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This paper provides a theoretical and experimental comparison
between conjugate-gradients and multigrid, two iterative schemes
for solving linear systems, in the context of applying diffusion-
based correlation models in data assimilation. In this context,
a large number of such systems has to be (approximately)
solved if the implicit mode is chosen for integrating the involved
diffusion equation over pseudo-time, thereby making their efficient
handling crucial for practical performance. It is shown that the
multigrid approach has a significant advantage, especially for
larger correlation lengths and/or large problem sizes.
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1. Introduction

Forecasting methods in atmospheric and oceanic contexts
use observations and models based on evolution equations.
Most of these methods involve a data assimilation step,
whose goal is to produce the “best” initial state, known
as the analysis, which is necessary to run these models.
As such, the data assimilation techniques are therefore
central for the production of high quality forecasts. We
focus in this paper on one of their major ingredients: the
use of the “background-error covariance matrix” (which we
denote byB) and whose role in producing the analysis is
to smooth and spread information from observation points,
as well as to weight the importance of thea priori state
compared to the observation fit, seeDaley (1991). In real
world applications, obtainingB is a truly challenging task,
and different approaches have been proposed to produce a
suitable approximation. The “method of Control Variable
Transforms” (CVTs) proposed byBannister(2008), is used
in most operational variational data assimilation systems,
and can be viewed as an effective means of modelling
multivariate aspects ofB approximately in a very compact

and effective way. In the same paper, Bannister also
considered another method based on the correspondence
between the covariance and the solution of the diffusion
equation, which is acknowledged to be suitable for oceanic
data assimilation. In addition, the diffusion operators allows
to deal with inhomogeneity, anisotropy and complicated
boundary conditions. The product of the covariance matrix
by a state vector then amounts to integrating a suitable
diffusion equation over a finite time period using the
given state vector as initial condition, as shown in
Weaver and Courtier(2001). This modelling technique has
been employed byDerber and Rosati(1989) and also by
Weaver and Courtier(2001) using an explicit solution of
the diffusion equation, whileMirouze and Weaver(2010)
and Carrier and Ngodock(2010) recently priviledged an
implicit solution, because of its unconditionally stable
nature. In this interesting approach, backward Euler
approximation in time and finite difference approximation
in space are employed to solve the diffusion equation.

More specifically, the variational data assimilation prob-
lem can be stated as an unconstrained nonlinear optimiza-
tion problem whose objective function involves the inverse
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Conjugate-gradients vs. multigrid solvers for diffusion-based correlation models 3

of B and is typically written (seeLe Dimet and Talagrand
(1986)) as

J [x(t0)] =
1

2
(x(t0)− xb)TB−1(x(t0)− xb)

+
1

2

p
∑

j=0

(Hj [x(tj)]− yoj )
TR−1

j (Hj [x(tj)]− yoj ), (1)

where the state vectorx(tj) satisfies a discrete nonlinear
model of evolution given by

x(tj) = Mj,0[x(t0)]. (2)

Here, the matricesB and Rj are respectively the
background-error and observation-error covariance matri-
ces, andHj represents the observation operator. This prob-
lem is typically solved using the Gauss-Newton approach
for nonlinear least-squares, also known in this context
under the name of incremental four-dimensional variational
method (4Dvar) (seeCourtier et al.(1994)). In this setting,
linearization of the operators in the functional (1) gives rise
to large convex quadratic subproblems, or, equivalently, to
large linear systems of the form

(B−1 +HTR−1H)x = HTR−1y (3)

which have to be solved in sequence. Each of these systems
is preconditioned byB and is typically solved using an
iterative algorithm. Each iteration of this algorithm involves
one matrix-vector product with each of the matricesB,
H, HT andR−1. When, as considered here, the matrix-
vector product byB is obtained by evolving the diffusion
operator over several (pseudo-)time steps using an implicit
discretization scheme, each of these products requires the
solution of several linear systems.Carrier and Ngodock
(2010), in their experimental extension of the work of
Weaver and Courtier(2001), have chosen to use the well-
known conjugate-gradients algorithm as a solver for these
systems. Interestingly, they reached the conclusion that the
implicit solution can be up to five times more efficient in
terms of CPU-time than an explicit scheme, with nearly
identical results in the analysis.

