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Abstract

We consider a general class of second-order iterations for unconstrained optimiza-
tion that includes regularization and trust-region variants of Newton’s method. For each
method in this class, we exhibit a smooth, bounded-below objective function, whose gra-
dient is globally Lipschitz continuous within an open convex set containing any iterates
encountered and whose Hessian is α−Hölder continuous (for given α ∈ [0, 1]) on the path
of the iterates, for which the method in question takes at least ⌊ǫ−(2+α)/(1+α)⌋ function-
evaluations to generate a first iterate whose gradient is smaller than ǫ in norm. This
provides a lower bound on the evaluation complexity of second-order methods in our class
when applied to smooth problems satisfying our assumptions. Furthermore, for α = 1,
this lower bound is of the same order in ǫ as the upper bound on the evaluation com-
plexity of cubic regularization, thus implying cubic regularization has optimal worst-case
evaluation complexity within our class of second-order methods.

1 Introduction

Newton’s method has long represented a benchmark for rapid asymptotic convergence when
minimizing smooth, unconstrained objective functions [10].

It has also been efficiently safeguarded to ensure its global convergence to first- and even
second-order critical points, in the presence of local nonconvexity of the objective using line-
search [18], trust-region [9] or other regularization techniques [13, 17, 1]. Many variants of
these globalization techniques have been proposed. These generally retain fast local conver-
gence under non-degeneracy assumptions, are often suitable when solving large-scale problems
and sometimes allow approximate rather than true Hessians to be employed. We attempt to
capture the common features of these methods in the description of the class of methods M.α
below.

In this paper, we are concerned with measuring possible inefficiency of M.α methods
in terms of the number of function-evaluations required to generate approximate first-order
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2 Optimal Newton-type methods for nonconvex optimization

critical points of “sufficiently smooth nonconvex objectives”, as we shall define in A.α below.
This amounts to establishing lower bounds on the evaluation complexity of the methods class
M.α when applied to minimizing functions in A.α.

There is a growing literature on the global evaluation complexity of first- and second-
order methods for nonconvex smooth optimization problems. In particular, it is known [19],
[15, p. 29] that steepest-descent method with either exact or inexact linesearches takes at
most O(ǫ−2) iterations/function-evaluations to generate a gradient whose norm is at most ǫ
when started from an arbitrary initial point and applied to nonconvex smooth objectives with
gradients that are globally Lipschitz continuous within some open convex set containing the
iterates generated. Furthermore, this bound is sharp (for inexact linesearches) [3]. Similarly,
trust-region methods that ensure at least a Cauchy (steepest-descent-like) decrease on each
iteration satisfy an evaluation complexity bound of the same order under identical conditions
[12]. It follows that Newton’s method globalized by trust-region regularization satisfies the
same O(ǫ−2) evaluation upper bound; such a bound can also be shown to be tight [3] provided
additionally that the Hessian on the path of the iterates for which pure Newton steps are taken
is Lipschitz continuous.

From a worst-case complexity point of view, one can do better when a cubic regular-
ization/perturbation of the Newton direction is used [13, 17, 1]—such a method iteratively
calculates step corrections by (exactly or approximately) minimizing a cubic model formed
of a quadratic approximation of the objective and the cube of a weighted norm of the step.
For such a method, the worst-case global complexity improves to be of order ǫ−3/2 [17, 2],
for problems whose gradients and Hessians are Lipschitz continuous as above; this bound is
also tight [3]. If instead powers between two and three are used in the regularization, then an
“intermediate” worst-case complexity of O(ǫ−(2+α)/(1+α)) is obtained for such variants when
applied to functions with globally α−Hölder continuous Hessian on the path of iterates, where
α ∈ (0, 1] [2].

These (tight) upper bounds on the evaluation complexity of such second-order methods
naturally raise the question as to whether other second-order methods might have better
worst-case complexity than cubic (or similar) regularization over certain classes of sufficiently
smooth functions. To attempt to answer this question, we define a general, parametrized
class of methods that includes Newton’s method, and that attempts to capture the essential
features of globalized Newton variants we have mentioned. Our class includes for example,
the algorithms discussed above as well as multiplier-adjusting types such as the Goldfeld-
Quandt-Trotter approach [11]. The methods of interest take a potentially-perturbed Newton
step at each iteration so long as the perturbation is “not too large” and “sufficient decrease”
is obtained. The size of the perturbation allowed is simultaneously related to the parameter α
defining the class of methods and the rate of the asymptotic convergence of the method. For
each method in each α-parametrized class, we construct a function with globally α−Hölder-
continuous Hessian on the path of the iterates and Lipschitz continuous gradient for which
the method takes precisely ⌈ǫ−(2+α)/(1+α)⌉ function-evaluations to drive the gradient norm
below ǫ. As such counts are the same order as the upper complexity bound of regularization
methods, it follows that the latter methods are optimal within their respective α-class of
methods. As α approaches zero, the complexity of these methods approaches that of steepest
descent, while for α = 1, we recover that of cubic regularization. We also discuss extending
our examples of inefficiency to functions with bounded level sets.

The structure of the paper is as follows. Section 2 describes the parameter-dependent
class of methods and objectives of interest; Section 2.1 gives properties of the methods such
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as their connection to fast asymptotic rates of convergence while Section 2.2, some examples
of methods covered by our general definition of the class. Section 3 introduces the examples
of inefficiency of these methods, including the case of finite minimizers. Section 4 draws our
conclusions.

2 A general parametrized class of methods and objectives

Our aim is to minimize a given C2 objective function f(x), x ∈ IRn. We consider methods
that generate sequences of iterates {xk} for which {f(xk)} is monotonically decreasing, we
let

fk
def
= f(xk), gk

def
= g(xk) and Hk

def
= H(xk).

where g(x) = ∇xf(x) and H(x) = ∇xxf(x), and we denote the left-most eigenvalue of any
given symmetric matrix H by λmin(H).

Let α ∈ [0, 1] be a fixed parameter. We require that our methods belong to the following
class of α-dependent iterations:

M.α Given some x0 ∈ IRn, let

xk+1 = xk + sk, k ≥ 0, (2.1)

where sk is defined by

(Hk + λkI)sk = −gk, (2.2)

for some λk such that

λk ≥ 0 and Hk + λkI � 0. (2.3)

Furthermore, we require that no infinite steps are taken, namely

‖sk‖ ≤ κs, for some κs > 0 independent of k, (2.4)

and that the algorithm-generated ‘multiplier’ λk satisfies

λk + λmin(Hk) ≤ κλmax
{

|λmin(Hk)|, ‖gk‖
α

1+α

}

, (2.5)

for some κλ > 1 independent of k. 2

Typically, the expression (2.2) for sk is derived by minimizing the second-order model

mk(s) = fk + gTk s+
1
2
sT (Hk + βkI)s, with βk

def
= βk(s) ≥ 0 and βk ≤ λk (2.6)

of f(xk + s)—possibly with an explicit regularizing constraint—with the aim of obtaining
a sufficient decrease of f at the new iterate xk+1 = xk + sk compared to f(xk). In the
definition of an M.α method however, the issue of (sufficient) objective-function decrease
is not explicitly addressed/required. There is no loss of generality in doing so here since
although local refinement of the model may be required to ensure function decrease, the
number of function evaluations to do so (at least for known methods) does not increase the
overall complexity by more than a constant multiple and thus does not affect quantitatively
the worst-case bounds derived; see for example, [3, 2, 12] and also Section 2.2. Furthermore,
the examples of inefficiency we demonstrate in Section 3 are constructed in such a way that
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each iteration of the method would automatically count as “successful”, that is, it provides
(Cauchy-like) sufficient decrease of f .

