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Global Convergen
e of a Non-monotone Trust-RegionFilter Algorithm for Nonlinear ProgrammingNi
k Gould and Philippe L. Toint4 February 2003Abstra
tA non-monotone variant of the trust-region SQP-�lter algorithm analyzed inFlet
her, Gould, Ley�er, Toint and W�a
hter (2002a) is de�ned, that dire
tly usesthe dominated area of the �lter as an a

eptability 
riterion for trial points. Itis proved that, under reasonable assumptions and for all possible 
hoi
es of thestarting point, the algorithm generates at least a subsequen
e 
onverging to a�rst-order 
riti
al point.1 Introdu
tionWe analyze an algorithm for solving optimization problems where a smooth obje
tivefun
tion is to be minimized subje
t to smooth nonlinear 
onstraints. No 
onvexityassumption is made. More formally, we 
onsider the problemminimize f(x)subje
t to 
E(x) = 0
I(x) � 0; (1.1)where f is a twi
e 
ontinuously di�erentiable real valued fun
tion of the variablesx 2 IRn and 
E(x) and 
I(x) are twi
e 
ontinuously di�erentiable fun
tions from IRninto IRm and from IRn into IRp, respe
tively. Let 
(x)T = (
E(x)T 
I(x)T ).The 
lass of algorithms that we dis
uss belongs to the 
lass of trust-region methodsand, more spe
i�
ally, to that of �lter methods suggested by Flet
her and Ley�er (2002),in whi
h the use of a penalty fun
tion, a 
ommon feature of the large majority of thealgorithms for 
onstrained optimization, is repla
ed by the introdu
tion of a so-
alled\�lter".A global 
onvergen
e theory for an algorithm of this 
lass is proposed in Flet
her,Ley�er and Toint (1998), in whi
h the obje
tive fun
tion is lo
ally approximated by alinear fun
tion, leading, at ea
h iteration, to the (exa
t) solution of a linear program.This algorithm therefore mixes the use of the �lter with sequential linear programming(SLP). Similar results are shown in Flet
her, Ley�er and Toint (2002b), where theapproximation of the obje
tive fun
tion is quadrati
, leading to sequential quadrati
1



2programming (SQP) methods, but at the expense of �nding a global minimizer of thepossibly non
onvex quadrati
 programming subproblem, whi
h is known to be a verydiÆ
ult task. Convergen
e of SQP �lter methods is also 
onsidered in Flet
her et al.(2002a), where the SQP step is de
omposed in \normal" and \tangential" 
omponents.The main purpose of this paper, a 
ompanion of Flet
her et al. (2002a), is to analyzean algorithm where the use of the �lter a

eptan
e 
riterion for new iterates is relaxedto allow dominated iterates to be a

epted in some 
ases. This is potentially importantas it is known that SQP method 
an generate su
h iterates in their asymptoti
 fast
onvergen
e phase. The theory developed here therefore provides a possible 
onver-gen
e framework for a �lter method with quadrati
 
onvergen
e properties without theneed to introdu
e se
ond-order 
orre
tions (as done in W�a
hter and Biegler, 2001, forinstan
e). An additional feature of the theory presented is that it no longer needs thenotion of a \margin" around the �lter, a devi
e whi
h is 
ommon to all theoreti
alapproa
hes of the �lter method so far.2 A Non-monotone Filter AlgorithmThe algorithm that we are about to des
ribe is iterative and of the Sequential Quadrati
Programming (SQP) type. At a given iterate xk , Newton's method is impli
itly appliedto solve (a lo
al version of) the �rst-order ne
essary optimality 
onditions by solvingthe quadrati
 programming subproblem QP(xk) given byminimize fk + hgk; si+ 12 hs;Hksisubje
t to 
E(xk) +AE (xk)s = 0
I(xk) +AI(xk)s � 0; (2.1)where fk = f(xk), gk = g(xk) def= rxf(xk), where AE(xk) and AI(xk) are the Ja
obiansof the 
onstraint fun
tions 
E and 
I at xk and where Hk is a symmetri
 matrix. Wewill not immediately be 
on
erned about how Hk is obtained, but we will return tothis point in Se
tion 3. Assuming a suitable value of Hk 
an be found, the solution ofQP(xk) then yields a step sk. If sk = 0, then xk is �rst-order 
riti
al for problem (1.1).2.1 The 
omposite SQP stepOf 
ourse, the step sk must be 
omputed, typi
ally by solving, possibly approximately,a variant of (2.1). In the trust-region approa
h, one takes into a

ount the fa
t that(2.1) only approximates our original problem lo
ally: the step sk is thus restri
tedin norm to ensure that xk + sk remains in a trust-region 
entred at xk , where webelieve this approximation to be adequate. In other words, we repla
e QP(xk) by thesubproblem TRQP(xk;�k) given byminimize mk(xk + s)subje
t to 
E(xk) +AE (xk)s = 0;
I(xk) +AI(xk)s � 0;and ksk � �k; (2.2)



3for some (positive) value of the trust-region radius �k, where we have de�nedmk(xk + s) = fk + hgk; si+ 12 hs;Hksi; (2.3)and where k � k denotes the Eu
lidean norm. This latter 
hoi
e is purely for ease ofexposition. We 
ould equally use a family of iteration dependent norms k � kk, so longas we require that all members of the family are uniformly equivalent to the Eu
lideannorm.In a

ordan
e with the ideas pionneered by Vardi (1985), Byrd, S
hnabel and Shultz(1987) and Omojokun (1989), and also with Flet
her et al. (2002a), our algorithmde
omposes the step sk into the sum of two distin
t 
omponents, a normal step nk,su
h that xk + nk satis�es the linear 
onstraints of TRQP(xk;�k) within the trustregion, and a tangential step tk, whose purpose is to obtain redu
tion of the obje
tivefun
tion's model while 
ontinuing to satisfy those 
onstraints. More formally, we writesk = nk + tk (2.4)and assume that 
E(xk) +AE(xk)nk = 0; 
I(xk) +AI(xk)nk � 0; (2.5)kskk � �k; (2.6)and 
E(xk) +AE(xk)sk = 0; 
I(xk) +AI(xk)sk � 0: (2.7)Of 
ourse, this is a strong assumption, sin
e in parti
ular (2.5) or (2.6)/(2.7) may nothave a solution. We shall return to this possibility shortly.Given our assumption, there are many ways to 
ompute nk and tk. For instan
e,we 
ould 
ompute nk from nk = Pk[xk℄� xk; (2.8)where Pk is the orthogonal proje
tor onto the feasible set of QP(xk). No spe
i�
 
hoi
efor nk is made, but one instead assumes that nk exists when the maximum violationof the nonlinear 
onstraints at the k-th iterate �k def= �(xk), with�(x) = max �0;maxi2E j
i(x)j;maxi2I �
i(x)� ; (2.9)is suÆ
iently small, and that nk is then reasonably s
aled with respe
t to the values ofthe 
onstraints. In other words, we assume, exa
tly as in Flet
her et al. (2002a), thatnk exists and knkk � �us
�k; whenever �k � Æn; (2.10)for some 
onstants �us
 > 0 and Æn > 0. This assumption is also used by Dennis, El-Alem and Ma
iel (1997) and Dennis and Vi
ente (1997) in the 
ontext of problemsonlyinvolvong equality 
onstraints. It 
an be shown not to impose 
onditions on the 
on-straints or the normal step itself that are unduly restri
tive (see Flet
her et al. (2002a)for a dis
ussion).



