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Michael James David Powell was a British numerical analyst who was among the
pioneers of computational mathematics. During a long and distinguished career,
first at the Atomic Energy Research Establishment Harwell and subsequently as the
John Humphrey Plummer Professor of Applied Numerical Analysis in Cambridge,
he has contributed decisively toward establishing optimization theory as an effective
tool of scientific enquiry, replete with highly effective methods and mathematical
sophistication. He has also made crucial contributions to approximation theory, in
particular to the theory of spline functions and of radial basis functions. In a subject
that roughly divides into practical designers of algorithms and theoreticians who seek
to underpin algorithms with solid mathematical foundations, Mike Powell refused to
follow this dichotomy. His achievements span the entire range from difficult and
intricate convergence proofs to the design of algorithms and production of software.
He was among the leaders of a subject area which is at the nexus of mathematical
enquiry and applications throughout science and engineering.

1 Early days

Mike Powell was born in Kensington, London on 29th July 1936 to a professional
family which, while abounding in solicitors and Church of England, has had also a
mathematical connection in Baden Powell FRS (1796–1860), a Savillian Professor at
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Oxford, a renowned theologian and the father of Robert Baden-Powell, the founder
of Boy Scouts. His childhood – war years – was spent in London and Essex.

Mike’s father William was in the forces during much of Mike’s early childhood
and the main burden of his upbringing fell on his mother Beatrice. She was a warm
and engaging woman and took great interest in Mike’s education. At the age of
seven he was sent to Frensham Heights School in Farnham, Surrey. Frensham Heights
School was a progressive establishment and Mike started there to discover the joys of
mathematics, while at home much of his early preoccupation was with mathematical
games and puzzles. Seven years later, though, and reflecting the unhappiness of his
more traditional parents with the progressive education at Frensham Heights, Mike
transferred to Eastbourne School. This was a much more traditional, middle-ranking
Public School. Having moved to Eastbourne in the middle of his studies, Mike
needed to catch up socially, but this was assisted by his very active and successful
performance in a wide range of sports. Much of Mike’s mathematical education in
Eastbourne and his commitment to a mathematical career are due to the interest and
efforts of his mathematics tutor there, Paul Hirst.1 Interestingly enough, three future
professors of Numerical Analysis (Beresford Parlett from University of California at
Berkeley, Peter Graves-Morris from University of Kent and Mike himself) studied at
roughly the same time at the fairly small Eastbourne School.

In 1956, having completed his National Service as a junior officer in Royal Ar-
tillery, Mike won a scholarship at Peterhouse, Cambridge. He completed his under-
graduate studies at the Faculty of Mathematics within two years but, while widely
predicted a First, achieved a Second in the Finals. A likely reason is that he has had
a heavy cold during the Tripos exams but, one way or the other, it was a setback.
This caused Mike to abandon (so he thought) an academic career and, instead of
embarking on doctoral studies, complete a one-year Diploma in Computer Sciences,
focussing on numerical calculations and with an eye on an industrial career. There
might be another reason, though. As a young child, Mike has had a bout of en-
cephalitis. This involved a long hospital stay and has had some ongoing after effects.
It might have also influenced the trajectory of his eventual career, well after the
effects of illness have completely dissipated: as a child, he was told by somebody (in
a unique mixture of ignorance and irresponsibility) that one effect of encephalitis is
that his brain is likely to deteriorate in his late teens – this unfounded and stupid
rumour might have eventually contributed to his decision not to follow his under-
graduate studies by a research degree. A Fellowship of the Royal Society, a Foreign
Membership of US National Academy of Sciences, a Corresponding Membership of

1Mike next encountered Paul Hirst in Cambridge in 1970ties, where the latter was Professor of
Education.
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Australian Academy of Science, a Cambridge professorship, a long list of prestigious
prizes and a mathematical œuvre of lasting impact: some deteriorating brain!

Mike met Caroline Henderson, his future wife, in Cambridge. A romance blos-
somed and they were married in 1959. This was a partnership and love that lasted
a lifetime and was always at the very core of Mike’s life.

2 The Harwell years

The Harwell years span the period of 1959–76 when Mike was employed at AERE
Harwell, a government funded research laboratory founded in 1945 to promote the
peaceful use of atomic energy, and in particular to support the new generation of
nuclear power stations. Mike was a member of Theoretical Physics Division. Within
TP there was what would now be called a Numerical Analysis group, whose remit
was to carry out fundamental research in numerical analysis, to write computer
subroutines to allow existing and new techniques to be available to other researchers
and technical staff at AERE, and to assist in promoting the most effective use of this
methodology.

The Numerical Analysis group was initially led by Jack Howlett, along with
Alan R. Curtis, with interests in the numerical solution of differential equations, and
Mike, whose interests were in methods for optimization and approximation theory.
There were also support staff whose main remit was to maintain a Fortran library
of subroutines and advise on its use. Roger Fletcher with interests in optimization
joined the group in February 1969 and later left in October 1973. John K. Reid with
interests spanning differential equations, linear algebra and Fortran standards joined
the group in 1969.

In the first few years at Harwell Mike was not free of frustrations, not least
with the local computing facilities, and at a certain state contemplated seriously
abandoning his job in favour of a career as an actuary. Fortunately, Walter Marshall
(later Lord Marshall of Goring, FRS), the head of the TP Division, stepped in to
prevent this nonsense.