Note that methods in M.1 are naturally included in M.α for any α ∈ [0, 1] since the α
exponent only occurs explicitly in the condition (2.5). The class M.0, corresponds to the case
when λk is uniformly bounded above.

Having defined the classes of methods we shall be concerned with, we now specify the
problem classes that we shall apply them to. Specifically, we are interested in minimizing
functions f that satisfy

A.α
f : IRn → IR is twice continuously differentiable and bounded below, with
gradient g being globally Lipschitz continuous on X with constant Lg, namely,

‖g(x)− g(y)‖ ≤ Lg‖x− y‖, for all x, y ∈ X ; (2.7)

where X is an open convex set containing the intervals [xk, xk + sk], and the Hessian H
being globally α−Hölder continuous on the path of the iterates with constant LH,α, i.e.,

‖H(x)−H(xk)‖ ≤ LH,α‖x− xk‖
α, for all x ∈ [xk, xk + sk] and k ≥ 0. (2.8)

2

Note that the case when α = 1 in A.α corresponds to the Hessian of f being globally
Lipschitz continuous on the path of the iterates. Furthermore, the class of functions A.1 is
included in A.α for any α ∈ (0, 1). Also, in the case when α = 0, (2.7) implies (2.8) holds, so
that the A.0 class is that of twice continuously differentiable functions with globally Lipschitz
continuous gradient on X . Note also that the class A.α with α > 1 contains only quadratic
functions.

The next section provides some justification for the technical condition (2.5) by relating
it to fast rates of asymptotic convergence. In Section 2.2, we illustrate some methods that
belong to M.α.

2.1 Properties of the methods in M.α

We first simplify the assumption (2.5) in the definition of the class M.α by giving a sufficient,
more concise, condition on the algorithm-generated λk that implies (2.5).

Lemma 2.1 Let (2.2) and (2.3) hold. Assume also that the algorithm-generated λk

satisfies

λk ≤ κλ‖sk‖
α, for some κλ > 1 and α ∈ [0, 1] independent of k. (2.9)

Then (2.5) holds with κλ
def
= 2κ

1
1+α

λ .

Proof. Clearly, (2.5) holds when λk + λmin(Hk) = 0. When λk + λmin(Hk) > 0, and
hence, Hk + λkI ≻ 0, we have from (2.2) that

‖sk‖
2 =

n
∑

i=1

(γik)
2

(λk + λi(Hk))2,
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where Hk = UkΣkU
T
k , γk = UT

k gk and Σk := Diag(λi(Hk)), the eigenvalues of Hk. This
straightforwardly implies the bound

‖sk‖ ≤
‖gk‖

λk + λmin(Hk)
, whenever Hk + λkI ≻ 0. (2.10)

This and (2.9) give the inequality

λ
1+ 1

α

k + λ
1
α

k · λmin(Hk)− κ
1
α

λ ‖gk‖ ≤ 0. (2.11)

Let us consider (2.11) as a function of λ = λk. Note that (2.11) is satisfied at λ =
max{0,−λmin(Hk)}, and that the left-hand side of (2.11) is strictly increasing for λ >
max{0,−λmin(Hk)}, due to (2.3). Thus any value λ∗

k ≥ max{0,−λmin(Hk)} at which the
left-hand side of (2.11) is positive will provide an upper bound on λk. Letting

λ∗
k

def
= −λmin(Hk) + 2max

{

|λmin(Hk)|, κ
1

1+α

λ ‖gk‖
α

1+α

}

, (2.12)

which clearly satisfies λ∗
k ≥ max{0,−λmin(Hk)}, it is straightforward to verify that (2.11)

does not hold at λ = λ∗
k. Thus λk ≤ λ∗

k, which due to (2.12) and κλ > 1, implies (2.5). 2

The requirement (2.9) crucially implies the following property regarding the length of the
step generated by methods in M.α when applied to functions satisfying A.α.

Lemma 2.2 Assume that an objective function f satisfying A.α is minimized by a
method in the class M.α for which (2.9) holds. Then there exists κs,α > 0 independent
of k such that

‖sk‖ ≥ κs,α‖gk+1‖
1

1+α , k ≥ 0 . (2.13)

Proof. The triangle inequality provides

‖gk+1‖ ≤ ‖gk+1 − (gk +Hksk)‖+ ‖gk +Hksk‖. (2.14)

From (2.1), gk+1 = g(xk + sk) and Taylor expansion provides gk+1 = gk +
∫ 1
0 H(xk +

τsk)skdτ . This and (2.8) now imply

‖gk+1 − (gk +Hksk)‖ ≤

∥

∥

∥

∥

∫ 1

0
[H(xk + τsk)−H(xk)]dτ

∥

∥

∥

∥

· ‖sk‖ ≤ LH,α(1 + α)−1‖sk‖
1+α,

so that (2.14) and (2.2) together give

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖
1+α + λk‖sk‖. (2.15)

Now (2.15) and (2.9) give (2.13) with κs,α
def
= [LH,α(1 + α)−1 + κλ]

− 1
1+α . 2
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Next, we show that (2.13) is a necessary condition for fast local convergence of methods of
type (2.2), under reasonable assumptions; fast local rate of convergence in a neighbourhood
of well-behaved minimizers is a “trademark” of what is commonly regarded as second-order
methods.

Lemma 2.3 Let f satisfy assumptions A.α. Apply an algorithm to minimizing f that
satisfies (2.1) and (2.2) and for which

λk ≤ κλ, k ≥ 0, for some κλ > 0 independent of k. (2.16)

Assume also that convergence at linear or faster than linear rate occurs, namely,

‖gk+1‖ ≤ κc‖gk‖
1+α, k ≥ 0, (2.17)

for some κc > 0 independent of k, with κc ∈ (0, 1) when α = 0. Then (2.13) holds.

Proof. Let

0 ≤ αk
def
=

‖sk‖

‖gk+1‖
1

1+α

, k ≥ 0. (2.18)

From (2.17) and the definition of αk in (2.18), we have that

‖sk‖

αk
≤ κc,α‖gk‖ = κc,α‖(Hk + λkI)sk‖ ≤ κc,α‖Hk + λkI‖ · ‖sk‖, k ≥ 0,

where κc,α
def
= κ

1
1+α
c and where we used (2.2) to obtain the first equality. It follows that

‖Hk + λkI‖ ≥
1

αkκc,α
, k ≥ 0. (2.19)

As g is globally Lipschitz continuous in X due to A.α, we have that {Hk} is bounded
above for k ≥ 0 [15, Lemma 1.2.2]. This and (2.16) imply that {Hk + λkI} is uniformly
bounded above for all k, namely,

‖Hk + λkI‖ ≤ κhl, k ≥ 0, (2.20)

where κhl
def
= Lg +κλ. Now (2.19) and (2.20) give that αk ≥ 1/(κhlκc,α) > 0, for all k ≥ 0,

and so it follows from (2.18), that (2.13) holds with κs,α
def
= 1/(κc1κc,α). 2

It is clear from the proof of Lemma 2.3 that (2.17) is only needed asymptotically, that is
for all k sufficiently large; for simplicity, we have assumed it holds globally.

