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Abstract

The worst-case complexity of the steepest-descent algorithm with exact line-
searches for unconstrained smooth optimization is analyzed, and it is shown that
the number of iterations of this algorithm which may be necessary to find an iterate
at which the norm of the objective function’s gradient is less that a prescribed ǫ is,
essentially, a multiple of 1/ǫ2, as is the case for variants of the same algorithms using
inexact linesearches.

1 Introduction

The worst-case analysis of optimization algorithms for finding unconstrained stationary
points of nonlinear non-convex functions has recently been considered in a number of
contributions (see Nesterov, 2004, Nesterov and Polyak, 2006, Cartis, Gould and Toint,
2011a, 2011b, 2011c, 2012a, 2012b, 2012c, Vicente, 2010, Bian, Chen and Ye, 2012, Grat-
ton, Sartenaer and Toint, 2008, or Jarre, 2011, to cite a few). In particular, the study
of the steepest-descent method, the most archetypal method for unconstrained nonlinear
optimization, was considered by several authors, whose analysis differ primarily by the
particular technique used for (possibly approximately) minimizing the objective function
along the steepest-descent direction. An upper bound on the number of iterations required
to obtain an approximate stationary point was given by Nesterov (2004) using a variant
of the algorithm where the step is computed using the knowledge of a global Lipschitz
constant on the gradient of the objective function. He showed that at most O(ǫ−2) it-
erations might be needed to find an iterate at which the Euclidean norm of the gradient
is below a generic tolerance ǫ > 0. As it turns out, his result also applies to the “pure”
steepest-descent algorithm, that is the variant using exact linesearches. A lower complex-
ity bound was also obtained by Cartis, Gould and Toint (2010), where it was shown that
the bound of O(ǫ−2) iterations is essentially tight for a version using a Goldstein type
linesearch. However, this result depends on a one-dimensional counter-example where the
objective function is monotonically decreasing, in which case an exact linesearch would
obviously give much better results. The purpose of this short paper is to close the remain-
ing conceptual gap, that is to show that the lower bound of O(ǫ−2) iterations also holds
for the steepest-descent algorithm with exact linesearches when applied on functions with
globally Lipschitz continuous gradient.

The next section recalls the algorithms and the assumptions required for our complexity
analysis. Section 3 proposes an example of worst-case behaviour for the method, while
Section 4 is devoted to verifying that the example does satisfy the assumptions stated. A
few words of conclusion are presented in Section 5.
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2 The steepest-descent method with exact linesearches

We consider the unconstrained minimization problem

min
x∈IRn

f(x) (2.1)

where f(x) is a smooth function from IRn into IR. One of the simplest and oldest algorithm
for solving this problem is the steepest-descent method by Cauchy (1847), whose iterates
are defined, for a given initial guess x0, by the simple iteration

xk+1 = argmin
t≥0

f(xk − tgk), (k ≥ 0) (2.2)

where gk = ∇xf(xk) and where ties are broken by choosing the first minimizer of f(xk −
tgk) if there is more than one (say). This choice is of course most often numerically
unrealistic, except for special functions f(x) such as quadratics, where the minimizer can
be determined analytically. But it remains an ideal that numerically sounder techniques
attempt to imitate, justifying our curiosity.

The assumptions we make on problem (2.1) are as follows.

AF.0 f(x) is bounded below on IRn, that is there exists a constant κlbf such
that, for all x ∈ IRn,

f(x) ≥ κlbf.

AF.1 f(x) is continuously differentiable on IRn.

AF.2 g(x) = ∇xf(x) is Lipschitz continuous on IRn, that is there exists a
constant Lg ≥ 0 such that, for all x, y ∈ IRn,

‖g(x)− g(y)‖ ≤ Lg‖x− y‖.

Here and below, ‖ · ‖ stands for the Euclidean norm.
We now briefly recall the upper complexity bound for algorithm (2.2) by suitably

reformulating the result of Nesterov (2004).