Our aim in the present paper is to compare this strategy
with the alternative of using a multigrid approach as
linear solver in the course of the implicit integration
corresponding to the product byB−1. We are concerned
with the case whereB is large and inexact matrix-vector
products are allowed, this last point being motivated by
previous research on inexact matrix-vector products in
range-space Krylov solvers for linear systems of type (3),
seeGratton et al.(2011).

The paper is structured as follows. In Section2, the
diffusion equation model of covariance operator is briefly
presented. Section2.2 provides a review of the multigrid
algorithms and their relevant features in view of the present
investigation. We illustrate the relevance of our analysis
with an academic application in Section4. Conclusions and
perspectives are given in Section5.

2. Modelling a covariance matrix using a diffusion
equation

The equivalence between a covariance operator and the
diffusion equation constitute the key idea in the model of
the covariance matrixB that we consider in this study.

2.1. Formulation

We consider a vectorz of lengthN = n2 representing a
discrete state field over a unit squareΩ. To evaluate the
action of anN -order covariance matrixB on the state vector
z, one uses the discrete solution of anadequate diffusion
equation, wherez defines the initial condition as we will
shortly show. The principle of this modelling scheme is to
link the correlation length-scalesL in B to the (positive)
diffusion parameterκ and the integration periodT . As
explained inMirouze and Weaver(2010, Formula (22)),
this is achieved using the relation

L =
√
2κT , (4)

where one choosesT and then determinesκ according to
the desired value ofL. For the following discussion, let us
consider the2D diffusion equation for the scalar function
η(x, t) on a unit-square given by

∂η

∂t
− κ∆η = 0, x ∈ Ω = (0, 1)2, 0 < t ≤ T, (5)

subject to

η(x, 0) = η0, x ∈ Ω, (6)

η(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T, (7)

where,∆η is the2-dimensional (continuous) Laplacian of
η(x, t).

2.2. The implicit Euler approach

An explicit integration scheme can be considered for solv-
ing (5). But, as pointed out again inMirouze and Weaver
(2010), this scheme, although easy to implement, is only
conditionally stable, which may lead to the use of very
small time steps and therefore to a significant amount of
computation for each integration. An alternative is then to
use an implicit scheme, which is known to be uncondition-
nally stable. We consider the implicit Euler approximation
in time and finite difference approximation in space for the
numerical solution of (5) where the (discrete version of the)
initial state isη(0)h ∈ R

N , and where

N = n2

is the total number of interior points, withn being the
number of interior grig point per edge of the unit square.
Choosingp to be the number of time steps in the integration,
the obtained solutionη(p)h yields the desired state.

Now define
h = 1/(n+ 1)

as the spatial mesh size and let

δt = T/p

be the time step length. Also denote byIN andIn theN -
order andn-order identity matrices, respectively. Finally,
define

θ = κδt =
L2

2p
, (8)
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4 S. Gratton, Ph. L. Toint and J. Tshimanga

and theN -order matrix

∆h =
1

h2
blktridiag [−In, Tn, −In], (9)

the discrete Laplacian corresponding to the contin-
uous (negative) Laplacian−∆ in (5), where Tn =
tridiag [−1, 4, −1]n×n. In an implicit scheme, at each step
l = 1, . . . , p, the corresponding state is then approximated
by

η
(l)
h = (IN + θ∆h)

−1η
(l−1)
h . (10)

If we set

∆̂h = IN + θ∆h, (11)

we may now to simulate the action ofB on z, noted[Bz],
by formally computing

[Bz] ≡
(

diag(∆̂−p
h )

)

−
1

2

(

∆̂−p
h

)(

diag(∆̂−p
h )

)

−
1

2

z. (12)

Note the presence of the normalization factors in diag(∆̂−p
h )

whose role is to impose the diagonal elements ofB to be
equal to1, a necessary property of correlation matrices.
Equivalently, (12) can be decomposed,using the recurrence
(10), as

η
(0)
h =

(

diag(∆̂−p
h )

)

−
1

2

z, (13)

η
(l)
h = ∆̂−1

h η
(l−1)
h , l = 1, . . . , p, (14)

[Bz] =
(

diag(∆̂−p
h )

)

−
1

2

η
(p)
h . (15)

Note that, at each time stepl, the computation of
(∆̂h)

−1η
(l−1)
h corresponds to a solution of a linear system

of matrix ∆̂h and right hand sideη(l−1)
h . This will be the

main concern of Section3.