Note that letting α = 1 in Lemma 2.3 provides a necessary condition for quadratically
convergent methods satisfying (2.1), (2.2) and (2.16). Also, similarly to the above proof, one
can show that if superlinear convergence of {gk} to zero occurs, then (2.13) holds with α = 0
for all κs,α > 0, or equivalently, ‖gk+1‖/‖sk‖ → 0, as k → ∞.
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2.2 Some examples of methods that belong to the class M.α

Let us now illustrate some of the methods that either by construction or under certain con-
ditions belong to M.α. This list of methods does not attempt to be exhaustive and other
practical methods may be found to belong to M.α.

Newton’s method [10]. Newton’s method for convex optimization is characterised by find-
ing a correction sk that satisfies

Hksk = −gk.

Letting

λk = 0 and βk = 0 (2.21)

in (2.2) and (2.6), respectively, yields Newton’s method. Provided additionally that both
gk ∈ Range(Hk) and Hk is positive semi-definite, sk is a descent direction and (2.3) holds.
Since (2.5) is trivially satisfied in this case, it follows that Newton’s method belongs to the
class M.α, for any α ∈ [0, 1], provided it does not generate infinite steps to violate (2.4). As
Newton’s method is commonly embedded within trust-region or regularization frameworks
when applied to nonconvex functions, (2.4) will in fact, hold as it is generally enforced for the
latter methods as shown below.

It is known [3] that Newton’s method may take at least ǫ−2 function-evaluations to gen-
erate ‖gk‖ ≤ ǫ when applied to f in A.1. Here, we show that Newton’s method can take at
least ǫ−(2+α)/(1+α) evaluations when applied to a function f in A.α.

Regularization algorithms [13, 15, 2]. In these methods, the step sk from the current
iterate xk is computed by globally minimizing the model

mk(s) = fk + gTk s+
1
2
sTHks+

σk
2 + α

‖s‖2+α, (2.22)

where the regularization weight σk is adjusted to ensure sufficient decrease of f at xk + sk.
The scalar α is the same fixed parameter as in the definition of A.α and M.α, so that for each
α ∈ [0, 1], we have a different regularization term and hence what we shall call an (2 + α)-
regularization method. For α = 1, we recover the cubic regularization (ARC) approach
[13, 17, 1, 2]. For α = 0, we obtain a quadratic regularization scheme, reminiscent of the
Levenberg-Morrison-Marquardt method [18]. For these (2 + α)-regularization methods, we
have

α ∈ [0, 1], λk = σk‖sk‖
α and βk =

2

2 + α
σk‖sk‖

α (2.23)

in (2.2) and (2.6). Since α ≥ 0, we have 0 ≤ βk ≤ λk which is required in (2.6). A mechanism
of successful and unsuccessful iterations and σk adjustments can be devised similarly to ARC
[1, Alg. 2.1] in order to deal with steps sk that do not give sufficient decrease in the objec-
tive. An upper bound on the number of unsuccessful iterations which is constant multiple of
successful ones can be given under mild assumptions on f [2, Thm. 2.1]. Note that each (suc-
cessful or unsuccessful) iteration requires one function- and at most one gradient-evaluation.

We now show that for each α ∈ [0, 1], the (2 + α)−regularization method based on the
model (2.22) satisfies (2.4) and (2.5) when applied to f in A.α, and so it belongs to M.α.
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Lemma 2.4 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying an
(2 + α)-regularization method based on the model (2.22), where the step sk is chosen
as the global minimizer of the local α−model, namely of mk(s) in (2.6) with the choice
(2.23), and where the regularization parameter σk is chosen to ensure that

σk ≥ σmin, k ≥ 0, (2.24)

for some σmin > 0 independent of k. Then (2.4) and (2.9) hold, and so the (2 + α)-
regularization method belongs to M.α. Furthermore, the method requires at most

⌈

κrǫ
− 2+α

1+α

⌉

(2.25)

function evaluations to generate ‖gk‖ ≤ ǫ, where κr
def
= (1 + κUr )(2 + κSr ) with κUr

def
=

cU log(σmax/σmin), κ
S
r

def
= cS(f(x0)− flow)/(σminσ

(2+α)/(1+α)
max ), σmax

def
= cσ max(σ0, LH,α);

flow is some lower bound on {f(xk)}, while cU , cS and cσ are constants depending solely
on α and algorithm parameters.

Proof. The same argument that is used in [1, Lem.2.2] (for the α = 1 case) provides

‖sk‖ ≤ max







(

3(2 + α)Lg

4σk

)

1
α

,

(

3(2 + α)‖gk‖

σk

)

1
1+α







, k ≥ 0,

so long as A.α holds, which together with (2.24), implies

‖sk‖ ≤ max







(

3(2 + α)Lg

4σmin

)

1
α

,

(

3(2 + α)‖gk‖

σmin

)

1
1+α







, k ≥ 0. (2.26)

The assumptions A.α, that we employ the true Hessians rather than approximations and
that the model is minimized globally imply that the α ≤ 1 analog of [1, Corollary 2.6]
holds, which gives ‖gk‖ → 0 as k → ∞, and so {‖gk‖}, k ≥ 0, is bounded above. The
bound (2.4) now follows from (2.26).

Using the same techniques as in [1, Lemma 5.2] that applies when f satisfies A.1, it is
easy to show for the more general A.α case that σk ≤ σmax for all k, where σmax is defined
just after (2.25). It follows from (2.23) that (2.9) holds. Lemma 2.1 now provides that
(2.5) is satisfied. The bound (2.25) follows similarly to [2, Corollary 5.3]. 2

We cannot extend this result to the α = 0 case unless we also assume that Hk is positive
semi-definite. If this is the case, we may remove the first term in the max in (2.26), and the
remainder of the proof is valid.

We note that bounding the regularization parameter σk away from zero in (2.24) appears
crucial when establishing the bounds (2.4) and (2.5). Requiring (2.24) implies that the Newton
step is always perturbed, but does not prevent local quadratic convergence of ARC [2] and
yields improved global worst-case complexity for ARC as can be seen by letting α = 1 in (2.25).
This ARC bound is better than the global bounds for the steepest-descent and Newton’s
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methods [3]. In Section 3, we show that the bound (2.25) is essentially tight, and that
any method in M.α when applied to functions in A.α takes at least ⌊ǫ−(2+α)/(1+α)⌋ function
evaluations. Thus from a worst-case complexity point of view, (2+α)−regularization methods
are the optimal M.α-methods for functions in A.α.

