may still apply Corollary 3.9 at each level and deduce that, if
the trust region becomes asymptotically inactive,

liminf ||g; k|| =0 (3.50)
k—o00

foralli =0,...,r.

As is the case for single-level trust-region algorithms, we now would like to prove
that the limit inferior in (3.48) (and possibly (3.50)) can be replaced by a true limit,
while still allowing recursion for very small gradients. We start by deriving a variant of
Theorem 3.7 that does not assume that all gradient norms remain above some threshold
to obtain a measure of the predicted decrease at some iteration (i, k).

Lemma 3.10 There ezists a constant k3 € (0,1) such that, for all (i,k) such that
llgi,kll > 0,

8

Oike > Kreal1 V1 Ky ||Gi,k || min [ AR K3l gikll, Aik ] (3.51)

Proof. Consider iteration (i, k). If it is a Taylor iteration, then, if we set
T

K
K3 = min I-’.J_g7 Klzli',;‘:| = RQH; € (0,1), (3.52)
H

(3.51) immediately follows from (2.15), (2.12) and the bounds &, € (0,1), 7, € (0,1)
and y; € (0,1). Otherwise define the iteration (j,£) (with j < 4) to be the deepest
successful iteration in R(i, k) such that

950 = 9jn == gju = Rjt1... Rigik

and such that all iterations (j+1,¢;41), (j+2,tj42), ..., up to (i—1,%;_1) of the path
from (4,£) to (i,k) are successful (meaning that iterations (j,u) are unsuccessful
for u = 0,...,£ — 1, if any, and that iterations (p,u) are also unsuccessful for
p=j+1,....i—1and u = 0,...,t, — 1, if any). Note that such a path is
guaranteed to exist because of Lemma 3.4. Using the first part of (2.20), we then
obtain that

lgioll = llgiall = -+ = llgj.ell = [[Rjy1 - .- Ri gikll = wgllgill > 0. (3.53)
If ¢ = 0, then
Aj,l = min[Aj'a Aj-i-l,tj+1:| 2 min[Afnina Aj+1,tj+1]' (354)

If, on the other hand, £ > 0, we know that iterations (j,0) to (j,£ — 1) are unsuc-
cessful. Corollary 3.3 then implies that (3.17) cannot hold for iteration (j,£ — 1),
and thus that

Aje—1 > min[ by, ollgje—1l]] = min[ ALy, k2llgjoll -
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But this inequality, (2.22), (2.23), the unsuccessful nature of the first £ iterations
at level 7, (3.53) and the bound 7v; < 1 then yield that

Aje > min[v1A 1, Ajyig, — 1250 — 25l ]
min[y1Aj e 1, Djri,t;, )
> min[yi min(Af,, K2llg501), A1t ]
> min[yi min(A,, Kokgl|gikll)s Ajttsan ]
> ymin[ Ay, k26 llgikll At |-

Combining this last inequality with (3.54), we conclude that, for £ > 0,
Aje>m min[ ALy, "'72"'75T||gz',k||7 Aj+1,tj+1 ]

Our choice of iteration (3, £) also ensures that the same reasoning can now be applied
not only to iteration (j,£), but also to every iteration in the path (j +1,%;41), ...,
(¢ — 1,t;—1), because the first part of (2.20) implies that

lgpoll = [[Bps1 - - Ri gixll > s,

for all 7 < p < i. Thus we obtain that
Aj+u,tj+u >m min[Afnina KZH,:”Qi,kua Aj+u+17tj+u+l ]

foru=0,...,i—j — 1 (where we identify t; = k for u =i — j — 1). We may then
use these bounds recursively level by level and deduce that

Aje > mmin[AL, sekgllgikll, Ajitsa ]
> ymin[ Al K2kgllgikll, v min(ALy, K2kgl|gikll, Ajtetse)]
> A min[AS;, kekllgiklls Ajtatsys ]
> 9 min[AL,, Kakgllgiklls Aik]

