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Abstract

Given a sufficiently smooth vector-valued function r(x), a local minimizer of ‖r(x)‖2 within

a closed, non-empty, convex set F is sought by modelling ‖r(x)‖q2/q with a p-th order Taylor-

series approximation plus a (p + 1)-st order regularization term for given even p and some

appropriate associated q. The resulting algorithm is guaranteed to find a value x̄ for which

‖r(x̄)‖2 ≤ ǫp or χ(x̄) ≤ ǫd, for some first-order criticality measure χ(x) of ‖r(x)‖2 within F ,

using at most O(max{max(ǫd, χmin)
−(p+1)/p,max(ǫp, rmin)

−1/2i}) evaluations of r(x) and its

derivatives; here rmin and χmin ≥ 0 are any lower bounds on ‖r(x)‖2 and χ(x), respectively,

and 2i is the highest power of 2 that divides p. An improved bound is possible under a suitable

full-rank assumption.

1 Introduction

Consider a given, sufficiently smooth, vector-valued function r : IRn −→ IRm. A ubiquitous

problem is to find the value of x within a closed, convex, non-empty subset F ⊆ IRn so that

‖r(x)‖ is a small as possible, where here and elsewhere ‖ · ‖ is the Euclidean norm. A common

approach is to consider instead the equivalent problem of minimizing

Φq(x) := 1
q
‖r(x)‖q, (1.1)

for some integer q chosen so that Φq inherits the smoothness of r, with q = 2 being the usual

least-squares choice. The problem of minimizing (1.1) is thereafter tackled using a generic method

for unconstrained optimization, or one that exploits the special structure of Φq.

A question of interest in general smooth unconstrained optimization is how many evaluations

of an objective function, f(x), and its derivatives are necessary to reduce some measure of opti-

mality below a specified (small) ǫ > 0 from some arbitrary initial guess. If the measure is ‖g(x)‖,

where g(x) := ∇xf(x), it is known that some well-known schemes (including steepest descent
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and generic second-order trust-region methods) may require Θ(ǫ−2) evaluations under standard

assumptions [2], while this may be improved to Θ(ǫ−3/2) evaluations for second-order methods

with cubic regularization or using specialised trust-region tools [3, 8, 9]. Here and hereafter O(·)

indicates a term that is of at worst a multiple of its argument, while Θ(·) indicates additionally

there are instances for which the bound holds.

For the problem we consider here, an obvious approach is to apply the aforementioned algo-

rithms to minimize (1.1), and to terminate when

∇xΦq(x) = ‖r(x)‖q−2∇xΦ2(x), where ∇xΦ2(x) = JT (x)r(x) and J(x) := ∇xr(x), (1.2)

is small. However, it has been argued that this ignores the possibility that it may suffice to stop

instead when r(x) is small, and that a more sensible criterion is to terminate when

‖r(x)‖ ≤ ǫp or ‖gr(x)‖ ≤ ǫd, (1.3)

where ǫp and ǫd are (possibly different) required accuracy tolerances in (0, 1) and where

gr(x) :=







∇xΦ2(x)

‖r(x)‖
whenever r(x) 6= 0 and

0 otherwise.
(1.4)

Note that the scaled gradient gr(x) in (1.4) is precisely the gradient of ‖r(x)‖ whenever r(x) 6= 0,

while if r(x) = 0, we are at the global minimum of r and so gr(x) = 0 ∈ ∂(‖r(x)‖). It has been

shown that a second-order minimization method based on cubic regularization will satisfy (1.3)

after at most O
(

max(ǫ
−3/2
d , ǫ

−1/2
p )

)

evaluations [5, Thm.3.2].

Since it is easy to do so, we shall consider the more general problem in which the solution

is additionally constrained to lie within a closed, convex non-empty set F . As in [4], our gener-

alization is based upon a suitable continuous first-order criticality measure for the constrained

problem of minimizing a given function f : IRn → IR over F . For an arbitrary x ∈ F , this

criticality measure is given by

χf (x) :=

∣

∣

∣

∣

min
x+d∈F ,‖d‖χ≤1

〈∇xf(x), d〉

∣

∣

∣

∣

, (1.5)

where 〈·, ·〉 denotes the Euclidean inner product, and ‖ · ‖χ is any fixed norm, possibly chosen to

make the computation of χh(x) easier. Let κn > 0 be the norm equivalence constant such that

‖v‖ ≤ κn‖v‖χ for all v ∈ IRn. (1.6)

Observe that χf (x) depends on the geometry of F rather than any specific parameterization

using constraint functions, and that x is a first-order critical point of the problem

minimize
x∈F

f(x) (1.7)

if and only if χf (x) = 0 [7, Thm.12.1.6]. Also note that χf (x) = ‖∇xf(x)‖ whenever F = IRn

and ‖ · ‖χ = ‖ · ‖.