Goldfeld-Quandt-Trotter-type (GQT) methods [11]. Let α ∈ (0, 1]. These algorithms
set

λk =

{

0, when λmin(Hk) ≥ ωk‖gk‖
α

1+α ;

−λmin(Hk) + ωk‖gk‖
α

1+α , otherwise,
(2.27)

in (2.2), where ωk > 0 is an algorithm parameter that is adjusted so as to ensure sufficient
objective decrease. (Observe that replacing α

1+α by 1 in the exponent of ‖gk‖ in (2.27) recovers
the original method of Goldfeld et al. [11].) It is straightforward to check that (2.3) holds for
the choice (2.27). Thus the GQT approach takes the pure Newton step whenever the Hessian
is locally sufficiently positive definite, and a suitable regularization of this step otherwise.
The parameter ωk is increased by a factor, say γ1 > 1, and xk+1 left as xk whenever the step
sk does not give sufficient decrease in f (i.e., iteration k is unsuccessful), namely when

ρk
def
=

fk − f(xk + sk)

fk −mk(sk)
≤ η1, (2.28)

where η1 ∈ (0, 1) and
mk(s) = fk + gTk s+

1
2
sTHks (2.29)

is the model (2.6) with βk = 0. If ρk > η1, then ωk+1 ≤ ωk and xk+1 is constructed as in
(2.1). Similarly to regularization methods, we can bound the total number of unsuccessful
iterations as a constant multiple of the successful ones, provided ωk is chosen such that

ωk ≥ ωmin, k ≥ 0. (2.30)

Note that the choice (2.27) implies that (2.5) holds, provided ωk is uniformly bounded above.
We show that the latter, as well as (2.4), hold for functions in A.α.

Lemma 2.5 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying a
GQT method that sets λk in (2.2) according to (2.27), measures progress according to
(2.28), and chooses the parameter ωk to satisfy (2.30). Then (2.4) and (2.5) hold, and
so the GQT method belongs to M.α.

Proof. Let us first show (2.4). Since ωk > 0, and gk 6= 0 until termination, the choice of
λk in (2.27) implies that λk + λmin(Hk) > 0, for all k, and so (2.2) provides

sk = −(Hk + λkI)
−1gk,

and hence,

‖sk‖ ≤ ‖(Hk + λkI)
−1‖ · ‖gk‖ =

‖gk‖

λk + λmin(Hk)
, k ≥ 0. (2.31)

It follows from (2.27) and (2.30) that

λk + λmin(Hk) ≥ ωk‖gk‖
α

1+α ≥ ωmin‖gk‖
α

1+α , for all k ≥ 0.
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This and (2.31) further give

‖sk‖ ≤
‖gk‖

1
1+α

ωmin
, k ≥ 0. (2.32)

As global convergence assumptions are satisfied when f in A.α [9, 11], we have ‖gk‖ → 0 as
k → ∞ (in fact, we only need the gradients {gk} to be bounded). Thus (2.32) implies (2.4).

Due to (2.27), (2.5) holds if we show that {ωk} is uniformly bounded above. For this, we
first need to estimate the model decrease. Taking the inner product of (2.2) with sk, we
deduce

−gTk sk = sTkHksk + λk‖sk‖
2.

Substituting this into the model decrease, we deduce also from (2.6) with βk = 0 that

fk −mk(sk) = −gTk sk −
1
2
sTkHksk = 1

2
sTkHksk + λk‖sk‖

2 ≥ ( 1
2
λmin(Hk) + λk) ‖sk‖

2.

It is straightforward to check that this and (2.27) now imply

fk −mk(sk) ≥ 1
2
ωk‖gk‖

α
1+α · ‖sk‖

2. (2.33)

We show next that iteration k is successful for ωk sufficiently large. From (2.28) and
second-order Taylor expansion of f(xk + sk), we deduce

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk)−mk(sk)

fk −mk(sk)

∣

∣

∣

∣

≤
|Hk −H(ξk)| · ‖sk‖

2

2(fk −mk(sk))
≤

LH,α‖sk‖
2+α

2(fk −mk(sk))
.

This and (2.33) now give

|ρk − 1| ≤
LH,α‖sk‖

α

ωk‖gk‖
α

1+α

≤
LH,α

ωα
minωk

, (2.34)

where to obtain the last inequality, we used (2.32). Due to (2.28), iteration k is successful

when |ρk − 1| ≤ 1− η1, which from (2.34) is guaranteed to hold whenever ωk ≥
LH,α

ωα
min(1−η1)

.

As on each successful iteration we set ωk+1 ≤ ωk, it follows that

ωk ≤ ω
def
= max

{

ω0,
γ1LH,α

ωα
min(1− η1)

}

, k ≥ 0, (2.35)

where the max term addresses the situation at the starting point and the γ1 factor is
included in case an iteration was unsuccessful and close to the bound. This concludes
proving (2.5). 2

Regarding upper bounds for the function-evaluation complexity of GQT methods when
applied to functions in A.α, one can show (using the model decrease (2.33) and a lower bound

on the step) that GQT takes at most O
(

ǫ−
α

1+α
−2

)

, which is worse than the steepest-descent

count. Note that this bound improves if only Newton steps are taken, to be of the order ǫ−
2+α
1+α ;

however, this is uncommon for general nonconvex functions. Here, we show in Section 3 that
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GQT methods are not optimal from a worst-case complexity point of view when applied to
A.α objectives.

Trust-region algorithms [9]. These methods compute the correction sk as the global
solution of the subproblem

minimize fk + gTk s+
1
2
sTHks subject to ‖s‖ ≤ ∆k, (2.36)

where ∆k is an evolving trust-region radius that is chosen to ensure sufficient decrease of f
at xk+ sk. The resulting global minimizer satisfies (2.2)–(2.3) [9, Corollary 7.2.2]. The scalar
λk in (2.2) is the Lagrange multiplier of the trust-region constraint, satisfies

λk ≥ max{0,−λmin(Hk)} (2.37)

and is such that λk = 0 whenever ‖sk‖ < ∆k (and then, sk is the Newton step) or calculated
using (2.2) to ensure that ‖sk‖ = ∆k. The scalar βk = 0 in (2.6). The iterates are defined by
(2.1) whenever sufficient progress can be made in some relative function decrease (so-called
successful iterations), and they remain unchanged otherwise (unsuccessful iterations) while ∆k

is adjusted to improve the model (decreased on unsuccessful iterations, possibly increased on
successful ones). The total number of unsuccessful iterations is bounded above by a constant
multiple of the successful ones [12, page 23] provided ∆k is not increased too fast on successful
iterations. One successful iteration requires one gradient and one function evaluation while
an unsuccessful one only evaluates the objective.

The property (2.4) of M.α methods can be easily shown for trust-region methods, see
Lemma 2.6 below. It is unclear however, whether conditions (2.5) or (2.9) can be guaranteed
in general for functions in A.α. The next lemma gives conditions for which a uniform upper
bound on the multiplier λk can be guaranteed.

Lemma 2.6 Let f satisfy assumptions A.0. Consider minimizing f by applying a trust-
region method as described in [9, Algorithm 6.1.1], where the trust-region subproblem is
minimized globally to compute sk and where the trust-region radius is chosen to ensure
that

∆k ≤ ∆max, k ≥ 0, (2.38)

for some ∆max > 0. Then (2.4) holds. Additionally, if

‖gk+1‖ ≤ ‖gk‖, for all k sufficiently large, (2.39)

then λk ≤ λmax for all k and some λmax > 0.