4Having de�ned the normal step, we are in position to use it if it falls within thetrust-region, that is if knkk � �k. In this 
ase, we writexNk = xk + nk; (2.11)and observe that nk satis�es the 
onstraints of TRQP(xk;�k) and thus also of QP(xk).It is 
ru
ial to note, at this stage, that su
h an nk may fail to exist be
ause the
onstraints of QP(xk) may be in
ompatible, in whi
h 
ase Pk is unde�ned, or be
auseall feasible points for QP (xk) may lie outside the trust region.Let us 
ontinue to 
onsider the 
ase where this problem does not arise, and a normalstep nk has been found with knkk � �k. We then aim to �nd a tangential step tk,starting from xNk and satisfying (2.6) and (2.7), whose obje
tive is to de
rease thevalue of the obje
tive fun
tion. This is a
hieved by 
omputing a step that produ
esa suÆ
ient de
rease in mk, whi
h is to say that we wish mk(xNk )�mk(xk + sk) to be\suÆ
iently large". Of 
ourse, this is only possible if the maximum permitted size of tkis not too small, whi
h is to say that xNk is not too 
lose to the trust-region boundary.We formalize this 
ondition by strengthening our requirement that knkk � �k so thatknkk � ���kmin[1; ����kk ℄; (2.12)for some �� 2 (0; 1℄, some �� > 0 and some �k 2 [0; 1). If 
ondition (2.12) does nothold, we assume, as in Flet
her et al. (2002a), that the 
omputation of tk is unlikelyto produ
e a satisfa
tory de
rease in mk, and pro
eed just as if the feasible set ofTRQP(xk;�k) were empty. If nk 
an be 
omputed and (2.12) holds, TRQP(xk;�k)is said to be 
ompatible . In this 
ase, a suÆ
ient model de
rease seems possible. Weformalize this notion in the form of a familiar Cau
hy-point 
ondition, and, re
allingthat the feasible set of QP(xk) is 
onvex, we introdu
e the �rst-order 
riti
ality measure�k = j minAE (xk)t=0
I(xk)+AI(xk)(nk+t)�0ktk�1 hgk +Hknk; tij (2.13)(see Conn, Gould, Sartenaer and Toint, 1993). Note that this fun
tion is zero if xNk isa �rst-order 
riti
al point of the linearized \tangential" problemminimize hgk +Hknk; ti+ 12 hHkt; tisubje
t to AE (xk)t = 0
I(xk) +AI(xk)(nk + t) � 0; (2.14)whi
h is, up to the 
onstant term 12 hnk; Hknki, equivalent to QP(xk) with s = nk + t.The suÆ
ient de
rease 
ondition then 
onsists in assuming that there exists a 
onstant�tmd > 0 su
h that mk(xNk )�mk(xNk + tk) � �tmd�kmin ��k�k ;�k� ; (2.15)whenever TRQP(xk;�k) is 
ompatible, where �k = 1 + kHkk. We know from Toint(1988) and Conn et al. (1993) that this 
ondition holds if the model redu
tion ex
eeds



5that whi
h would be obtained at the generalized Cau
hy point, that is the point re-sulting from a ba
ktra
king 
urvilinear sear
h along the proje
ted gradient path fromxNk , that is xk(�) = Pk[xNk � �rxmk(xNk )℄:This te
hnique therefore provides an implementable algorithm for 
omputing a stepthat satis�es (2.15), but, of 
ourse, a further redu
tion of mk is often desirable if fast
onvergen
e is sought. Also note that the minimization problem of the right-hand sideof (2.13) redu
es to a linear programming problem if we 
hoose to use a polyhedral normin its de�nition at iteration k. However, we re
ognise that (2.15) may be diÆ
ult toverify in pra
ti
e, sin
e it may be expensive to 
ompute xNk and Pk when the dimensionof the problem is large.2.2 The restoration pro
edureIf TRQP(xk;�k) is not 
ompatible for �, that is when the feasible set determined bythe 
onstraints of QP(xk) is empty, or the freedom left to redu
e mk within the trustregion is too small in the sense that (2.12) fails, we must 
onsider an alternative. Ob-serve that, if �(xk) is suÆ
iently small and the true nonlinear 
onstraints are lo
ally
ompatible, the linearized 
onstraints should also be 
ompatible, sin
e they approxi-mate the nonlinear 
onstraints (lo
ally) 
orre
tly. Furthermore, the feasible region forthe linearized 
onstraints should then be 
lose enough to xk for there to be some roomto redu
e mk, at least if �k is large enough. If the nonlinear 
onstraints are lo
allyin
ompatible, we have to �nd a neighbourhood where this is not the 
ase, sin
e theproblem (1.1) does not make sense in the 
urrent one. As in Flet
her et al. (2002a), werely on a restoration pro
edure. The aim of this pro
edure is to produ
e a new pointxk+rk that satis�es two 
onditions: we require TRQP(xk+rk;�k+1) to be 
ompatiblefor some �k+1 > 0, and also require that xk + rk be a

eptable, in the sense that wedis
uss in the Se
tion 2.3.3 (pre
isely, we require thate either (2.20) or (2.21) holds forsu
h an x+k ). In what follows, we will denoteR def= fk j nk does not satisfy (2.10) or knkk > ���kmin[1; ����k ℄g;the set of restoration iterations.The idea of the restoration pro
edure is to (approximately) solveminx2IRn �(x) (2.16)starting from xk, the 
urrent iterate. This is a non-smooth problem, but there existmethods, possibly of trust-region type (su
h as that suggested by Yuan, 1994), whi
h
an be su

essfully applied to solve it. Thus we will not des
ribe the restorationpro
edure in detail. Note that we have 
hosen here to redu
e the in�nity norm of the
onstraint violation, but we 
ould equally well 
onsider other norms, su
h as `1 or `2,in whi
h 
ase the methods of Flet
her and Ley�er (1998) or of El-Hallabi and Tapia(1995) and Dennis, El-Alem and Williamson (1999) 
an respe
tively be 
onsidered.



