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Global Convergene of a Non-monotone Trust-RegionFilter Algorithm for Nonlinear ProgrammingNik Gould and Philippe L. Toint4 February 2003AbstratA non-monotone variant of the trust-region SQP-�lter algorithm analyzed inFlether, Gould, Ley�er, Toint and W�ahter (2002a) is de�ned, that diretly usesthe dominated area of the �lter as an aeptability riterion for trial points. Itis proved that, under reasonable assumptions and for all possible hoies of thestarting point, the algorithm generates at least a subsequene onverging to a�rst-order ritial point.1 IntrodutionWe analyze an algorithm for solving optimization problems where a smooth objetivefuntion is to be minimized subjet to smooth nonlinear onstraints. No onvexityassumption is made. More formally, we onsider the problemminimize f(x)subjet to E(x) = 0I(x) � 0; (1.1)where f is a twie ontinuously di�erentiable real valued funtion of the variablesx 2 IRn and E(x) and I(x) are twie ontinuously di�erentiable funtions from IRninto IRm and from IRn into IRp, respetively. Let (x)T = (E(x)T I(x)T ).The lass of algorithms that we disuss belongs to the lass of trust-region methodsand, more spei�ally, to that of �lter methods suggested by Flether and Ley�er (2002),in whih the use of a penalty funtion, a ommon feature of the large majority of thealgorithms for onstrained optimization, is replaed by the introdution of a so-alled\�lter".A global onvergene theory for an algorithm of this lass is proposed in Flether,Ley�er and Toint (1998), in whih the objetive funtion is loally approximated by alinear funtion, leading, at eah iteration, to the (exat) solution of a linear program.This algorithm therefore mixes the use of the �lter with sequential linear programming(SLP). Similar results are shown in Flether, Ley�er and Toint (2002b), where theapproximation of the objetive funtion is quadrati, leading to sequential quadrati1



2programming (SQP) methods, but at the expense of �nding a global minimizer of thepossibly nononvex quadrati programming subproblem, whih is known to be a verydiÆult task. Convergene of SQP �lter methods is also onsidered in Flether et al.(2002a), where the SQP step is deomposed in \normal" and \tangential" omponents.The main purpose of this paper, a ompanion of Flether et al. (2002a), is to analyzean algorithm where the use of the �lter aeptane riterion for new iterates is relaxedto allow dominated iterates to be aepted in some ases. This is potentially importantas it is known that SQP method an generate suh iterates in their asymptoti fastonvergene phase. The theory developed here therefore provides a possible onver-gene framework for a �lter method with quadrati onvergene properties without theneed to introdue seond-order orretions (as done in W�ahter and Biegler, 2001, forinstane). An additional feature of the theory presented is that it no longer needs thenotion of a \margin" around the �lter, a devie whih is ommon to all theoretialapproahes of the �lter method so far.2 A Non-monotone Filter AlgorithmThe algorithm that we are about to desribe is iterative and of the Sequential QuadratiProgramming (SQP) type. At a given iterate xk , Newton's method is impliitly appliedto solve (a loal version of) the �rst-order neessary optimality onditions by solvingthe quadrati programming subproblem QP(xk) given byminimize fk + hgk; si+ 12 hs;Hksisubjet to E(xk) +AE (xk)s = 0I(xk) +AI(xk)s � 0; (2.1)where fk = f(xk), gk = g(xk) def= rxf(xk), where AE(xk) and AI(xk) are the Jaobiansof the onstraint funtions E and I at xk and where Hk is a symmetri matrix. Wewill not immediately be onerned about how Hk is obtained, but we will return tothis point in Setion 3. Assuming a suitable value of Hk an be found, the solution ofQP(xk) then yields a step sk. If sk = 0, then xk is �rst-order ritial for problem (1.1).2.1 The omposite SQP stepOf ourse, the step sk must be omputed, typially by solving, possibly approximately,a variant of (2.1). In the trust-region approah, one takes into aount the fat that(2.1) only approximates our original problem loally: the step sk is thus restritedin norm to ensure that xk + sk remains in a trust-region entred at xk , where webelieve this approximation to be adequate. In other words, we replae QP(xk) by thesubproblem TRQP(xk;�k) given byminimize mk(xk + s)subjet to E(xk) +AE (xk)s = 0;I(xk) +AI(xk)s � 0;and ksk � �k; (2.2)



3for some (positive) value of the trust-region radius �k, where we have de�nedmk(xk + s) = fk + hgk; si+ 12 hs;Hksi; (2.3)and where k � k denotes the Eulidean norm. This latter hoie is purely for ease ofexposition. We ould equally use a family of iteration dependent norms k � kk, so longas we require that all members of the family are uniformly equivalent to the Eulideannorm.In aordane with the ideas pionneered by Vardi (1985), Byrd, Shnabel and Shultz(1987) and Omojokun (1989), and also with Flether et al. (2002a), our algorithmdeomposes the step sk into the sum of two distint omponents, a normal step nk,suh that xk + nk satis�es the linear onstraints of TRQP(xk;�k) within the trustregion, and a tangential step tk, whose purpose is to obtain redution of the objetivefuntion's model while ontinuing to satisfy those onstraints. More formally, we writesk = nk + tk (2.4)and assume that E(xk) +AE(xk)nk = 0; I(xk) +AI(xk)nk � 0; (2.5)kskk � �k; (2.6)and E(xk) +AE(xk)sk = 0; I(xk) +AI(xk)sk � 0: (2.7)Of ourse, this is a strong assumption, sine in partiular (2.5) or (2.6)/(2.7) may nothave a solution. We shall return to this possibility shortly.Given our assumption, there are many ways to ompute nk and tk. For instane,we ould ompute nk from nk = Pk[xk℄� xk; (2.8)where Pk is the orthogonal projetor onto the feasible set of QP(xk). No spei� hoiefor nk is made, but one instead assumes that nk exists when the maximum violationof the nonlinear onstraints at the k-th iterate �k def= �(xk), with�(x) = max �0;maxi2E ji(x)j;maxi2I �i(x)� ; (2.9)is suÆiently small, and that nk is then reasonably saled with respet to the values ofthe onstraints. In other words, we assume, exatly as in Flether et al. (2002a), thatnk exists and knkk � �us�k; whenever �k � Æn; (2.10)for some onstants �us > 0 and Æn > 0. This assumption is also used by Dennis, El-Alem and Maiel (1997) and Dennis and Viente (1997) in the ontext of problemsonlyinvolvong equality onstraints. It an be shown not to impose onditions on the on-straints or the normal step itself that are unduly restritive (see Flether et al. (2002a)for a disussion).