(3.55)
because y1 < 1. On the other hand, (j,¢) € T (i, k) by construction, and we therefore
obtain from (2.15) and (2.12) that

05,6 > Kreallgj,el| min [”g,;—dly Aj,é] . (3.56)

H

Gathering now (3.53), (3.55) and (3.56), we obtain that

tg llgi k”
— K - T [Als"mna HQK:;”gi,k”: A’i,k] y

H

850 > Keeah”||gi x| min [

and thus, using (3.52), that

G5t 2 Kecatig V1 [1gi, |l 000 [ Afiys K3lIgikll, Ak ] - (3.57)
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But the fact that all iterations on the path from (j,£) to (i, k) are successful also
implies that

Oik = hic1(®i1,0) — hica(zi—1,4)
> hici(@icit_y) — hic1(Zic1,t_141)
> mbi14;,
= mlhi—2(zi—2,0) — hi—a(i—2.4)]
> mlhi—2(Ti—2_,) — hi—2(Tim2,t;_541)]
> nibi24_s
> nidje-
The bound (3.51) then follows from this last inequality and (3.57). m|

All the elements are now in place to show that, if the algorithm is run with €& = 0,
then gradients at level r converge to zero.

Theorem 3.11 Assume that Algorithm RMTR is called at the uppermost level with
€ =0. Then
lim ||g,kl| = 0. (3.58)
k—o0

Proof. The proof is identical to that of Theorem 6.4.6 on p. 137 of Conn et
al. (2000), with (3.51) (with ¢ = r) now playing the role of the sufficient model
reduction condition AA.1 at level r. m|

This last result implies, in particular, that any limit point of the infinite sequence
{zrr} is first-order critical for problem (2.1). But we may draw stronger conclusions.
If we assume that the trust region becomes asymptotically inactive at all levels and
that all € (i = 0,...,r — 1) are driven down to zero together with €% (thus allowing
recursion even for very small gradients), then, as explained above, each minimization
sequence in the algorithm becomes infinite, and we may apply Theorem 3.11 to each
of them, concluding that, if the trust region becomes asymptotically inactive,

lim ||gi,k|| =0
k—oo

for every level i = 0,...,r. The behaviour of Algorithm RMTR is therefore truly
coherent with its multiscale formulation, since the same convergence results hold for
each level.

While this property is encouraging from the theoretical point of view, allowing
longer and longer minimization sequences at lower levels may not be the most efficient
strategy in practice. Instead, one would rather look for ways to prematurely terminate
such sequences if significant progress at the higher level is not likely. There are of
course many possible ways to achieve this goal, but they all rely on truncating the
lower level sequence possibly before the termination tests of Step 5 are satisfied. For
instance, one might think to stop a minimization sequence after a preset number of
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successful iterations: in combination with the freedom left at Step 1 to choose the
model whenever (2.20) holds, this strategy allows a straightforward implementation of
fixed lower-iterations patterns, like the V or W cycles in multigrid methods (see Briggs
et al., 2000). Alternatively, one might replace the termination test on the absolute
accuracy on the gradient norm ||g; k11| < € in Step 5 by the more elaborate test

|]’

gih4+1l < max[€3®, €°(lgi0

where €% and €;®* now respectively define the absolute and relative gradient accuracy
that is required for terminating the minimization sequence at level i. Fortunately,
“premature” termination does not affect the convergence results at the upper level,
provided each minimization sequence contains at least one successful iteration. The
key to this observation is that Lemmas 2.1 and 2.2 do not depend on the actual stopping
criterion used, and that all subsequent proofs do not depend on it either. Hence we
see that Algorithm RMTR covers a wide class of possible implementations. As the
initial point z,¢ is left at the user choice, our algorithm also allows for simpler mesh
refinement schemes for computing good initial estimates.