6Of 
ourse, this te
hnique only guarantees 
onvergen
e to a �rst-order 
riti
al point ofthe 
hosen measure of 
onstraint violation, whi
h means that, in fa
t, the restorationpro
edure may fail as this 
riti
al point may not be feasible for the 
onstraints of (1.1).However, even in this 
ase, the result of the pro
edure is of interest be
ause it typi
allyprodu
es a lo
al minimizer of �(x), or of whatever other measure of 
onstraint violationwe 
hoose for the restoration, yielding a point of lo
ally-least infeasibility. There seemsto be no easy way to 
ir
umvent this drawba
k, as it is known that �nding a feasiblepoint or proving that no su
h point exists is a global optimization problem and 
an beas diÆ
ult as the optimization problem (1.1) itself. One therefore has to a

ept twopossible out
omes of the restoration pro
edure: either the pro
edure fails in that itdoes not produ
e a sequen
e of iterates 
onverging to feasibility, or a point xk + rk isprodu
ed su
h that �(xk + rk) is as small as desired.2.3 The �lter as a 
riterion to a

ept trial pointsUnfortunately, be
ause the SQP iteration may only be lo
ally 
onvergent, the step skor rk may not always be very useful. Thus, having 
omputed a step sk or rk from our
urrent iterate xk, we need to de
ide whether the trial point x+k , de�ned byx+k def= ( xk + rk if k 2 R;xk + sk otherwise (2.17)is any better than xk as an approximate solution to our original problem (1.1). If wede
ide that this is the 
ase, we say that iteration k is su

essfull and 
hoose x+k as ournext iterate. Let us denote by S the set of (indi
es of) all su

essful iterations, that isS = fk j xk+1 = x+k g:We will dis
uss the details of pre
isely when we a

ept x+k as our next iterate inSe
tion 2.3.3, but note that an important ingredient in the pro
ess is the notion of a�lter, a notion itself based on that of dominan
e.We say that a point x1 dominates a point x2 whenever�(x1) � �(x2) and f(x1) � f(x2):Thus, if iterate xk dominates iterate xj , the latter is unlikely to be of real interest tous sin
e xk is at least as good as xj on a

ount of both feasibility and optimality. Allwe need to do now is to remember iterates that are not dominated by other iteratesusing a stru
ture 
alled a �lter. A �lter is a list F of pairs of the form (�i; fi) su
hthat either �i < �j or fi < fjfor i 6= j. Flet
her et al. (2002a) propose to a

ept a new trial iterate xk + sk onlyif it is not dominated by any other iterate in the �lter and xk. In the vo
abularyof multi-
riteria optimization, this amounts to building elements of the eÆ
ient fron-tier asso
iated with the bi-
riteria problem of redu
ing infeasibility and the obje
tive



7fun
tion value. We may des
ribe this 
on
ept by asso
iating with ea
h iterate xk its(�; f)-pair (�k; fk) and might 
hoose to a

ept xk+sk only if its (�; f)-pair does not lie,in the two-dimensional spa
e spanned by 
onstraint violation and obje
tive fun
tionvalue, above and on the right of a previously a

epted pair. If we de�neD(F) = f(�; f) j � > �j and f > fj for some j 2 Fg; (2.18)the part of the (�; f)-spa
e that is dominated by the pairs in the �lter, this amounts tosay that x+k 
ould be a

epted if (�(x+k ); f(x+k )) 62 D(Fk), where Fk denotes the �lterat iteration k.2.3.1 The 
ontribution of a trial point to the �lterWhile the idea of not a

epting dominated trial points is simple and elegant, it needsto be re�ned a little in order to provide an e�e
tive algorithmi
 tool. In parti
ular, wemay not wish to a

ept a new point x+k if its (�; f)-pair(�+k ; f+k ) def= (�(x+k ); f(x+k ))is arbitrarily 
lose to being dominated by another point already in the �lter.Flet
her et al. (2002a), as all other theoreti
al analysis of the �lter that we knowof, set a small \margin" around the border of D(Fk) in whi
h trial points are alsoreje
ted. We follow here a di�erent idea and de�ne, for any (�; f)-pair, an area thatrepresents its 
ontribution to the area of D(Fk). For this purpose, we partition theright half-plane [0;+1℄� [�1;+1℄ into four di�erent regions (see Figure 2.1). If wede�ne D(Fk)C to be the 
omplement of D(Fk) in the right half-plane,�Fkmin def= minj2Fk �j ; �Fkmax def= maxj2Fk �j ;and fFkmin def= minj2Fk fj fFkmax def= maxj2Fk fj ;these four parts are1. the dominated part of the �lter, D(Fk).2. the undominated part of lower left (south-west) 
orner of the half plane,SW (Fk) def= D(Fk)C \ [0; �Fkmax℄� [�1; fFkmax℄;3. the undominated upper left (north-west) 
orner,NW (Fk) def= [0; �Fkmin)� (fFkmax;+1℄;4. the undominated lower right (south-east) 
orner,SE(Fk) def= (�Fkmax;+1℄� [�1; fFkmin):
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�(x)�Fkmin �Fkmax
fFkmax

fFkminFigure 2.1: The partition of the right half-plane for a �lter Fk 
ontaining four (�; f)pairs.Consider �rst a trial iterate x+k with its asso
iated (�; f)-pair (�+k ; f+k ) with �+k > 0.If the �lter is empty (Fk = ;), then we measure its 
ontribution to the area of the �lterby the simple formula �(x+k ;Fk) def= �2Ffor some 
onstant �F > 0. If the �lter already 
ontains some past iterates, we measurethe 
ontribution of x+k to the area of the �lter by�(x+k ;Fk) def= area�D(Fk)C\[�+k ; �Fkmax+�F℄�[f+k ; fFkmax+�F℄� if (�+k ; f+k ) 2 SW (Fk));by �(x+k ;Fk) def= �F(�Fkmin � �+k ) if (�+k ; f+k ) 2 NW (Fk));by �(x+k ;Fk) def= �F(fFkmin � f+k ) if (�+k ; f+k ) 2 SE(Fk));and by�(x+k ;Fk) def= �area�D(Fk) \ [�+k � �Pkmin℄� [f+k � fPkmin℄�; if (�+k ; f+k ) 2 D(Fk));where Pk def= f(�j ; fj) 2 Fk j �j < �+k and fj < f+k g;
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(�+k ; f+k )qfPkmax

fPkmin0

f(x)

