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Abstract

The complexity of finding ǫ-approximate first-order critical points for the general smooth con-
strained optimization problem is shown to be no worse that O(ǫ−2) in terms of function and con-
straints evaluations. This result is obtained by analyzing the worst-case behaviour of a first-order
short-step homotopy algorithm consisting of a feasibility phase followed by an optimization phase,
and requires minimal assumptions on the objective function. Since a bound of the same order is
known to be valid for the unconstrained case, this leads to the conclusion that the presence of
possibly nonlinear/nonconvex inequality/equality constraints is irrelevant for this bound to apply.
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1 Introduction

Evaluation complexity analysis for nonconvex smooth optimization problems has recently been a very ac-
tive area of research and has covered both standard methods for the unconstrained case, such as steepest-
descent (see Vavasis, 1993, Nesterov, 2004, Cartis, Gould and Toint, 2010b), trust-region methods (see
Gratton, Sartenaer and Toint, 2008), Newton’s algorithm (see Cartis et al., 2010b) or finite-difference
and derivative-free approaches (see Vicente, 2010, Cartis, Gould and Toint, 2010c), along with newer ap-
proaches involving regularization (see Nesterov and Polyak, 2006, Cartis, Gould and Toint, 2010a). The
issue considered in this paper is to bound the number of objective function (and gradient) evaluations
that are necessary to find an approximate first-order critical point for the problem

minimize f(x)
such that x ∈ IRn,

where f is a continuously differentiable possibly nonconvex function from IRn to IR with Lipschitz con-
tinuous gradient. Such an approximate critical point is defined as a point x such that

‖g(x)‖ ≤ ǫ, (1.1)

where ǫ ∈ (0, 1) is a user-specified accuracy, ‖ · ‖ is the Euclidean norm and g(x)
def
= ∇xf(x). For

first-order methods, i.e., for steepest-descent and trust-region algorithm with linear models, it has been
shown that this maximum number of objective function (and gradient) evaluations is bounded above by

⌈ κ

ǫ2

⌉

(1.2)

for some constant κ > 0 independent of n and ǫ (Nesterov, 2004, Gratton et al., 2008). Moreover, Cartis
et al. (2010b) proved that this order in ǫ is sharp. A first extension of this kind of results to constrained
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problems was provided by Cartis, Gould and Toint (2009), where it is shown that (1.2) also holds for a
first-order projection-based method for the more general problem

minimize f(x)
such that x ∈ C,

(1.3)

where C is a convex set and where (1.1) is suitably adapted to define an ǫ-approximate first-order
critical point for constrained problem (1.3). Alternatively, Cartis, Gould and Toint (2011b) considered
a first-order exact penalty function algorithm for solving the completely general nonlinearly constrained
nonconvex optimization problem

minimize f(x)
such that cE(x) = 0,

and cI(x) ≥ 0,
(1.4)

where cE and cI are continuously differentiable functions from IRn to IRm and IRp, respectively, having
Lipschitz continuous Jacobians. They proved that the complexity of finding an ǫ-approximate first-order
critical point for (2.1) is given by an appropriate variant of (1.2) when the penalty parameters remain
finite and is bounded above by O(ǫ−4) otherwise. Unfortunately, this last result requires the undesirable
assumption that the objective function f is bounded below on the whole of IRn.

In this paper, we provide a theoretical approach to the same problem and improve the results of
Cartis et al. (2011b) by showing that the complexity of achieving ǫ-approximate first-order criticality
for (1.4) is bounded by (1.2) for a first-order algorithm. Morever, this stronger result only require f to
be bounded in an ǫ-neighbourhood of the feasible set, which is considerably weaker than assuming this
property on the whole space.

The paper is organized as follows. The SSSD Algorithm is introduced in Section 2 for approximately
solving the equality constrained problem and its complexity is shown in Section 3 to be bounded above
by (1.2). Section 4 briefly covers the simple extension of this result to the general problem (1.4). Some
conclusions and perspectives are finally proposed in Section 5.