Theorem 2.1 Suppose that AF.0–AF.2 hold. Then there exists a constant κupp

depending on x0 and possibly on n such that, for all ǫ ∈ (0, 1) at most

⌈κupp

ǫ2

⌉

(2.3)

iterations of method (2.2) are needed to obtain an iterate xk such that ‖gk‖ ≤ ǫ.

Proof. We first note that AF.1, Taylor’s expansion at xk and AF.2 give that, for
each k ≥ 0,

f(xk)− f(xk − tgk) ≥ f(xk)− f(xk) + t‖gk‖2 − 1
2
t2Lg‖gk‖2

for any t ≥ 0. Maximizing the right-hand side of this inequality with respect to t, we
obtain that

f(xk)− f(xk − 1

Lg

gk) ≥
1

2Lg

‖gk‖2 ≥ ǫ2

2Lg

(2.4)

for each iteration k, as long as ‖gk‖ > ǫ.
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But (2.2) ensures that the slope of f(xk−tgk) must be zero at xk+1 = xk−tkgk, giving
that, for all k,

0 = 〈gk, g(xk+1)〉 = ‖gk‖2 + 〈gk, g(xk − tkgk)− gk〉 ≥ ‖gk‖2(1− Lgtk),

where we used the Cauchy-Schwartz inequality and AF.2. This implies that tk, the
argument of the (first) minimum in (2.2), is such that tk ≥ 1/Lg and therefore, because
of (2.4), that, for each k,

f(xk)− f(xk − tkgk) ≥ f(xk)− f(xk − 1

Lg

gk) ≥
ǫ2

2Lg

as long as ‖gk‖ > ǫ. Thus a maximum number of
⌈

2Lg(f(x0)− κlbf)

ǫ2

⌉

def
=

⌈κupp

ǫ2

⌉

such iterations may take place before xk is found such that ‖gk‖ ≤ ǫ. 2

The purpose of the present paper is to show that the bound (2.3) is essentially tight,
which cannot be deduced from the one-dimensional example of Cartis et al. (2010). The
next section describes how to build a new two-dimensional example where algorithm (2.2)
essentially requires O(ǫ−2) iterations to achieve ‖gk‖ ≤ ǫ.

3 Constructing a counter-example

Because, as in Cartis et al. (2010), our example is based on polynomial Hermite interpo-
lation, we first state and prove crucial properties of this type of interpolation.

Theorem 3.1 Assume that real values f0, g0, h0, fT , gT , hT and T > 0 are known.

Then there exists a fifth order polynomial p(t)
def
= c0 + c1t+ c2t

2 + c3t
3 + c4t

4 + c5t
5,

t ∈ [0, T ], such that

p(0) = f0, p′(0) = g0 and p′′(0) = h0,

p(T ) = fT , p′(T ) = gT and p′′(T ) = hT .

The coefficients of this polynomial are given by

c0 = f0, c1 = g0, c2 = 1
2
h0, c3 = 1

T (10r0 − 4r1 + 1
2
r2),

c4 = 1
T 2 (−15r0 + 7r1 − r2) and c5 = 1

T 3 (6r0 − 3r1 + 1
2
r2),

(3.5)

where

r0 =
1

T 2
(fT − f0 − g0T − 1

2
h0T

2), r1 =
1

T
(gT − g0 − h0T ) and r2 = hT − h0.

Moreover, if there are non-negative constants κ0, κ1 and κ2 such that

|r1| ≤ κ0, |r1| ≤ κ1 and |r2| ≤ κ2, (3.6)

Then there exists κf ≥ 0, κg ≥ 0 and κh ≥ 0 only depending on κ0, κ1 and κ2 such
that, for all t ∈ [0, T ],

|p(t)| ≤ |f0|+ |g0|T + 1
2
|h0|T 2 + κfT

2, (3.7)

|p′(t)| ≤ |g0|+ 1
2
|h0|T + κgT, and |p′′(t)| ≤ |h0|+ κh. (3.8)
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Proof. (See Cartis et al., 2011c.) Using the form of p(t), we write the desired
interpolation conditions as

p(0) = c0 = f0, p′(0) = c1 = g0, p′′(0) = 2c2 = h0 (3.9)

(which immeditaley gives the desired values for c0, c1 and c2) and

p(T ) = c0 + c1T + c2T
2 + c3T

3 + c4T
4 + c5T

5 = fT ,
p′(T ) = c1 + 2c2T + 3c3T

2 + 4c4T
3 + 5c5T

4 = gT ,
p′′(T ) = 2c2 + 6c3T + 12c4T

2 + 20c5T
3 = hT .

