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This paper provides a theoretical and experimental comparison
between conjugate-gradients and multigrid, two iterative schemes
for solving linear systems, in the context of applying diffusion-
based correlation models in data assimilation. In this context,
a large number of such systems has to be (approximately)
solved if the implicit mode is chosen for integrating the involved
diffusion equation over pseudo-time, thereby making their efficient
handling crucial for practical performance. It is shown that the
multigrid approach has a significant advantage, especially for
larger correlation lengths and/or large problem sizes.
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1. Introduction and effective way. In the same paper, Bannister also
considered another method based on the correspondence
Forecasting methods in atmospheric and oceanic contéédsveen the covariance and the solution of the diffusion
use observations and models based on evolution equatieagiation, which is acknowledged to be suitable for oceanic
Most of these methods involve a data assimilation stefata assimilation. In addition, the diffusion operatotevas
whose goal is to produce the “best” initial state, knowio deal with inhomogeneity, anisotropy and complicated
as the analysis, which is necessary to run these modbtsundary conditions. The product of the covariance matrix
As such, the data assimilation techniques are therefbsea state vector then amounts to integrating a suitable
central for the production of high quality forecasts. Waiffusion equation over a finite time period using the
focus in this paper on one of their major ingredients: tlyggven state vector as initial condition, as shown in
use of the “background-error covariance matrix” (which weé/eaver and Courtief2001). This modelling technique has
denote byB) and whose role in producing the analysis iseen employed byperber and Rosat{1989 and also by
to smooth and spread information from observation point&eaver and Courtie(2001) using an explicit solution of
as well as to weight the importance of thepriori state the diffusion equation, whiléVirouze and Weave(2010
compared to the observation fit, sBeley (1991). In real and Carrier and Ngodock2010 recently priviledged an
world applications, obtainin@ is a truly challenging task, implicit solution, because of its unconditionally stable
and different approaches have been proposed to producetare. In this interesting approach, backward Euler
suitable approximation. The “method of Control Variablapproximation in time and finite difference approximation
Transforms” (CVTs) proposed yannister(2008), is used in space are employed to solve the diffusion equation.
in most operational variational data assimilation systemsMore specifically, the variational data assimilation prob-
and can be viewed as an effective means of modellilggn can be stated as an unconstrained nonlinear optimiza-
multivariate aspects aB approximately in a very compacttion problem whose objective function involves the inverse
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Conjugate-gradients vs. multigrid solvers for diffusion-based corelation models 3

of B and is typically written (seée Dimet and Talagrand 2.1. Formulation

(1989) as
We consider a vectot of length N = n? representing a
discrete state field over a unit squdre To evaluate the
action of anV-order covariance matri® on the state vector

P z, one uses the discrete solution of adequate diffusion
Z(ﬁj [z(t;)] — y;?)TRj_l(f:)j [z(t;)] —y7), (1) equation wherez defines the initial condition as we will
=0 shortly show. The principle of this modelling scheme is to

link the correlation length-scaleS in B to the (positive)

where the state vectar(t;) satisfies a discrete nonlineagiffusion parameters and the integration period’. As

Tle(to)] = g alto) — 2T B~ (z(to) ~ 2*)

N | =

_|_

model of evolution given by explained inMirouze and Weave(201Q Formula (22)),
this is achieved using the relation
z(t;) = Mjolz(to)]- )
Here, the matricesB and R, are respectively the L= V2T, 4)

background-error and observation-error covariance matri ) )

ces, and; represents the observation operator. This proshere one chooseg and then determines according to
lem is typically solved using the Gauss-Newton approal} desired value of. For the following discussion, let us
for nonlinear least-squares, also known in this contes@nsider the2D diffusion equation for the scalar function
under the name of incremental four-dimensional variatiorigz, t) ©n a unit-square given by

method (4Dvar) (se€ourtier et al(1994). In this setting, 5

linearization of the operators in the functiona) glyes rise on KAD = 0, 2€Q=(0,1)2, 0<t<T, (5)
to large convex quadratic subproblems, or, equivalently, to 0t

large linear systems of the form _
subject to

(B™'+H "R '"H)e =H"R™ 'y (3)