Mike’s early work was in a range of calculations in atomic physics and chemistry,
but it is for his contributions to optimization that he became justly famous. Not
just for his theoretical contributions, for he was an outstanding mathematician and
proved many important results, but primarily for his insight in developing many new
and effective numerical methods and their implementation as Fortran subroutines.
This attitude towards doing useful and relevant research pervaded the entire group,
largely due to Alan and Mike’s influence.
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To tell the optimization story, one has to understand the state of optimization
provision in the 1950s. There were two main strands. Commercial and defence
interests developed the idea of linear programming [A] and related topics, involving
the minimization of a simple linear objective function subject to side conditions
(constraints) such as linear equations and simple bounds on the variables. The other
strand was nonlinear optimization involving nonlinear functions, both in the objective
function to be minimized, and in the constraint equations. Both strands have had
their own challenges, albeit of a different nature. Mike’s interests were in nonlinear
optimization, and initially in unconstrained optimization. The earliest methods had
their inception in the physics community. One method, based on the iterative use
of second order Taylor series expansions, is now universally referred to as Newton’s
method. But it was not popular at that time, mainly because of the need to derive
and evaluate both first and second derivatives of the objective function. Another
method, now called Steepest Descent, required only first derivatives, but was usually
ineffective. Around the 1950’s industrial companies such as ICI and Rolls Royce
were becoming interested in minimizing what could be highly nonlinear functions,
often for which derivatives were difficult or even impossible to obtain (derivative-free
optimization). Such companies began to set up their own research groups to develop
suitable methods, often of an heuristic nature.

Mike first presented a method for derivative-free optimization that improved on
a method of Smith based on the concept of conjugate directions. Although no longer
used, being superseded by other methods that Mike and others developed much
later in his career, it helped focus the community attention on the concept of conju-
gacy as a way of building effective methods, notably the idea of conjugate gradients
which was becoming known at about that time. He was also involved in developing
methods for nonlinear least squares data fitting, for which there was considerable
demand at Harwell and elsewhere. These included a derivative-free method [9, 10,
48] and somewhat later a ‘dog-leg trajectory’ [34,35] that enabled the construction
of a convergence proof of the so-called Gauss–Newton method .

However the big breakthrough in his career, and for the subject in general, came
in 1962. Bill Davidon, a mathematical physicist at Argonne National Laboratories,
had written a somewhat hard-to-read report about a new ‘variable metric’ algorithm,
of which Mike had obtained a copy. He was able to see through the complexities of
the presentation and understand why the basic idea would have immense promise. At
about this time he was scheduled to give a seminar at Leeds University to talk about
his derivative-free method, but changed his title at the last minute to talk about
Davidon’s work. On arrival at Leeds he found that Roger Fletcher had also obtained
a copy of the report and was writing a paper for the Computer Journal , presenting
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some results showing the effectiveness of the method. So they pooled their resources
and submitted a joint paper. The method became known as the DFP method, and
caused a significant improvement in both problem size and reliability that could be
obtained. Mike would relate a story that he was presenting a paper at a meeting
in London where participants were speaking of the ‘curse of dimensionality’ that
precluded the solution of problems with as few as ten variables, whereas he was able
to present results in which problems with hundred variables were solved in quick
time. This was an important advance given the limited capabilities of computers
at that time. As time has progressed, this and similar methods are now able to
accurately solve much larger problems. The methods only require first derivatives to
be available, and approximate the matrix of second derivatives (the Hessian matrix)
required by Newton’s method, using information derived from differences in first
derivatives. So the methods have come to be known as quasi-Newton methods and
also have significance for many other aspects of optimization.

DFP: Bill Davidon, Roger Fletcher FRS and Mike, Trinity Hall, Cambridge 1981.

Another important advance from Mike came in the late 1960s. This related
to optimization with nonlinear constraints. One common approach has been to
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convert the problem into an unconstrained problem, encouraged by the improving
effectiveness of such methods. At that time the idea of a penalty function was usual,
in which an increasingly large penalty for violating any constraint is added into
the objective function. Mike saw that the correct solution could be obtained more
effectively and reliably by a certain shift of origin in the constraint function. Based
on his experience as a gunnery officer in national service he drew the (not entirely
correct) analogy of getting a projectile to reach the target by shifting the angle of the
gun barrel, rather than by increasing the initial thrust of the projectile. The shift
of origin was shown to be related to the classical concept of Lagrange multipliers,
and such methods became known as augmented Lagrangian methods. The concept
is still very relevant at the present day.

Around the 1970s there was intense interest in the community in elucidating
the theoretical properties of algorithms for the unconstrained optimization of non-
quadratic functions, and Mike played an important part in this research. Practical
experience showed that the performance of existing derivative-free algorithms was
disappointing and could be bettered by using finite-difference versions of gradient
algorithms. Indeed, Mike constructed an ingenious example [54] which showed that
the early coordinate search algorithm could potentially fail to converge. So most of
the interest was focussed on two main types of algorithm which require the gradient
vector to be calculated. One type comprises the conjugate gradient algorithms, the
attractive feature of which is that they avoid the need to store a Hessian approxi-
mation matrix, and so are potentially applicable to solve extremely large problems.
And on the other hand there are quasi-Newton algorithms which do store a Hessian
approximation, but are seen in practice to converge much more rapidly. Mike showed
that conjugate gradient algorithms could never converge superlinearly, unless peri-
odic restarts along the steepest descent direction were made. He also suggested [67]
a restart technique which performed better than restarting along steepest descent.
But restarts are ineffective for very large problems, and arguably this is because of
such results that there is now little interest in the conjugate gradient algorithm for
non-quadratic minimization, being supplanted by the more recent Barzilai–Borwein
algorithm and generalisations thereof.

The possibility of proving convergence of quasi-Newton algorithms was a serious
challenge, and Mike contributed a great deal to this study over the years. His proof
for the DFP algorithm with an exact line search [45] was the first such (highly non-
trivial) proof, and was a significant technical achievement. It was built upon in
subsequent research, including other contributions from Mike [60, 71]. But perhaps
his most influential theoretical contribution was to analyse a very simple two-variable
quadratic case with an inexact line search, showing why the DFP algorithm could
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perform significantly worse than the competitor BFGS algorithm, a result which
had been observed in practice. This has contributed to the now almost universal
acceptance of the BFGS method as the method of choice in general. Mike also
proposed another formula for updating the Hessian approximation, which became
known as the PSB update. A version of the PSB update for sparse Hessian matrices
has also proved useful. Mike also played a significant part in researching Newton
and quasi-Newton methods for solving systems of nonlinear equations. A product of
heated discussions in the Harwell canteen was the Curtis–Powell–Reid method [49]
for constructing a sparse Jacobian estimate by finite differences.