These conditions can the be re-expressed as a linear system with unknowns c3, c4 an
c5, whose solution exists and turns out to be





c3
c4
c5



 =





1
T

0 0
0 1

T2 0
0 0 1

T3









10 −4 1
2

−15 7 −1
6 −3 1

2









1

T2 [fT − f0 − g0T − 1
2
h0T

2]
1
T
[gT − g0 − h0T ]

hT − h0



 ,

completeing the proof of (3.5). Taking absolute values in this relation, we obtain that





|c3|
|c4|
|c5|



 ≤





1
T
[10κ0 + 4κ1 + 1

2
κ2]

1

T2 [15κ0 + 7κ1 + κ2]
1

T3 [6κ0 + 3κ1 + 1
2
κ2]





def
=





κc3/T
κc4/T

2

κc5/T
3



 .

As a consequence, we have that, for all t ∈ [0, T ],

|p(t)| ≤ |f0 + g0T + 1
2
h0T

2|+ (κc3 + κc4 + κc5)T
2, (3.10)

which gives (3.7) with κf
def
= κ0 + κc3 + κc4 + κc5. Similarly, we obtain that, for all

t ∈ [0, T ],
|p′(t)| ≤ |g0 + h0T |+ (3κc3 + 4κc4 + 5κc5)T (3.11)

yieldling the first part of (3.8) with κg
def
= κ1 + 3κc3 + 4κc4 + 5κc5, and

|p′′(t)| ≤ |h0|+ (6κc3 + 12κc4 + 20κc5), (3.12)

from which the second part of (3.8) finally follows with κh
def
= κ2+6κc3+12κc4+20κc5.

2

We now turn to construction our worst-case example for the steepest-descent method
(2.2). The idea is to fix an arbitrary τ ∈ (0, 1

3
] and then to define f(x, y), the objective

function in the example as the sum of f1(x) and f2(x, y). As in Cartis et al. (2010), f1(x)
is defined by piecewise Hermite polynomial interpolation between the sequence of iterates

x0 = 0, xk+1 = xk + σk (k ≥ 0) (3.13)

of the values

f1(x0) = ζ(1+2η), f1(xk+1) = f1(xk)−σ2
k, f ′(xk) = −σk, and f ′′

1 (xk) = 0, (3.14)

where ζ(·) is the Riemann zeta function and

η = η(τ)
def
=

1

2− τ
− 1

2
=

τ

4− 2τ
∈ (0, 1

2
) and σk

def
=

(

1

k + 1

)
1
2
+η

. (3.15)

From (3.5), we then find that, for x ∈ [xk, xk+1] and t = (x− xk)/σk,

f1(x) = f1(xk)− σ2
kt+ σk(σk − σk+1)

[

− 4t3 + 7t4 − 3t5
]

,
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f ′
1(x) = −σk + (σk − σk+1)

[

− 12t2 + 28t3 − 15t4
]

, (3.16)

and

f ′′
1 (x) =

σk − σk+1

σk

[

− 24t+ 84t− 60t3
]

. (3.17)

It is easy to verify that, for t ∈ [0, 1]

−12t2 + 28t3 − 15t4 = −t2[12− 28t+ 15t2] ≤ 1

and thus, using (3.16), that

f ′
1(x) ≤ −σk+1 < 0 for all x ∈ [xk, xk+1]. (3.18)

In addition, taking into account that

0 <
σk − σk+1

σk

= 1−
(

k + 1

k + 2

)
1
2
+η

< 1,

for k ≥ 0 and that t ∈ [0, 1] if x ∈ [xk, xk+1], we obtain by a straightforward majoration
in (3.17) that

|f ′′
1 (x)| < 168 (3.19)

for x ∈ [xk, xk+1], which in turn implies that f ′′
1 (x) is uniformly bounded for all x ≥ 0.