hich have to be solved i Each of th ¢ o 0) =y e ©
which have to be solved in sequence. Each of these systems N = 0 LT 7
is preconditioned byB and is typically solved using an n(@;?) 0, z€dQ 0<t<T, (7)
iterative algorithm. Each iteration of this algorithm imves : T : . -
one matrix-vector product with each of the matricBs w(r;e;()a,An is the 2-dimensional (continuous) Laplacian of
H, H” and R-'. When, as considered here, the matrix.""/"
vector product byB is obtained by evolving the diffusion L
operator over several (pseudo-)time steps using an implfci?- "€ implicit Euler approach

discretization scheme, each of these products requires the . . . . .
solution of several linear system&arrier and Ngodock ’ n explicit integration scheme can be considered for solv-

(2010, in their experimental extension of the work o g (5). But, as pointed out again ikirouze and Weaver

Weaver and Courtie2001), have chosen to use the well 20%&, th'S" scr:etr)rre, al:]hohugh ealsy éotlm{)hlement, |fs only
known conjugate-gradients algorithm as a solver for théggaitonally stable, which may lead 1o the use or very
systems. Interestingly, they reached the conclusion bt §mall time steps and 'therefor.e toa S|gn|f|ca_nt amount of
implicit solution can be up to five times more efficient iffomputation for each integration. An alternative is then to

terms of CPU-time than an explicit scheme, with near e an implicit scheme, which is known to be uncondition-
identical results in the analysis ' ally stable. We consider the implicit Euler approximation

Our aim in the present paper is to compare this strate ime_ and finit_e difference approximation in space for the
with the alternative of using a multigrid approach merical solution off) where the (discrete version of the)

linear solver in the course of the implicit integratiofnitial state isn,” € RY, and where

corresponding to the product b§—'. We are concerned

with the case where is large and inexact matrix-vector N =n?

products are allowed, this last point being motivated by

previous research on inexact matrix-vector products ig1the total number of interior points, with being the

range-space Krylov solvers for linear systems of typg (number of interior grig point per edge of the unit square.

seeGratton et al(2011). Choosingp to be the number of time steps in the integration,
The paper is structured as follows. In Secti@nthe the obtained solution”’ yields the desired state.

diffusion equation model of covariance operator is briefly Now define

presented. SectioB.2 provides a review of the multigrid h=1/(n+1)

algorithms and their relevant features in view of the présen

investigation. We illustrate the relevance of our analysks the spatial mesh size and let

with an academic application in SectiénConclusions and

perspectives are given in Sectibn ot=T/p

2. Modelling a covariance matrix using a diffusion be the time step length. Also denote by andI,, the N-

equation order andn-order identity matrices, respectively. Finally,

define

The equivalence between a covariance operator and the

diffusion equation constitute the key idea in the model of L2

the covariance matri® that we consider in this study. 0 = Kot = 2’ (8)
Copyright(©) 2012 Royal Meteorological Society Q. J. R. Meteorol. So€0: 2-8 (2012)
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4 S. Gratton, Ph. L. Toint and J. Tshimanga

and theN-order matrix The expression of eigenvalues if7] suggests that the
1 extreme values are approximately given by
Ay = h—zblktridiag [—In, Tn, —1I,], (9) A
: . . Amin(An) =207 and AL (AL) = 5. (20)
the discrete Laplacian corresponding to the contin- h

uous (negative) Laplacian-A in (5), where T, = . .
tridiag [—1, 4, —1],xx. INn@nimplicit scheme, at each stein (18), we distinguish oscillatory and i@?mh modes,
I=1.....p, the corresponding state is then approximat&d€ first being characterized by < k.1 < #5= and the
by second bymax (k,1) > 271, From Propositiond, it is
straightforward to establish the following corollary.
D = (In +6a,) Y. (10) . A
Corollary 1 The eigenvalues @k, are
If we set