2.3. Eigenpairs of̂∆h

Our subsequent analysis also requires some knowledge of
the eigenpairs of the discrete Poisson-like operators∆̂h,
which we now briefly survey. We recall well-known results
in the case of a square domain with homogeneous Dirichlet
boundary conditions (see (Meyer 2000, p. 565)).

Proposition 1 Define

ξkh = sin2
(

khπ

2

)

, ηlh = sin2
(

lhπ

2

)

, (16)

for k, l = 1, . . . , n with h = 1/(n+ 1). The eigenvalues
of ∆h are then given by

λk,l(∆h) =
4

h2
(ξkh + ηlh), (17)

with corresponding orthogonal eigenvectors (the Fourier
modes)

v
k,l
h = [vk,lh ], vk,lh = sin (ikhπ) sin (jlhπ) , (18)

for i, j = 1, . . . , n. Moreover,

‖vk,l
h ‖2 =

n+ 1

2
. (19)

The expression of eigenvalues in (17) suggests that the
extreme values are approximately given by

λk,l
min(∆h) ≈ 2π2 and λk,l

max(∆h) =
4

h2
. (20)

In (18), we distinguish oscillatory and smooth modes,
the first being characterized by1 ≤ k, l ≤ n−1

2 and the
second bymax (k, l) > n−1

2 . From Proposition1, it is
straightforward to establish the following corollary.

Corollary 1 The eigenvalues of̂∆h are

λk,l
h (∆̂h) = 1 + θλk,l(∆h), 1 ≤ k, l ≤ n, (21)

with corresponding eigenvectors defined in (18).

Using (20), we can easily deduce the value of the extreme
eigenvalues of̂∆h as

λk,l
min(∆̂h) ≈ 1 + 2π2θ and λk,l

max(∆̂h) = 1 +
4θ

h2
. (22)

As a consequence of the results above, the eigenvalue
decomposition of̂∆h is given by

∆̂h = VhΛ̂hV
T
h , (23)

where the columns ofVh are the normalized (see
Equation (19)) vectors 2

n+1v
k,l
h and where Λ̂h is the

diagonal matrix containing the eigenvalues ofΛ̂h defined
in (21).

3. The Conjugate Gradient and multigrid solvers

The object of this section is to discuss two strategies,
the Conjugate Gradient and multigrid solvers, for comput-
ing (14) by solving the (typically large) symmetric positive
definite (spd) system

∆̂hη
(l)
h = η

(l−1)
h , l = 1, . . . , p. (24)

3.1. The conjugate gradient method

The CG method (Hestenes and Stiefel 1952) is a practical
algorithm for solving large-scale linear systems when
the system matrix is symmetric and positive definite. To
simplify notation, we let∆̂ denote∆̂h, in this subsection.
The standard CG algorithm to solvê∆x = η is summarized
as follows as Algorithm1 on the next page.

At each iteration of this algorithm, the main computa-
tional tasks are the matrix-vector product∆̂pi−1 evalua-
tion, the inner productspT

i−1∆̂pi−1 andrTi ri computation,
and calculation of three vectors sums. If one includes
the initialization cost, the total number of floating point
operations ofi iterations of the method applied on a system
of sizeN can then be estimated as

4N + i(10N + 2‖∆̂‖0) ≈ 20iN flops, (25)

where‖ · ‖0 is the number of nonzero entries in a matrix,
and where we have used the fact that‖∆̂‖0 ≈ 5N .

This CG algorithm has the important
property that each intermediate estimate,xi,
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Conjugate-gradients vs. multigrid solvers for diffusion-based correlation models 5

Algorithm 1 The CG solver

1: x0 = initial estimate
2: r0 = ∆̂x0 − η
3: p0 = −r0
4: i = 0
5: while stopping criterion not satisfieddo
6: i = i+ 1
7: αi−1 = rTi−1ri−1 /p

T
i−1∆̂pi−1

8: xi = xi−1 + αi−1pi−1

9: ri = ri−1 + αi−1∆̂pi−1

10: βi = rTi ri / r
T
i−1ri−1

11: pi = −ri + βipi−1

12: end while
13: end.

minimizes F [x] = 1
2x

T ∆̂x− xT η over the
Krylov space x0 + span {p1,p2, . . . ,pi} = x0 +

span
{

r0, ∆̂r0, . . . , ∆̂
i−1r0

}

(see Golub and Van Loan

(1996) for a comprehensive review of the properties of
the CG method). The stopping criterion is usually defined
by a parameterε indicating the desired reduction in the
norm of the gradient relative to the initial gradient norm
(Dennis and Schnabel 1983), or by a maximum allowed
numberL of inner iterations.