The behaviour of f1(x) and of its first and second derivatives are pictured in Figure 3.1
on this page.
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Figure 3.1: The function f1(x) and its first two derivatives (from top to bottom and left
to right) on the first 8 intervals

We now turn to the specification of the function f2(x, y), whose role is to limit the
iterates in the y-direction to a progressively narrower “corridor”, thereby forcing the it-
eration path to oscillate between its lower and upper limits. We have already prescribed
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that the x-components of the successive iterates are given by (3.13), and f2(x, y) will be
constructed in such a way that its gradient at the iterates is equal in norm to that of f1(x)
but alternating in sign, thus generating the necessary orthogonality conditions and the
oscillating iteration path.

More specifically (and in accordance with (3.13)), define, for all k ≥ 0,

(

x0

y0

)

=

(

0
0

)

,

(

xk+1

yk+1

)

=

(

xk

yk

)

+

(

σk

(−1)kσk

)

with
σk = −f ′

1(xk), (3.20)

defining the zig-zaging piecewise linear iteration path y(x) illustrated in Figure 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: The iteration path y(x) (plain), the upper and lower boundaries ylow(x) and
yup(x) (dashed) and ymid(x) (dotted) for k = 1, . . . , 8 and η = 10−5.

We now define the lower and upper boundaries of the “corridor” containing the iterates.
This is achieved by defining the lower boundary ylow(x) as a twice continuously differen-
tiable curve that interpolates the y coordinates of the iterates of index 2k (k ≥ 0) and is
constant on the intervals [x2k−1, x2k], yielding

ylow(x2k−1) = ylow(x2k) = y2k.

Polynomial Hermite interpolation is used to twice continuously connect the constants
parts. The upper boundary yup(x) is defined in the same way to interpolate the y coordi-
nates of the iterates of index 2k + 1 (k ≥ 0), being constant on [x2k, x2k+1], yielding

yup(x2k) = yup(x2k+1) = y2k+1.

Both ylow(x) and yup(x) are shown on Figure 3.2, as well as their average ymid(x) =
1
2
(yup(x) + ylow(x)). If we define

δ(x)
def
= yup(x)− ylow(x), (3.21)

(the corridor width at x), we note that, by construction,

δ(xk) = σk for all k ≥ 0. (3.22)

Moreover, since the interpolation conditions defining yup(x) are given (for x ∈ [x2k−1, x2k],
say) by

yup(x2k−1) =
2k−2
∑

i=0

(−1)iσi and yup(x2k) = yup(x2k+1) =
2k
∑

i=0

(−1)iσi, (3.23)

y′
up
(x2k−1) = y′

up
(x2k) = 0 and y′′

up
(x2k−1) = y′′

up
(x2k) = 0, (3.24)



Cartis, Gould, Toint: Complexity of steepest descent with exact linesearches 7

a closer inspection of the interpolating polynomial (see (3.5)) reveals that, for x ∈ [x2k−1, x2k],

yup(x) = yup(x2k−1)− (σ2k−1 − σ2k)
[

10t3 − 15t4 + 6t5
]

, (3.25)

where t = (x− x2k−1)/σ2k−1. Symmetrically, we have that, for x ∈ [x2k, x2k+1],

ylow(x) = ylow(x2k) + (σ2k − σ2k+1)
[

10t3 − 15t4 + 6t5
]

, (3.26)

where t = (x−x2k)/σ2k. We thus obtain from (3.25) and (3.26), using (3.22) and defining
t = (x− xk)/σk, that, for x ∈ [xk, xk+1]

δ(x) = σk − (σk − σk+1)
[

10t3 − 15t4 + 6t5
]

(3.27)

and
ymid(x) = ymid(xk) + 1

2
(−1)k(σk − σk+1)

[

10t3 − 15t4 + 6t5
]

. (3.28)

These two last relations yield that

δ′(x) = 2(−1)k+1y′
mid

(x) = −30
σk − σk+1

σk

[

t2 − 2t3 + t4
]