4Having de�ned the normal step, we are in position to use it if it falls within thetrust-region, that is if knkk � �k. In this ase, we writexNk = xk + nk; (2.11)and observe that nk satis�es the onstraints of TRQP(xk;�k) and thus also of QP(xk).It is ruial to note, at this stage, that suh an nk may fail to exist beause theonstraints of QP(xk) may be inompatible, in whih ase Pk is unde�ned, or beauseall feasible points for QP (xk) may lie outside the trust region.Let us ontinue to onsider the ase where this problem does not arise, and a normalstep nk has been found with knkk � �k. We then aim to �nd a tangential step tk,starting from xNk and satisfying (2.6) and (2.7), whose objetive is to derease thevalue of the objetive funtion. This is ahieved by omputing a step that produesa suÆient derease in mk, whih is to say that we wish mk(xNk )�mk(xk + sk) to be\suÆiently large". Of ourse, this is only possible if the maximum permitted size of tkis not too small, whih is to say that xNk is not too lose to the trust-region boundary.We formalize this ondition by strengthening our requirement that knkk � �k so thatknkk � ���kmin[1; ����kk ℄; (2.12)for some �� 2 (0; 1℄, some �� > 0 and some �k 2 [0; 1). If ondition (2.12) does nothold, we assume, as in Flether et al. (2002a), that the omputation of tk is unlikelyto produe a satisfatory derease in mk, and proeed just as if the feasible set ofTRQP(xk;�k) were empty. If nk an be omputed and (2.12) holds, TRQP(xk;�k)is said to be ompatible . In this ase, a suÆient model derease seems possible. Weformalize this notion in the form of a familiar Cauhy-point ondition, and, reallingthat the feasible set of QP(xk) is onvex, we introdue the �rst-order ritiality measure�k = j minAE (xk)t=0I(xk)+AI(xk)(nk+t)�0ktk�1 hgk +Hknk; tij (2.13)(see Conn, Gould, Sartenaer and Toint, 1993). Note that this funtion is zero if xNk isa �rst-order ritial point of the linearized \tangential" problemminimize hgk +Hknk; ti+ 12 hHkt; tisubjet to AE (xk)t = 0I(xk) +AI(xk)(nk + t) � 0; (2.14)whih is, up to the onstant term 12 hnk; Hknki, equivalent to QP(xk) with s = nk + t.The suÆient derease ondition then onsists in assuming that there exists a onstant�tmd > 0 suh that mk(xNk )�mk(xNk + tk) � �tmd�kmin ��k�k ;�k� ; (2.15)whenever TRQP(xk;�k) is ompatible, where �k = 1 + kHkk. We know from Toint(1988) and Conn et al. (1993) that this ondition holds if the model redution exeeds



5that whih would be obtained at the generalized Cauhy point, that is the point re-sulting from a baktraking urvilinear searh along the projeted gradient path fromxNk , that is xk(�) = Pk[xNk � �rxmk(xNk )℄:This tehnique therefore provides an implementable algorithm for omputing a stepthat satis�es (2.15), but, of ourse, a further redution of mk is often desirable if fastonvergene is sought. Also note that the minimization problem of the right-hand sideof (2.13) redues to a linear programming problem if we hoose to use a polyhedral normin its de�nition at iteration k. However, we reognise that (2.15) may be diÆult toverify in pratie, sine it may be expensive to ompute xNk and Pk when the dimensionof the problem is large.2.2 The restoration proedureIf TRQP(xk;�k) is not ompatible for �, that is when the feasible set determined bythe onstraints of QP(xk) is empty, or the freedom left to redue mk within the trustregion is too small in the sense that (2.12) fails, we must onsider an alternative. Ob-serve that, if �(xk) is suÆiently small and the true nonlinear onstraints are loallyompatible, the linearized onstraints should also be ompatible, sine they approxi-mate the nonlinear onstraints (loally) orretly. Furthermore, the feasible region forthe linearized onstraints should then be lose enough to xk for there to be some roomto redue mk, at least if �k is large enough. If the nonlinear onstraints are loallyinompatible, we have to �nd a neighbourhood where this is not the ase, sine theproblem (1.1) does not make sense in the urrent one. As in Flether et al. (2002a), werely on a restoration proedure. The aim of this proedure is to produe a new pointxk+rk that satis�es two onditions: we require TRQP(xk+rk;�k+1) to be ompatiblefor some �k+1 > 0, and also require that xk + rk be aeptable, in the sense that wedisuss in the Setion 2.3.3 (preisely, we require thate either (2.20) or (2.21) holds forsuh an x+k ). In what follows, we will denoteR def= fk j nk does not satisfy (2.10) or knkk > ���kmin[1; ����k ℄g;the set of restoration iterations.The idea of the restoration proedure is to (approximately) solveminx2IRn �(x) (2.16)starting from xk, the urrent iterate. This is a non-smooth problem, but there existmethods, possibly of trust-region type (suh as that suggested by Yuan, 1994), whihan be suessfully applied to solve it. Thus we will not desribe the restorationproedure in detail. Note that we have hosen here to redue the in�nity norm of theonstraint violation, but we ould equally well onsider other norms, suh as `1 or `2,in whih ase the methods of Flether and Ley�er (1998) or of El-Hallabi and Tapia(1995) and Dennis, El-Alem and Williamson (1999) an respetively be onsidered.