A = In +0Ap, (11) A AR) =1+ 0N (AL, 1<kil<n,  (21)

we may now to simulate the action & on z, noted[Bz], With corresponding eigenvectors defined 1)

by formally computing Using (20), we can easily deduce the value of the extreme

N N\t eigenvalues of\;, as
[B2] = (dlag(Ah”)) (Ahp) (dlag(Ahp)) 2. (12) )
(Ap) ~ 142720 and AL (Ap) =1+ i (22)

k,l
A =k

Note the presence of the normalization factors in tgg’) = ™*
whose role is to impose the diagonal element$3dio be _
equal to1, a necessary property of correlation matrice€S @ consequence of the results above, the eigenvalue
Equivalently, (2) can be decomposed,using the recurreng@composition of\,, is given by

(10), as . .
N Ah - ‘/hAh‘/};Tv (23)
0 _ (diag(A*P))_iz (13) :
"h h ’ where the columns ofV, are the normalized (see
nD = ArtylD, I=1,....p, (14) Equation (9) vectors -2;v)" and where{\h is the
R -1 diagonal matrix containing the eigenvalues/of defined
B = (diagd;?)) “uf”. (15) in (2.

Note that, at each time step the computation of 3. The Conjugate Gradient and multigrid solvers

(Ah)—ln,(f’l) corresponds to a solution of a linear system ] _ o _ )
of matrix A, and right hand side"". This will be the The object of this section is to discuss two strategies,

. " 9N & the Conjugate Gradient and multigrid solvers, for comput-
main concern of Sectio® . : ) . o

ing (14) by solving the (typically large) symmetric positive

2.3. Eigenpairs o\, definite (spd) system
Our subsequent analysis also requires some knowledge of Ahm(f) = n,(f_l), l=1,...,p. (24)
the eigenpairs of the discrete Poisson-like operat®gs _ _
which we now briefly survey. We recall well-known result8.1. The conjugate gradient method
in the case of a square domain with homogeneous Dirichlet

boundary conditions (se&leyer 2000 p. 565)). The CG method (Hestenes and Stiefel 1952) is a practical
algorithm for solving large-scale linear systems when
Proposition 1 Define the system matrix is symmetric and positive definite. To
simplify notation, we letA denoteA, in this subsection.
£F — sin? (W) b = sin? (”"“T) 7 (16) The standard CG algorithm to soler = 7 is summarized
2 2 as follows as Algorithimi on the next page.

At each iteration of this algorithm, the main computa-
tional tasks are the matrix-vector produlsip; ; evalua-
tion, the inner productp! , Ap,_; andr! r; computation,

4 and calculation of three vectors sums. If one includes
k,l _ F ek l tdaitUlad > !
AP (An) = h2 (&h + 1), 17) the initialization cost, the total number of floating point

. . . . operations of iterations of the method applied on a system
with corresponding orthogonal eigenvectors (the Fourigjt cize N can then be estimated as

for k,l=1,...,n with h=1/(n+1). The eigenvalues
of Ay, are then given by

modes)
V}]‘«i’l _ [”F]» UZ,I — sin (ikhn) sin (jlhr) | (18) AN + (10N + 2||A|lo) =~ 20:N flops, (25)
fori,j =1,...,n. Moreover, where]| - ||p is the number of nonzero entries in a matrix,
and where we have used the fact that||, ~ 5.
ki n+l This CG algorithm has the important
Vi lle = : (19) . . :
' 2 property that each intermediate estimatex;,
Copyright(©) 2012 Royal Meteorological Society Q. J. R. Meteorol. So€0: 2-8 (2012)
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Conjugate-gradients vs. multigrid solvers for diffusion-based corelation models 5

Algorithm 1 The CG solver
: Xo = initial estimate

[N

22rg = Axg—17
3 po = —TIg
4: 1 = 0
5. while stopping criterion not satisfietb
6: ¢+ =1+1 )
7 i =1l v /plApi
8  Xi = Xi—1 t &i—1Pi—1
9 r;, = 1%;1 + ?iflApifl
10: B = r;r; /riflri_l
11: pi = -1 + BiPi—1
12: end while 0 : ‘ ‘ ‘
13: end 0 5 10 15 20
. : Mflops
o LT A - Figure 1.The value of K, versus the number of Mflops in CG
minimizes Flx] = 5x"Ax —x'n over the for 9 = 10-4,410-4,810~* (corresponding to correlation lengths
Krylov space  xg+span{pi,p2,...,Pi} = Xo + 0.04,0.08,0.11314, respectively), and&V = 312
span {ro7 Ary, ..., Aiflro} (see Golub and Van Loan
(1996 for a comprehensive review of the properties @barsest, denoted by, Qap, . . ., Qom-1;,. For simplicity,