≤ 0, (3.29)

and also that

δ′′(x) = 2(−1)k+1y′′
mid

(x) = −60
σk − σk+1

σ2
k

[

t− 3t2 + 2t3
]

. (3.30)

The last inequality in (3.29) results from the decreasing nature of σk and the fact that
1 − 2t + t2 = (1 − t)2 ≥ 0 for t ∈ [0, 1]. It immediately implies, with (3.22) and (3.29),
that δ(x) is non-increasing and that

σk = δ(xk) ≥ δ(x) ≥ δ(xk+1) = σk+1 for x ∈ [xk, xk+1]. (3.31)

The next step is to define, for each x, f2(x, y) as a twice continuously differentiable
function of y whose value is small between ylow(x) and yup(x) and first increases before
levelling off when the distance of y to the corridor increases, thereby keeping the iterates
within the corridor. The details of f2(x, y) are given by

f2(x, y) =







8 δ(x)2 if y ≤ ylow(x)− 1
(y − ymid(x))

2 if y ∈ [ylow(x), yup(x)]
8 δ(x)2 if y ≥ yup(x) + 1

(3.32)

where Hermite interpolation is once more used to twice continuously connect the first and
second interval, as well as the second and third. In the first of these intervals, f2(x, y) is
thus defined by a fifth order polynomial translated to [0, 1], with boundary conditions on
this latter interval given by

p(0) = 8 δ(x)2, p′(0) = 0, p′′(0) = 0

and

p(1) = (ylow(x)− ymid(x))
2, p′(1) = 2(ylow(x)− ymid(x)) = −δ(x) and p′′(1) = 2.

The interpolation conditions on the second interval are symmetrically defined. Figure 3.3
shows the shape of f2(x, y) for fixed x.

Note that f2(x, y) is symmetric in y with respect to ymid(x) by construction. Note also
that, using (3.21), the definition of ymid(x) and (3.22),

∂f2
∂y

(x2k, y2k) =
∂f2
∂y

(x2k, ylow(x2k)) = 2(ylow(x2k)− ymid(x2k)) = −δ(x2k) = −σ2k (3.33)
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−1 −0.5 0 0.5 1 1.5 2

0

0.2
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Figure 3.3: The shape of f2(x, y) for x = x2 and η = 10−5, the vertical lines indicating
the values of ylow(x2) and yup(x2).

and, similarly,

∂f2
∂y

(x2k+1, y2k+1) =
∂f2
∂y

(x2k+1, yup(x2k+1))

= 2(yup(x2k+1)− ymid(x2k+1))

= δ(x2k+1)

= σ2k+1.

(3.34)

Note also that, because of (3.32) and (3.29) taken at x = xk (i.e. t = 0),

∂f2
∂x

(xk, yk) = −2(yk − ymid(xk))y
′
mid

(xk) = 0. (3.35)

We finally define the objective function of our minimization problem (2.1) by

f(x, y)
def
=







1√
2

[

f1(x) + f2(x, y)
]

for x ≥ 0, y ∈ IR,

1√
2

[

f1(0) + xf ′
1(0) + f2(0, y)

]

for x < 0, y ∈ IR,
(3.36)

whose contour lines, superimposed on the path of iterates, are shown in Figure 3.4.
We thus obtain, using (3.14), (3.33)-(3.34) and (3.35), that

gSD2(xk, yk) = − 1√
2

(

σk

(−1)kσk

)

, (3.37)

and therefore that
‖gSD2(xk)‖ = σk.

Because of the definition of σk in (3.15), this implies that the algorithm will require, for
any ǫ ∈ (0, 1), at least

⌊

1

ǫ2−τ

⌋

(3.38)

iterations to produce an iterate xk such that ‖gk‖ ≤ ǫ. This allows us to conclude, as
desired, that the evaluation complexity bound of O(ǫ−2) is essentially sharp, provided we
can show that f(x, y) is bounded below and has a globally Lipschitz continuous gradient,
and that the slope of f(x, y) is always non-positive along the trajectory. This is the object
of the next section.

4 Verifying the example

We start by a useful auxiliary result.
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Figure 3.4: The countour lines of f(x, y) and the path of iterates for η = 10−5.