For the problem in hand, for which f(x) = Φq(x), and in view of (1.3)–(1.4), we prefer to

judge approximate first-order critically by terminating our proposed algorithm as soon as

‖r(x)‖ ≤ ǫp or χr(x) ≤ ǫd, (1.8)
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where

χr(x) :=







χΦ2(x)

‖r(x)‖
whenever r(x) 6= 0 and

0 otherwise.
(1.9)

Notice in particular that these conditions are equivalent to (1.3)–(1.4) whenever F = IRn.

Very recently, it has been shown that the worst-case evaluation complexity of smooth uncon-

strained minimization [1] and subsequently of convexly-constrained constrained minimization [6]

improves if one is prepared to model the objective at each iteration by a higher-order model

and appropriate regularization. In particular, a p-th order Taylor model with a (p + 1) regular-

ization term leads to at most O(ǫ−(p+1)/p) evaluations under standard assumptions. Thus the

purpose of this short paper is to examine the consequences of this complexity breakthrough for

the (convexly-constrained) norm-minimization problem, and particularly for the termination rule

(1.8). Of particular note is the way that our analysis links the choice of the order p of the Taylor

model to the power of the norm q in (1.1) in an unusual, number-theoretic way. Background

material on our generic method for convexly-constrained minimization is presented in §2, while

its application to the least-norm problem of interest here follows in §3.

2 General smooth minimization subject to convex constraints

In this section, we consider the general problem (1.7) for which we assume that f : IRn −→ IR

is p-times continuously differentiable, bounded from below, and has Lipschitz continuous p-th

derivatives; for the q-th derivative of f to be Lipschitz continuous on the set S ⊆ IRn, we require

that there exists a constant Lf,q ≥ 0 such that, for all x, y ∈ S,

‖∇q
xf(x)−∇q

xf(y)‖T ≤ (q − 1)!Lf,q‖x− y‖

where ‖ · ‖T is the recursively induced Euclidean norm on the space of q-th order tensors. As we

indicated in §1, we also assume that the feasible set F is closed, convex and non-empty. Note

that this formulation covers standard inequality (and linear equality) constrained optimization

in its different forms: the set F may be defined by simple bounds, and both polyhedral and more

general convex constraints. We remark though that we are tacitly assuming here that the cost

of evaluating constraint functions and their derivatives is negligible. Moreover, we presume that

we are able to find an x0 ∈ F .

The algorithm considered in this paper is iterative. Let Tp(xk, s) be the p-th order Taylor-

series approximation to f(xk+s) at some iterate xk ∈ IRn, and define the local regularized model

at xk by

mk(xk + s) := Tp(xk, s) +
σk

p+ 1
‖s‖p+1, (2.1)

where σk > 0 is the regularization parameter. Note that mk(xk) = Tp(xk, 0) = f(xk). The

approach used in [4] (when p = 2) seeks to define a new iterate xk+1 from the preceding one by

computing an approximate solution of the subproblem

minimize
xk+s∈F

mk(xk + s)

using a modified version of the Adaptive Regularization with Cubics (ARC) method for uncon-

strained minimization. By contrast, and in common with [6], the method we now examine is

based on the ARp algorithm of [1], and our aim is to inherit its interesting features.
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We now describe Algorithm 2.1, a variant of ARp for Convex Constraints, on this page.

Algorithm 2.1: Adaptive Regularization using p-th order models for minimiza-

tion subject to convex constraints

A feasible starting point x0 ∈ F , an initial and a minimal regularization parameter

σ0 ≥ σmin > 0, algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0,

are given, as well as an accuracy threshold ǫ ∈ (0, 1]. Evaluate f(x0).

