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Abstract

This short note considers and resolves the apparent contradiction between known worst-case
complexity results for first and second-order methods for solving unconstrained smooth nonconvex
optimization problems and a recent note by Jarre (2011) implying a very large lower bound on
the number of iterations required to reach the solution’s neighbourhood for a specific problem with
variable dimension.
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1 Introduction

The worst-case complexity of algorithms for unconstrained nonconvex smooth optimization has recently
been intensively studied by several authors. In particular, we refer the reader to Vavasis (1993), Nesterov
(2004) and Cartis, Gould and Toint (2010b) for an analysis of steepest descent, to Gratton, Sartenaer and
Toint (2008) and Cartis, Gould and Toint (2011c) for trust-regions algorithms, to Cartis et al. (2010b)
for Newton’s method, to Nesterov and Polyak (2006), Cartis, Gould and Toint (2010a, 2011b, 2011c)
for regularized variants, or to Vicente (2010) and Cartis, Gould and Toint (2010c) for finite-difference
and/or derivative-free schemes. The common feature of all these contributions is that they discuss
upper (and sometimes lower) bounds on the number of function evaluations that are necessary for the
algorithm under consideration to produce an approximate first-order critical point, that is an iterate at
which the Euclidean norm of the objective function’s gradient is below some user-prescribed tolerance ǫ.
Remarkably, these results show that such bounds have the form

⌈ κ

ǫα

⌉

(1.1)

where κ is a problem-dependent constant and α is an algorithm-dependent constant ranging between
3/2 and 2. These bounds are often sharp (Cartis et al., 2010b) and are optimal for some regularization
methods (Cartis et al., 2011b). It is important for our purposes to note that κ typically depends, possibly
exponentially, on problem dimension via the relevant gradient and perhaps Hessian global Lipschitz
constants (which are assumed to exist). We also note that all the algoritms considered in these results
are descent methods, in the sense that they generate a sequence of iterates with non-increasing objective
function values.

An interesting development occured when F. Jarre recently published a report (Jarre, 2011) where
he pointed out that, on a specific problem with variable dimension, any descent algorithm would require
a number of iterations (and hence of function evaluations) which is exponential in problem dimension
to reach the (unique) critical point. Since ǫ and α in (1.1) are independent of dimension, this behaviour
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could easily be made compatible with the results mentioned above if the problem’s Lipschitz constants
depended exponentially on dimension on the domain of interest. However, it turns out that, for the
considered example, both these constants are independent of problem size, implying that the bound
(1.1) is also independent of problem dimension. It is the purpose of this short note to resolve this
apparent contradiction.

2 Some details

We first need to elaborate on the details of the context. In what follows, we consider the problem

minimize f(x)
x ∈ IRn

where f is a twice continuously differentiable possibly nonconvex function from IRn to IR, which is
assumed to be bounded below (by some value flow). To solve this problem, we may then apply the ARC
algorithm, which can be outlined as follows. At iteration k, a step sk from the current iterate xk is
computed, which (approximately) minimizes the cubic model

m(xk + s) = 〈g(xk), s〉+ 1

2
〈s,H(x)s〉+ 1

6
σk‖s‖

2,

where 〈·, ·〉 and ‖ · ‖ are the Euclidean inner product and norm, respectively, g(x)
def
= ∇xf(x), H(x) =

∇xxf(x) and σk ≥ σmin > 0 is an adaptive regularization parameter whose value is recurred inside the
algorithm. The step sk may be successful (it f(xk + sk) ≤ f(xk) + ηm(xk + sk) for some η ∈ (0, 1)),
in which case it is accepted as the next iterate, or unsuccessful, in which case it is rejected and the
regularization parameter suitably increased. Further details of the algoritm are irrelevant here. Crucially
for our purposes, it has been proved (see Nesterov and Polyak, 2006, Cartis et al., 2010a) that, if we
assume that H(x) is Lipshitz continuous (with constant L) on each of the segments [xk, xk + sk] and if
we define an ǫ-approximate critical iterate as an iterate xk such that

‖g(xk)‖ ≤ ǫ, (2.1)

where ǫ ∈ (0, 1) is a user-specified accuracy, then the ARC algorithm started from the initial point x0

will produce such an iterate in at most
⌈

(f(x0)− flow)
κARC

ǫ3/2

⌉

(2.2)

iterations. The constant κARC only depends (sublinearly) on L and an upper bound on ‖H(x)‖ on the
segments [xk, xk + sk], as well as on fixed, dimension independent, algorithmic parameters (such as η

and σmin). We will also make use of a property of the ARC algorithm, namely that, for all k ≥ 0,

‖sk‖ ≤ 3max





‖H(xk)‖

σk
,

√

‖g(xk)‖

σk



 , (2.3)

(see Lemma 1.1 of Cartis, Gould and Toint, 2011a).
Jarre’s example of slow minimization uses the Chebyshev-Rosenbrock function attributed to Nesterov

in Gurbuzbalaban and Overton (2011), which is defined, for some ρ > 0 and n ≥ 2, by

f(x) = 1

4
(x1 − 1)2 + ρ

n−1
∑

i=1

(xi+1 − 2x2
i + 1)2

def
= 1

4
(x1 − 1)2 + ρ

n−1
∑

i=1

vi(x)
2, (2.4)

and whose gradient is given by
g1(x) = 1

2
(x1 − 1)− 8ρx1v1(x) (2.5)

gi(x) = 2ρ(vi−1(x)− 4xi vi(x)), (i = 2, . . . , n− 1), (2.6)

and
gn(x) = 2ρvn−1. (2.7)
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The nonzero entries of its Hessian are given (up to symmetry) by

H1,1(x) = 1

2
− 8ρv1(x) + 32ρx2

1, H1,2(x) = −4ρx1, (2.8)