6Of ourse, this tehnique only guarantees onvergene to a �rst-order ritial point ofthe hosen measure of onstraint violation, whih means that, in fat, the restorationproedure may fail as this ritial point may not be feasible for the onstraints of (1.1).However, even in this ase, the result of the proedure is of interest beause it typiallyprodues a loal minimizer of �(x), or of whatever other measure of onstraint violationwe hoose for the restoration, yielding a point of loally-least infeasibility. There seemsto be no easy way to irumvent this drawbak, as it is known that �nding a feasiblepoint or proving that no suh point exists is a global optimization problem and an beas diÆult as the optimization problem (1.1) itself. One therefore has to aept twopossible outomes of the restoration proedure: either the proedure fails in that itdoes not produe a sequene of iterates onverging to feasibility, or a point xk + rk isprodued suh that �(xk + rk) is as small as desired.2.3 The �lter as a riterion to aept trial pointsUnfortunately, beause the SQP iteration may only be loally onvergent, the step skor rk may not always be very useful. Thus, having omputed a step sk or rk from oururrent iterate xk, we need to deide whether the trial point x+k , de�ned byx+k def= ( xk + rk if k 2 R;xk + sk otherwise (2.17)is any better than xk as an approximate solution to our original problem (1.1). If wedeide that this is the ase, we say that iteration k is suessfull and hoose x+k as ournext iterate. Let us denote by S the set of (indies of) all suessful iterations, that isS = fk j xk+1 = x+k g:We will disuss the details of preisely when we aept x+k as our next iterate inSetion 2.3.3, but note that an important ingredient in the proess is the notion of a�lter, a notion itself based on that of dominane.We say that a point x1 dominates a point x2 whenever�(x1) � �(x2) and f(x1) � f(x2):Thus, if iterate xk dominates iterate xj , the latter is unlikely to be of real interest tous sine xk is at least as good as xj on aount of both feasibility and optimality. Allwe need to do now is to remember iterates that are not dominated by other iteratesusing a struture alled a �lter. A �lter is a list F of pairs of the form (�i; fi) suhthat either �i < �j or fi < fjfor i 6= j. Flether et al. (2002a) propose to aept a new trial iterate xk + sk onlyif it is not dominated by any other iterate in the �lter and xk. In the voabularyof multi-riteria optimization, this amounts to building elements of the eÆient fron-tier assoiated with the bi-riteria problem of reduing infeasibility and the objetive



7funtion value. We may desribe this onept by assoiating with eah iterate xk its(�; f)-pair (�k; fk) and might hoose to aept xk+sk only if its (�; f)-pair does not lie,in the two-dimensional spae spanned by onstraint violation and objetive funtionvalue, above and on the right of a previously aepted pair. If we de�neD(F) = f(�; f) j � > �j and f > fj for some j 2 Fg; (2.18)the part of the (�; f)-spae that is dominated by the pairs in the �lter, this amounts tosay that x+k ould be aepted if (�(x+k ); f(x+k )) 62 D(Fk), where Fk denotes the �lterat iteration k.2.3.1 The ontribution of a trial point to the �lterWhile the idea of not aepting dominated trial points is simple and elegant, it needsto be re�ned a little in order to provide an e�etive algorithmi tool. In partiular, wemay not wish to aept a new point x+k if its (�; f)-pair(�+k ; f+k ) def= (�(x+k ); f(x+k ))is arbitrarily lose to being dominated by another point already in the �lter.Flether et al. (2002a), as all other theoretial analysis of the �lter that we knowof, set a small \margin" around the border of D(Fk) in whih trial points are alsorejeted. We follow here a di�erent idea and de�ne, for any (�; f)-pair, an area thatrepresents its ontribution to the area of D(Fk). For this purpose, we partition theright half-plane [0;+1℄� [�1;+1℄ into four di�erent regions (see Figure 2.1). If wede�ne D(Fk)C to be the omplement of D(Fk) in the right half-plane,�Fkmin def= minj2Fk �j ; �Fkmax def= maxj2Fk �j ;and fFkmin def= minj2Fk fj fFkmax def= maxj2Fk fj ;these four parts are1. the dominated part of the �lter, D(Fk).2. the undominated part of lower left (south-west) orner of the half plane,SW (Fk) def= D(Fk)C \ [0; �Fkmax℄� [�1; fFkmax℄;3. the undominated upper left (north-west) orner,NW (Fk) def= [0; �Fkmin)� (fFkmax;+1℄;4. the undominated lower right (south-east) orner,SE(Fk) def= (�Fkmax;+1℄� [�1; fFkmin):



86

-
s

s
s s

D(Fk)
NW (Fk)

SW (Fk) SE(Fk)
0

f(x)

�(x)�Fkmin �Fkmax
fFkmax

fFkminFigure 2.1: The partition of the right half-plane for a �lter Fk ontaining four (�; f)pairs.Consider �rst a trial iterate x+k with its assoiated (�; f)-pair (�+k ; f+k ) with �+k > 0.If the �lter is empty (Fk = ;), then we measure its ontribution to the area of the �lterby the simple formula �(x+k ;Fk) def= �2Ffor some onstant �F > 0. If the �lter already ontains some past iterates, we measurethe ontribution of x+k to the area of the �lter by�(x+k ;Fk) def= area�D(Fk)C\[�+k ; �Fkmax+�F℄�[f+k ; fFkmax+�F℄� if (�+k ; f+k ) 2 SW (Fk));by �(x+k ;Fk) def= �F(�Fkmin � �+k ) if (�+k ; f+k ) 2 NW (Fk));by �(x+k ;Fk) def= �F(fFkmin � f+k ) if (�+k ; f+k ) 2 SE(Fk));and by�(x+k ;Fk) def= �area�D(Fk) \ [�+k � �Pkmin℄� [f+k � fPkmin℄�; if (�+k ; f+k ) 2 D(Fk));where Pk def= f(�j ; fj) 2 Fk j �j < �+k and fj < f+k g;
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Figure 2.3: The �lter Fk+1 after inluding the dominated pair (�k; fk) into Fk.where Pk is now the subset of pairs in Fk that dominate (�k; fk). This last situationis illustrated by Figure 2.3, whih shows the �lter resulting from the operation ofinluding the pair (�k ; fk) belonging to D(Fk) (that assoiated with the vertiallyshaded \inrement" in the �lter area of Figure 2.2) in the �lter. The two points in Pkthat have been removed are marked with rossed irles and their assoiated dominatedorthants are indiated by dotted lines.Observe that it may happen that the number of points in the �lter dereases whenthe set of dominating points Pk ontains more than two �lter pairs. Moreover, the pairfor whih the �lter is updated is not always itself inluded in the �lter (as shown inFigure 2.3).2.3.3 Aeptability of potential iteratesWe now return to the question of deiding whether or not a trial point x+k is aeptablefor the �lter. We will insist that this is a neessary ondition for the iteration k to besuessful in the sense that xk+1 = x+k , i.e. the algorithm hanges its urrent iterate tothe trial point. Note that all restoration iterations are suessful (R � S). Note alsothat (exept for x0) all iterates are produed by suessful iterations : if we onsideran iterate xk, there must exists a predeessor iteration of index p(k) 2 S suh thatx+p(k) = xp(k)+1 = xk : (2.19)Observe that we do not always have that p(k) = k � 1 sine not all iterations needbeing suessful.