Proof. Consider he basic trust-region algorithm as described in [9, Algorithm 6.1.1],
using the same notation. Since the global minimizer sk of the trust-region subproblem
is feasible with respect to the trust-region constraint, we have ‖sk‖ ≤ ∆k, and so (2.4)
follows trivially from (2.38).

Clearly, the upper bound on λk holds whenever λk = 0 or λk = −λmin(Hk) ≤ Lg. Thus
it is sufficient to consider the case when λk > 0 and Hk + λkI ≻ 0. The first condition
implies that the trust-region constraint is active, namely ‖sk‖ = ∆k [9, Corollary 7.2.2].
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The second condition together with (2.2) implies, as in the proof of Lemma 2.1, that (2.10)
holds. Thus we deduce

∆k ≤
‖gk‖

λk + λmin(Hk)
,

or equivalently,

λk ≤
‖gk‖

∆k
− λmin(Hk) ≤

‖gk‖

∆k
+ Lg, k ≥ 0.

It remains to show that

{‖gk‖/∆k} is bounded above independently of k. (2.40)

By [9, Theorem 6.4.2], we have that there exists c ∈ (0, 1) such that the implication holds

∆k ≤ c‖gk‖ =⇒ ∆k+1 ≥ ∆k, i.e., k is successful. (2.41)

(Observe that the Cauchy model decrease condition [9, Theorem 6.3.3] is sufficient to
obtain the above implication.) Letting γ1 ∈ (0, 1) denote the largest factor we allow ∆k

to be decreased by (during unsuccessful iterations), we will show that

∆k ≥ min {∆k0 , cγ1‖gk‖} for all k ≥ k0, (2.42)

where k0 is the iteration from which onwards (2.39) holds; note that since gk remains
unchanged on unsuccessful iterations, (2.39) trivially holds on such iterations. Since the
assumptions of [9, Theorem 6.4.6] are satisfied, we have that ‖gk‖ → 0, as k → ∞. This
and (2.42) imply (2.40). Thus it remains to show (2.42). Using a similar argument to
that of [9, Theorem 6.4.3], we let k ≥ k0 be the first iterate such that ∆k+1 < cγ1‖gk+1‖.
Then since ∆k+1 ≥ γ1∆k and from (2.39) we have that ∆k < c‖gk‖. This and (2.41) give

∆k+1 ≥ ∆k ≥ cγ1‖gk‖ ≥ cγ1‖gk+1‖,

where to obtain the second and third inequalities, we used the hypothesis and (2.39),
respectively. We have reached a contradiction with our assumption that k + 1 is the first
iteration greater than k0 such that the lower bound on ∆k does not hold. 2

Note that if (2.17) holds for some α ∈ [0, 1], then (2.39) is satisfied, and so Lemma
2.6 shows that if (2.17) holds, then (2.16) is satisfied. It follows from Lemma 2.3 that fast
convergence of trust-region methods for functions in A.α alone is sufficient to ensure (2.13),
which in turn is connected to our definition of the class M.α. However, the properties of the
multipliers (in the sense of (2.5) for any α ∈ [0, 1] or even (2.13)) remain unclear in the absence
of fast convergence of the method. Some impractical rules can be constructed that ensure λk

satisfies (2.13), but at the expense of the resulting trust-region method essentially resembling
cubic or other regularization methods. Based on our experience, we are inclined to believe
that generally, the multipliers λk are at best guaranteed to be uniformly bounded above,
even for specialized, potentially computationally expensive, rules of choosing the trust-region
radius.

Trust-region methods (with simply a steepest-descent-like Cauchy condition imposed on
the step) can be shown to take at most O(ǫ−2) function evaluations when applied to functions
in A.0 [12]. As the Newton step is taken in the trust-region framework satisfying (2.2)
whenever it is within the trust region and gives sufficient decrease in the presence of local
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convexity, the A.1- (hence A.0-) example of inefficient behaviour for Newton’s method of
complexity precisely ǫ−2 can be shown to apply also to trust-region methods [3]. Here,
we show that the function-evaluation complexity of trust-region can vary in “inefficiency”
between ǫ−2 and ǫ−3/2 depending on the smoothness of the objective and on the assumptions
on the multipliers.

Linesearch methods with Armijo-Goldstein linesearch [10, 18]. We have not con-
sidered here using a linesearch to control improvement in the objective at each step. Such
methods compute xk+1 = xk + θksk, k ≥ 0, where sk is defined via a variant

(Hk +Mk)sk = −gk

of (2.2) in which Mk is chosen so that Hk + Mk is “sufficiently” positive definite, and the
stepsize θk is calculated so as to decrease f (the linesearch); this is always possible for suffi-
ciently small θk. A change to the definitions (2.1) and (2.2) to include a stepsize that ensures
sufficient decrease on each iteration is possible without the examples and analysis that fol-
low changing substantially, but is rather unwieldy. A suitable linesearch to this end is the
Goldstein-Armijo technique [18, 3].

3 Examples of inefficient behaviour for methods in M.α

Let α ∈ [0, 1]. Our intent is to show that for every method in M.α, we can construct sequences
{fk}, {gk}, {Hk} and a function fM.α(x) satisfying A.α such that

‖gk‖ ≥

(

1

k + 1

)
1+α

2+α−τ(1+α)

, k ≥ 0, for some arbitrarily small τ > 0 ; (3.1)

fM.α(xk) = fk, ∇xf
M.α(xk) = gk and ∇xxf

M.α(xk) = Hk. (3.2)

The inequality (3.1) implies that the method takes at least ⌊ǫ−
2+α
1+α

+τ⌋ iterations to generate
‖gk‖ ≤ ǫ, for any ǫ > 0 and for arbitrarily small τ , when applied to minimizing fM.α(x)
starting at x0. This shows that the evaluation complexity of (2 + α)-regularization methods
is essentially optimal in the order of ǫ, as their upper bound is of the same order in ǫ as the
lower bound given by our examples; see (2.25).

We consider a one-dimensional example. Assume for now the more general expression for
the sequence {gk}, namely,

gk = −

(

1

k + 1

)t

, k ≥ 0, for some t ∈ (0, 1], (3.3)

and also, in keeping with the definition of the methods in M.α, that

x0 = 0, xk+1 − xk = sk = −
gk

Hk + λk
, with λk ≥ 0, (3.4)

and

0 < Hk + λk ≤ κλ|gk|
α

1+α , k ≥ 0, (3.5)

for some κλ > 0 independent of k — a complete justification as to why (3.5) is achieved by
methods in M.α when applied to our constructed fM.α is given in the proof of Theorem 3.3.
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It follows from (3.3) and (3.4) that

sk > 0 and xk =
k−1
∑

i=0

si, k ≥ 0. (3.6)

We use Hermite interpolation to obtain fM.α, namely

fM.α(x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0, (3.7)

where pk is the polynomial

pk(s) = c0,k + c1,ks+ c2,ks
2 + c3,ks

3 + c4,ks
4 + c5,ks

5,

with coefficients defined by the interpolation conditions

pk(0) = fk − fk+1, pk(sk) = 0;

p′k(0) = gk, p′k(sk) = gk+1;

p
′′

k(0) = Hk, p
′′

k(sk) = Hk+1,

(3.8)

where sk is defined in (3.4). These conditions yield the following values for the coefficients

c0,k = fk − fk+1, c1,k = gk, c2,k = 1
2
Hk;

with the remaining coefficients satisfying







s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k













c3,k
c4,k
c5,k






=







∆fk − gksk − 1
2
sTkHksk

∆gk −Hksk
∆Hk






,

where

∆fk = fk+1 − fk, ∆gk = gk+1 − gk and ∆Hk = Hk+1 −Hk.