�(x)�Fkmin �Fkmax �Fkmax + �F
fFkmax + �FfFkmax

fFkminFigure 2.2: The 
ontributions of four (�+k ; f+k ) pairs (in D(Fk), SW (Fk), NW (Fk) andSE(Fk)) to the area of the �lter. Horizontal stripes indi
ate a positive 
ontributionand verti
al stripes a negative one.(the set of �lter pairs that dominate (�+k ; f+k )), and�Pkmin def= minj2Pk �j ; �Pkmax def= maxj2Pk �j :Figure 2.2 illustrate the 
orresponding areas in the �lter for four possible (�+k ; f+k ) pairs(in D(Fk), SW (Fk), NW (Fk) and SE(Fk)) to the area of the �lter. Horizontallydashed surfa
es indi
ate a positive 
ontribution and verti
ally dashed ones a negative
ontribution. Note that �(x;F) is a 
ontinuous fun
tion of (�(x); f(x)), and thus ofx, for a given �lter F . Furthermore, �(x;F) is identi
ally zero if (�(x); f(x)) is on theboundary of the dominated region D(F). Also note that, although seemingly 
ompli-
ated, the value of �(x;F) is not diÆ
ult to 
ompute, sin
e its 
al
ulation requires, inthe worst 
ase, us to 
onsider all the points 
urrently in the �lter only on
e.2.3.2 Updating the �lterThe pro
edure to update the �lter for a parti
ular (�; f) pair is extremely simple. If(�k; fk) = (�(xk); f(xk)) does not belong to D(Fk) (i.e. if xk is not dominated), thenFk+1  Fk [ (�k; fk);while if (�k; fk) 2 D(Fk) (if xk is dominated),Fk+1  (Fk n Pk) [ (�Pkmin; fk) [ (�k ; fPkmin);
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(�k; fPkmin)
Figure 2.3: The �lter Fk+1 after in
luding the dominated pair (�k; fk) into Fk.where Pk is now the subset of pairs in Fk that dominate (�k; fk). This last situationis illustrated by Figure 2.3, whi
h shows the �lter resulting from the operation ofin
luding the pair (�k ; fk) belonging to D(Fk) (that asso
iated with the verti
allyshaded \in
rement" in the �lter area of Figure 2.2) in the �lter. The two points in Pkthat have been removed are marked with 
rossed 
ir
les and their asso
iated dominatedorthants are indi
ated by dotted lines.Observe that it may happen that the number of points in the �lter de
reases whenthe set of dominating points Pk 
ontains more than two �lter pairs. Moreover, the pairfor whi
h the �lter is updated is not always itself in
luded in the �lter (as shown inFigure 2.3).2.3.3 A

eptability of potential iteratesWe now return to the question of de
iding whether or not a trial point x+k is a

eptablefor the �lter. We will insist that this is a ne
essary 
ondition for the iteration k to besu

essful in the sense that xk+1 = x+k , i.e. the algorithm 
hanges its 
urrent iterate tothe trial point. Note that all restoration iterations are su

essful (R � S). Note alsothat (ex
ept for x0) all iterates are produ
ed by su

essful iterations : if we 
onsideran iterate xk, there must exists a prede
essor iteration of index p(k) 2 S su
h thatx+p(k) = xp(k)+1 = xk : (2.19)Observe that we do not always have that p(k) = k � 1 sin
e not all iterations needbeing su

essful.



11A monotone version of our method (rather similar to that developped in Flet
heret al., 2002a, but using �(x;F) rather that a margin around the �lter) would be toa

ept x+k whenever this trial point results in an suÆ
ient in
rease in the dominatedarea of the �lter, i.e. D(Fk). This is to say that x+k would be a

eptable for the �lterwhenever �k � 
F (�+k )2; (2.20)where �k def= �(x+k ;Fk) and where 
F 2 (0; 1) is a 
onstant. The non-monotone versionthat we analyze below repla
es this 
ondition by the weaker requirement thatkXj=r(k)+1j2U �p(j) + �k � 
F 2664 kXj=r(k)+1j2U �2j + (�+k )23775 (2.21)where �q def= �(x+q ;Fq) (and thus �p(q) = �(xq ;Fp(q))), whereU = fk j xk the �lter is updated for(�k; fk)g;and where r(k) � k is some past referen
e iteration su
h that r(k) 2 U . Note that
ondition (2.21) may equivalently be written in the more symmetri
 formkXj=r(k)+1j2U �p(j) + �k � 
F 2664 kXj=r(k)+1j2U (�+p(j))2 + (�+k )23775be
ause of (2.19).The reader may noti
e that 
ondition (2.21) is reminis
ent of the 
ondition for non-monotone trust-region algorithms developed in Toint (1997) (see also Chapter 10.1 ofConn, Gould and Toint, 2000). It requires that the average 
ontribution to the �lterarea of the last points in
luded in the �lter and x+k together to be globally (suÆ
iently)positive, but makes it possible to a

ept x+k even though it may be dominated (i.e. liein D(Fk)).However, if x+k provides a 
lear monotoni
 improvement, in the sense that (2.20)holds, we are also prepared to a

ept it. Thus, x+k will be 
alled a

eptable at iterationk if either (2.20) or (2.21) holds. We will denoteA def= fk 2 S j (2.21) holdsg (2.22)Observe also that we 
ould repla
e �2k by min[��k ; ��℄ in (2.20) and (2.21), where �and �� are stri
tly positive 
onstants. This variant may be more numeri
ally sensible,and does not a�e
t the theory developed below.2.4 The non-monotone AlgorithmWe are now ready to de�ne our algorithm formally as Algorithm 2.1. A 
ow-
hart ofthe algorithm is given as an appendix.



12Algorithm 2.1: Non-monotone Filter AlgorithmStep 0: Initialization. Let an initial point x0, an initial trust-region radius�0 > 0 and an initial symmetri
 matrix H0 be given, as well as 
onstants0 < 
0 < 
1 � 1 � 
2, 0 < �1 � �2 < 1, 
F 2 (0; 1), �� 2 (0; 1), �� 2 (0; 1℄,�� > 0, � 2 (0; 1),  > 1=(1 + �) and �tmd 2 (0; 1℄. Compute f(x0) and
(x0). Set F = ; and k = 0.Step 1: Test for optimality. If �k = �k = 0, stop.Step 2: Ensure 
ompatibility. Attempt to 
ompute a step nk. If TRQP(xk ;�k) is 
ompatible, go to Step 3. Otherwise, update the �lter for (�k; fk)and 
ompute a restoration step rk for whi
h TRQP(xk + rk ;�k+1) is 
om-patible for some �k+1 > 0, and x+k = xk + rk is a

eptable. If this provesimpossible, stop. Otherwise, set xk+1 = x+k and go to Step 7.Step 3: Determine a trial step. Compute a step tk, set x+k = xk + nk + tk,and evaluate 
(x+k ) and f(x+k ).Step 4: Test a

eptability of the trial point. If x+k is not a

eptable, againset xk+1 = xk, 
hoose �k+1 2 [
0�k; 
1�k℄, set nk+1 = nk, and go to Step 7.If mk(xk)�mk(x+k ) < ��� k ; (2.23)then update the �lter for (�k; fk) and go to Step 6.Step 5: Test predi
ted vs. a
hieved redu
tion. If�k def= f(xk)� f(x+k )mk(xk)�mk(x+k ) < �1; (2.24)set xk+1 = xk, 
hoose �k+1 2 [
0�k; 
1�k℄, set nk+1 = nk and go to Step 7.Step 6: Move to the new iterate. Set xk+1 = x+k and 
hoose �k+1 su
h that�k+1 2 [�k; 
2�k℄ if �k � �2 and (2.23) fails.Step 7: Update the Hessian approximation. Determine Hk+1. In
rement kby one and go to Step 1.As in Flet
her and Ley�er (2002, 1998), one may 
hoose  = 2 (Note that the
hoi
e  = 1 is always possible be
ause � > 0). Reasonable values for the 
onstantsmight then be 
0 = 0:1; 
1 = 0:5; 
2 = 2; �1 = 0:01; �2 = 0:9;
F = 10�4; �� = 0:7; �� = 100; � = 0:01; �� = 10�4; and �tmd = 0:01:



13but it is too early to know if these are even 
lose to the best possible 
hoi
es.For the restoration pro
edure in Step 2 to su

eed, we have to evaluate whetherTRQP(xk + rk ;�k+1) is 
ompatible for a suitable value of �k+1. This requires that asuitable normal step be 
omputed whi
h su

essfully passes the test (2.12). Of 
ourse,on
e this is a
hieved, this normal step may be reused at iteration k+1. Thus we shallrequire the normal step 
al
ulated to verify 
ompatibility of TRQP(xk + rk ;�k+1)should a
tually be used as nk+1. Also note that the restoration pro
edure 
annot beapplied on two su

essive iterations, sin
e the iterate xk + rk produ
ed by the �rst ofthese iterations leads to a 
ompatible TRQP(xk+1;�k+1) and is a

eptable.As it stands, the algorithm is not spe
i�
 about how to 
hoose �k+1 during arestoration iteration. On one hand, there is an advantage to 
hoosing a large �k+1,sin
e this allows a large step and one hopes good progress. On the other, it may beunwise to 
hoose it to be too large, as this may possibly result in a large number ofunsu

essful iterations, during whi
h the radius is redu
ed, before the algorithm 
anmake any progress. A possible 
hoi
e might be to restart from the radius obtainedduring the restoration iteration itself, if it uses a trust-region method. Reasonablealternatives would be to use the average radius observed during past su

essful itera-tions, or to apply the internal doubling strategy of Byrd et al. (1987) to in
rease thenew radius, or even to 
onsider the te
hnique des
ribed by Sartenaer (1997). However,we re
ognize that numeri
al experien
e with the algorithm is too limited at this stageto make de�nite re
ommendations.The role of 
ondition (2.23) may be interpreted as follows. If this 
ondition holds,then one may think that the 
onstraint violation is signi�
ant and that one shouldaim to improve on this situation in the future, by inserting the 
urrent point in the�lter. Flet
her et al. (1998) use the term of \�-step" in su
h 
ir
umstan
es, to indi
atethat the main preo

upation is to redu
e 
onstraint violation. On the other hand, if
ondition (2.23) fails, then the redu
tion in the obje
tive fun
tion predi
ted by themodel is more signi�
ant than the 
urrent 
onstraint violation and it is thus appealingto let the algorithm behave as if it were un
onstrained. Flet
her and Ley�er (2002) usethe term of \f -step" to denote the step generated, in order to re
e
t the dominant roleof the obje
tive fun
tion f . In this 
ase, it is important that the predi
ted de
reasein the model is realized by the a
tual de
rease in the fun
tion, whi
h is why we thenperform the test (2.24). In parti
ular, if the iterate xk is feasible, then (2.10) impliesthat xk = xNk and we obtain that��� k = 0 � mk(xNk )�mk(x+k ) = mk(xk)�mk(x+k ): (2.25)As a 
onsequen
e, the �lter me
hanism is irrelevant if all iterates are feasible, andthe algorithm redu
es to a traditional un
onstrained trust-region method. Another
onsequen
e of (2.25) is that no feasible iterate is ever in
luded in the �lter, whi
his 
ru
ial in allowing �nite termination of the restoration pro
edure, as explained inFlet
her et al. (2002a). Note that the argument may fail and a restoration step maynot terminate in a �nite number of iterations if we do not assume the existen
e of



14the normal step when the 
onstraint violation is small enough, even if this violation
onverges to zero (see Flet
her, Ley�er and Toint, 1998, for an example).Noti
e also that (2.23) ensures that the denominator of �k in (2.24) will be stri
tlypositive whenever �k is. If �k = 0, then xk = xNk , and the denominator of (2.24) willbe stri
tly positive unless xk is a �rst-order 
riti
al point be
ause of (2.15).The reader may have observed that Step 6 allows a relatively wide 
hoi
e of thenew trust-region radius �k+1. While the stated 
onditions appear to be suÆ
ientfor the theory developed below, one must obviously be more spe
i�
 in pra
ti
e. Forinstan
e, one may wish to distinguish, at this point in the algorithm, the 
ases where(2.23) fails or holds. If (2.23) holds, the main e�e
t of the 
urrent iteration is not toredu
e the model (whi
h makes the value of �k essentially irrelevant), but rather toredu
e the 
onstraint violation (whi
h is taken 
are of by inserting the 
urrent iteratein the �lter at Step 4). In this 
ase, Step 6 imposes no further restri
tion on �k+1. Inpra
ti
e, it may be reasonable not to redu
e the trust-region radius, be
ause this might
ause too small steps towards feasibility or an unne
essary restoration phase. However,there is no 
ompelling reason to in
rease the radius either, given the 
ompatibility ofTRQP(xk,�k). A reasonable strategy might then be to 
hoose �k+1 = �k. If, on theother hand, (2.23) fails, the emphasis of the iteration is then on redu
ing the obje
tivefun
tion, a 
ase akin to un
onstrained minimization. Thus a more detailed rule of thetype �k+1 2 ( [
1�k; 
2�k℄ if �k 2 [�1; �2);[�k; 
2�k℄ if �k � �2:seems reasonable in these 
ir
umstan
es.Finally, observe that the me
hanism of the algorithm imposes thatU � S; (2.26)i.e. that iterates are in
luded in the �lter only at su

essful iterations.3 Convergen
e to First-Order Criti
al PointsWe now prove that our non-monotone algorithm generates a globally 
onvergent se-quen
e of iterates. In the following analysis, we 
on
entrate on the 
ase that therestoration iteration always su

eeds. If this is not the 
ase, then it usually followsthat the restoration phase has 
onverged to an approximate solution of the feasibilityproblem (2.16) and we 
an 
on
lude that (1.1) is lo
ally in
onsistent.In order to obtain our global 
onvergen
e result, we will use the assumptionsAS1: f and the 
onstraint fun
tions 
E and 
I are twi
e 
ontinuously di�erentiable;AS2: there exists �umh > 1 su
h thatkHkk � �umh � 1 for all k;AS3: the iterates fxkg remain in a 
losed, bounded domain X � IRn.