11A monotone version of our method (rather similar to that developped in Fletheret al., 2002a, but using �(x;F) rather that a margin around the �lter) would be toaept x+k whenever this trial point results in an suÆient inrease in the dominatedarea of the �lter, i.e. D(Fk). This is to say that x+k would be aeptable for the �lterwhenever �k � F (�+k )2; (2.20)where �k def= �(x+k ;Fk) and where F 2 (0; 1) is a onstant. The non-monotone versionthat we analyze below replaes this ondition by the weaker requirement thatkXj=r(k)+1j2U �p(j) + �k � F 2664 kXj=r(k)+1j2U �2j + (�+k )23775 (2.21)where �q def= �(x+q ;Fq) (and thus �p(q) = �(xq ;Fp(q))), whereU = fk j xk the �lter is updated for(�k; fk)g;and where r(k) � k is some past referene iteration suh that r(k) 2 U . Note thatondition (2.21) may equivalently be written in the more symmetri formkXj=r(k)+1j2U �p(j) + �k � F 2664 kXj=r(k)+1j2U (�+p(j))2 + (�+k )23775beause of (2.19).The reader may notie that ondition (2.21) is reminisent of the ondition for non-monotone trust-region algorithms developed in Toint (1997) (see also Chapter 10.1 ofConn, Gould and Toint, 2000). It requires that the average ontribution to the �lterarea of the last points inluded in the �lter and x+k together to be globally (suÆiently)positive, but makes it possible to aept x+k even though it may be dominated (i.e. liein D(Fk)).However, if x+k provides a lear monotoni improvement, in the sense that (2.20)holds, we are also prepared to aept it. Thus, x+k will be alled aeptable at iterationk if either (2.20) or (2.21) holds. We will denoteA def= fk 2 S j (2.21) holdsg (2.22)Observe also that we ould replae �2k by min[��k ; ��℄ in (2.20) and (2.21), where �and �� are stritly positive onstants. This variant may be more numerially sensible,and does not a�et the theory developed below.2.4 The non-monotone AlgorithmWe are now ready to de�ne our algorithm formally as Algorithm 2.1. A ow-hart ofthe algorithm is given as an appendix.



12Algorithm 2.1: Non-monotone Filter AlgorithmStep 0: Initialization. Let an initial point x0, an initial trust-region radius�0 > 0 and an initial symmetri matrix H0 be given, as well as onstants0 < 0 < 1 � 1 � 2, 0 < �1 � �2 < 1, F 2 (0; 1), �� 2 (0; 1), �� 2 (0; 1℄,�� > 0, � 2 (0; 1),  > 1=(1 + �) and �tmd 2 (0; 1℄. Compute f(x0) and(x0). Set F = ; and k = 0.Step 1: Test for optimality. If �k = �k = 0, stop.Step 2: Ensure ompatibility. Attempt to ompute a step nk. If TRQP(xk ;�k) is ompatible, go to Step 3. Otherwise, update the �lter for (�k; fk)and ompute a restoration step rk for whih TRQP(xk + rk ;�k+1) is om-patible for some �k+1 > 0, and x+k = xk + rk is aeptable. If this provesimpossible, stop. Otherwise, set xk+1 = x+k and go to Step 7.Step 3: Determine a trial step. Compute a step tk, set x+k = xk + nk + tk,and evaluate (x+k ) and f(x+k ).Step 4: Test aeptability of the trial point. If x+k is not aeptable, againset xk+1 = xk, hoose �k+1 2 [0�k; 1�k℄, set nk+1 = nk, and go to Step 7.If mk(xk)�mk(x+k ) < ��� k ; (2.23)then update the �lter for (�k; fk) and go to Step 6.Step 5: Test predited vs. ahieved redution. If�k def= f(xk)� f(x+k )mk(xk)�mk(x+k ) < �1; (2.24)set xk+1 = xk, hoose �k+1 2 [0�k; 1�k℄, set nk+1 = nk and go to Step 7.Step 6: Move to the new iterate. Set xk+1 = x+k and hoose �k+1 suh that�k+1 2 [�k; 2�k℄ if �k � �2 and (2.23) fails.Step 7: Update the Hessian approximation. Determine Hk+1. Inrement kby one and go to Step 1.As in Flether and Ley�er (2002, 1998), one may hoose  = 2 (Note that thehoie  = 1 is always possible beause � > 0). Reasonable values for the onstantsmight then be 0 = 0:1; 1 = 0:5; 2 = 2; �1 = 0:01; �2 = 0:9;F = 10�4; �� = 0:7; �� = 100; � = 0:01; �� = 10�4; and �tmd = 0:01:



13but it is too early to know if these are even lose to the best possible hoies.For the restoration proedure in Step 2 to sueed, we have to evaluate whetherTRQP(xk + rk ;�k+1) is ompatible for a suitable value of �k+1. This requires that asuitable normal step be omputed whih suessfully passes the test (2.12). Of ourse,one this is ahieved, this normal step may be reused at iteration k+1. Thus we shallrequire the normal step alulated to verify ompatibility of TRQP(xk + rk ;�k+1)should atually be used as nk+1. Also note that the restoration proedure annot beapplied on two suessive iterations, sine the iterate xk + rk produed by the �rst ofthese iterations leads to a ompatible TRQP(xk+1;�k+1) and is aeptable.As it stands, the algorithm is not spei� about how to hoose �k+1 during arestoration iteration. On one hand, there is an advantage to hoosing a large �k+1,sine this allows a large step and one hopes good progress. On the other, it may beunwise to hoose it to be too large, as this may possibly result in a large number ofunsuessful iterations, during whih the radius is redued, before the algorithm anmake any progress. A possible hoie might be to restart from the radius obtainedduring the restoration iteration itself, if it uses a trust-region method. Reasonablealternatives would be to use the average radius observed during past suessful itera-tions, or to apply the internal doubling strategy of Byrd et al. (1987) to inrease thenew radius, or even to onsider the tehnique desribed by Sartenaer (1997). However,we reognize that numerial experiene with the algorithm is too limited at this stageto make de�nite reommendations.The role of ondition (2.23) may be interpreted as follows. If this ondition holds,then one may think that the onstraint violation is signi�ant and that one shouldaim to improve on this situation in the future, by inserting the urrent point in the�lter. Flether et al. (1998) use the term of \�-step" in suh irumstanes, to indiatethat the main preoupation is to redue onstraint violation. On the other hand, ifondition (2.23) fails, then the redution in the objetive funtion predited by themodel is more signi�ant than the urrent onstraint violation and it is thus appealingto let the algorithm behave as if it were unonstrained. Flether and Ley�er (2002) usethe term of \f -step" to denote the step generated, in order to reet the dominant roleof the objetive funtion f . In this ase, it is important that the predited dereasein the model is realized by the atual derease in the funtion, whih is why we thenperform the test (2.24). In partiular, if the iterate xk is feasible, then (2.10) impliesthat xk = xNk and we obtain that��� k = 0 � mk(xNk )�mk(x+k ) = mk(xk)�mk(x+k ): (2.25)As a onsequene, the �lter mehanism is irrelevant if all iterates are feasible, andthe algorithm redues to a traditional unonstrained trust-region method. Anotheronsequene of (2.25) is that no feasible iterate is ever inluded in the �lter, whihis ruial in allowing �nite termination of the restoration proedure, as explained inFlether et al. (2002a). Note that the argument may fail and a restoration step maynot terminate in a �nite number of iterations if we do not assume the existene of