Mike’s interest and activity in approximation theory started in Harwell, fostered
by practical problems arising with optimization algorithms. For the sake of an un-
interrupted narrative, they are surveyed in Subsection 4.2.

3 The Cambridge years

In 1976 Mike Powell was appointed to the John Humphrey Plummer Chair in Ap-
plied Numerical Analysis at the Department of Applied Mathematics and Theoretical
Physics in Cambridge.

These dry facts require some elaboration. The John Humphrey Plummer Foun-
dation has been established in 1929 at the University of Cambridge to dispense funds
left by a Mr Plummer of Southport, Lancashire, “on perpetuity for the promotion
of education in Chemistry, Biochemistry, Physical Science or other allied subjects in
the University of Cambridge”. The Foundation endowed a small number of Profes-
sorships, each of an annual value of £1200 (fortunately, pegged to inflation), based in
diverse science or medicine departments. Each appointment was for a single tenure
and, upon being vacated, the professorial chair would be typically reincarnated in a
different department, following the usual unfathomable rules of Cambridge politics.

Sir James Lighthill FRS was the prime mover in establishing the chair and in
persuading Mike to come to Cambridge. The chair was set up with either James
Wilkinson FRS or Mike in mind. Jim did not want to leave the National Physical
Laboratory, so Mike was elected.

The Department of Applied Mathematics and Theoretical Physics has been estab-
lished in 1959 by George Batchelor FRS, who remained its Head until his retirement
in 1983. Consistently with its name, it brought together (not always in perfect har-
mony) applied mathematicians and theoretical physicists, although it is only fair
to point out that during Batchelor’s headship ‘applied mathematics’ meant mostly
‘applied fluid mechanics’. George was a strong – some would say high handed –
individual, whose vision what applied mathematics is all about and what applied
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mathematicians are supposed to do brooked little dissent. He built a department of
great international distinction and excellence, yet focussing on just one part of the
wide contemporary spectrum of applied mathematics. His idea of the new applied
numerical analysis professor was of an individual who will help local fluid dynamicists
in their ‘numerical simulations’. He could not have been more wrong.

Mike Powell was singularly uninterested in fluid dynamics (computational or oth-
erwise) or in numerical solution of differential equations. Neither was he interested
in George Batchelor’s plans or visions. As at Harwell, his dream scenario was to sit
in his office and busily scribble on lined paper, or alternatively run FORTRAN pro-
grams in the computer room. By his own admission, he was a loner: “I collaborate
far less than other people. It is very helpful sometimes to be able to talk things over
with somebody else, but my main interest in mathematics is the problems themselves
and in a way I’d quite like to crack them myself.” [A]. Mike was never interested
in building a large group and truly loathed any time-wasting on administration and
departmental duties, and this made him largely immune to George Batchelor’s sticks
and carrots.

In fairness, the department was much smaller in late 1970s and the number of
professors smaller still – this was in the old days, when the standard ‘career grade’
in Cambridge was a University Lectureship. This meant that Mike had the clout
to shape his working life according to his own priorities, while George was realistic
enough to recognise and respect an immovable object.

This working life was spent mostly behind a closed door, in the sanctity of S2, his
office, sitting behind a large desk with an immaculately empty black top, except for
few sheets of lined paper, covered with dense scribbles and corrections in his char-
acteristic long hand. The group was small, few research students and the occasional
visitor: “. . . I certainly don’t want to talk to people and say how are you getting on
more often than maybe once a month, something like that. My preference is to find a
nice piece of mathematics or an idea for a new algorithm and to get stuck into it, and
I like my visitors to do that too.” [A]. After two years the team was joined by Arieh
Iserles, who has been elected to a Junior Research Fellowship at King’s College, and
whose interests in numerical differential equations complemented Mike’s.

Arieh’s arrival has demonstrated two features of Mike’s character which coex-
isted, sometimes in a measure of tension, with his wish to be just allowed quality
time with his theorems, algorithms and programs: his responsibility and generos-
ity. Once Mike believed that it was his obligation to do something – be it teaching,
administration or taking care of his group – he would suppress his grumbles and
discharge his responsibilities in a truly exemplary fashion, never taking shortcuts.
Thus, having realised that, while Arieh displayed some potential to become a useful
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mathematician, his level of mathematical exposition left much to be desired, Mike
declared that he wishes to read and comment upon everything Arieh has written up.
Only much later Arieh realised what a painful exercise it was for Mike Powell to read
sheaves of (badly written) research on computational differential equations! Yet, he
read them carefully, with his copious comments filling the margins and every empty
space.

Mike displayed similar commitment to his research students (with the caveat
that at least the subject matter of their work interested him). His research time
was precious – but never too important to listen to them, discuss their ideas and
read their work. While Mike could be abrupt with colleagues, his patience with
students was exemplary. Moreover – and this is crucial in understanding the huge
devotion of Mike’s students and colleagues – while he was a self-declared loner at
work, he always had all the time in the world for them outside working hours. At
Mike and Caroline’s home his students, colleagues and visitors were always made to
feel members of the extended Powell family and were always welcomed with great
warmth and hospitality. Arieh Iserles remembers the moment, at a conference dinner
in United States, when his wife exclaimed “I recognise almost everybody here and
we met them all at Mike and Caroline!”.

Insofar as departmental responsibilities – whether teaching or administration –
were concerned, Mike’s basic attitude was that they are a form of cruel and unusual
punishment, to be avoided whenever possible. At the same time he recognised his
obligation to share the burden and, once he undertook any departmental respon-
sibility, he discharged it in an outstanding, almost obsessively exemplary fashion.
His undergraduate lectures were always the epitome of logic, precision and clarity
and their syllabi form to this day the spine of the schedules of numerical analysis
courses in Cambridge Mathematical Tripos. These lectures were accompanied by
meticulously written lecture notes (two sides of hand-written A4 per lecture) which
were the embodiment of lucidity. His two-year Chairmanship of the Faculty Board
of Mathematics displayed exemplary leadership and diligence.