The convergence behaviour of the CG method in
exact arithmeticis commonly described by the following
two properties (seeGolub and Van Loan(1996), p. 530).
The first property states that the CG algorithm will
terminate withxi = x⋆ for somei ≤ r, wherex⋆ is the
exact minimizing solution andr ≤ n is the number of
distinct eigenvalues of̂∆ ∈ R

n×n. The second property
(Nocedal and Wright 1999, Theorem 5.5) states that the
error ǫi = xi − x⋆ of the estimates generated by the CG
algorithm satisfies the inequality

‖ǫi‖∆̂
‖ǫ0‖∆̂

≤ λn−i(∆̂)− λ1(∆̂)

λn−i(∆̂) + λ1(∆̂)
≡ Ki

cg, (26)

where

‖ǫi‖∆̂ =

√

ǫTi ∆̂ǫi

is the so-called energy norm ofǫi.
The first property implies that the number of CG

iterations cannot exceed the dimension of∆̂. In practice,
this property translates into a faster convergence when
eigenvalues of̂∆ are more clustered. The second property is
of direct interest here, since it allows the analysis of a bound
on the speed of convergence, obtained by substituting the
dependence of theλi(∆̂) on θ (and hence onL), analyzed
in Section 2.3, within the definition ofKi

cg in (26). This
is illustrated in Figure1, where the value of the bound in
the right-hand side of (26) is shown, for an example, as a
function of the computational burden (itself a function ofi
via (25)) for different values ofθ.

This leads to the conclusion that larger values ofθ (and
L) might result in slower convergence for the CG algorithm.

3.2. The multigrid solver

Another strategy is possible that exploits the grid structure
obtained by discretizing the evolution model (2) on a
hierarchy of m grids arranged from the finest to the

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mflops

K
cgi

 

 

0.0001

0.0004

0.0008

Figure 1. The value of Ki
cg versus the number of Mflops in CG

for θ = 10
−4, 4 10−4, 8 10−4 (corresponding to correlation lengths

0.04, 0.08, 0.11314, respectively), andN = 31
2.

coarsest, denoted byΩh,Ω2h, . . . ,Ω2m−1h. For simplicity,
assume that these grids are defined on the unit square. The
system (24) may now be written for each of these grids,
with corresponding matriceŝ∆h, ∆̂2h, . . . , ∆̂2m−1h. The
principle of the multigrid (MG) approach is to exploit the
fact that high frequency components of the residual of this
system can only be represented on the fine grids, on which
they can be readily reduced by well-chosen iterative solvers
(called smoothing operators). Moreover, the low frequency
components of the resulting residual (on the fine grid) may
also be considered as high frequency ones on a coarser
grid, where the same process may be (recursively) applied
in successive “cycles”, among which “V-cycles” are most
common. We refer the reader toBriggs et al.(2000) for an
excellent introduction to this class of effective solvers.From
a formal point of view, each such V-cycle is caracterized by
an iteration matrix notedMh which describes how the error
evolves from cycle to cycle, as stated by the relation

xj − x = M j
h(x0 − x). (27)

The iteration matrix itself may be written (see Trottenberg
and al (Trottenberg et al. 2001, Theorem 2.4.1)) as

Mh = Sh

(

Ih − Ph
2h (I2h −M2h) ∆̂

−1
2hR

2h
h ∆̂h

)

Sh,

(28)

with M2mh = 0 and whereSh is the involved smoothing
operator,Ih is the identity matrix of the same order asMh,
and whereP 2h

h andRh
2h are the grid prolongation (from

coarse to fine) and restriction (from fine to coarse) transfer
operators, respectively. The computational cost at levelh
within a multigrid cycle can be estimated by

chpre + 2‖R2h
h ‖0 + 2‖Ph

2h‖0 + 2‖∆̂h‖0 + chpost,

where chpre is the cost of applying the “pre-smoothing”
operator andchpost that of applying “post-smoothing”, which
correspond to the leftmost and rightmost occurences of
Sh in (28), respectively. Summing up on all levels and
using that facts thatchpre = chpost ≈ 2‖∆̂h‖0 for a single
iteration of the Gauss-Seidel smoother, that‖R2h

h ‖0 =
‖Ph

2h‖0 ≈ 3|Ωh| if linear interpolation and its scaled
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6 S. Gratton, Ph. L. Toint and J. Tshimanga

transposed are used for prolongation and restriction, and
again that‖∆̂h‖0 ≈ 5|Ωh|, one then obtains that applying a
multigrid V-cycle in our 2D setting (with|Ω2h| = |Ωh|/4)
approximately costs