2 The SSSD Algorithm for the equality constrained problem

For the sake of simplicity, we start by considering the equality constrained problem

minimize f(x)
such that c(x) = 0,

(2.1)

where c is a continuously differentiable function from IRn to IRm with Lipschitz continuous Jacobian.
The algorithm we now describe consists of two phases. In the first, a first-order algorithm is applied
to minimize ‖c(x)‖ (independently of the objective function f), resulting in a point which is either
(approximately) feasible, or is an approximate infeasible stationary point of ‖c(x)‖. This last outcome is
not desirable if one wishes to solve (2.1), but cannot be avoided by any algorithm not relying on global
minimization. If an (approximate) feasible point has been found, Phase 2 of the algorithm then performs
short steps along generalized steepest-descent directions so long as first-order criticality is not satisfied.
These steps are computed by attempting to preserve feasibility of the iterates while producing values of
the objective function that are close to a sequence of decreasing “targets”.

Both phases rely on the first-order trust-region algorithm(1) proposed in Cartis et al. (2011b), which
can be used to solve the problem

minimize θ
(

u(x)
)

such that x ∈ IRn,
(2.2)

where θ is a (potentially nonsmooth) convex and globally Lipschitz function from IRp into IR and u(x) is
a continuously differentiable function from IRn into IRp with Lipschitz continuous Jacobian A(x). In this

(1)We make this choice for simplicity of exposition, but other methods can be considered with similar results. In particular,
the quadratic regularization technique of Cartis et al. (2011b) or the trust-region technique proposed by Byrd, Gould,
Nocedal and Waltz (2005) are also adequate.
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algorithm, a “Cauchy step” sk is obtained from the iterate xk by solving the linearized model problem

minimize θ
(

u(xk) +A(xk)s
)

such that ‖s‖ ≤ ∆k,
(2.3)

where ∆k is a trust-region radius. Because θ is convex and its argument in (2.3) linear, this prob-
lem is computationally tractable. The rest of the algorithm specification follows standard trust-region
technology.

We now return to the solution of problem (2.1) proper, and define the merit function

φ(x, t)
def
= ‖c(x)‖+ |f(x)− t|, (2.4)

where t is meant as a “target” for f(x). We also define the local linearizations of ‖c(x)‖ and φ(x, t) given
by

ℓc(x, s)
def
= ‖c(x) + J(x)s‖ and ℓφ(x, t, s)

def
= ℓc(x, s) + |f(x) + 〈g(x), s〉|,

(where 〈·, ·〉 is the Euclidean inner product). The value of the decrease of the linearized model in a ball
of unit radius may then be considered as a first-order criticality measure for the problems of minimizing
‖c(x)‖ and φ(x, t), yielding the measures

ψ(x)
def
= ℓc(x, 0)− min

‖d‖≤1
ℓc(x, d) and χ(x, t)

def
= ℓφ(x, t, 0)− min

‖d‖≤1
ℓφ(x, t, d).

Note that ψ(x) is zero if and only if x is first-order critical for the problem of minimizing ‖c(x)‖, while
χ(x, t) is zero if and only if (x, t) is a first-order critical point for the problem

minimize φ(x, t)
such that x ∈ IRn,

(2.5)

(t fixed). In Phase 1 of the SSSD algorithm (aiming for feasiblility), we apply the first-order trust-region
algorithm of Cartis et al. (2011b) by identifying

p = m, u(x) = c(x), and θ(·) = ‖ · ‖, (2.6)

in (2.2), yieding θ
(

u(y)
)

= ‖c(x)‖. For Phase 2 (the optimality phase), we choose in (2.2), for t fixed,

p = m+ 1, u(x) = (c(x), f(x)− t) and θ(·) = ‖ · ‖+ | · |, (2.7)

which gives θ
(

u(x)
)

= φ(x, t). Note that θ(·) is clearly convex with global Lipschitz constant equal to
one in both cases.

We are now ready to formalize our Short Step Steepest-Descent (SSSD) Algorithm as presented on
the following page.

Since the SSSD algorithm makes no pretense of being practical, we have written Steps 2.2.b and 2.2.c
by only using the constants

0 < η < 1, and 0 < γ < 1,

instead of the more usual η1 ≤ η2 and γ1 ≤ γ2, a simplified choice which is allowed in the standard trust-
region case, including that studied in Cartis et al. (2011b)(2). Note that the SSSD algorithm requires
one evaluation of the objective function and its gradient and one evaluation of the constraint’s function
and its Jacobian per iteration.