Hence we obtain, also from (3.4),

c3,k = 10∆fk
s3k

− 4∆gk
s2k

+ ∆Hk
2sk

− 10gk
s2k

− Hk
sk

= 10∆fk
s3k

− 4∆gk
s2k

+ ∆Hk
2sk

− 9gk
s2k

+ λk
sk

;

c4,k = −15∆fk
s4k

+ 7∆gk
s3k

− ∆Hk

s2k
+ 15gk

s3k
+ Hk

2s2k
= −15∆fk

s4k
+ 7∆gk

s3k
− ∆Hk

s2k
+ 29

2 · gk
s3k

− λk

2s2k
;

c5,k = 6∆fk
s5k

− 3∆gk
s4k

+ ∆Hk

2s3k
− 6gk

s4k
.

To show that fM.α satisfies A.α, recall that sk > 0 due to (3.6), and so (3.7) provides that
fM.α is twice continuously differentiable on the nonnegative reals (and it can be extended by
continuity to the negative reals). It remains to investigate the gradient’s Lipschitz continuity
and Hessian’s α−Hölder continuity, as well as whether fM.α is bounded below. We ensure
the remaining properties by further specifying the choice of fk, gk and Hk.



C. Cartis, N. I. M. Gould and Ph. L. Toint 15

Lemma 3.1 Consider an objective fM.α that satisfies (3.3)–(3.5). Let the Hessian of
fM.α at xk be chosen to satisfy

κh|gk|
α

1+α ≥ Hk ≥ −κh|gk|
α

1+α , k ≥ 0, (3.9)

for some positive constants κh and κh independent of k. Then

sk ≥ κs,α|gk|
1

1+α , k ≥ 0, (3.10)

for some κs,α > 0, and

∣

∣

∣

∣

∣

gk

s1+α
k

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

Hk

sαk

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

λk

sαk

∣

∣

∣

∣

∣

are bounded above, independently of k. (3.11)

Additionally, if
sk ≤ κs, k ≥ 0, (3.12)

and
|fk − fk+1| ≤ κfs

2+α
k , k ≥ 0, (3.13)

for some κs > 0 and κf > 0 independent of k, then the gradient of fM.α is globally
Lipschitz continuous and the Hessian of fM.α is globally α−Hölder continuous along the
path of the iterates. Finally, if

|fk| ≤ κf , k ≥ 0, for some κf > 0, (3.14)

then fM.α is bounded below (on the nonnegative reals).

Proof. From (3.4), we have sk = |gk|/(Hk + λk) and so (3.5) provides (3.10) with

κs,α
def
= 1/κλ. Thus the first ratio in (3.11) is uniformly bounded above. The uniform

boundedness of the second ratio in (3.11) follows from (3.9) and (3.10). Now we deduce
from (3.5) and (3.9) that

0 ≤ λk ≤ (κλ + κh)|gk|
α

1+α , k ≥ 0, (3.15)

which together with (3.10), provides that the third ratio in (3.11) is uniformly bounded
above.

We next show that the Hessian of fM.α is globally α−Hölder continuous on the path of
the iterates, namely that (2.8) holds. From (3.7), this is implied by

|p
′′′

(s)| ≤ c|s|−1+α, for all s ∈ [0, sk] and for some c > 0 independent of s and k.
(3.16)

We have from the expression of pk and s ∈ [0, sk] that

|p
′′′

(s)| · |s|1−α ≤ (6|c3,k|+ 24|c4,k|sk + 60|c5,k|s
2
k)s

1−α
k

= 6|c3,k|s
1−α
k + 24|c4,k|s

2−α
k + 60|c5,k|s

3−α
k .

(3.17)
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It follows from the expressions of the coefficients of pk that the right-hand side of (3.17)
is bounded above provided the terms

∣

∣

∣

∣

∣

∆fk

s2+α
k

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∆gk

s1+α
k

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∆Hk

sαk

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

gk

s1+α
k

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

λk

sαk

∣

∣

∣

∣

(3.18)

are uniformly bounded above independently of k. Clearly, the first expression follows from
(3.13), while the remaining ones, from (3.11) and the expression of gk in (3.3).

To show that the gradient of fM is globally Lipschitz continuous is equivalent to proving
that p

′′

k(s) is uniformly bounded above on the interval [0, sk]. Since sk > 0, we have

|p
′′

k(s)| ≤ 2|c2,k|+ 6|c3,k|sk + 12|c4,k|s
2
k + 20|c5,k|s

3
k, s ∈ [0, sk].

The above explicit expressions of the coefficients of pk imply that it is enough to show
that the quantities

∣

∣

∣

∣

∣

∆fk

s2k

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∆gk
sk

∣

∣

∣

∣

, |∆Hk|,

∣

∣

∣

∣

gk
sk

∣

∣

∣

∣

and |λk| (3.19)

are uniformly bounded above, independently of k. But all ratios in (3.19) can be expressed
as the corresponding ratios in (3.18) multiplied by sαk , while sk is bounded above due to
(3.12). Hence (3.18) implies that the ratios in (3.19) are uniformly bounded above.

It remains to show that fM.α is bounded below, which due to (3.7) and (3.14), is equivalent
to proving that |pk(s)| is uniformly bounded above for s ∈ [0, sk]. Recalling the expressions
of the coefficients of pk, and sk being bounded above from (3.12), this now follows from
{fk − fk+1}, {|gk|}, {Hk} and {λk} being bounded above due to (3.13) and (3.11). 2

Note that we have shown that fM.α(x) is bounded below for x ≥ 0, which is the domain of
interest since xk ≥ 0; we can extend fM.α by continuity for x < 0 [3]. Note also that though
fM.α is bounded below, we have not shown that fM.α is bounded below by the limit, or a
lower bound, of the sequence {fk}; the latter will often hold as can be seen from the examples
in [3].

Clearly, from Lemma 3.1, in order to complete our construction of a suitable function
fM.α, we need to find suitable choices of {fk} such that (3.13) and (3.14) hold, and in the
same vein, to ensure that the function values {fk} are not only monotonically decreasing but
that a sufficient decrease in f is gained from xk to xk+1 so that progress towards a minimum
is made with each step. The next lemma addresses these issues by making use of the local
model (2.6); condition (3.12) will be easily satisfied later on, especially as we are looking to
make sk small in order to capture the worst-case behaviour of the methods.
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Lemma 3.2 Consider an objective fM.α that satisfies (3.3)–(3.5) and (3.9). Let also
the values fk+1 be chosen recursively from fk so as to satisfy

fk+1 = fk − η (fk −mk(sk)) , for some η > 0 independent of k, (3.20)

where mk(s) is defined in (2.6). Then

fk > fk+1, for all k. (3.21)

Furthermore, if (3.12) holds and

f0 − flow ≤
∞
∑

k=0

(fk − fk+1) < ∞, (3.22)

where flow is some lower bound on {fk}, then fM.α belongs to A.α.