4

3
(10 + 6 + 6 + 10 + 10 + 3)N = 60N flops, (29)

where we also used the fact that the finest grid hasN entries
and included in the factor 3 in the bracket of the left-hand
side to cover the cost of accumulating intermediate vectors
at each level (We refer the reader to (Trottenberg et al. 2001,
pp. 50-52) for an in-depth discussion of the cost of multigrid
cycles). We thus conclude that, in our setting, a multigrid
V-cycle is approximately 3 times as costly in flops as one
iteration of CG.

Given the formulation (27), we derive an expression
analogous to (26) in the form

‖ǫj‖∆̂
‖ǫ0‖∆̂

≤ Kj
mg, (30)

whereKmg = ‖M j
h‖∆̂. Here, we let again̂∆ to denote∆̂h.

0 0.1 0.2 0.3 0.4 0.5
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0.05

0.1
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0.3

0.35

Mflops

K
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g
j

 

 

0.0001

0.0004

0.0008

Figure 2. The value of K
j
mgs versus the number of Mflops

for θ = 10
−4, 4 10−4, 8 10−4 (corresponding to correlation lengths

0.04, 0.08, 0.11314, respectively), andN = 31
2.

Figure2 illustrates the evolution of the upper bound on
the relative error (in the energy norm) given by (30) for
different values of the parameterθ, under the assumptions
used to derive (29). A comparison with Figure1 then
suggests that the upper bound on the relative errors
using the multigrid solver may decrease considerably
faster than that obtained for conjugate-gradients, thereby
providing an incentive for further investigation of the
relative performance of these approaches from the point of
view of the solutions themselves, rather than upper bounds
on their residuals.

3.3. A comparison of correlation shapes produced by CG
and MG

In a first simple approach to appreciate the quality of
the solutions, we have computed, for different values
of θ, the shape corresponding to the diffusion of (i.e.,
the application ofB to) a Dirac pulse located at the
centre of a unidimensional grid with 31 nodes, using a
conjugate-gradient and a multigrid solver for approximately
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Figure 3. Diffusion of a Dirac pulse using approximate linear solvers and
direct factorization forθ = 0.0001; N = 31.
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Figure 4. Diffusion of a Dirac pulse using approximate linear solvers and
direct factorization forθ = 0.0004; N = 31.

solving (24). The level of approximation was determined
by the number of conjugate-gradient iterations (from 1
to 4) or the number of multigrid V-cycle (1). Recall that
the CPU cost of each CG iteration is dominated by the
computation of a matrix-vector product, while that of a V-
cycle corresponds to approximately 3 CG iterations. For
the sake of comparison, we have also computed the exact
solution of this diffusion process by solving the systems
(24) exactly (using a direct factorization algorithm). The
results are pictured in Figures3 to 5.

These figures show that the computed shapes using
approximate linear solvers converge relatively quickly to
the exact shape when the number of matrix-vector products
increase, this convergence being faster for the multigrid
technique than for CG, even for the case where 3 CG
iterations are used (to make their estimated CPU cost
comparable to that of one multigrid V-cycle). While the
differences are negligible for small correlation lengths,
they become more significant whenL increases. These
observations are fully coherent with what can de deduced
from the comparison of the upper bounds on the residual
sizes presented in the previous paragraph.
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Figure 5. Diffusion of a Dirac pulse using approximate linear solvers and
factorization forθ = 0.0008; N = 31.

4. Numerical illustration in an academic data
assimilation system

We finally conclude our comparison of conjugate-gradients
versus multigrid solvers for diffusion-based correlation
models by presenting numerical results obtained with these
two methods in an academic data assimilation system. The
prevision model used in this system consists of damped2D
shallow water equations delimited by an artificial bassin of
sizeLx × Ly, yielding the system

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂z

∂x
= ν△u

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂z

∂y
= ν△v

∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
+ z

(

∂u

∂x
+

∂v

∂y

)

= ν△z

with boundary and initial conditions given by

u(x, y, t)|∂Ω = 0, v(x, y, t)|∂Ω = 0,

u(x, y, 0) = 0, v(x, y, 0) = 0,

h(x, y, 0) = h0 + 50 sin(2πx) sin(πy).