Soon after arrival in Cambridge, Mike was considered for a Professorial Fellowship
at Peterhouse, his old college, but this did not work out mostly because the sole
mathematician on the committee – little in eminence but great in ‘purity’ – declared
that Mike is “not a real mathematician”. Soon thereafter this had a happy ending,
Mike having been offered a Fellowship at Pembroke College and in 1979 became
a Professorial Fellow there. Mike enjoyed his time at Pembroke and the friendly
atmosphere there immensely. Playing bowls after lunch on Pembroke’s lawn became
a constant feature of his daily routine.

In 1979 Mike was awarded by University of Cambridge a Doctorate of Science
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(Sc.D.) in recognition of his published work.
While Mike regarded all non-research duties of academical life as a distraction

from the research he loved, this is true a forteriori with regard to obligations outside
the department, be it college, university, research council or international committees
and bodies. These he simply avoided as much as possible. “I think if all mathemati-
cians would do what they can do best and try to make valuable contributions then
that would help the subject enormously.” [A] – for Mike “what they can do best”
self-consciously did not include committee work and he shied away from deciding for
others how to do their work or which research areas should be supported.

The one exception was editorial work, in particular his enormous investment of
time and effort as (in tandem with Bill Morton) the founding Editor-in-Chief of
IMA Journal of Numerical Analysis. His attention to detail was exemplary (and
time consuming), Associate Editors were kept on a fairly short leash and Mike’s
ethos of quality and relevance as the sole determinants for the acceptance of papers
established IMAJNA in short order as one of world’s leading numerical analysis
journals.

Mike had a highly personal attitude to gadgets and accoutrements of modernity.
At Harwell he was the last to use a Facit hand calculator and in Cambridge he was
the last DAMTP user of punched cards: for two years the punching-card reader
in the-then computing room was maintained for his exclusive use. However, lest
this implies hard-core traditionalism, he was also the first individual at DAMTP to
acquire a workstation (characteristically, not for himself but for the use of all group
members). This was the camnum SUN3 workstation which became an object of
DAMTP lore. After a while, workstations proliferated in the Silver Street building,
camnum moved to Mike’s office – and there it stayed forever, surviving the move to
the Centre for Mathematical Sciences at Wilberforce Road. Parts have fallen into
disuse and were replaced, old workstations were cannibalised, but camnum, by then
a contraption of many origins rather than a SUN product, went on. And there,
tapping laboriously with two fingers, to his last day he used the antique UNIX vi

utility to key-in his programs and correspondence. For Mike’s attitude had nothing
to do with fashion, everything with functionality. Change required good argument,
but once that argument has been made, he was all in favour. And, as always, he
cared little for what others thought.

The story of Mike in Cambridge would be incomplete without mentioning his
dedication to sport. Mike was physical but also very competitive and sport was for
him an ideal pastime and hobby. His favourite sport, from his schooldays onwards,
was hockey. In Eastbourne, Harwell and Peterhouse he played hockey (and played
it well), while at Harwell he had passed many a night rally driving and navigating
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and numerous evenings playing bridge. In his early forties he moved from the first to
the second hockey team in Cambridge, finally giving up in favour of golf. Together
with Caroline, they joined the Gog Magog Golf Club, and soon it became a focus for
much of Mike’s weekend (and the occasional weekday) activity. He played golf very
competitively with a highly unorthodox swing that brought him success and with
great skill. The ‘Gogs’ was also at the centre of Mike and Caroline’s social activities
and they have made there many enduring friendships. Ultimately, he went on to
become the club Captain in 2005, followed by Caroline as Ladies Captain.

4 Research in Cambridge

The two threads running through Mike Powell’s research in Cambridge, like in Har-
well, were optimization and approximation.

4.1 Optimization

Arriving in Cambridge in the fall of 1976 , Mike was already an internationally
leading figure in optimization. Both his theoretical and algorithmic contributions
were widely cited among the researchers in the field. His main interests, at this time,
were variable-metric methods, see [66], nonlinear conjugate gradients [67] augmented
Lagrangian methods [69].

It is this line of research that he actively pursued after his arrival in Cambridge,
as he was investigating another forward step in methods for solving nonlinearly con-
strained problems, based on sequential quadratic programming. While not the orig-
inator of the idea (Han and Biggs have had already made some inroads), Mike pro-
vided, in his seminal papers [71, 72], a clarification and implementation as well as a
convergence theory for the method which very quickly made it mainstream research
worldwide. Following his words, his proposal is “a variable metric method for con-
strained optimization”, in the sense that it approximates Newton’s method applied
to the first-order optimality conditions of the constrained problem in way similar to
that used by variable metric for unconstrained problems to approximate Newton’s
method on the same conditions for the unconstrained problem. The main idea is
that the first-order conditions for the constrained problem can be viewed as the op-
timality conditions of a specific quadratic programming problem. This problem is
defined, at a given iterate of the method, as that of minimizing a quadratic approx-
imation of the Lagrangian function subject the locally linearized constraints. The
remarkable feature of the method is that it provides not only a new approximation
of the problem’s solution, but also a new approximation of the associated Lagrange
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multipliers. Moreover, since it mimics variable metric methods for the unconstrained
case, it also enjoys a similarly fast local convergence rate.

It is difficult to overestimate the influence, both in the short and long terms, of
this important contribution. The class of methods introduced (later known as SQP,
for Sequential Quadratic Programming) still forms the backbone of today’s method-
ology for solving nonlinearly constrained optimization problems, and the ideas de-
veloped in [71, 72] have resonated in the international optimization community for
very many years, giving birth to countless variants, reinterpretations and computer
implementations.