the CG method). The stopping criterion is usually definedsume that these grids are defined on the unit square. The
by a parametee indicating the desired reduction in th%ystem 24) may now be written for each of these grids,
norm Qf the gradient relative to the initia_l gradient normyity corresponding matriced,, Ay, ..., Agm-1,. The
(Dennis and Schnabel 1953or by a maximum allowed pyinciple of the multigrid (MG) approach is to exploit the
number of inner iterations. fact that high frequency components of the residual of this
The convergence behaviour of the CG method &stem can only be represented on the fine grids, on which
exact arithmetids commonly described by the followinginey can be readily reduced by well-chosen iterative sslver
two properties (se€olub and Van Loar(1999, p. 530). ,ﬁcalled smoothing operators). Moreover, the low frequency
The first property states that the CG algorithm Willomponents of the resulting residual (on the fine grid) may
terminate withx; = x* for somei <, wherex* is the gi50 pe considered as high frequency ones on a coarser
exact minimizing solution and < n is the number of gy \where the same process may be (recursively) applied
distinct eigenvalues oA € R"*". The second propertyin successive “cycles”, among which “V-cycles” are most
(Nocedal and Wright 1999Theorem 5.5) states that th&ommon. We refer the reader Byiggs et al.(2000) for an
error ¢; = x; — x* of the estimates generated by the Cexcellent introduction to this class of effective solvéimm
algorithm satisfies the inequality a formal point of view, each such V-cycle is caracterized by
an iteration matrix noted/;, which describes how the error

leilla An—i(A) = Mi(A) evolves from cycle to cycle, as stated by the relation

=K' (26)

leolla — An—i(A) + M (A) o j
A xj —x = M (rg — ). (27)
where
leillx = /eTAe- The iteration matrix itself may be written (see Trottenberg
ha e and al [rottenberg et al. 20QTTheorem 2.4.1)) as

is the so-called energy norm ef.
The first property implies that the number of CGpy, = 9, ([hfpgh (12,,7M2,,)A2‘,}Rih5h) S,

iterations cannot exceed the dimensionf In practice,

this property translates into a faster convergence when (28)

eigenvalues oA are more clustered. The second property,jSip, Maymy, = 0 and whereS), is the involved smoothing

of direct interest here, since it allows the analysis of atabu, erator,],, is the identity matrix of the same order A,

on the speed of convergence, obtained by substituting whereP2" and Rk, "are the grid prolongation (from
dependence of the;(A) on ¢ (and hence oif), analyzed coarse to fine) and restriction (from fine to coarse) transfer
in Section 2.3, within the definition ok’ in (26). This operators, respectively. The computational cost at lével
is illustrated in Figurel, where the value of the bound inyjthin a multigrid cycle can be estimated by

the right-hand side of2@) is shown, for an example, as a

function of the computational burden (itself a function:of o+ 2R o + 21P Nlo + 21 Anllo + o

via (25)) for different values of. e pos

This leads to the conclusion that larger value® ¢and \yhere ¢ is the cost of applying the “pre-smoothing”

. f . pre
L) might result in slower convergence for the CG algor'th”a'perator andgost that of applying “post-smoothing”, which
correspond to the leftmost and rightmost occurences of

Sy, In (28), respectively. Summing up on all levels and

. . . . : hoo_ o h ol A :
Another strategy is possible that exploits the grid strreetHSiNg that facts that;, . = ¢, = 2| Axllo for a single
obtained by discretizing the evolution modél) (on a iteration of the Gauss-Seidel smoother, thdt?" ||, =
hierarchy of m grids arranged from the finest to the| Py ||o =~ 3|Q2,| if linear interpolation and its scaled