14the normal step when the onstraint violation is small enough, even if this violationonverges to zero (see Flether, Ley�er and Toint, 1998, for an example).Notie also that (2.23) ensures that the denominator of �k in (2.24) will be stritlypositive whenever �k is. If �k = 0, then xk = xNk , and the denominator of (2.24) willbe stritly positive unless xk is a �rst-order ritial point beause of (2.15).The reader may have observed that Step 6 allows a relatively wide hoie of thenew trust-region radius �k+1. While the stated onditions appear to be suÆientfor the theory developed below, one must obviously be more spei� in pratie. Forinstane, one may wish to distinguish, at this point in the algorithm, the ases where(2.23) fails or holds. If (2.23) holds, the main e�et of the urrent iteration is not toredue the model (whih makes the value of �k essentially irrelevant), but rather toredue the onstraint violation (whih is taken are of by inserting the urrent iteratein the �lter at Step 4). In this ase, Step 6 imposes no further restrition on �k+1. Inpratie, it may be reasonable not to redue the trust-region radius, beause this mightause too small steps towards feasibility or an unneessary restoration phase. However,there is no ompelling reason to inrease the radius either, given the ompatibility ofTRQP(xk,�k). A reasonable strategy might then be to hoose �k+1 = �k. If, on theother hand, (2.23) fails, the emphasis of the iteration is then on reduing the objetivefuntion, a ase akin to unonstrained minimization. Thus a more detailed rule of thetype �k+1 2 ( [1�k; 2�k℄ if �k 2 [�1; �2);[�k; 2�k℄ if �k � �2:seems reasonable in these irumstanes.Finally, observe that the mehanism of the algorithm imposes thatU � S; (2.26)i.e. that iterates are inluded in the �lter only at suessful iterations.3 Convergene to First-Order Critial PointsWe now prove that our non-monotone algorithm generates a globally onvergent se-quene of iterates. In the following analysis, we onentrate on the ase that therestoration iteration always sueeds. If this is not the ase, then it usually followsthat the restoration phase has onverged to an approximate solution of the feasibilityproblem (2.16) and we an onlude that (1.1) is loally inonsistent.In order to obtain our global onvergene result, we will use the assumptionsAS1: f and the onstraint funtions E and I are twie ontinuously di�erentiable;AS2: there exists �umh > 1 suh thatkHkk � �umh � 1 for all k;AS3: the iterates fxkg remain in a losed, bounded domain X � IRn.



15If, for example, Hk is hosen as the Hessian of the Lagrangian funtion`(x; y) = f(x) + hyE ; E(x)i+ hyI ; I(x)iat xk , in that Hk = rxxf(xk) + Xi2E[I[yk℄irxxi(xk); (3.1)where [yk℄i denotes the i-th omponent of the vetor of Lagrange multipliers yTk =(yTE;k yTI;k), then we see from AS1 and AS3 that AS2 is satis�ed when these multipliersremain bounded. The same is true if the Hessian matries in (3.1) are replaed bybounded approximations.A �rst immediate onsequene of AS1{AS3 is that there exists a onstant �ubh > 1suh that, for all k, jf(x+k )�mk(x+k )j � �ubh�2k: (3.2)A proof of this property, based on Taylor expansion, may be found, for instane, inToint (1988) or on p. 133 of Conn et al. (2000). A seond important onsequene ofour assumptions is that AS1 and AS3 together diretly ensure that, for all k,fmin � f(xk) � fmax and 0 � �k � �max (3.3)for some onstants fmin � fmax and �max > 0. Thus the part of the (�; f)-spae inwhih the (�; f)-pairs assoiated with the �lter iterates lie is restrited to the retangle[0; �max℄� [fmin;1℄.We also note the following simple onsequene of (2.10) and AS3.Lemma 3.1 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that (2.10) and AS3 hold, and that�k � Æn:Then there exists a onstant �ls > 0 independent of k suh that�ls�k � knkk: (3.4)Proof. See Lemma 3.1 of Flether et al. (2002a). 2Our assumptions and the de�nition of �k in (2.13) also ensure that �k and �k an beused (together) to measure ritiality for problem (1.1).



16Lemma 3.2 Suppose that Algorithm 2.1 is applied to problem (1.1). and that�nite termination does not our. Suppose also that AS1 and AS3 hold, and thatthere exists a subsequene fkig 6� R suh thatlimi!1�ki = 0 and limi!1 �ki = 0: (3.5)Then every limit point of the subsequene fxkig is a �rst-order ritial point forproblem (1.1).Proof. See Lemma 3.2 of Flether et al. (2002a). 2We start our analysis by examining the impat of our non-monotone aeptaneriteria (2.20) and (2.21). One a trial point as aepted as a new iterate, it mustbe beause it provide some improvement, ompared to either a past referene iterate(using (2.21)), or to the previous iterate (using (2.20)). We formalize this notion bysaying that iterate xk = xp(k)+1 improves on iterate xi(k), wherei(k) = r(p(k)) if p(k) 2 A;that is if xk is aepted at iteration p(k) using (2.21), andi(k) = p(k) if p(k) 62 A; (3.6)that is if xk is aepted at iteration p(k) using (2.20). Now onsider any iterate xk .This iterate improved on xi(k), whih was itself aepted beause it improved on xi(i(k)),and so on, bak to the stage where x0 is reahed by this bakwards referening proess.Hene we may onstrut, for eah k, a hain of suessful iterations indexed by Ck =f`1; `1; `2; : : : ; `qg suh that`1 = 0; `q = k and x`j = xi(`j+1) for j = 1; : : : ; q � 1:We start by proving the following useful lemma.Lemma 3.3 Suppose that Algorithm 2.1 is applied to problem (1.1). Then, foreah k, area(D(Fk)) � F k�1Xi=0j2U �2iProof. Consider now the bakward referening hain from iteration k � 1, Ck�1,and any `j (j > 0) in this hain. Observe that, if p(`j) 2 A, then (2.21) implies