For k = 0, 1, . . ., do:

1. Evaluate ∇xf(xk). If

χf (xk) ≤ ǫ, (2.2)

terminate with xǫ = xk. Otherwise compute derivatives of f of order 2 to p at xk.

2. Compute a step sk by approximately minimizing mk(xk + s) over s ∈ F so that

xk + sk ∈ F , (2.3)

mk(xk + sk) < mk(xk) (2.4)

and

χmk
(xk + sk) ≤ θ ‖sk‖

p. (2.5)

3. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
. (2.6)

If ρk ≥ η1, set xk+1 = xk + sk. Otherwise set xk+1 = xk.

4. Set

σk+1 ∈











[max(σmin, γ1σk)σk] if ρk > η2 [very succesx sful iteration]

[σk, γ2σk] if η1 ≤ ρk ≤ η2 [successful iteration]

[γ2σk, γ3σk] otherwise. [unsuccessful iteration],

(2.7)

and go to step 2 if ρk < η1.

We first state a useful property of Algorithm 2.1 that ensures that a fixed fraction of the

iterations 1, 2, . . . , k must be either successful or very successful.



6

Lemma 2.1. [1, Lem.2.4; 5, Thm.2.2]. Assume that, for some σmax > 0, σj ≤ σmax for all

0 ≤ j ≤ k. Then Algorithm 2.1 ensures that

k ≤ κu|Sk|, where κu :=

⌈(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)⌉

, (2.8)

where Sk is the number of successful and very successful iterations, in the sense of (2.7), up

to iteration k.

We start our worst-case analysis by formalizing our assumptions.

AS.1 The objective function f is p times continuously differentiable on an open set containing

F .

AS.2 The p-th derivative of f is Lipschitz continuous on F .

AS.3 The feasible set F is closed, convex and non-empty.

Algorithm 2.1 is required to start from a feasible x0 ∈ F , which, together with the fact that

the subproblem solution in Step 2 involves minimization over F , leads to AS.3.

We now recall some simple results whose proof can be found in [1] in the context of the

original ARp algorithm.

Lemma 2.2. Suppose that AS.1–AS.3 hold, and that Algorithm 2.1 is applied to problem

(1.7). Then, for each k ≥ 0,

(i)

f(xk + sk) ≤ Tp(xk, sk) +
Lf,p

p
‖sk‖

p+1 (2.9)

and

‖∇xf(xk + sk)−∇sT (xk, sk)‖ ≤ Lf,p‖sk‖
p; (2.10)

(ii)

Tp(xk, 0)− Tp(xk, sk) ≥
σk

p+ 1
‖sk‖

p+1; (2.11)

(iii)

σk ≤ σmax,f := max

[

σ0,
γ3Lf,p(p+ 1)

p (1− η2)

]

. (2.12)

Proof. See [1] for the proofs of (2.9) and (2.10), which crucially depend on AS.1 and AS.2

being valid on the segment [xk, xk + sk]. Observe also that (2.1) and (2.4) ensure (2.11).

Assume now that

σk ≥
Lf,p(p+ 1)

p (1− η2)
. (2.13)
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Using (2.9) and (2.11), we may then deduce that

|ρk − 1| ≤
|f(xk + sk)− Tp(xk, sk)|

|Tp(xk, 0)− Tp(xk, sk)|
≤

Lf,p(p+ 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As

a consequence, the mechanism of the algorithm ensures that (2.12) holds. ✷

Next, we prove that, at successful iterations, the step at iteration k must be bounded below

by a multiple of the p-th root of the criticality measure at iteration k + 1.

Lemma 2.3. Suppose that AS.1–AS.3 hold, and that Algorithm 2.1 is applied to problem

(1.7). Then

‖sk‖ ≥

[

χf (xk+1)

2κn(Lf,p + θ + σmax,f )

]
1
p

for all k ∈ S. (2.14)

Proof. Since k ∈ S and by definition of the trial point, we have that xk+1 = xk + sk.

Observe now that (2.10) and (2.12) imply that

‖∇f(xk+1)−∇xmk(xk+1)‖ ≤ Lf,p‖sk‖
p + σk‖sk‖

p ≤ (Lf,p + σmax,f )‖sk‖
p, (2.15)

and also that

χf (xk+1) := |〈∇xf(xk+1), dk+1〉|

≤ |〈∇xf(xk+1)−∇smk(xk+1), dk+1〉|+ |〈∇smk(xk+1), dk+1〉|,
(2.16)

where the first equality defines the vector dk+1 with

‖dk+1‖χ ≤ 1. (2.17)

Assume now, for the purpose of deriving a contradiction, that (2.14) fails at iteration k ∈ S.