Note also that one could also consider using the ARC algorithm (see Cartis, Gould and Toint, 2011a)
to minimize ‖c(x)‖2 to find x1 such that ‖J(x1)

T c(x1)‖ ≤ ǫ. We do not consider this (potentially more
efficient) possibility here because it would require stronger assumptions on the constraint function c.

(2)By selecting η1 = η2 and γ1 = γ2 in this reference.
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Algorithm 2.1: The SSSD algorithm

Let κf ∈ (0, 1) and ∆1 > 0 be given, together with a starting point x0.

Phase 1:

Starting from x0, minimize ‖c(x)‖ (using (2.2) and (2.6) and the trust-region method of Cartis
et al., 2011b) until a point x1 is found such that

ψ(x1) ≤ ǫ.

If ‖c(x1)‖ > κf ǫ, terminate [locally infeasible].

Phase 2:

1. Set t1 = ‖c(x1)‖+ f(x1)− ǫ and k = 1.

2. While χ(xk, tk) ≥ ǫ,

(a) Compute a first-order step sk by solving

minimize ℓφ(xk, tk, s)
such that ‖s‖ ≤ ∆k,

(2.8)

(b) Compute φ(xk + sk, tk) and define

ρk =
φ(xk, tk)− φ(xk + sk, tk)

ℓφ(xk, tk, 0)− ℓφ(xk, tk, sk)
. (2.9)

If ρk ≥ η, then xk+1 = xk + sk; else xk+1 = xk.

(c) Set

∆k+1 =

{

∆k if ρk ≥ η [k successful]
γ∆k if ρk < η, [k unsuccessful]

(2.10)

(d) If ρk ≥ η, set

tk+1 =

{

tk − φ(xk, tk) + φ(xk+1, tk) if f(xk+1) ≥ tk,

2f(xk+1)− tk − φ(xk, tk) + φ(xk+1, tk) if f(xk+1) < tk.
(2.11)

Otherwise, set tk+1 = tk.

(e) Increment k by one and return to 2.

3. Terminate [(approximately) first-order critical]

3 Complexity of the SSSD Algorithm for the equality

constrained problem

Before analyzing the complexity of Algorithm SSSD, we state our assumptions formally.

A.1: The function c is continuously differentiable on IRn and f is continuously differentiable in an open
neighbourhood of

Cǫ = {x ∈ IRn | ‖c(x)‖ ≤ ǫ}.

A.2: J(x) is globally Lipschitz continuous in IRn with Lipschitz constant bounded above by LJ > 0,
and g(x) is Lispchitz continuous in Cǫ with Lipschitz constant bounded above by Lg > 0.

A.3: The objective function is bounded above and below in the neighbourhood of the feasible set, that
is there exist constants flow and fup ≥ flow − 1 such that

flow ≤ f(x) ≤ fup for all x ∈ Cǫ.
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We start our analysis by exploiting the results of Cartis et al. (2011b) and bounding the number of
Phase 1 iterations.

Lemma 3.1 Suppose that A.1 and A.2 hold. Then, at most
⌈

‖c(x0)‖
κ1

ǫ2

⌉

(3.12)

evaluations of c(x) and its derivatives are needed to complete Phase 1, for some κ1 > 0 independent of
n, ǫ and x0.

Proof. See Theorem 2.4 in Cartis et al. (2011b). 2

We next extract from the same reference a property which is crucial for Phase 2.

Lemma 3.2 Suppose that A.1 and A.2 hold. Suppose also that χ(xk, tk) ≥ ǫ and that

∆k ≤
(1− η)ǫ

Lg + 1

2
LJ

. (3.13)

Then iteration k is successful and

φ(xk + sk, tk) ≤ φ(xk, tk)− κCǫ
2, (3.14)

where

κC

def
= ηmin

[

∆1,
(1− η)γ

Lg + 1

2
LJ

]

. (3.15)

is a constant independent of n and ǫ.