17that i(`j) = r(p(`j)) = `j�1 and that`jXi=`j�1+1i2U �p(j) � F `jXi=`j�1+1i2U �2i (3.7)If now p(`j) 62 A, then `j�1 = p(`j) and thusf`j�1 + 1; : : : ; `jg \ U � f`j�1 + 1; : : : ; `jg \ S = f`jg;where we have used (2.26). Moreover, (2.20) then implies that �p(`j) � F�2̀j , sothat (3.7) holds again in this ase. Combining these inequalities with the inequalityarea(D(Fk)) � k�1Xi=0i2U �p(i) = qXj=0 2664 `jXi=`j�1+1i2U �p(i)3775then gives the desired result. 2We now onsider what happens when the �lter is updated an in�nite number oftimes.Lemma 3.4 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1 and AS3 hold and that jUj =1. Thenlimk!1k2U �k = 0:Proof. Suppose, for the purpose of obtaining a ontradition, that there existsan in�nite subsequene fkig � U suh that �ki � � for all i and for some � > 0.Applying now Lemma 3.3, we dedue thatarea(D(Fki+1)) � iF�2:However, (3.3) implies that, for any k, area(D(Fk)) is bounded above by a onstant�maxF � 0 independent of k. Hene we obtain thati � �maxFF�2 ;and i must also be �nite. This ontradits the fat that the subsequene fkig isin�nite. Hene this latter assumption is impossible and the onlusion follows. 2We next examine the size of the onstraint violation before and after an iteration whererestoration did not our.



18Lemma 3.5 Suppose that Algorithm 2.1 is applied to problem (1.1), that AS1and AS3 hold, that k 62 R and that nk satis�es (3.4). Then�k � �ubt�1+�k (3.8)and �(x+k ) � �ubt�2k: (3.9)for some onstant �ubt � 0.Proof. See Lemma 3.4 of Flether et al. (2002a). 2We next assess the model derease when the trust-region radius is suÆiently small.Lemma 3.6 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.12) and (2.15) hold, that k 62 R, that�k � �; (3.10)for some � > 0, and that�k � min" ��umh ;�2 �ubg�umh����� 11+� ;� �tmd�4�ubg����� 1�# def= Æm; (3.11)where �ubg def= maxx2X krxf(x)k. Thenmk(xk)�mk(x+k ) � 12�tmd��k:Proof. See Lemma 3.5 of Flether et al. (2002a). 2We ontinue our analysis by showing, as the reader has grown to expet, that iterationshave to be very suessful when the trust-region radius is suÆiently small.Lemma 3.7 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.15) and (3.10) hold, that k 62 R, and that�k � min �Æm; (1� �2)�tmd�2�ubh � def= Æ�: (3.12)Then �k � �2:



19Proof. See Lemma 3.6 of Flether et al. (2002a). 2Note that this proof ould easily be extended if the de�nition of �k in (2.24) werealtered to be of the form �k def= f(xk)� f(x+k ) + �kmk(xk)�mk(x+k ) (3.13)provided �k is bounded above by a multiple of �2k. We will omment in Setion 4 whysuh a modi�ation might be of interest (see also Setion 10.4.3 of Conn et al., 2000).Now, we also show that the test (2.23) will always fail when the trust-region radiusis suÆiently small.Lemma 3.8 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.12), (2.15) and (3.10) hold, that k 62 R, that nk satis�es(3.4), and that �k � min"Æm;� �tmd�2��� ubt� 1 (1+�)�1 # def= Æf : (3.14)Then mk(xk)�mk(x+k ) � ��� k :Proof. This diretly results from the inequalities��� k � ��� ubt� (1+�)k � 12�tmd��k � mk(xk)�mk(x+k );where we suessively used Lemma 3.5, (3.14) and Lemma 3.6. 2We may also guarantee a derease in the objetive funtion, large enough to ensurethat the trial point is aeptable with respet to the (�; f)-pair assoiated with xk , solong as the onstraint violation is itself suÆiently small.Lemma 3.9 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.15), (3.10) and (3.12) hold, that k 62 R, that nk satis�es(3.4), and that �k � �� 1�ubt ��2�tmd�2pF � 1+�� def= Æ�: (3.15)Then f(x+k ) � f(xk)�pF�k:Proof. Applying Lemmas 3.5{3.7|whih is possible beause of (3.10), (3.12),



20k 62 R and nk satis�es (3.4)|and (3.15), we obtain thatf(xk)� f(x+k ) � �2[mk(xk)�mk(x+k )℄� 12�2�tmd��k� 12�2�tmd�� �k�ubt � 11+�� pF�kand the desired inequality follows. 2We now establish that if the trust-region radius and the onstraint violation are bothsmall at a non-ritial iterate xk, TRQP(xk;�k) must be ompatible.Lemma 3.10 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.10) and (3.10) hold, that (2.15) holds for k =2 R, and that�k � min"0Æ�;� 1��� 1� ;�20(1�pF )�����us�ubt � 11��# def= ÆR: (3.16)Suppose furthermore that �k � min[Æ�; Æn℄: (3.17)Then k 62 R.Proof. Beause �k � Æn, we know from (2.10) and Lemma 3.1 that nk satis�es(2.10) and (3.4). Moreover, sine �k � Æ�, we have that (3.15) also holds. Assume,for the purpose of deriving a ontradition, that k 2 R, that isknkk > �����1+�k ; (3.18)where we have used (2.12) and the fat that ����k � 1 beause of (3.16). In thisase, the mehanism of the algorithm then ensures that k � 1 62 R. Now assumethat iteration k � 1 is unsuessful. Beause of Lemmas 3.7 and 3.9, whih hold atiteration k � 1 62 R beause of (3.16), the fat that �k = �k�1, (2.10), and (3.15),we obtain that �k�1 � �2 and f(x+k�1) � f(xk�1)�pF�k�1: (3.19)Hene, if iteration k � 1 is unsuessful and this must be beause x+k�1 is notaeptable for the �lter. However, if we have that�+k�1 � (1�pF)�k�1; (3.20)then, using the seond part of (3.19) and the fat that (�k�1; fk�1) 2 SW (Fk�1),�(x+k�1;Fk�1) � [f(xk�1)� f(x+k�1)℄[�k�1 � �+k�1℄ � F�2k�1 � F [�+k�1℄2;