3.2. The multigrid solver

Copyright(©) 2012 Royal Meteorological Society Q. J. R. Meteorol. So€0: 2-8 (2012)
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6 S. Gratton, Ph. L. Toint and J. Tshimanga

transposed are used for prolongation and restriction, ant L=4%, A _ =1.7669
again that| Ay, |0 =~ 5|/, one then obtains that applying a 1
multigrid V-cycle in our 2D setting (WithQs| = Q] /4)

approximately costs ——mg
0.8f
4 -6-cg2
g(10+6+6+10+10+3)N:60N flops  (29) 506— -A-cg3
= —=-cg4
where we also used the fact that the finest grid/Kamtries © ——direct

and included in the factor 3 in the bracket of the left-hand g 0.4t
side to cover the cost of accumulating intermediate vectors
at each level (We refer the reader Todttenberg et al. 20Q1
pp. 50-52) for an in-depth discussion of the cost of multigri
cycles). We thus conclude that, in our setting, a multigrid
V-cycle is approximately 3 times as costly in flops as one
iter)e/xtion of gg g ’ P 0 > 10 1X5 20 = 30
Given the formulation Z7), we derive an expression
analogous to46) in the form

0.2y

Figure 3. Diffusion of a Dirac pulse using approximate linear solverd a
direct factorization fo = 0.0001; N = 31.

el a j
HGO || N S Kﬂ’l,g? (30)
A L=8%, A, =40678
wherekK,,, = || Mj || 4. Here, we let agaid to denoteA ;. 1f
0.35¢ 0.8f
0.3r c
—0.0001 S 06 —emg
0.25 -6-0.0004 s :ng
-£-0.0008 5 0.4 cg3
- 021 o —8-cg4
— E .
N —+—direct
0.15f 0.2
0.1
0.05} 30
00 011 0.2 0.3 04 05 Figure 4. Diffusion of a Dirac pulse using approximate linear solverd a

' Mflops direct factorization fof = 0.0004; N = 31.

Figure 2.The value of Kiggs versus the number of Mflops

for # =10-%,410~%,810~* (corresponding to correlation lengths . . ) .
0.04,0.08,0.11314, respectively), andv = 312. solving 24). The level of approximation was determined

by the number of conjugate-gradient iterations (from 1
Figure 2 illustrates the evolution of the upper bound oto 4) or the number of multigrid V-cycle (1). Recall that

the relative error (in the energy norm) given B0) for the CPU cost of each CG iteration is dominated by the
different values of the paramet@y under the assumptionscomputation of a matrix-vector product, while that of a V-
used to derive 29). A comparison with Figurel then cycle corresponds to approximately 3 CG iterations. For
suggests that the upper bound on the relative errgig sake of comparison, we have also computed the exact
using the multigrid solver may decrease consideralglution of this diffusion process by solving the systems
faster than that obtained for conjugate-gradients, thergb4) exactly (using a direct factorization algorithm). The
providing an incentive for further investigation of theesults are pictured in Figur&to 5.
relative performance of these approaches from the point o

view of the solutions themselves, rather than upper bound he;e flgur'es show that the computeq shapgs using
on their residuals approximate linear solvers converge relatively quickly to

the exact shape when the number of matrix-vector products
3.3. A comparison of correlation shapes produced by CB¢'€aSe, this convergence being faster for the multigrid
and MG technique than for CG, even for the case where 3 CG
iterations are used (to make their estimated CPU cost

In a first simple approach to appreciate the quality 6@mparable to that of one multigrid V-cycle). While the
the solutions, we have computed, for different valugifferences are negligible for small correlation lengths,
of 6, the shape corresponding to the diffusion of (i.ehey become more significant whef increases. These
the application of B to) a Dirac pulse located at theobservations are fully coherent with what can de deduced
centre of a unidimensional grid with 31 nodes, usingfeom the comparison of the upper bounds on the residual
conjugate-gradient and a multigrid solver for approxirhatesizes presented in the previous paragraph.