Lemma 4.1 The values of

f2(x, y),
∂f2
∂x

(x, y),
∂f2
∂y

(x, y),
∂2f2
∂x2

(x, y),
∂2f2
∂y2

(x, y) and
∂2f2
∂x∂y

(x, y)

are uniformly bounded (in absolute value) for all x ≥ 0 and y ∈ [ylow(x)− 1, ylow(x)]∪
[yup(x), yup(x) + 1].

Proof. Because, for each x and y ∈ [ylow(x) − 1, ylow(x)] , f2(x, y) is a polynomial
in y on an interval of length one, its values and that of its first and second derivatives
with respect to y are uniformly bounded (in absolute value) provided its coefficients
are uniformly bounded, which is the case (see (3.5) with T = 1 in Theorem 3.1, page
3) if the quantities

|8 δ(x)2 − (yup(x)− ymid(x))
2 − 0− 1

2
0| and |δ(x)− 0− 0| (4.39)

are themselves uniformly bounded (the third component of the right-hand side of (3.5)
being identically equal to 2). But this is the case for the first term in (4.39) since

|8 δ(x)2 − (yup(x)− ymid(x))
2| = |8 δ(x)2 − 1

4
δ(x)2| < 8δ(x)2 ≤ 8,

and for the second because of (3.31) and the bound σk ≤ 1. What about the derivatives
with respect to x (for y ∈ [ylow(x) − 1, ylow(x)])? Since f2(x, y) is defined, in this
interval, as a polynomial in y shifted to [0, 1], the dependence in x is entirely captured
by the coefficients c0, . . . c5 of this polynomial, themselves depending on the boundary
conditions

c0 = 8 δ(x)2, c1 = 0 and c2 = 0 (4.40)

and (3.5). The boundedness of the first and second derivatives of c0, . . . , c5 (as functions
of x) are then implied by (4.42) and the boundedness of the two terms in (4.39), which
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we already verified. Finally, the second derivative of f2(x, y) with respect to x and y
(for y ∈ [ylow(x)−1, ylow(x)]) is also a polynomial on an (shifted) interval of length one,
obtained by differentiating c1, . . . , c5 with respect to x in the polynomial corresponding
to the derivative of f2(x, y) with respect to y. Because we just verified that the first
derivatives of c0, . . . , c5 with respect to x are themselves uniformly bounded in x, this
must also be the case of the cross-derivatives of f2(x, y). By symmetry, the conclusion
of the lemma also holds for all x ≥ 0 and y ∈ [yup(x), yup(x) + 1]. 2

Theorem 4.2 The function f(x, y) is uniformly bounded below on IR2.

Proof. Observe first that (3.18) implies that f1(x) is bounded below because

∞
∑

i=0

[

f1(xk)− f1(xk+1)
]

=

∞
∑

i=0

σ2
k = ζ(1 + 2η) < ∞.

Moreover, it also results from this last observation that f1(x) ≥ 0 for all x ≥ 0 (and
thus also for all x ∈ IR). The fact that f2(x, y) is also uniformly bounded below results
from its definition in (3.32) and Lemma 4.1. The desired conclusion then follows from
(3.36). 2

The verification that the gradient of f(x, y) admits a uniform Lipschitz constant is
a more lengthy calculation, which is the object of the next theorem. It depends on the
observation that

0 ≤ σk − σk+1 =
(

1
k + 1

)
1
2
+η

−
(

1
k + 2

)
1
2
+η

≤ ( 1
2
+ η)

(

1
k + 2

)− 1
2
+η (

1
k + 1

− 1
k + 2

)

= ( 1
2
+ η)

(

1
k + 2

)
1
2
+η (

1
k + 1

)

≤ ( 1
2
+ η)σ2

k

(4.41)

where we used the bound η < 1
10

< 1
2
and the resulting concavity of t

1
2
+η.

Theorem 4.3 The gradient of function f(x, y) is uniformly Lipschitz continuous on
IR2.