This system is integrated from time 0 to timeT using
a leapfrog scheme and initial geostrophic winds. The
correlation length for this system is approximately equal
to 10% of the basin width and 5% of its length and
p = 6. Other model’s physical parameters are presented in
appendix.

We considered 6 test cases of increasing dimension (162,
322, 642, 1282, 2562 and 5122) where the minimization
of (1) was conducted using the Gauss-Newton algorithm
(4Dvar) in which the system (3) was solved using RSFOM,
an efficient strucure-exploiting “range-space” Krylov linear
solver (seeGratton et al. (2011)) and the system (24)
was approximately solved by either conjugate-gradients or
multigrid (until the residual norm is decreased by a factor
10−4) . Importantly, no significant variation was observed
between the two methods in terms of quality of the solutions
of the initial minimization problem (1).

Table I reports the number of Mflops used by both
approaches as a function of problem size, while Figure6

Size (N ) MG (Mflops) CG (Mflops)

162 2.3×101 2.9×101

322 1.6×102 1.9×101

642 1.0×103 1.5×101

1282 7.1×103 1.3×104

2562 1.9×104 1.0×105

5122 1.3×105 8.5×105

Table I. Number of Mflops in the solution of system (24) for a diffusion-
based correlation model for the 2D shallow-water equations, as a
function of problem size
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Figure 6. Number of matrix-vectors products in the solution of system (24)
for a diffusion-based correlation model for the 2D shallow-water equations,
as a function of problem size

gives a graphical interpretation of the same results. If one
remembers that the process measured here is the dominant
cost in applying the diffusion-based correlation model, one
can see that the simpler approaches used above to compare
both methods are fully vindicated by these experimental
results: the multigrid approach appears to yield substantial
gains in computational efficiency, and these gains increase
rapidly with problem size.

5. Conclusion

We have discussed the algorithmic underpinnings of using
diffusion-based correlation models in the context of the
4Dvar approach for data assimilation, and have focussed
on the linear algebra tools for solving the (many) linear
systems arising from the implicit integration approach
for these models. More specifically, we have compared
the conjugate-gradients and multigrid algorithms in this
framework both from a theoretical and a numerical view
point (on a 2D shallow-water test case). These comparisons
clearly favour the multigrid approach, especially for larger
correlation lengths and/or large problem sizes. Validating
these conclusions in the context of operational systems
with application-specific algorithmic variants (such as
preconditioning) and complex geometries remains an
important aspect of the question discussed here, but exceeds
the scope of the present paper.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 2–8 (2012)
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A. The shallow water model and its algorithmic
solution

The system’s physical parameters are presented in TableII .

Lx 32 106 m

Ly 8 106 m

Ω 2π/86400 sec

f 2Ω sin(π/4)

g 10 m s−2

h0 5000 m

ν 106

Table II. Physical parameters of the shallow-water model

The integration time is fixed to 86400 seconds forN =
162, 322 and 642, to 43200 seconds forN = 1282 and
to 22600 seconds forN = 2562 and 5122. Note that the
correlation matrix for the complete system has a block

diagonal form given by

B = blkdiag(Bu, Bv, Bz),

whereBu, Bv, andBz are covariance matrices associated
with variables,u, v and z, respectively. Each of these
matrices is of dimensionN .

The multigrid algorithm used for the experiments
described in Section 4 is a slight variant of the standard
V-cycle described above, in that no post-smoothing is
performed (chpost = 0 for all levels). The number of levels

is log(
√
N) and the solution at the coarsest level is obtained

by direct factorization. The involved matrices are computed,
for all levels but the finest, from the Galerkin formula

∆̂2h = R2h
h ∆̂hP

h
2h

this computation being performed once and for all at the
beginning of the calculation, together with that of the
prolongation and restriction operatorsR2h

h andPh
2h, and that

of the normalization factors diag(∆̂−p
h ) in (12). Finally, both

the CG and MG algorithms are terminated when solving the
systems (24) as soon as a residual is found whose Euclidean
norm is at most equal to 0.0001.
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