Proof. It follows from (3.20) and (3.4) that

fk − fk+1 = −
η

2
gksk +

η

2
s2k(λk − βk). (3.23)

Now (3.21) follows from gk < 0 due to (3.3), sk > 0, and λk ≥ βk due to (2.6). Relation
(3.23), (2.6) and the Cauchy-Schwarz inequality imply that

fk − fk+1 ≤ η|gk| · sk + ηλks
2
k, k ≥ 0,

and furthermore,
fk − fk+1

s2+α
k

≤ η
|gk|

s1+α
k

+ η
λk

sαk
. (3.24)

Since the conditions of Lemma 3.1 are satisfied, (3.11) holds, which together with (3.24),
implies that (3.13) is satisfied. Clearly, (3.21) implies (3.14) holds whenever (3.22) is
achieved. Lemma 3.1 now provides that fM.α is in A.α. 2

By specifying the recursion (3.20) that generates the values fk+1 from fk so that fk+1 is
in (absolute or relative) agreement with the local model of the function, we have ensured that
sufficient progress is made on each iteration towards the solution; indeed, condition (3.20)
is the common positive relative decrease requirement for updating the step in trust-region,
regularization and other second-order methods. Finally, ensuring (3.12) and (3.22) will be
a by-product of the potentially slow rate of convergence of the methods in M.α, which we
address next.

Recall that whenever a method in M.α is applied to minimizing a function in A.α, it
generates steps that satisfy (2.13); see Lemma 2.2. For the function fM.α constructed in
Lemmas 3.1 and 3.2, this reduces to sk satisfying (3.10). Since the smaller the step the slower
the method, it follows that the method will be slowest when (3.10) holds with equality, or

equivalently, when sk varies as |gk|
1

1+α , i.e.,

sk = Θ
(

|gk|
1

1+α

)

, k ≥ 0, (3.25)
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where Θ(·) denotes the existence of upper and lower bounds of the same order as its argument.
Relation (3.25) and (3.13) — the latter holding due to Lemma 3.2 — imply that

∞
∑

k=0

(fk − fk+1) < ∞ when
∞
∑

k=0

|gk|
2+α
1+α < ∞. (3.26)

(Note that the first series in (3.26) is equivalent to (3.22).) Due to (3.3) and the properties
of the Riemann zeta function, we have

∞
∑

k=0

|gk|
2+α
1+α < ∞ ⇐⇒

∞
∑

k=0

(

1

k + 1

)t· 2+α
1+α

< ∞ ⇐⇒
1 + α

2 + α
< t ≤ 1. (3.27)

Thus, for worst complexity, t in the expression of gk in (3.3) must be arbitrarily close to the
lower bound of the interval in (3.27), and hence of the form

t =
1 + α

2 + α
+ δ, for some arbitrarily small δ > 0. (3.28)

We are therefore left with arguing that the choice (3.25) can indeed happen. Since gk is
prescribed, small steps sk, namely (3.25), are equivalent to Hk + λk in (3.4) being as large as
possible, namely, of the same order as the right-hand side of (3.5). We can achieve this by
further taking up the freedom in the choice (3.9) of Hk, as we show next, in the main theorem
of this Section. This theorem completes the construction of the lower complexity bound for
M.α and results in the optimality of regularization methods for functions in A.α.

Theorem 3.3 Consider an objective fM.α that satisfies (3.3) with t defined in (3.28),
(3.4), (3.5) and (3.20). Let

Hk = κh|gk|
α

1+α , k ≥ 0, (3.29)

for some positive constant κh independent of k.
Then fM.α belongs to A.α. In (3.28), set

δ =
τ(1 + α)2

(2 + α)2 − τ(1 + α)(2 + α)
, for some arbitrarily small τ > 0. (3.30)

Let a method from the class M.α be applied to minimizing fM.α. Then the method

will take precisely ⌈ǫ−
2+α
1+α

+τ⌉ iterations and function evaluations to generate |gk| ≤ ǫ. In
particular, the (2 + α)-regularization methods are optimal from a worst-case evaluation
complexity point of view for the class of A.α-objectives.

Proof. The choice (3.29) and λk ≥ 0 implies that

Hk + λk ≥ κh|gk|
α

1+α ,

which together with (3.4) give that

sk ≤
1

κh
|gk|

1
1+α .
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This and (3.10) imply (3.25). The choice (3.28) of t implies that (3.22) holds as argued
just above the statement of the Theorem. Furthermore, (3.25) and (3.3) provide that
(3.12) holds. Now all conditions in Lemma 3.2 have been satisfied, and so fM.α is in A.α.

Consider applying a method in M.α to minimizing fM.α, with starting point given in (3.4).
Then, clearly the remaining conditions in (3.4) are achieved, and so is (3.5). Indeed, since
we are in the univariate case and so Hk = λmin(Hk), (2.5) and (3.29) imply that (3.5)

holds with κλ
def
= κλmax{κh, 1}. Condition (2.4) is also achieved on our objective due to

(3.12), which holds as we have argued in the previous paragraph.

The iteration and evaluation complexity of any method in M.α applied to fM.α follows
from (3.28), (3.30) and the argument following (3.1) and (3.2). In particular, if the method
of choice is the (2 + α)−regularization described in (2.22), which belongs to M.α due to
Lemma 2.4, then it satisfies a complexity upper bound of the same order in ǫ, with τ = 0;
see (2.25). As the upper and lower bound on (2+α)−regularization coincides in the order
of ǫ, it is optimal from a worst-case complexity point of view, within the class M.α. 2

Note that in Theorem 3.3, we could have derived the value of t in (3.28), rather than
assume it. Indeed, recalling the argument just before the statement of the Theorem, if we
want the construction of fM.α to be well-defined, namely (3.22) to hold, we must have that
t satisfies the last relation in (3.27). Furthermore, the smaller the value of t, the worst the
complexity of the method, and so we set t to the value in (3.28).

Finite minimizers. Note that the choice of sk in Theorem 3.3 which satisfies (3.25)
implies, due also to (3.3), (3.28) and the properties of the Riemann zeta function, that

∞
∑

k=0

sk = ∞.

Thus the minimizer/stationary point of our examples is at infinity. However, at termination,
the iterate xk with |gk| ≤ ǫ is finite for any ǫ > 0, and so fM.α can be extended smoothly
beyond xk in such a way that the resulting function has a unique, finite and global minimizer.
Thus, by fixing the required accuracy ǫ and using it in the construction of the objective, we
obtain similar examples of inefficiency, with the same complexity for problems with finite
minimizers. 2

3.1 Illustrations

Let us illustrate the examples of Section 3 for specific methods in M.α. In particular, once
we know the choice of method in M.α, there is more freedom in the choice of examples than
prescribed by Theorem 3.3, namely in the choice of Hk, and we can describe the examples in
a more method-dependent way.