21and x+k�1 is aeptable for the �lter beause of (2.20). Sine this is not the ase,(3.20) annot hold and we must have that�+k�1 > (1�pF )�k�1 = (1�pF)�k:But Lemma 3.5 and the mehanism of the algorithm then imply that(1�pF)�k < �ubt�2k�1 < �ubt20 �2k:Combining this last bound with (3.18) and (2.10), we dedue that�����1+�k < knkk � �us�k � �us�ubt20(1�pF )�2kand hene that �1��k > 20(1�pF )�����us�ubt :Sine this last inequality ontradits (3.16), our assumption that iteration k � 1 isunsuessful must be false. Thus iteration k � 1 is suessful and �k = �+k�1. Wethen obtain from (3.18), (2.10) and (3.9) that�����1+�k < knkk � �us�k � �us�ubt�2k�1 � �us�ubt20 �2k;whih is again impossible beause of (3.16) and beause (1�pF ) < 1. Hene ourinitial assumption (3.18) must be false, whih yields the desired onlusion. 2We ontinue to follow Flether et al. (2002a) and now distinguish twomutually exlusiveases. For the �rst, we onsider what happens if there is an in�nite subsequene ofiterates belonging to the �lter.Lemma 3.11 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.10) hold and (2.15) holds for k =2 R. Suppose furthermorethat jUj =1. Then there exists a subsequene fkjg � U suh thatlimj!1 �kj = 0 (3.21)and limj!1�kj = 0: (3.22)Proof. Let fkig be any in�nite subsequene of U . We observe that (3.21) followsfrom Lemma 3.4. Suppose now that�ki � �2 > 0 (3.23)for all i and some �2 > 0. Suppose furthermore that there exists �3 > 0 suh that,for all i � i0, �ki � �3: (3.24)



22Observe �rst that (3.21) and (2.10) ensure thatlimi!1 knkik = 0: (3.25)Thus (3.24) ensures that (2.12) holds for suÆiently large i and thus ki 62 R forsuh i. Now, as we noted in the proof of Lemma 3.6,jmki(xki)�mki(xNki)j � �ubgknkik+ 12�umhknkik2;whih in turn, with (3.25), yields thatlimi!1[mki(xki )�mki(xNki)℄ = 0: (3.26)We also dedue from (2.15) and AS2 thatmki(xNki )�mki(x+ki ) � �tmd�2min � �2�umh ; �3� def= Æ > 0: (3.27)We now deompose the model derease in its normal and tangential omponents,that is mki(xki)�mki(x+ki) = mki(xki)�mki(xNki) +mki(xNki)�mki(x+ki ):Substituting (3.26) and (3.27) into this deomposition, we �nd thatlim infi!1 [mki(xki)�mki(x+ki)℄ � Æ > 0: (3.28)We now observe that, beause ki 2 U n R, we know from the mehanism of thealgorithm that (2.23) must hold, that ismki(xki)�mki(x+ki) < ��� ki : (3.29)Combining this bound with (3.28), we �nd that �ki is bounded away from zero fori suÆiently large, whih is impossible in view of (3.21). We therefore dedue that(3.24) annot hold and obtain that there is a subsequene fk`g � fkig for whihlim`!1�k` = 0:We now restrit our attention to the tail of this subsequene, that is to the setof indies k` that are large enough to ensure that (3.14), (3.15) and (3.16) hold,whih is possible by de�nition of the subsequene and beause of (3.21). For theseindies, we may therefore apply Lemma 3.10, and dedue that iteration k` 62 Rfor ` suÆiently large. Hene, as above, (3.29) must hold for ` suÆiently large.However, we may also apply Lemma 3.8, whih ontradits (3.29), and therefore(3.23) annot hold, yielding the desired result. 2Thus, if the �lter is updated at an in�nite subsequene of iterates, Lemma 3.2 ensuresthat there exists a limit point whih is a �rst-order ritial point. Our remaininganalysis then naturally onentrates on the possibility that there may be no suh in�nite



23subsequene. In this ase, the �lter is unhanged for k suÆiently large. In partiular,this means that the number of restoration iterations, jRj, must be �nite. In whatfollows, we assume that k0 � 0 is the last iteration at whih the �lter was updated.Lemma 3.12 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not our and that jUj <1. Suppose also that AS1{AS3, (2.10)hold and that (2.15) holds for k =2 R. Then we have thatlimk!1 �k = 0: (3.30)Furthermore, nk satis�es (3.4) for all k � k0 suÆiently large.Proof. Consider any suessful iterate with k � k0. Sine the �lter is not updatedat iteration k, it follows from the mehanism of the algorithm that �k � �1 holdsand thus thatf(xk)� f(xk+1) � �1[mk(xk)�mk(x+k )℄ � �1��� k � 0: (3.31)Thus the objetive funtion does not inrease for all suessful iterations with k �k0. But AS1 and AS3 imply (3.3) and therefore we must have, from the �rst partof this statement, that limk2Sk!1 f(xk)� f(xk+1) = 0: (3.32)The limit (3.30) then immediately follows from (3.31) and the fat that �j = �kfor all unsuessful iterations j that immediately follow the suessful iteration k,if any. The last onlusion then results from (2.10) and Lemma 3.1. 2We now show that the trust-region radius annot beome arbitrarily small if the(asymptotially feasible) iterates stay away from �rst-order ritial points.Lemma 3.13 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not our and that jUj < 1. Suppose also that AS1{AS3 holdand (2.15) holds for k =2 R. Suppose furthermore that (3.10) hold for all k � k0.Then there exists a �min > 0 suh that�k � �minfor all k.Proof. Suppose that k1 � k0 is hosen suÆiently large to ensure that (3.17)holds and that nk satis�es (2.10) for all k � k1, whih is possible beause of