Proof. This follows by applying Lemmas 2.1 and 2.3 in Cartis et al. (2011b) to the objective φ(x, tk)
considered as a function of x only. 2

We now bound the total number of unsuccessful iterations in the course of Phase 2.

Lemma 3.3 There are at most O(| log ǫ|) unsuccessful iterations in Phase 2 of the SSSD algorithm.

Proof. Note that (2.10) implies that the trust-region radius is never increased, and therefore
Lemma 3.2 guarantees that all iterations must be successful once ∆1 has been reduced (by a factor γ)
enough times to ensure (3.13). Hence there are at most

⌈

1

| log γ|
|log ǫ+ log(1− η)− log∆1 − log(Lg + 1

2
LJ )|

⌉

= O(| log ǫ|) (3.16)

unsuccessful iterations during the complete execution of the Phase 2. 2

The next lemma proves the crucial observation that all Phase 2 iterates remain (approximately) feasible,
and that the targets tk decrease by a quantity bounded below by a multiple of ǫ−2 at every successful
iteration.

Lemma 3.4 For every k ≥ 1, we have that

f(xk+1)− tk+1 > 0, (3.17)

φ(xk, tk) = ǫ (3.18)

‖c(xk)‖ ≤ ǫ, (3.19)

|f(xk)− tk| ≤ ǫ. (3.20)

Moreover, if iteration k is successful, then

tk − tk+1 ≥ κCǫ
2 (3.21)

where κC is defined in (3.15).



Cartis, Gould, Toint: Complexity of constrained nonlinear optimization 6

Proof. We start by observing that (3.17) immediately follows from (2.11) and (3.14) and the fact
that f(xk) and tk remain unchanged on unsuccessful iterations. We now prove (3.18) by induction on k.
We first note that this inequality holds by construcion for k = 1. We now show that this bound remains
valid for k > 1. Assume that iteration k is successful and that

φ(xk, tk) = ǫ. (3.22)

Using (2.4) and (3.17), we observe that

φ(xk+1, tk+1) = ‖c(xk+1)‖+ f(xk+1)− tk + (tk − tk+1). (3.23)

Consider the case where f(xk+1) ≥ tk first. Then, using (3.23) and (2.11), we obtain that

φ(xk+1, tk+1) = φ(xk+1, tk) + φ(xk, tk)− φ(xk+1, tk) = φ(xk, tk).

If f(xk+1) < tk, we have that

φ(xk+1, tk+1) = ‖c(xk+1)‖ − f(xk+1) + tk + φ(xk, tk)− φ(xk+1, tk)

= φ(xk+1, tk) + φ(xk, tk)− φ(xk+1, tk)

= φ(xk, tk),

where we again used (3.23) and (2.11). Combining the two cases and using (3.14) and (3.22), we then
deduce that

φ(xk+1, tk+1) = φ(xk, tk) = ǫ.

By induction, and since tk and f(xk) (and hence φ) are unmodified at unsuccessul iterations, (3.18)
therefore holds for all k ≥ 1. Relations (3.19) and (3.20) immediately follow from (2.4). Finally, (3.21)
results from (2.11) and (3.14) at successful iterations. 2

Lemma 3.5 Assume that ‖c(xk)‖ ≤ ǫ and χ(xk, tk) ≤ ǫ. Then xk is an approximate critical point in
the sense that

‖c(xk)‖ ≤ ǫ and ‖J(xk)
T y − g(xk)‖ ≤ ǫ (3.24)

for some vector of multipliers y ∈ IRm. Similarly, assume that ψ(x) ≤ ǫ. Then

‖J(x)T z‖ ≤ ǫ (3.25)

for some vector of multipliers z ∈ IRm.

Proof. See Theorem 3.1 in Cartis et al. (2011b) and the comments thereafter. 2

Theorem 3.6 Assume A.1-A.3 hold. Then the SSSD algorithm generates an ǫ-first-oder critical point
for problem (2.1), that is an iterate xk satisfying either

(3.24) or
[

(3.25) with ‖c(xk)‖ > κf ǫ
]

,

in at most
⌈(

‖c(x0)‖+ fup − flow

)

κ2

ǫ2

⌉

(3.26)

evaluations of c and f (and their derivatives), where κ2 > 0 is a constant independent of n, ǫ and x0.