Let α ∈ [0, 1]. Assume gk is defined as in (3.3) with the choice of t given in (3.28) and
(3.30), and hence

gk = −

(

1

k + 1

)
1+α
2+α

+δ

, (3.31)

and let Hk satisfy (3.9). Let fk be defined recursively using (3.20). Let

sk =

(

1

k + 1

)q

, for some q ∈ (0, 1]. (3.32)
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It follows from (3.10) that

q ≤
1

2 + α
+

δ

1 + α
. (3.33)

Furthermore, for (3.25) to hold, we must have

q >
1

2 + α
. (3.34)

Hence from (3.33) and (3.34), we have q ∈
(

1
2+α ,

1
2+α + δ

1+α

]

, and since δ > 0 can be arbi-

trarily small, we must settle for

q =
1

2 + α
+

δ

1 + α
. (3.35)

Note that from (3.4) and (3.35), we have

Hk + λk =

(

1

k + 1

)α( 1
2+α

+ δ
1+α)

(3.36)

and (2.5) and (3.5) are verified. Now consider the particular values of λk and βk for some
methods in M.α and specialize the examples for these methods.

Newton’s method. Recalling (2.21), we have from (3.36) that the choice

Hk =

(

1

k + 1

)α( 1
2+α

+ δ
1+α)

, k ≥ 0, (3.37)

in the construction of fM.α will generate the required complexity of order ǫ−(2+α)/(1+α)+τ

iterations. Note that (3.37) is of the same order as (3.29), and that Hk > 0 so that the
Newton iteration is well-defined.

Since Newton’s method belong to M.α for every α ∈ [0, 1], we conclude from our results
here and in [3] that Newton’s method may take essentially between at least ǫ−2 and ǫ−3/2

evaluations to generate |gk| ≤ ǫ; recall that ǫ−2 is the sharp order of complexity of steepest-
descent method [3]. Note that if the Hessian of the objective is unbounded, and hence, we
are outside of the class A.1, the complexity of Newton’s method worsens, and in fact, it may
be arbitrarily bad [3].

Cubic and other regularizations. Recalling (2.23), we set the parameter σk = σ > 0 for
all k in the algorithm, which is allowed as every iteration is successful due to (3.20). From
(3.36) and the definition of λk = σ‖sk‖

α in (2.23), the choice

Hk = (1− σ)

(

1

k + 1

)α( 1
2+α

+ δ
1+α)

in the construction of fM.α will generate the required complexity of order ǫ−(2+α)/(1+α)+τ

iterations, which for the (2 + α)−regularization method is a tight bound in the order of ǫ for
objectives in A.α. Letting α = 1, note that for σ = 1, we get Hk = 0 which recovers the
choice in the cubic regularization example in [3].

Goldfeld-Quandt-Trotter. Recalling (2.27), we can set ωk = ω in the algorithm as every

iteration is sucessful due to (3.20) and Hk = 0 in fM.α, which gives λk = ω|gk|
α

1+α , which is
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in agreement to (3.36), due also to (3.31). This choice for Hk in fM.α yields the complexity
of ǫ−(2+α)/(1+α)+τ Goldfeld-Quandt-Trotter iterations to drive the gradient below ǫ.

Trust-region methods. Recall the choices (2.37) we make in this case. If λk = 0, the
trust-region constraint ‖s‖ ≤ ∆k is inactive at sk, in which case, sk is the Newton step.
If we make precisely the choices we made for Newton’s method above, choosing ∆0 such
that ∆0 > |s0| implies that the Newton step will be taken in the first and in all subsequent
iterations since each iteration is successful and then ∆k remains unchanged or increases while
the choice (3.32) implies sk decreases. Thus in this case, the trust-region approach, through
the Newton step, has the same complexity when applied to fM.α as the Newton step, namely
ǫ−(2+α)/(1+α)+τ , for any α ∈ [0, 1].

By contrast when λk > 0 for all k, sk = ∆k. Using the notation in [9, Algorithm 6.1.1],
let η in (3.20) be equal to η1, which corresponds to successful but not very successful steps
sk. This allows the trust-region radius ∆k to decrease slightly, namely ∆k+1 ∈ [γ2∆k,∆k].
We let

∆k+1 = γk∆k, where γk =
(

k+1
k+2

)q

with q defined in (3.35). If γ2 is chosen such that γ2 ≤ (1/2)q, then clearly the above updating
rule implies that ∆k+1 ∈ [γ2∆k,∆k]. Note that due to (3.32), this updating rule is consistent
with the trust-region constraint being active on each iteration. Now we can choose Hk < 0 so
as to ensure (3.36), noting that despite not knowing the precise value of λk for the trust-region
method, we know that the global solution of the trust-region subproblem is unique whenever
Hk + λkI is positive definite, which is clearly the case here, due to (3.36).

4 Conclusions

We have provided lower bounds on the evaluation complexity of second-order methods for
reaching approximate first-order critical points of nonconvex, smooth unconstrained optimiza-
tion problems. We have found that regularization algorithms are optimal from a worst-case
complexity point of view within the wide class of methods M.α, in that their upper complex-
ity bounds match in order the lower bound we have shown for relevant, sufficiently smooth
objectives A.α. Note that every iteration complexity bound discussed here is of the order ǫ−p

(for various values of p > 0) for driving the objective’s gradient below ǫ; thus the methods we
have addressed may require an exponential number of iterations 10p·k to generate k correct
digits in the solution. Also, as our examples are one-dimensional, they fail to capture the
problem-dimension dependence of the upper complexity bounds. Indeed, besides the accu-
racy tolerance ǫ, existing upper bounds depend on the distance to the solution set, that is
f(x0)−flow, and the gradient’s and Hessian’s Lipschitz or Hölder constants, all of which may
dependent on the problem dimension. Some recent developments in this respect can be found
in [14].

The methods we have addressed assume that subproblems are solved to global optimality
in each iteration in order to compute the step, thus ensuring best possible decrease locally.
As such, approximate variants of the algorithms are unlikely to perform better in the worst
case than the exact variants discussed here.

When convexity or strong convexity of the objective is assumed, much is known about
upper complexity bounds but little about the lower bounds or worst-case optimality of second
order methods; the latter has been fully resolved for first-order methods [15]. A sharp bound
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for cubic regularization methods in the convex case was given in [5], but it is unknown whether
this is a lower bound on the wider class of second-order methods.

Here we have solely addressed the complexity of generating first-order critical points, but
it is common to require second-order methods for nonconvex problems to achieve second-order
criticality. Indeed, upper complexity bounds are known in this case for cubic regularization
and trust-region methods [17, 2, 6], which are sharp in some cases [6]. A lower bound on
the whole class of second order methods for achieving second-order optimality remains to
be established, especially when different accuracy is requested in the first- and second-order
criticality conditions.

Regarding the evaluation complexity of constrained optimization problems, we have shown
[4, 7, 8] that the presence of constraints does not change the order of the bound, so that the
unconstrained upper bound for some first- or second-order methods carries over to the con-
strained case; note that this does not include the cost of solving the constrained subproblems
as the latter does not require additional problem evaluations. Since constrained problems
are at least as difficult as unconstrained ones, these bounds are also tight. It remains an
open question whether a unified treatment such as the one given here can be provided for the
complexity of methods for constrained problems.
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