Copyright(©) 2012 Royal Meteorological Society Q. J. R. Meteorol. So€0: 2-8 (2012)
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Conjugate-gradients vs. multigrid solvers for diffusion-based corelation models 7

L=11%, A =7.1356 Size (V) MG (Mflops) CG (Mflops)
1 162 2.3x10* 2.9x10*
322 1.6 x10? 1.9 x10*
0.8 )
642 1.0 x103 1.5x10"
506 —-mg 1282 7.1x103 1.3 x10%
o -6-cg2
T . 2562 1.9x10* 1.0x10°
s ] cg3
g 04 —=cg4 5122 1.3x10° 8.5x10°
——direct Table I. Number of Mflops in the solution of syste&¥J for a diffusion-
0.2 based correlation model for the 2D shallow-water equations, as a
function of problem size
0 5 10 15 20 25 30
X 9><1o5
Figure 5. Diffusion of a Dirac pulse using approximate linear solverd a | ," |
factorization for = 0.0008; N = 31. it
7 'l' q
4. Numerical illustration in an academic data o 1
assimilation system .
5 ’ i
We finally conclude our comparison of conjugate-gradients,| |
versus multigrid solvers for diffusion-based correlation
models by presenting numerical results obtained with theser- Re 1
two methods in an academic data assimilation system. Thi
prevision model used in this system consists of danfded *f i
shallow water equations delimited by an artificial bassin of ,| I ]
sizeL, x L,, yielding the system et
00 O.‘5 i 1‘.5 é 2‘.5 3
ou ou ou 0z x10°
—tu—+v——fv+g— = vhAu
ot Ox dy Ox Figure 6. Number of matrix-vectors products in the solution of systar) (
ov ov ov Oz for a diffusion-based correlation model for the 2D shalloatev equations,
—tu—+tv—+futg— = vhv as a function of problem size
ot ox dy dy
8z+ 8z+ 8z+ 8u+8v A
- U—— V— Z\| = - = VAZ . ) . .
ot ox dy or 0Oy gives a graphical interpretation of the same results. If one
) o N _ remembers that the process measured here is the dominant
with boundary and initial conditions given by cost in applying the diffusion-based correlation modek on
can see that the simpler approaches used above to compare
u(z,y,t)on =0, v(@,y,t)]sn =0, both methods are fully vindicated by these experimental

w(@,y,0) =0, v(z,y,0) =0, res_,ults_: the multlg_rld appr(_)a_lch appears to yleld_ sut_)sibntl
} ] gains in computational efficiency, and these gains increase
h(z,y,0) = ho + 50sin(27z) sin(7y). rapidly with problem size.

This system is integrated from time O to tin¥e using
a leapfrog scheme and initial geostrophic winds. Tle Conclusion
correlation length for this system is approximately equal
to 10% of the basin width and 5% of its length an#e have discussed the algorithmic underpinnings of using
p = 6. Other model's physical parameters are presentediiffusion-based correlation models in the context of the
appendix. 4Dvar approach for data assimilation, and have focussed
We considered 6 test cases of increasing dimengiéh ( on the linear algebra tools for solving the (many) linear
322, 642, 1282, 2562 and 5122) where the minimization systems arising from the implicit integration approach
of (1) was conducted using the Gauss-Newton algorithior these models. More specifically, we have compared
(4Dvar) in which the systenB] was solved using RSFOM,the conjugate-gradients and multigrid algorithms in this
an efficient strucure-exploiting “range-space” Krylovdar framework both from a theoretical and a numerical view
solver (seeGratton et al. (2011)) and the system2¢) point (on a 2D shallow-water test case). These comparisons
was approximately solved by either conjugate-gradientsabearly favour the multigrid approach, especially for krg
multigrid (until the residual norm is decreased by a factoorrelation lengths and/or large problem sizes. Valigdatin
10~%) . Importantly, no significant variation was observethese conclusions in the context of operational systems
between the two methods in terms of quality of the solutiomsth application-specific algorithmic variants (such as
of the initial minimization problemX). preconditioning) and complex geometries remains an
Table | reports the number of Mflops used by botimportant aspect of the question discussed here, but exceed
approaches as a function of problem size, while Figurethe scope of the present paper.
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8 S. Gratton, Ph. L. Toint and J. Tshimanga
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A. The shallow water model and its algorithmic
solution

The system’s physical parameters are presented in Tiable

L, 3210°m
L, 810°m

Q 27 /86400 sec
f 2Q sin(w/4)
g 10ms2
ho 5000 m

v 106

Table Il. Physical parameters of the shallow-water model

The integration time is fixed to 86400 seconds for=
162,322 and 642, to 43200 seconds foN = 1282 and
to 22600 seconds falN = 2562 and 5122. Note that the
correlation matrix for the complete system has a block
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