It is interesting to note that Mike’s papers on SQP emphasized the imperative to
construct convex approximations of the Lagrangian function by insisting on choosing
a positive-definite matrix to define the underlying quadratic optimization subprob-
lem. As for the unconstrained case, this in turn requires that the change in first-order
derivatives can be interpreted (along the step taken) as a change in a convex func-
tion. Unfortunately, this is not always possible in the presence of constraints, and
a special technique (sometimes called partial updating) was designed by Mike to en-
force the positive-definite nature of the updated approximation to the Lagrangian’s
Hessian matrix. As the name ‘partial updating’ suggests, this implies that it may be
impossible to fully incorporate the new curvature information at a given iteration.
This small blemish was clearly recognized by Mike, but his faith in the advantages
of maintaining convex approximations was unabated, even in later years when SQP
methods using true second derivatives were introduced. Moreover, developing robust
SQP codes implied efficiently solving quadratic programs, a subject he embraced as
a challenging necessity [89,93].

Mike’s interests for problems involving many variables, already manifest in his
papers about nonlinear conjugate gradients [69] and later [96], led him to suggest this
research topic to a young PhD student, Philippe Toint, who arrived in Cambridge
from Belgium on Royal Society’s funding in January 1977, after waiting a year dur-
ing Mike’s move from Harwell to Cambridge. The idea was to extend the variable
metric ideas to structured problems with structurally sparse Hessian matrices. His
interactions with that student were constant, at a time where Mike, despite having
got his degree in Peterhouse, was not a member of any college. While the subject
of sparse quasi-Newton methods was eventually developed mostly by Toint, it also
involved Mike in three interesting contributions [73, 77, 83], the first of which is
an extension to symmetric matrices of his famous paper with Curtis and Reid on
estimating sparse Jacobians [49].

From then on, Mike’s research in optimization focused mostly on two main
themes. The first was to establish sound convergence theory for a variety of meth-
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ods of interest among researchers in optimization as well as users. This includes
global convergence (in the sense of convergence of a method’s iterates to a first-order
critical point from any starting point, not to be confused with the convergence to
a global minimizer) for the trust-region method (which he pioneered in [35]) in a
series of papers [94, 124, 151, 162, 171, 173, 176] scattered from 1984 to his very
last paper in 2015. Some of these papers were in collaboration with his then-PhD
student Ya-xiang Yuan.

Yuan arrived in Cambridge in 1983 and in 1988, having completed his doctoral
studies under Mike’s supervision, followed by Rutherford Research Fellowship at
Fitzwilliam College, returned to China. He became there arguably the most influen-
tial expert in optimization, a founder of the Chinese school in optimization. In 2011
he was elected to the Chinese Academy of Sciences. He was often visited in Beijing
by Mike.

Mike and Ya-Xiang Yuan – the latter no longer a research student but an Academician of

Chinese Academy of Sciences, in 2013.

Further Mike’s papers in this area are dedicated to the analysis of local rates of
convergence of variable metric matrices [94] and iterates [100,158]. The penultimate
of these papers is quite well known because it displays Mike’s remarkable talent
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for producing intriguing counter-examples to sometimes widely held beliefs (another
example of this skill can be found in [79]).

The second main theme, and probably that closest to his heart for many years,
was the development of robust and efficient software for solving optimization prob-
lems without using derivatives of the involved (typically user-supplied and possibly
expensive) nonlinear functions. Such problems occur very frequently in practice (of-
ten under the name of “black box optimization”), and Mike’s many contacts with
practitioners had convinced him of the high practical value and relevance of the topic.
While he had already considered the topic in his Harwell days [9,11], Mike’s new idea
was to build a model of the function to be minimized, the work on the model being
cheaper and not involving expensive evaluations of the problem’s true functions. He
first attempted to build such models using radial basis functions (possibly sparking
his interest in this field in which he later made substantial contributions, see Sub-
section 4.2), but this did not bring, in the optimization context, the results he had
hoped for. He then turned his attention to models constructed by multivariate poly-
nomial interpolation, generating a long stream of famous papers and conference talks
on various algorithms for unconstrained, bound-constrained and linearly constrained
optimization [107, 121, 138, 153, 161, 162, 163, 164, 166, 168, 173, 174]. A recurring
theme of many of these papers is a continuously improving view of how to construct
second-order information in objective function models. Giving full attention to ev-
ery detail of the evolving algorithms and tirelessly improving the associated (freely
available) codes, Mike became the most prominent advocate of the topic and one of
its key actors. Maybe as a side effect of this remarkably strong focus, his involvement
(and interest) in more theoretical questions in optimization slowly decreased over the
years, in favour of a staunch defence of the more practical aspects of the algorithms
and their computer implementations.

Of course they were distractions from this main path of research. One of the
most noticeable came when Karmarkar presented his famous algorithm for linear
programming in the International Symposium on Mathematical Programming in
Boston, July 1985, creating the entire field of interior-point methods. Mike could
not resist giving some thought to the subject, in particular showing in a famous
example (once more) that the complexity of Karmarkar’s methods was not always
as good as expected [122, 132, 134]. He also contributed to the nascent field of
interior-point method (more specifically, log-barrier methods) in [136, 142], as well
as to various other optimization topics, such as linear algebra questions of interest in
the optimization [82, 107, 121] exact penalty methods [103] and nonlinear equations
[95].

This overview of Mike’s activity as an optimization expert during his years in
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Cambridge would be incomplete if one forgets his impressive and continuous ped-
agogical effort. Although, quite surprisingly and due to the vagaries of Cambridge
Mathematical Tripos, he never gave a course on optimization in Cambridge itself, he
wrote, for the general international community a very large number of review and
survey papers on various aspects of the field [46, 75, 88, 91, 108(partim), 109, 114,
120, 128, 153, 168, 172]. These have helped and shaped many generations of young
researchers, and remain, even after many years, truly informative and remarkably
insightful.