Hi,i(x) = 2ρ(1− 4vi(x) + 16x2
i ), Hi,i+1(x) = −8ρxi, (i = 2, . . . , n− 1) (2.9)

and
Hn,n(x) = 2ρ, (2.10)

while those of its third derivative tensor T (x) are given by

T1,1,1(x) = −32ρx1, T1,1,2(x) = −8ρ, T1,2,1 = −4ρ, (2.11)

Ti,i,i(x) = −16ρxi, Ti,i,i+1(x) = −8ρ, (i = 2, . . . , n− 1). (2.12)

The level contours for this function are shown in Figure 2.1, the leftmost graph showing the levels in the
(x1, x2) plane and the rightmost the levels in the (xi, xi+1) plane, for any i between 2 and n − 1. The
unique first- (and second-)order critical point is x∗ = (1, 1, . . . , 1)T , which is marked on the upper right
of each graph.
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Figure 2.1: Contours of f(x) in the (x1, x2) plane (left) and in (xi, xi+1) plane (for any 2 ≤ i ≤ n − 1)
(right)

The unconstrained minimization of this function is started from x0 = (−1, 1, 1, . . . , 1)T (also marked
in the upper left part of the graphs of Figure 2.1), at which f(x0) = 1 and ‖g(x0))‖ = 1, and for which
it is easy to verify that

L0
def
= {x ∈ IRn | f(x) ≤ f(x0)} ⊂ [−1, 1]n.

Thus any descent algorithm will remain in [−1, 1]n and we may therefore derive from (2.5)-(2.7) and the
sparse nature of (2.8)-(2.10) that there exist constants κg > 0 and κH > 0 independent of n such that,
for iterates generated by the ARC algorithm,

‖g(xk)‖ ≤ κg and ‖H(xk)‖ ≤ κH (2.13)

for all k ≥ 0. Moreover, (2.3) then implies that steps generated by the ARC algorithm satisfy the
inequality

‖sk‖ ≤ 3max

[

κH

σmin

,

√

κg

σmin

]

def
= κs.

As a consequence, we obtain that, for all k ≥ 0,

[xk, xk + sk] ⊂ [−1− κs, 1 + κs]
n def
= L

and therefore, using the mean-value theorem, that H(x) is Lipschitz continuous in L with constant
maxx∈L ‖T (x)‖, which is itself independent of n because of the sparsity of T (see (2.11)-(2.12)). As
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a consequence, the value of κARC in (2.2) is independent of n, and, because we may obviously choose
flow = 0 since f(x) is the sum of squared terms, the upper bound on the maximum number of iterations
necessary to achieve (2.1) starting from x0 is also fixed for given ǫ.

On the other hand, Jarre’s observation is that any descent algorithm (including ARC) must take

at least 1.44× 1.618n iterations (2.14)

to move from x0 to x∗, at which f(x∗) = 0 = flow. Moreover, at least half that number of iterations is
required to obtain an iterate with x1 ≥ 0, which ensures that (2.2) cannot be interpreted as an upper
bound on the number of iterations needed to reach an ǫ-dependent neighbouhood of x∗.

3 Resolving the apparent contradiction

We first notice that (2.2) and (2.14) are obviously compatible if

ǫ ≤

(

κARC

1.44× 1.618n

)2/3
def
= θ(n), (3.1)

as in this case the accuracy requirement is tight enough to allow for the number of steps indicated by
Jarre’s bound. But what happens if (3.1) is violated is not clear. Using the famous Sherlock Holmes
adage that ”When you have eliminated the impossible, whatever remains, however improbable, must
be the truth” (Conan Doyle, 1890), we must conclude in this case that, if an ǫ-approximate first-order
critical point can be reached in a dimension independent number of iterations, but that this point cannot
be x∗, then it must be that f(x) admits other approximate critical points in L0 within a fixed distance
from x0. And indeed this happens to be the case. The leftmost graph of Figure 3.2 shows (as a continuous
line) the evolution with n of

τ(n) = min
x∈{x1,...,x50}

‖g(x)‖,

where the xk are the iterates generated by the ARC algorithm applied to minimize f(x) (with dimension
n), starting from x0. The dashed line in the same graph corresponds to the parallel evolution of θ(n),
the right-hand side of (3.1). The distance

δ(n) =

∥

∥

∥

∥

x0 − arg min
x∈{x1,...,x50}

‖g(x)‖

∥

∥

∥

∥

is shown in the rightmost graph.
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Figure 3.2: Evalution of τ(n) and θ(n) (dashed) (left, in log10 scale) and δ(n) (right) as functions of n

We may conclude from this figure that, for ǫ above the threshold given by (3.1), suitable approxi-
mate first-order critical points of f(x) exist close to x0 (and can be found relatively easily by standard
optimization methods). A further investigation of these approximate critical points is possible, using the
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analytical expression of f(x). Without entering into too much detail, we may simply say that the gradi-
ent norm at such points is dominated by the magnitude of gn, which is proportional to |vn−1| because of
(2.7). As it turns out, (2.6) and the fact that all gi (i = 2, . . . , n− 1) must also be small impose that the
|vi| decrease as an approximate geometric progression. The freedom left for each |gi| to be small (of the
order of |gn|) is enough to counterbalance the effect of x1 in g1 given by (2.5). However, this explanation
remains problem specific, which considerably limits its interest and applicability.

It remains remarkable that our analysis shows the existence of (potentially many) approximate first-
order critical points for a dimension-dependent family of smooth functions for which the gradient and
Hessian Lipschitz constants are dimension independent, at a level of approximation which improves
exponentially with problem size. It is the authors’ view that the implications of this observation (for
instance on the geometry of smooth infinite dimensional maps) deserves more study.
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