Proof. We have seen in Lemma 3.1 that the complexity of obtaining x1 is bounded above by
O(⌈‖c(x0)‖ǫ

−2⌉). Thus, as ψ(x1) ≤ ǫ, Lemma 3.5 ensures that (3.25) holds. If the algorithm terminates
at this stage, then both (3.25) and ‖c(xk)‖ > κf ǫ hold, as requested. Assume now that Phase 2 of the
algorithm is entered. We then observe that Lemma 3.2 implies that successful iterations must happen
as long as χ(xk, tk) ≥ ǫ. Moreover, we have that

flow ≤ f(xk) ≤ tk + ǫ ≤ t1 − σkκCǫ
2 + ǫ ≤ f(x1)− σkκCǫ

2 + ǫ
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where σk is the number of these successful iterations from iterations 1 to k of Phase 2, and where we
have successively used A.3, (3.20) and (3.21). Hence, we obtain from the inequality f(x1) ≤ fup (itself
implied by A.3 again) that

σk ≤

⌈

fup − flow + ǫ

κCǫ2

⌉

. (3.27)

The number of Phase 2 iterations satisfying χ(xk, tk) ≥ ǫ is therefore bounded above, and the algorithm
must terminate after (3.27) such iterations at most, yielding, because of Lemma 3.5, an ǫ-first-order
critical point satisfying (3.24). Remembering that only one evaluation of c and f (and their derivatives,
if successful) occurs per iteration, we therefore conclude from (3.27) and Lemma 3.3 that the total number
of such evaluations in Phase 2 is bounded above by

⌈

fup − flow + ǫ

κCǫ2

⌉

+O(| log ǫ|)

Summing this upper bound with that for the number of iterations in Phase 1 given by Lemma 3.1 then
yields (3.26). 2

4 Including general inequality constraints

If we now return to the solution of problem (1.4), we may consider defining

c(x) =

(

cE(x)
min[ 0, cI(x) ]

)

in the above. The quantity ‖c(x)‖ can again be considered as the composition of a nonsmooth convex
function with the smooth function (cE(x)

T , cI(x)
T )T and the theory developed above applies without

modification, except that Lemma 3.5 must be adapted for the presence of inequality constraints. If an
inequality constraint is active at an approximate critical point, then its multiplier has to be non-negative
because y ∈ ∂(‖min[0, · ]‖) implies that y ≥ 0. If it is inactive, then it may as well be absent from the
problem (and its multiplier must be zero). Hence Lemma 3.5 generalizes to the inequality constraints
case (1.4) without difficulty.

5 Conclusions

We have shown that the complexity to achieve either a ǫ-first-order critical point or an infeasible ǫ-critical
point for the infeasibilities of the general smooth nonlinear optimization problem (1.4) is O(ǫ−2), where
the constant involved is independent of problem dimension. This is a marked improvement over the
results presented in Cartis et al. (2011b), where the same complexity was achieved only if the penalty
parameter of the minimization scheme discussed in this reference remains bounded, the complexity being
O(ǫ−4) othrewise. Moreover, the results obtained in the present paper only assume boundedness of the
objective function on an ǫ-neighbourhood of the feasible set, rather than on the whole space.

Since Cartis et al. (2010b) have shown that the O(ǫ−2) bound can be effectively achieved by steepest
descent in the unconstrained case, improving the same bound in the constrained case is also impossible
for methods of the same type.

We fully accept that the SSSD algorithm discussed in Section 2 is most likely to be extremely inefficient
in practice, because it amounts to following the constraints manifold with very small steps. “Long steps”
variants may be considered in which the setting of the target tk is more aggressively geared towards
minimizing the objective function. Whether such variants can be numerically effective remains to be
seen, but their complexity will be difficult to guarantee with the kind of technique used here, as this
would rely on global optimization of the constraint violation.

That we expect Algorithm SSSD to be outperformed in practice is to be welcomed, indicating that
the O(ǫ−2) evaluation bound may be as pessimistic for the contrained case as it is for the unconstrained
one. But it remains remarkable that this pessimistic bound is unaffected by the presence of possibly
nonlinear and nonconvex constraints.
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