15If, for example, Hk is 
hosen as the Hessian of the Lagrangian fun
tion`(x; y) = f(x) + hyE ; 
E(x)i+ hyI ; 
I(x)iat xk , in that Hk = rxxf(xk) + Xi2E[I[yk℄irxx
i(xk); (3.1)where [yk℄i denotes the i-th 
omponent of the ve
tor of Lagrange multipliers yTk =(yTE;k yTI;k), then we see from AS1 and AS3 that AS2 is satis�ed when these multipliersremain bounded. The same is true if the Hessian matri
es in (3.1) are repla
ed bybounded approximations.A �rst immediate 
onsequen
e of AS1{AS3 is that there exists a 
onstant �ubh > 1su
h that, for all k, jf(x+k )�mk(x+k )j � �ubh�2k: (3.2)A proof of this property, based on Taylor expansion, may be found, for instan
e, inToint (1988) or on p. 133 of Conn et al. (2000). A se
ond important 
onsequen
e ofour assumptions is that AS1 and AS3 together dire
tly ensure that, for all k,fmin � f(xk) � fmax and 0 � �k � �max (3.3)for some 
onstants fmin � fmax and �max > 0. Thus the part of the (�; f)-spa
e inwhi
h the (�; f)-pairs asso
iated with the �lter iterates lie is restri
ted to the re
tangle[0; �max℄� [fmin;1℄.We also note the following simple 
onsequen
e of (2.10) and AS3.Lemma 3.1 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that (2.10) and AS3 hold, and that�k � Æn:Then there exists a 
onstant �ls
 > 0 independent of k su
h that�ls
�k � knkk: (3.4)Proof. See Lemma 3.1 of Flet
her et al. (2002a). 2Our assumptions and the de�nition of �k in (2.13) also ensure that �k and �k 
an beused (together) to measure 
riti
ality for problem (1.1).



16Lemma 3.2 Suppose that Algorithm 2.1 is applied to problem (1.1). and that�nite termination does not o

ur. Suppose also that AS1 and AS3 hold, and thatthere exists a subsequen
e fkig 6� R su
h thatlimi!1�ki = 0 and limi!1 �ki = 0: (3.5)Then every limit point of the subsequen
e fxkig is a �rst-order 
riti
al point forproblem (1.1).Proof. See Lemma 3.2 of Flet
her et al. (2002a). 2We start our analysis by examining the impa
t of our non-monotone a

eptan
e
riteria (2.20) and (2.21). On
e a trial point as a

epted as a new iterate, it mustbe be
ause it provide some improvement, 
ompared to either a past referen
e iterate(using (2.21)), or to the previous iterate (using (2.20)). We formalize this notion bysaying that iterate xk = xp(k)+1 improves on iterate xi(k), wherei(k) = r(p(k)) if p(k) 2 A;that is if xk is a

epted at iteration p(k) using (2.21), andi(k) = p(k) if p(k) 62 A; (3.6)that is if xk is a

epted at iteration p(k) using (2.20). Now 
onsider any iterate xk .This iterate improved on xi(k), whi
h was itself a

epted be
ause it improved on xi(i(k)),and so on, ba
k to the stage where x0 is rea
hed by this ba
kwards referen
ing pro
ess.Hen
e we may 
onstru
t, for ea
h k, a 
hain of su

essful iterations indexed by Ck =f`1; `1; `2; : : : ; `qg su
h that`1 = 0; `q = k and x`j = xi(`j+1) for j = 1; : : : ; q � 1:We start by proving the following useful lemma.Lemma 3.3 Suppose that Algorithm 2.1 is applied to problem (1.1). Then, forea
h k, area(D(Fk)) � 
F k�1Xi=0j2U �2iProof. Consider now the ba
kward referen
ing 
hain from iteration k � 1, Ck�1,and any `j (j > 0) in this 
hain. Observe that, if p(`j) 2 A, then (2.21) implies



17that i(`j) = r(p(`j)) = `j�1 and that`jXi=`j�1+1i2U �p(j) � 
F `jXi=`j�1+1i2U �2i (3.7)If now p(`j) 62 A, then `j�1 = p(`j) and thusf`j�1 + 1; : : : ; `jg \ U � f`j�1 + 1; : : : ; `jg \ S = f`jg;where we have used (2.26). Moreover, (2.20) then implies that �p(`j) � 
F�2̀j , sothat (3.7) holds again in this 
ase. Combining these inequalities with the inequalityarea(D(Fk)) � k�1Xi=0i2U �p(i) = qXj=0 2664 `jXi=`j�1+1i2U �p(i)3775then gives the desired result. 2We now 
onsider what happens when the �lter is updated an in�nite number oftimes.Lemma 3.4 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1 and AS3 hold and that jUj =1. Thenlimk!1k2U �k = 0:Proof. Suppose, for the purpose of obtaining a 
ontradi
tion, that there existsan in�nite subsequen
e fkig � U su
h that �ki � � for all i and for some � > 0.Applying now Lemma 3.3, we dedu
e thatarea(D(Fki+1)) � i
F�2:However, (3.3) implies that, for any k, area(D(Fk)) is bounded above by a 
onstant�maxF � 0 independent of k. Hen
e we obtain thati � �maxF
F�2 ;and i must also be �nite. This 
ontradi
ts the fa
t that the subsequen
e fkig isin�nite. Hen
e this latter assumption is impossible and the 
on
lusion follows. 2We next examine the size of the 
onstraint violation before and after an iteration whererestoration did not o

ur.



18Lemma 3.5 Suppose that Algorithm 2.1 is applied to problem (1.1), that AS1and AS3 hold, that k 62 R and that nk satis�es (3.4). Then�k � �ubt�1+�k (3.8)and �(x+k ) � �ubt�2k: (3.9)for some 
onstant �ubt � 0.Proof. See Lemma 3.4 of Flet
her et al. (2002a). 2We next assess the model de
rease when the trust-region radius is suÆ
iently small.Lemma 3.6 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.12) and (2.15) hold, that k 62 R, that�k � �; (3.10)for some � > 0, and that�k � min" ��umh ;�2 �ubg�umh����� 11+� ;� �tmd�4�ubg����� 1�# def= Æm; (3.11)where �ubg def= maxx2X krxf(x)k. Thenmk(xk)�mk(x+k ) � 12�tmd��k:Proof. See Lemma 3.5 of Flet
her et al. (2002a). 2We 
ontinue our analysis by showing, as the reader has grown to expe
t, that iterationshave to be very su

essful when the trust-region radius is suÆ
iently small.Lemma 3.7 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.15) and (3.10) hold, that k 62 R, and that�k � min �Æm; (1� �2)�tmd�2�ubh � def= Æ�: (3.12)Then �k � �2:



19Proof. See Lemma 3.6 of Flet
her et al. (2002a). 2Note that this proof 
ould easily be extended if the de�nition of �k in (2.24) werealtered to be of the form �k def= f(xk)� f(x+k ) + �kmk(xk)�mk(x+k ) (3.13)provided �k is bounded above by a multiple of �2k. We will 
omment in Se
tion 4 whysu
h a modi�
ation might be of interest (see also Se
tion 10.4.3 of Conn et al., 2000).Now, we also show that the test (2.23) will always fail when the trust-region radiusis suÆ
iently small.Lemma 3.8 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.12), (2.15) and (3.10) hold, that k 62 R, that nk satis�es(3.4), and that �k � min"Æm;� �tmd�2��� ubt� 1 (1+�)�1 # def= Æf : (3.14)Then mk(xk)�mk(x+k ) � ��� k :Proof. This dire
tly results from the inequalities��� k � ��� ubt� (1+�)k � 12�tmd��k � mk(xk)�mk(x+k );where we su

essively used Lemma 3.5, (3.14) and Lemma 3.6. 2We may also guarantee a de
rease in the obje
tive fun
tion, large enough to ensurethat the trial point is a

eptable with respe
t to the (�; f)-pair asso
iated with xk , solong as the 
onstraint violation is itself suÆ
iently small.Lemma 3.9 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.15), (3.10) and (3.12) hold, that k 62 R, that nk satis�es(3.4), and that �k � �� 1�ubt ��2�tmd�2p
F � 1+�� def= Æ�: (3.15)Then f(x+k ) � f(xk)�p
F�k:Proof. Applying Lemmas 3.5{3.7|whi
h is possible be
ause of (3.10), (3.12),



20k 62 R and nk satis�es (3.4)|and (3.15), we obtain thatf(xk)� f(x+k ) � �2[mk(xk)�mk(x+k )℄� 12�2�tmd��k� 12�2�tmd�� �k�ubt � 11+�� p
F�kand the desired inequality follows. 2We now establish that if the trust-region radius and the 
onstraint violation are bothsmall at a non-
riti
al iterate xk, TRQP(xk;�k) must be 
ompatible.Lemma 3.10 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.10) and (3.10) hold, that (2.15) holds for k =2 R, and that�k � min"
0Æ�;� 1��� 1� ;�
20(1�p
F )�����us
�ubt � 11��# def= ÆR: (3.16)Suppose furthermore that �k � min[Æ�; Æn℄: (3.17)Then k 62 R.Proof. Be
ause �k � Æn, we know from (2.10) and Lemma 3.1 that nk satis�es(2.10) and (3.4). Moreover, sin
e �k � Æ�, we have that (3.15) also holds. Assume,for the purpose of deriving a 
ontradi
tion, that k 2 R, that isknkk > �����1+�k ; (3.18)where we have used (2.12) and the fa
t that ����k � 1 be
ause of (3.16). In this
ase, the me
hanism of the algorithm then ensures that k � 1 62 R. Now assumethat iteration k � 1 is unsu

essful. Be
ause of Lemmas 3.7 and 3.9, whi
h hold atiteration k � 1 62 R be
ause of (3.16), the fa
t that �k = �k�1, (2.10), and (3.15),we obtain that �k�1 � �2 and f(x+k�1) � f(xk�1)�p
F�k�1: (3.19)Hen
e, if iteration k � 1 is unsu

essful and this must be be
ause x+k�1 is nota

eptable for the �lter. However, if we have that�+k�1 � (1�p
F)�k�1; (3.20)then, using the se
ond part of (3.19) and the fa
t that (�k�1; fk�1) 2 SW (Fk�1),�(x+k�1;Fk�1) � [f(xk�1)� f(x+k�1)℄[�k�1 � �+k�1℄ � 
F�2k�1 � 
F [�+k�1℄2;



21and x+k�1 is a

eptable for the �lter be
ause of (2.20). Sin
e this is not the 
ase,(3.20) 
annot hold and we must have that�+k�1 > (1�p
F )�k�1 = (1�p
F)�k:But Lemma 3.5 and the me
hanism of the algorithm then imply that(1�p
F)�k < �ubt�2k�1 < �ubt
20 �2k:Combining this last bound with (3.18) and (2.10), we dedu
e that�����1+�k < knkk � �us
�k � �us
�ubt
20(1�p
F )�2kand hen
e that �1��k > 
20(1�p
F )�����us
�ubt :Sin
e this last inequality 
ontradi
ts (3.16), our assumption that iteration k � 1 isunsu

essful must be false. Thus iteration k � 1 is su

essful and �k = �+k�1. Wethen obtain from (3.18), (2.10) and (3.9) that�����1+�k < knkk � �us
�k � �us
�ubt�2k�1 � �us
�ubt
20 �2k;whi
h is again impossible be
ause of (3.16) and be
ause (1�p
F ) < 1. Hen
e ourinitial assumption (3.18) must be false, whi
h yields the desired 
on
lusion. 2We 
ontinue to follow Flet
her et al. (2002a) and now distinguish twomutually ex
lusive
ases. For the �rst, we 
onsider what happens if there is an in�nite subsequen
e ofiterates belonging to the �lter.Lemma 3.11 Suppose that Algorithm 2.1 is applied to problem (1.1). Supposealso that AS1{AS3, (2.10) hold and (2.15) holds for k =2 R. Suppose furthermorethat jUj =1. Then there exists a subsequen
e fkjg � U su
h thatlimj!1 �kj = 0 (3.21)and limj!1�kj = 0: (3.22)Proof. Let fkig be any in�nite subsequen
e of U . We observe that (3.21) followsfrom Lemma 3.4. Suppose now that�ki � �2 > 0 (3.23)for all i and some �2 > 0. Suppose furthermore that there exists �3 > 0 su
h that,for all i � i0, �ki � �3: (3.24)



22Observe �rst that (3.21) and (2.10) ensure thatlimi!1 knkik = 0: (3.25)Thus (3.24) ensures that (2.12) holds for suÆ
iently large i and thus ki 62 R forsu
h i. Now, as we noted in the proof of Lemma 3.6,jmki(xki)�mki(xNki)j � �ubgknkik+ 12�umhknkik2;whi
h in turn, with (3.25), yields thatlimi!1[mki(xki )�mki(xNki)℄ = 0: (3.26)We also dedu
e from (2.15) and AS2 thatmki(xNki )�mki(x+ki ) � �tmd�2min � �2�umh ; �3� def= Æ > 0: (3.27)We now de
ompose the model de
rease in its normal and tangential 
omponents,that is mki(xki)�mki(x+ki) = mki(xki)�mki(xNki) +mki(xNki)�mki(x+ki ):Substituting (3.26) and (3.27) into this de
omposition, we �nd thatlim infi!1 [mki(xki)�mki(x+ki)℄ � Æ > 0: (3.28)We now observe that, be
ause ki 2 U n R, we know from the me
hanism of thealgorithm that (2.23) must hold, that ismki(xki)�mki(x+ki) < ��� ki : (3.29)Combining this bound with (3.28), we �nd that �ki is bounded away from zero fori suÆ
iently large, whi
h is impossible in view of (3.21). We therefore dedu
e that(3.24) 
annot hold and obtain that there is a subsequen
e fk`g � fkig for whi
hlim`!1�k` = 0:We now restri
t our attention to the tail of this subsequen
e, that is to the setof indi
es k` that are large enough to ensure that (3.14), (3.15) and (3.16) hold,whi
h is possible by de�nition of the subsequen
e and be
ause of (3.21). For theseindi
es, we may therefore apply Lemma 3.10, and dedu
e that iteration k` 62 Rfor ` suÆ
iently large. Hen
e, as above, (3.29) must hold for ` suÆ
iently large.However, we may also apply Lemma 3.8, whi
h 
ontradi
ts (3.29), and therefore(3.23) 
annot hold, yielding the desired result. 2Thus, if the �lter is updated at an in�nite subsequen
e of iterates, Lemma 3.2 ensuresthat there exists a limit point whi
h is a �rst-order 
riti
al point. Our remaininganalysis then naturally 
on
entrates on the possibility that there may be no su
h in�nite