Proof. Let us consider the functions δ(x) and ymid(x). Remembering (3.29), (3.30)
and (4.41) and using the fact that t ∈ [0, 1] when x ∈ [xk, xk+1], we easily deduce that,
for x in this interval,

max
[

|δ′(x)|, |δ′′(x)|, |y′
mid

(x)|, |y′′
mid

(x)|
]

≤ 360( 1
2
+ η)

def
= κdy. (4.42)

We now turn to the analysis of the second derivatives of f2(x, y).

• Consider first the case where y ∈ [ylow(x), yup(x)]. In this interval, we obtain, for
x ∈ [xk, xk+1], that

∂2f2
∂y2

(x, y) = 2. (4.43)
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Moreover
∂f2
∂x

(x, y) = −2(y − ymid(x))y
′
mid

(x) (4.44)

and thus
∂2f2

∂x2 (x, y) = 2y′
mid

(x)2 − 2(y − ymid(x))y
′′
mid

(x).

Taking absolute values and noting that, because of the definition of ymid(x) and (4.42),

|y − ymid(x)| ≤ 1
2
δ(x) ≤ 1

2
σk (4.45)

for x ∈ [xk, xk+1] and y ∈ [ylow(x), ysup(x)], we obtain, for x and y in these intervals,
that

∣

∣

∣

∣

∂2f2

∂x2 (x, y)

∣

∣

∣

∣

≤ 2κ2
dy

+ σkκdy ≤ 2κ2
dy

+ κdy, (4.46)

where we also used (4.42) and the bound σk ≤ 1. Finally, for x and y in the same
intervals, we have that

∣

∣

∣

∣

∂2f2
∂x ∂y

(x, y)

∣

∣

∣

∣

= | − 2y′
mid

(x)| ≤ 2κdy

where we used (4.44) and (4.42). Considering this last relation together with (4.43) and
(4.46), we thus conclude that the second derivatives of f2(x, y) are uniformly bounded
for all x ≥ 0 and all y ∈ [ylow(x), ysup(x)].

• The case where y ∈ [ylow(x)−1, ylow(x)]∪ [yup(x), yup(x)+1] is covered by Lemma 4.1.

• To conclude our analysis, we are thus left with checking the boundedness of the
second derivatives of f2(x, y) for y ≥ yup + 1 and y ≤ ylow − 1. In these intervals,
f2(x, y) = 8 δ(x)2, whose second derivatives are bounded because of (4.42). We may
therefore finally assess that the second derivatives of f2(x, y) are bounded for all x ≥ 0
and all y. (Figure 4.5 shows the second derivative of f2(x, y) with respect to y for
x = x2.)

We may now combine this last conclusion with (3.19) and (3.36) to deduce that f(x, y)
has uniformly bounded second derivatives for all (x, y) ∈ IR2. The desired Lipschitz
continuity of its gradient then follows. 2

−1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 4.5: The second derivative of f2(x2, y), for η = 10−5.

We conclude the construction of our example by verifying that the sequence of iterates
can indeed be obtained from the steepest-descent method with exact linesearches.
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Theorem 4.4 The iterate (xk+1, yk+1) is the first minimizer along the steepest de-
scent direction from (xk, yk).

Proof. The theorem statement is equivalent to verifying that the slope

ω(x) =

〈

∇f(x, y(x)), 1√
2

(

1
(−1k)

)〉

= 1
2

[

f ′
1(x) +

∂f2
∂x

(x, y) + (−1)k
∂f2
∂y

(x, y)
]

of f(x, y) on [xk, xk+1], which is given by

ω(x) = 1
2
f ′
1(x) + [y(x)− ymid(x)][(−1)k − y′

mid
(x)], (4.47)

is always non-positive and is zero only at the iterates (the corners of the trajectory).