Finally, we note that the conditions that we have used to describe the relations
between the different levels are not the most general possible. For instance, our theory
remains essentially unchanged if we merely insist on first-order coherence (i.e., condi-
tions (2.8) and (2.10)) to hold only for small enough trust-region radii A;y, or only
up to a perturbation of the order of A;j or ||g; k||Ai k. Other generalizations may be
possible along those lines, in particular for simplified models of other types than aris-
ing from a coarser discretization. Similarly, although we have assumed for motivation
purposes that each f; is “more costly” to minimize that f;_;, we have not used this
feature in the theory presented above, nor have we used the form of the lower levels
objective functions. Interestingly, f; being identically zero for = 0,...,r — 1 satisfies
all our assumptions, in which case the lower level model function h;_1(z;i—1,0 + $i—1)
reduces to the linear model (R;g; x, Si—1)-

4 Comments and perspectives

We have defined a recursive trust-region algorithm that is able to exploit cheap lower
levels models in a multiscale optimization problem. This algorithm has been proved to
be well-defined and globally convergent to first-order. We have also presented a theo-
retical complexity result giving a bound on the number of iterations that are required
by the algorithm to find an approximate critical point of the objective function within
prescribed accuracy. This last result also shows that the total complexity of solving
an unconstrained multiscale problem can be shared amongst the levels, exploiting the
structure to advantage.

The theory developed here provides a set of very weak conditions linking neigh-
bouring unconstrained optimization problems, ensuring that they can be used in the
solution of one of them. In particular, these conditions only focus on the coherence of
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first-order information, which is then enough to derive first-order convergence results.
This weak relationship between the considered problems is very pessimistic in practice,
since one might typically expect problems arising from different discretization of the
same underlying infinite-dimensional problem to share more than local first-order be-
haviour. In particular, curvature information might be preserved across discretizations
(for instance by using the restriction operator from the upper level), which gives hopes
that a recursive second-order convergence theory might also be developed. Other likely
extensions of our results along these lines include the cases where the prolongation and
restriction operators are nonlinear and/or noisy.

Although the example of discretized problems has been used as a major motivation
for our work, this is not the only case where our theory can be applied. We think in
particular of cases where different models of the true objective function might live in the
same space, but involve different levels of complexity and /or cost. This is for instance of
interest in a number of problems arising from physics, like data assimilation in weather
forecasting (see Fisher, 1998), where different models may involve different levels of
sophistication in the physical modelling itself. More generally, the algorithm and theory
presented here is relevant in most areas where simplified models are considered, such
as multidisciplinary optimization (see Alexandrov, Dennis, Lewis and Torczon, 1998,
Alexandrov and Lewis, 2001, Alexandrov et al., 2001) or PDE-constrained problems
(see Arian, Fahl and Sachs, 2000, Fahl and Sachs, 2003).

Following some recent research, we may also think to search for even more efficient
algorithms by combining the trust-region framework developed here with other global-
ization techniques, like linesearches (see Toint, 1983, Nocedal and Yuan, 1998, Gertz,
1999), non-monotone techniques (see Xiao and Zhou, 1992, Xiao and Chu, 1995, Toint,
1997, Ulbrich, 1999) or filter methods (see Gould, Sainvitu and Toint, 2004). While
this might add yet another level of technicity of the convergence proofs, we expect such
extensions to be possible and the resulting algorithms to be of practical interest.

Applying recursive trust-region methods of the type discussed here to constrained
problems is another potentially useful development. Although we anticipate the asso-
ciated convergence theory to be again more technically difficult, intuition suggests that
the power of such methods should also be exploitable in this case.

A number of practical issues related to Algorithm RMTR have not been discussed
although they may be crucial in practice. A first such issue is trust-region scal-
ing/preconditioning, which can be achieved by using a matrix M, that is different
from the identity. A second practical issue is the determination of the various thresh-
olds €¢ and €. Our intention is to discuss these points along with other practical
considerations in a forthcoming paper (Gratton, Sartenaer and Toint, 2005) describing
preliminary (and so far encouraging) numerical experience with Algorithm RMTR.
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