4.2 Approximation

We now outline the vast contributions of Mike’s to approximation theory both in
Harwell and Cambridge. Mike has worked most influentially on approximation with
uni- and multivariate polynomial splines, very profound and ground-breaking on
radial basis functions (themes included convergence, fast algorithms for their com-
putation or evaluation, Krylov-space methods, thin-plate splines), rational functions,
`1-approximation, best Chebyshev approximations and convex or monotone approx-
imations. As was typical for him – we have remarked that before – Mike’s interests
particularly extended to convergence questions, efficient and accurate numerical com-
putations and implementations.

Mike has written a first-class textbook on approximation theory (Approximation
Theory and Methods , Cambridge University Press, [78]), based on his Cambridge
Mathematical Tripos lectures.

The book includes new results (or new, highly accurate, streamlined proofs of
previous results), very well thought-out problems (we always remember his emphasis
on considering and solving problems, this interest having started with him even as
a boy), and it pays attention to computational considerations in Mike’s typically
precise and clear manner.

It covers mostly univariate approximation theory, and within that characterisa-
tion theorems for best approximation, polynomial interpolation and approximation,
rational approximation, splines, interpolation, error estimates and convergence re-
sults. It is written in Mike’s typical most readable style, more explanations and less
formulæ to make for a particularly fluent and clear text. Speaking about clarity and
style, many of us will always remember not only the quality of Mike’s writing but
also his remarkable talks using coloured hand-written slides in his typical long-hand
writing with carefully and systematically colour-coded texts and formulæ.

Some of the early Mike’s research contributions in univariate approximation the-
ory covers best uniform approximation and the so-called exchange algorithm. A few
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years later, rational Chebyshev approximations are considered using the ordinary
differential correction (ODC) algorithm. Another use of rational approximations is
studied by Mike with Arieh Iserles and it regards the approximation theory underly-
ing A-stable methods for numerical ordinary differential equations. There, a rational
approximation of the same (polynomial) form is sought as the one mentioned earlier,
approximation the exponential function. Such approximation is called ‘maximal’ if
its error function has m + n + 1 zeros with non-negative real part. If its error is
O(xm+n+1−k) , the approximation is by definition in the set En,m,k. The two authors
establish in [81] that a maximal approximation is A-acceptable if and only if it is
either in En,n,k for k at most two, or in En,n−2,0, or in En,n−1,k for k at most one.

A further contribution to approximation theory in the `1 norm concerns the dis-
crete test choice for functions from a space A of continuous approximations. Here,
the conditions for the solution of the equivalent linear programming problem (refer-
ring to the previous subsection, again a nice link between approximation theory and
optimization) are expressed in terms of the data on a finite set [69].

Mike wrote another article simultaneously related to optimization and approxi-
mation theory with Ya-Xiang Yuan in 1984 [95] that concerns `p-approximations for
p either one or infinity. Here solutions are sought by iterative methods providing
superlinear convergence of overdetermined nonlinear functional equations.

The trust region algorithms (see Subsection 4.1 here) incorporate a step length
restriction by radii and decide on increasing or decreasing the radius by comparing
the actual reduction of the objective function with the predicted reduction. Using
the ratio of these as a criterion for changing the radii – with the goal of achieving
global convergence – is a method introduced by Mike. Moreover, see also the previous
subsection, a trust region scheme modifies the Hessian in the iteration step by adding
a multiple of the identity matrix, giving a bias towards the steepest descent direction.

With co-author research student Ioannis Demetriou in the articles [125, 126],
least-squares smoothing of univariate data was carried out to achieve piecewise mono-
tonicity and to minimize the sum of squares of the required changes to those data
providing non-negative second divided differences. A dynamic programming proce-
dure is given for minimising the global `2-error. The principal advance in this work
is that a recursive scheme has been found to reduce efficiently the number of data to
be considered when finding the optimal knots which are integers.

Much of Mike’s important work within approximation theory was concerned with
splines: univariate and then mostly bivariate, radial function spline-like functions etc.
In [25] for example, he considered norms of univariate polynomial spline operators
and the deterioration of the Lagrange functions’ localisation along the real line when
their polynomial degrees grow. In [27], again localisations of spline approximations
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were analysed, but now in the context of weighted least-squares approximations.
The localisation can even be improved when the weighted least-squares norm of

the error is augmented by the discrete `2-norm of the coefficients, again weighted
suitably. Divided differences – these being incidentally one of the approaches taken
often from Mike’s toolbox – of the approximation are taken into account too.

In [30], a weighted sum of squares of the discrete error function of an approxi-
mation plus a smoothing term is considered. It is to be minimized again by a cubic
spline, except that now it has free knots. Splines of arbitrary degree and using a
number of knots are analysed, for approximations with respect to standard norms
without weights in [21], where they should minimize the continuous Euclidean error
between the approximation and a given bounded square-integrable approximated f ,
defined over an interval. The error functional is minimized – here of course we see
Mike’s expertise in optimization again – by a minimization method from [8].

So-called optimal interpolation is the subject-matter of a paper [61], where a
minimal c(x) for all x is sought such that for a given non-negative integer k and for
a function f which is not a polynomial of degree less than k the pointwise error is at
most c(x)‖f (k)‖∞, the approximation being required as a linear combination of the
values of f at the data points of which we have at least k.

We next turn our attention to multivariable approximations. In [66] a review
of bivariate approximation tools is given, e.g. tensor-product methods derived from
univariate schemes, considering interpolation and other linear conditions, i.e. least-
squares. Both equally-spaced and scattered data are addressed. Piecewise polyno-
mials of degree one and higher are discussed, as well as Shepard’s method, moving
least-squares and natural neighbourhood interpolations.