Using the Cauchy-Schwarz inequality, (1.6), (2.17), (2.15), the failure of (2.14) and the first

part of (2.16) successively, we then obtain that

〈∇smk(xk+1), dk+1〉 − 〈∇xf(xk+1), dk+1〉

≤ |〈∇xf(xk+1), dk+1〉 − 〈∇smk(xk+1), dk+1〉|

≤ ‖∇xf(xk+1)−∇smk(xk + sl)‖ ‖dk+1‖

≤ κn(Lp,f + σmax,f )‖sk‖
p

≤ κn(Lp,f + θ + σmax,f )‖sk‖
p

≤ 1
2
χf (xk+1)

= − 1
2
〈∇xf(xk+1), dk+1〉,

which in turn ensures that

〈∇smk(xk+1), dk+1〉 ≤ 1
2
〈∇xf(xk+1), dk+1〉 < 0.
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Moreover, xk+1 + dk+1 ∈ F by definition of χf (xk+1), and hence, using (2.17),

|〈∇smk(xk+1), dk+1〉| ≤ χmk
(xk+1). (2.18)

We may then substitute this inequality in (2.16) and use the Cauchy-Schwarz inequality, (1.6)

and (2.17) again to deduce that

χf (xk+1) ≤ ‖∇xf(xk+1)−∇smk(xk+1)‖+ χmk
(xk+1) ≤ κn(Lp + α+ σmax,f )‖sk‖

p (2.19)

where the last inequality results from (2.15), the identity xk+1 = xk + sk and (2.5). But this

contradicts our assumption that (2.14) fails. Hence (2.14) must hold. ✷

We now consolidate the previous results by deriving a lower bound on the objective function

decrease at successful iterations; we note that this does not depend on the history of the algorithm,

but simply on the smoothness of the objective function between xk and xk+1.

Lemma 2.4. Suppose that AS.1–AS.3 hold, and that Algorithm 2.1 is applied to problem

(1.7). Then, if iteration k is successful,

f(xk)− f(xk+1) ≥
1

κs,f
χf (xk+1)

p+1
p

where

κs,f :=
p+ 1

η1σmin

[

2κn(Lf,p + θ + σmax,f )
]

p+1
p
. (2.20)

Proof. If iteration k is successful, we have, using (2.6), (2.11), (2.7), (2.14) and (2.12)

successively, that

f(xk)− f(xk+1) ≥ η1[Tp(xk, 0)− Tp(xk, sk) ]

≥
η1σmin

p+ 1
‖sk‖

p+1

≥
η1σmin

(p+ 1)[2κn(Lf,p + θ + σmax,f )]
p+1
p

χf (xk+1)
p+1
p .

✷

A worst-case evaluation complexity result can now be proved by combining this last result

with the fact that χf (xk) cannot be smaller than ǫ before termination.
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Theorem 2.5. Suppose that AS.1–AS.3 hold and let flow be a lower bound on f on F .

Then, given ǫ > 0, Algorithm 2.1 applied to problem (1.7) needs at most

⌊

κs,f [f(x0)− flow]ǫ
− p+1

p

⌋

successful iterations (each involving one evaluation of f and its p first derivatives) and at

most

κu,f

⌊

κs,f [f(x0)− flow]ǫ
− p+1

p

⌋

iterations in total to produce an iterate xǫ such that χf (xǫ) ≤ ǫ, where κu,f is given by (2.8)

with σmax = σmax,f defined by (2.12).

Proof. At each successful iteration, we have, using Lemma 2.4, that

f(xk)− f(xk+1) ≥ (κs,f )
−1χf (xk+1)

p+1
p ≥ (κs,f )

−1ǫ
p+1
p ,

where we used the fact that χf (xk+1) ≥ ǫ before termination to deduce the last inequality.