24Lemma 3.12. Suppose also, for the purpose of obtaining a ontradition, thatiteration j is the �rst iteration following iteration k1 for whih�j � 0min24Æ�;s (1�pF )�F�ubt ;�k135 def= 0Æs; (3.33)where �F def= mini2U �iis the smallest onstraint violation appearing in the �lter. Note also that the in-equality �j � 0�k1 , whih is implied by (3.33), ensures that j � k1+1 and henethat j� 1 � k1 and thus that j� 1 62 R. Then the mehanism of the algorithm and(3.33) imply that �j�1 � 10�j � Æs (3.34)and Lemma 3.7, whih is appliable beause (3.33) and (3.34) together imply (3.12)with k replaed by j � 1, then ensures that�j�1 � �2: (3.35)Furthermore, sine nj�1 satis�es (2.10), Lemma 3.1 implies that we an applyLemma 3.5. This together with (3.33) and (3.34), gives that�+j�1 � �ubt�2j�1 � (1�pF )�F: (3.36)We may also apply Lemma 3.9 beause (3.33) and (3.34) ensure that (3.12) holdsand beause (3.15) also holds for j � 1 � k1. Hene we dedue thatf(x+j�1) � f(xj�1)�pF�j�1:This last relation and (3.36) ensure that x+j�1 is aeptable for the �lter. Combiningthis onlusion with (3.35) and the mehanism of the algorithm, we obtain that�j � �j�1. As a onsequene, and sine (2.23) also fails at iteration j�1, iterationj annot be the �rst iteration following k1 for whih (3.33) holds. This ontraditionshows that �k � 0Æs for all k > k1, and the desired result follows if we de�ne�min = min[�0; : : : ;�k1 ; 0Æs℄: 2We may now analyze the onvergene of �k itself.Lemma 3.14 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not our and that jUj <1. Suppose also that AS1{AS3, (2.10)hold and (2.15) holds for k =2 R. Thenlim infk!1 �k = 0: (3.37)



25Proof. We start by observing that Lemma 3.12 implies that the seond onlusionof (2.10) holds for k suÆiently large. Moreover, as in Lemma 3.12, we obtain(3.31) and therefore (3.32) for eah k 2 S, k � k0. Suppose now, for the purpose ofobtaining a ontradition, that (3.10) holds and notie thatmk(xk)�mk(x+k ) = mk(xk)�mk(xNk ) +mk(xNk )�mk(x+k ): (3.38)Moreover, note, as in Lemma 3.6, thatjmk(xk)�mk(xNk )j � �ubgknkk+ �umhknkk2;whih in turn yields that limk!1[mk(xk)�mk(xNk )℄ = 0beause of Lemma 3.12 and the seond onlusion of (2.10). This limit, togetherwith (3.31), (3.32) and (3.38), then gives thatlimk!1k2S [mk(xNk )�mk(x+k )℄ = 0: (3.39)But (2.15), (3.10), AS2 and Lemma 3.13 together imply that, for all k � k0mk(xNk )�mk(x+k ) � �tmd�kmin ��k�k ;�k� � �tmd�min � ��umh ;�min� ; (3.40)immediately giving a ontradition with (3.39). Hene (3.10) annot hold and thedesired result follows. 2We may summarize all of the above in our main global onvergene result.Theorem 3.15 Suppose that Algorithm 2.1 is applied to problem (1.1) and that�nite termination does not our. Suppose also that AS1, (2.10) AS3 and AS2 hold,and that (2.15) holds for k =2 R. Let fxkg be the sequene of iterates produedby algorithm. Then either the restoration proedure terminates unsuessfully byonverging to an infeasible �rst-order ritial point of problem (2.16), or there isa subsequene fkjg for whih limj!1 xkj = x�and x� is a �rst-order ritial point for problem (1.1).Proof. Suppose that the restoration iteration always terminates suessfully.From AS3, Lemmas 3.11, 3.12 and 3.14, we obtain that, for some subsequene fkjg,limj!1 �kj = limj!1�kj = 0: (3.41)The onlusion then follows from Lemma 3.2. 2



264 Conlusion and PerspetivesWe have introdued a trust-region SQP-�lter algorithm for general nonlinear program-ming, and have shown this algorithm to be globally onvergent to �rst-order ritialpoints. The proposed algorithm di�ers from that disussed by Flether and Ley�er(2002), notably beause it uses a deomposition of the step in its normal and tangen-tial omponents and imposes some restritions on the length of the former. It alsodi�ers from the algorithm of Flether et al. (2002a) in two main aspets. The �rst andmost important is that the rule for deiding whether a trial point is aeptable for the�lter is non-monotone, and allows, in some irumstanes, aeptane of points thatare dominated by other �lter pairs. This gives hopes that an SQP �lter algorithm anbe developed without introduing seond-order orretion steps. The seond is thatthe algorithm no longer relies on the de�nition of a \margin" around the �lter, butdiretly uses the dominated area of the �lter as an aeptane riterion.ReferenesR. H. Byrd, R. B. Shnabel, and G. A. Shultz. A trust region algorithm for nonlinearlyonstrained optimization. SIAM Journal on Numerial Analysis, 24, 1152{1170,1987.A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in`MPS-SIAM Series on Optimization'. SIAM, Philadelphia, USA, 2000.A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Global onvergene ofa lass of trust region algorithms for optimization using inexat projetions ononvex onstraints. SIAM Journal on Optimization, 3(1), 164{221, 1993.J. E. Dennis and L. N. Viente. On the onvergene theory of trust-region basedalgorithms for equality-onstrained optimization. SIAM Journal on Optimization,7(4), 927{950, 1997.J. E. Dennis, M. El-Alem, and M. C. Maiel. A global onvergene theory for generaltrust-region based algorithms for equality onstrained optimization. SIAM Journalon Optimization, 7(1), 177{207, 1997.J. E. Dennis, M. El-Alem, and K. A. Williamson. A trust-region approah to nonlinearsystems of equalities and inequalities. SIAM Journal on Optimization, 9(2), 291{315, 1999.M. El-Hallabi and R. A. Tapia. An inexat trust-region feasible-point algorithm fornonlinear systems of equalities and inequalities. Tehnial Report TR95-09, De-partment of Computational and Applied Mathematis, Rie University, Houston,Texas, USA, 1995.
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Figure 6.1: Flowhart of the algorithm.