In a joint work [67] with Malcolm Sabin, Mike sought a globally continuous
piecewise quadratic two-dimensional spline approximation, given function values and
first partial derivatives at each vertex of a specified triangulation of a domain. This
ended up in the celebrated Powell–Sabin split, where each such triangle is divided into
either six or twelve sub-triangles with interior continuous differentiability conditions.
The latter are exactly suitable (nine conditions, the right number of conditions for
the degrees of freedom) for the aforementioned six sub-triangles, otherwise normals
on edges are required and they may be computed by linear interpolation. The edges
of the interior triangles go from the midpoints of the ‘big’ edges to the circum-centre
of the triangle. The triangles are always acute. As a result the midpoint in the ‘big’
triangle is the intersection of the normals at the midpoints of the big edges. Therefore
this midpoint of the big triangle is in the plane spanned by the points between it
and the edge’s midpoint and that gives the required continuous differentiability. The
Powell–Sabin split is used most frequently in finite elements and CAGD.
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In [154], again in the shared space of optimization and approximation theory,
Mike considered an optimal way of moving a sequence of points onto a curve in
two-dimensional space. The idea is to identify the smoothest function that maps
a two-dimensional picture, for example, on a square into another while preserving
some fixed points.

The next subject-matter are multivariate approximations using radial basis func-
tions. Although subjected to a great deal of research by others, Mike was at that
time one of the main persons in that area beginning with the review paper [104] that
already contained new proofs of important results. As Yuan Xu said in an article in
the Journal of Approximation Theory there was “a flow of preprints [on radial basis
functions] pouring out of Powell’s group in Cambridge”.

The paper [104] addresses properties of radial basis function interpolation ma-
trices, in particular non-singularity of the interpolation problem at pairwise dis-
tinct points, where for example the ‘radial basis function’ φ could be the identity
φ(r) = r or a multiquadrics function with a real parameter c or the Gauss-kernel
φ(r) = exp(−c2r2) with positive real parameter c. All those matrices are indeed
nonsingular if there are at least two points used, therefore admitting unique exis-
tence of real coefficients λj such that the interpolant from the linear space spanned
by the shifts of the radial basis functions satisfies interpolation conditions for any
given right-hand sides. Usage of the radial symmetry here is relevant, as for instance
in the Chebyshev- or `1-norm the interpolation matrices could be singular for some
of those simple kernel functions in spite of the points being distinct. It is interesting
to note that one of the reasons why Mike was interested in the radial basis function
(multivariate) interpolation or more generally approximation from the linear spaces
spanned by the kernel functions was mentioned much earlier in this article; it was
that they might be used for local approximation required in optimization methods.
Indeed, much later his PhD student, Hans Martin Gutmann, addressed such ques-
tions with success. We saw in the previous section that initially at that time Mike
found out by numerical tests that the radial basis function approximations are not
so useful for the local approximations required in optimization after all, but he then
developed a great interest in their properties independently of that. Hans Martin’s
work started much later after Mike’s initial interest, spurred by a conversation with
Carl de Boor in the mid-80s, in radial basis functions.

Motivated by the remarkable non-singularity results of Micchelli and others for
radial basis function interpolation in many variables, Mike summarised and improved
several further results in [111]. This concerns inter alia the question whether polyno-
mials are contained in the aforementioned linear spaces spanned by the (now infinitely
many) shifts of the radial basis function kernels. In the article [119], the Lagrange
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functions for the interpolation problem with such gridded centres and the appro-
priate basis functions were computed for finite grids. Therefore a matrix is to be
inverted to allow for the calculation of the coefficients of the cardinal functions. For
that, a Gauss–Seidel type iteration was applied to a preconditioned matrix replac-
ing the interpolation matrix, the centres xi coming from the cardinal grid and the
preconditioned kernel being linear combinations of shifts of the initial homogeneous
radial basis function.

There is even a link again in this work with an optimization program Mike wrote
[116] – in line with many other important links between different aspects of Mike’s
research – because the sums of moduli of the off-diagonal elements of the mentioned
matrix was minimized in order to improve convergence of the method (where Gauss–
Seidel iteration is applied) subject to a normalisation condition. Furthermore, there
are coefficient constraints which give the needed algebraic decay of the ψs. The first
step from gridded data to scattered data was again due to Mike [123], an article
whose careful analysis of multiquadrics kernels’ translates led to quasi-interpolants
in one dimension when centres are scattered. Focussing further on interpolation with
multiquadrics, Mike studied in [127] the uniform convergence of approximation and
its rate when m equally spaced centres are used solely on the univariate unit interval
and the multiquadrics constant c is the spacing between the centres.

In [129], one of Mike’s opera magna (as he called it himself), he summarises
and explains many recent developments, including nonsingularity theorems for in-
terpolation, polynomial reproduction and approximation order results for quasi-
interpolation and Lagrange interpolation on cardinal grids for classes of radial basis
functions, including all of the ones mentioned above as well as thin-plate splines,
inverse (reciprocal) multiquadrics and several others. The localisation of Lagrange
functions for cardinal interpolation is considered in great detail and several best
possible improvements of known approximation order results are given. Much like
his earlier review papers and his book, this work does not just summarise his and
other authors’ work, but offers simplifications, more clarity in the exposition and
improvements of proofs and theorems, often to the best possible way, typical for
Mike’s search for true optimality.

Further beautiful connection between approximation and optimization techniques
can be found in [144] where approximations in two dimensions and mapping to two
dimensions as well are considered in the form of componentwise thin-plate splines.
The goal is to find a mapping between two regions in the two-dimensional plane,
where certain control points and control curves are mapped to prescribed positions.
Projecting control points to points with the thin-plate splines method as such is
not hard, but a curve must be discretised and it is not initially clear whether the
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discretisation is the same in the image region even though the curve retains its shape.
Because thin-plate splines yield the interpolation of minimal second derivatives in
the least-squares sense, there is already one optimising feature in that approach. In
this article, Mike uses once more the universal algorithm from [116] to determine the
optimal positions of the discrete points on the curve in the image. The idea is to
minimize again the square of the semi-norm of the interpolant which consists of the
sum of the square-integrals of its second partial derivatives but now with respect to
the positions of the points on the discretised curve.