To prove this property, we first observe that, because of (3.29),

(−1)k − y′
mid

(x) = (−1)k
[

1− |y′
mid

(x)|
]

(4.48)

Observe now that (4.41) and the decreasing nature of σk together give that, for k > 0,

∣

∣

∣

∣

σ2k − σ2k−1

σ2k−1

∣

∣

∣

∣

≤ ( 1
2
+ η)σ2k−1 < 1

2
+ η ≤ 0.6.

where the last inequality follows from the bound η ≤ 1
10
. Hence, recalling (3.29) and

using the fact that maxt∈[0,1] t
2(1− t)2 = 1

16
, we obtain that, for x ∈ [x2k−1, x2k],

|y′
mid

(x)| < 15× 0.6 max
t∈[0,1]

t2(1− t)2 < 0.57. (4.49)

Similarly, (4.41) and the decreasing nature of σk imply that, for k > 0,

∣

∣

∣

∣

σ2k+1 − σ2k

σ2k

∣

∣

∣

∣

≤ ( 1
2
+ η)σ2k < 1

2
+ η ≤ 0.6

while, for k = 0,
∣

∣

∣

∣

σ1 − σ0

σ0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1

2

)
1
2
+η

− 1

∣

∣

∣

∣

∣

< 0.6.

This thus gives that

|y′
mid

(x)| < 15× 0.6 max
t∈[0,1]

t2(1− t)2 < 0.57 (4.50)

for x ∈ [x2k, x2k+1]. Combining (4.49) and (4.50), we obtain that |y′
mid

(x)| < 1 for all
x ≥ 0, and therefore, using (4.48), that

|(−1)k − y′
mid

(x)| ≤ 1,

for all x ∈ [xk, xk+1], where the inequality is strict except at xk and xk+1 since
y′
mid

(xk) = y′
mid

(xk+1) = 0. Hence we obtain, using (4.45), that, for x ∈ [xk, xk+1],

∣

∣[y(x)− ymid(x)] [(−1)k − y′
mid

(x)]
∣

∣ ≤ 1
2
δ(x). (4.51)

Moreover, since, at the leftmost boundary of [x2k−1, x2k],

y(x2k−1)− ymid(x2k−1) = 1
2
δ(x2k−1) = 1

2
σ2k−1
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and, at the leftmost boundary of [x2k, x2k+1],

y(x2k)− ymid(x2k) = − 1
2
δ(x2k) = − 1

2
σ2k

(where we used (3.31)), we deduce from (4.48) that the inequality in (4.51) can only
hold as an equality at xk+1.

Our penultimate step to is note that (3.16) and (3.27) together give that, for x ∈
[xk, xk+1] and t = (x− xk)/σk,

f ′
1(x) + δ(x) = (σk − σk+1)

[

− 12 t2 + 18 t3 − 6 t5
]

≤ 0, (4.52)

where, again, the inequality is strict in the interior of the interval (see Figure 4.6).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 4.6: The polynomial −12 t2 + 18 t3 − 6 t5 on [0, 1].

Combining finally (4.47), (4.51) and (4.52), we obtain that, for all k ≥ 0,

ω(x) < 0 for x ∈ [xk, xk+1), (4.53)

and (xk+1, yk+1) is indeed the first local minimizer of f(x, y) along the steepest-descent
direction at iterate (xk, yk). 2

This last theorem is illustrated in Figure 4.7, and completes the construction of our ex-
ample.

5 Conclusions

We have constructed an example where, for an arbitrary τ > 0, the steepest-descent
method with exact linesearches takes at least a multiple of ǫ−2+τ iterations to find an
approximate stationary point at which ‖gk‖ ≤ ǫ, for any ǫ ∈ (0, 1). This result closes
the gap left by Cartis et al. (2010) who could not accomodate this type of linesearch
corresponding to the archetypal, if very often impractical, definition of the method. Given
that we have shown in this last paper that it is impossible to obtain an O(ǫ−2) worst-case
complexity for all ǫ, this is probably the best result that can be obtained.

As was the case in this last paper, our example may furthermore be adapted to cover
the case where the level sets of the objective are finite by extending f(x, y) beyond the
approximate minimizer. This is achieved by smoothly prolongating f1(x) beyond this
point with a suitably increasing function and by, say, keeping the width of the “corridor”
constant in this part of the plane. Such an example may therefore be constructed for every
ǫ ∈ (0, 1).
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Figure 4.7: The behaviour of ω(x) for η = 10−5.
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