23subsequen
e. In this 
ase, the �lter is un
hanged for k suÆ
iently large. In parti
ular,this means that the number of restoration iterations, jRj, must be �nite. In whatfollows, we assume that k0 � 0 is the last iteration at whi
h the �lter was updated.Lemma 3.12 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not o

ur and that jUj <1. Suppose also that AS1{AS3, (2.10)hold and that (2.15) holds for k =2 R. Then we have thatlimk!1 �k = 0: (3.30)Furthermore, nk satis�es (3.4) for all k � k0 suÆ
iently large.Proof. Consider any su

essful iterate with k � k0. Sin
e the �lter is not updatedat iteration k, it follows from the me
hanism of the algorithm that �k � �1 holdsand thus thatf(xk)� f(xk+1) � �1[mk(xk)�mk(x+k )℄ � �1��� k � 0: (3.31)Thus the obje
tive fun
tion does not in
rease for all su

essful iterations with k �k0. But AS1 and AS3 imply (3.3) and therefore we must have, from the �rst partof this statement, that limk2Sk!1 f(xk)� f(xk+1) = 0: (3.32)The limit (3.30) then immediately follows from (3.31) and the fa
t that �j = �kfor all unsu

essful iterations j that immediately follow the su

essful iteration k,if any. The last 
on
lusion then results from (2.10) and Lemma 3.1. 2We now show that the trust-region radius 
annot be
ome arbitrarily small if the(asymptoti
ally feasible) iterates stay away from �rst-order 
riti
al points.Lemma 3.13 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not o

ur and that jUj < 1. Suppose also that AS1{AS3 holdand (2.15) holds for k =2 R. Suppose furthermore that (3.10) hold for all k � k0.Then there exists a �min > 0 su
h that�k � �minfor all k.Proof. Suppose that k1 � k0 is 
hosen suÆ
iently large to ensure that (3.17)holds and that nk satis�es (2.10) for all k � k1, whi
h is possible be
ause of



24Lemma 3.12. Suppose also, for the purpose of obtaining a 
ontradi
tion, thatiteration j is the �rst iteration following iteration k1 for whi
h�j � 
0min24Æ�;s (1�p
F )�F�ubt ;�k135 def= 
0Æs; (3.33)where �F def= mini2U �iis the smallest 
onstraint violation appearing in the �lter. Note also that the in-equality �j � 
0�k1 , whi
h is implied by (3.33), ensures that j � k1+1 and hen
ethat j� 1 � k1 and thus that j� 1 62 R. Then the me
hanism of the algorithm and(3.33) imply that �j�1 � 1
0�j � Æs (3.34)and Lemma 3.7, whi
h is appli
able be
ause (3.33) and (3.34) together imply (3.12)with k repla
ed by j � 1, then ensures that�j�1 � �2: (3.35)Furthermore, sin
e nj�1 satis�es (2.10), Lemma 3.1 implies that we 
an applyLemma 3.5. This together with (3.33) and (3.34), gives that�+j�1 � �ubt�2j�1 � (1�p
F )�F: (3.36)We may also apply Lemma 3.9 be
ause (3.33) and (3.34) ensure that (3.12) holdsand be
ause (3.15) also holds for j � 1 � k1. Hen
e we dedu
e thatf(x+j�1) � f(xj�1)�p
F�j�1:This last relation and (3.36) ensure that x+j�1 is a

eptable for the �lter. Combiningthis 
on
lusion with (3.35) and the me
hanism of the algorithm, we obtain that�j � �j�1. As a 
onsequen
e, and sin
e (2.23) also fails at iteration j�1, iterationj 
annot be the �rst iteration following k1 for whi
h (3.33) holds. This 
ontradi
tionshows that �k � 
0Æs for all k > k1, and the desired result follows if we de�ne�min = min[�0; : : : ;�k1 ; 
0Æs℄: 2We may now analyze the 
onvergen
e of �k itself.Lemma 3.14 Suppose that Algorithm 2.1 is applied to problem (1.1), that �nitetermination does not o

ur and that jUj <1. Suppose also that AS1{AS3, (2.10)hold and (2.15) holds for k =2 R. Thenlim infk!1 �k = 0: (3.37)



25Proof. We start by observing that Lemma 3.12 implies that the se
ond 
on
lusionof (2.10) holds for k suÆ
iently large. Moreover, as in Lemma 3.12, we obtain(3.31) and therefore (3.32) for ea
h k 2 S, k � k0. Suppose now, for the purpose ofobtaining a 
ontradi
tion, that (3.10) holds and noti
e thatmk(xk)�mk(x+k ) = mk(xk)�mk(xNk ) +mk(xNk )�mk(x+k ): (3.38)Moreover, note, as in Lemma 3.6, thatjmk(xk)�mk(xNk )j � �ubgknkk+ �umhknkk2;whi
h in turn yields that limk!1[mk(xk)�mk(xNk )℄ = 0be
ause of Lemma 3.12 and the se
ond 
on
lusion of (2.10). This limit, togetherwith (3.31), (3.32) and (3.38), then gives thatlimk!1k2S [mk(xNk )�mk(x+k )℄ = 0: (3.39)But (2.15), (3.10), AS2 and Lemma 3.13 together imply that, for all k � k0mk(xNk )�mk(x+k ) � �tmd�kmin ��k�k ;�k� � �tmd�min � ��umh ;�min� ; (3.40)immediately giving a 
ontradi
tion with (3.39). Hen
e (3.10) 
annot hold and thedesired result follows. 2We may summarize all of the above in our main global 
onvergen
e result.Theorem 3.15 Suppose that Algorithm 2.1 is applied to problem (1.1) and that�nite termination does not o

ur. Suppose also that AS1, (2.10) AS3 and AS2 hold,and that (2.15) holds for k =2 R. Let fxkg be the sequen
e of iterates produ
edby algorithm. Then either the restoration pro
edure terminates unsu

essfully by
onverging to an infeasible �rst-order 
riti
al point of problem (2.16), or there isa subsequen
e fkjg for whi
h limj!1 xkj = x�and x� is a �rst-order 
riti
al point for problem (1.1).Proof. Suppose that the restoration iteration always terminates su

essfully.From AS3, Lemmas 3.11, 3.12 and 3.14, we obtain that, for some subsequen
e fkjg,limj!1 �kj = limj!1�kj = 0: (3.41)The 
on
lusion then follows from Lemma 3.2. 2
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Figure 6.1: Flow
hart of the algorithm.