In [140], the most general (with respect to the choice of the domain of con-
vergence) results with regard to the convergence of thin-plate splines are obtained.
There are several prior articles about convergence of thin-plate spline interpolations
to scattered data on domains in the two-dimensional plane, but these domains have
always been required to have at least Lipschitz continuous boundaries. Mike succeeds
in maximally generalising and proving convergence within any bounded domain. The
speed of convergence shown is within a factor of log h (h being the largest minimum
distance between interpolation points and any points in the domain), the same as
the best of the earlier results that required additional conditions on the domains
where the function being approximated is defined. On top of all this, he gets the
best multiplicative constants for the error estimates for interpolation on a line or
within a square or a triangle, i.e., when we measure the error of thin-plate spline
interpolation between two, three or four data points, where in the latter case they
form a square. The log h term is due to the fact that the point x where we measure
the error need not to be in the convex hull of centres (though it does need to be in
their h-neighbourhood, due to the definition of h).

One of Mike’s latest works on radial basis functions considers the efficient solution
of the thin-plate spline interpolation problem for a large volume of data [167].

A closely related problem is the efficient evaluation of a large number of given
linear combination of translates, an application for that being the rendering on a
computer screen. These two issues are related because the conditional positive defi-
niteness of the interpolation matrix makes the conjugate gradients algorithm a suit-
able tool to solve the interpolation equations for the coefficients. And, of course,
the conjugate gradient algorithm needs many function evaluations. One approach
for evaluating the approximating functions uses truncated Laurent expansions [133],
[135], of the thin-plate splines and collecting several terms that are shifted thin-plate
spline kernels for data points far away from the argument into one expression in order
to minimize the number of evaluations of the logarithm, a computationally expensive
task.

After completing the articles mentioned in the last two paragraphs, Mike explic-
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itly stated to one of the authors (Martin Buhmann) that he, from now on, continues
to work on optimization only – another of the clear decisions that were so typical for
Mike.

5 Epilogue

In 2001 Mike retired from his professorship at DAMTP. As a matter of fact, he
retired two years before the obligatory age of 67, the main reason being to escape
all the facets of academic life that often irked him – administration, teaching, . . . –
while maximising the aspects he loved: research and travel.

This indeed was a pattern of Mike’s retirement. A few months each year, typically
escaping the winter gloom, were spent at City University of Hong Kong, where Mike
held a part-time research position. Mike and Caroline delighted in the many pleasures
of Hong Kong, Mike hiking in the New Territories and Caroline studying Chinese
painting, and both enjoying local food and scenery. They also travelled elsewhere
for extended periods, from Christchurch (New Zealand), Minneapolis (Minnesota),
Stellenbosch (South Africa) to Victoria (British Columbia) and Mike (often with
Caroline) remained very active on the conference circuit.

Back in Cambridge Mike followed the
usual routine, except that he was exempt
from the university chores he so disliked. So,
he was to be found either at the fairways of
the Gog Magog Golf Club, or puttering in the
garden but, most frequently, in office F204
in the department or at a desk in his living
room, patiently working on his research or
writing and polishing computer programs.

By this stage Mike’s research concerns
were fully formed. His main focus was on
optimization, revisiting the themes of his for-
mer work on variable-matrix and trust region
methods and improving them with added in-
sight and experience. He also spend a great
deal of time and effort writing a new gen-
eration of software for large-scale optimiza-
tion which, as was his custom throughout his
working life, he made freely available to all
and sundry.

Mike post-retirement with his endur-

ing research concerns (linocut by Henk

van der Vorst, 2011).
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In Autumn 2014 Mike and Caroline went again for several weeks to Hong Kong
and there it became obvious that something was badly wrong with Mike’s health.
They returned to Cambridge and Mike visibly lost weight and was unwell. Medical
checks discovered cancer of the oesophagus which, by that stage, had spread and was
inoperable.

Faced with the option of painful chemotherapy to prolong his life for few more
months, Mike resolutely said “no”. He lived his life on his own terms and he would
go on his own terms, clear of mind, free of pain and free of mind-numbing drugs.
He patiently put all his affairs in order, whether at home or in mathematics, lend
finishing touches to software and completed mathematical papers.

The end came swiftly. When it was clear that it was a matter of days, two of
us (Martin Buhmann and Arieh Iserles) arranged to see Mike on the weekend – this
was an opportunity to say the last goodbye. Mike passed away peacefully on Sunday
morning, our noontime visit was to console Caroline and their daughters.
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Postscript

The second author, Roger Fletcher FRS, sadly passed away on 15th July 2016, soon
after completing the draft of Section 2. Roger was a longstanding collaborator of

24



Mike Powell and their work together at Harwell has laid the foundations to modern
theory of optimization. He was also one of Mike’s oldest friends.
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Surfaces (P.J. Laurent, A. Le Méhauté and L.L. Schumaker, eds), Academic
Press (New York), 371–382 (1991).

[128] “A view of nonlinear optimization”, in History of Mathematical Programming:
A Collection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan
and A. Schrijver, eds), North-Holland (Amsterdam), 119–125 (1991).

[129] “The theory of radial basis function approximation in 1990”, in Advances
in Numerical Analysis II: Wavelets, Subdivision Algorithms and Radial Basis
Functions (W. Light, ed.), Oxford University Press (Oxford), 105–210 (1992).

35



[130] “Univariate interpolation on a regular finite grid by a multiquadric plus a linear
polynomial” (with R.K. Beatson), IMA J. Numer. Anal. 12, 107–133 (1992).

[131] “Univariate multiquadric approximation: quasi-interpolation to scattered
data” (with R.K. Beatson), Constructive Approximation 8, 275–288 (1992).

[132] “The complexity of Karmarkar’s algorithm for linear programming”, in Numer-
ical Analysis, 1991 (D.F. Griffiths and G.A. Watson, eds), Longman Scientific
and Technical (Burnt Mill), 142–163 (1992).

[133] “Tabulation of thin plate splines on a very fine two–dimensional grid”, in —em
Numerical Methods in Approximation Theory IX (D. Braess and L. Schumaker,
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