Thus we deduce that, as long as termination does not occur,

f(x0)− f(xk+1) =
∑

j∈Sk

[f(xj)− f(xj + sj)] ≥
|Sk|

κs,f
ǫ
p+1
p ,

from which the desired bound on the number of successful iterations follows. Lemma 2.1 is

then invoked to compute the upper bound on the total number of iterations. ✷

We note that essentially the same complexity result has been established [6] for a variant of

Algorithm 2.1 in which first-order criticality is measured instead by

πf (x) := ‖PF [x−∇xf(x)]− x‖, (2.21)

where PF denotes the orthogonal projection onto F , and (2.5) is replaced by πmk
(xk + sk) ≤

θ ‖sk‖
p.

3 Euclidean-norm minimization subject to convex constraints

In what follows, we shall apply Algorithm 2.1 to the function f(x) = Φq(x) from (1.1), and

replace the stopping rule (2.2) by (1.8). In this case, using Lemma 2.4, the identity (1.2), and

the definition (1.9), we obtain the following key estimate.

Lemma 3.1. Suppose that Φq(x) ∈ Cp with Lipschitz continuous p-th derivatives, that

AS.3 holds, and that we apply Algorithm 2.1 to Φq(x). Then if iteration k is successful,

‖r(xk)‖
q − ‖r(xk+1)‖

q ≥ qκ−1
s,Φq

[χr(xk+1)]
p+1
p · ‖r(xk+1)‖

(q−1)(p+1)
p

where κs,Φq is as in Lemma 2.4 but using the Lipschitz constant LΦq ,p for Φq.
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We now turn to the vital choice of q. We use the following elementary result.

Lemma 3.2. Let p ∈ N. Then p may be expressed uniquely as the product of an odd

natural number and a power of 2, i.e.,

p = o · 2i (3.1)

for some odd positive integer o and i ∈ Z+.

Proof. If p = 1, t = 1·20, so assume inductively that the result is true for all p ∈ [1, ..., k−1].

Then if k is odd, then k = k · 20. By contrast, if k is even, then k = 2r for some 1 ≤ r < k

for which r = o · 2j for some odd o and j ∈ Z+. Hence k = 2r = o · 2j+1. Thus the identity

holds for p = k and hence for all p. Uniqueness follows from the uniqueness of the prime

factorization of p. ✷

Note that to find o and i from p, one simply successively divides p by increasing powers of 2 until

the result is no longer an integer.

Given o and i, we now choose

q = 1 + o · (2i − 1). (3.2)

Observe that if p is odd, i = 0 and q = 1, while if p is even, i > 0 and q is even. Since we require

Φq to be smooth, we cannot allow q to be odd, and thus we henceforth restrict our attention to

even p. Armed with q, our next result improves on the estimate provided by Lemma 3.1.

Lemma 3.3. Given even p, i from (3.1), and q from (3.2), suppose that Φq(x) ∈ Cp with

Lipschitz continuous p-th derivatives, that AS.3 holds, and that we apply Algorithm 2.1 to

Φq(x). Then if r(xk) 6= 0 and iteration k is successful, we have

‖r(xk)‖
1/2i−‖r(xk+1)‖

1/2i

≥ min

{

2−iκ−1
s,Φq

β
(q−1)(p+1)

p [χr(xk+1)]
(p+1)/p, (β−1/2i − 1)‖r(xk+1)‖

1/2i
}

,

(3.3)

where κs,Φq is as in Lemma 3.1 and β ∈ (0, 1) is any fixed problem-independent constant.

Proof. Suppose that r(xk) 6= 0, let β ∈ (0, 1) and denote

Sβ := {k ∈ S : ‖r(xk+1)‖ > β‖r(xk)‖}, (3.4)

where

S := {k ≥ 0 : iteration k is successful or very successful in the sense of (2.7)}. (3.5)

We first analyze the function decrease for iterations k ∈ Sβ and then, for the ones in S \ Sβ .
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Let k ∈ Sβ ; then r(xk+1) 6= 0 since r(xk) 6= 0. From Lemma 3.1 and (3.4), we deduce

‖r(xk)‖
q − ‖r(xk+1)‖

q ≥ qκ−1
s,Φq

[χr(xk+1)]
p+1
p · ‖r(xk+1)‖

(q−1)(p+1)
p

≥ qκ−1
s,Φq

β
(q−1)(p+1)

p [χr(xk+1)]
p+1
p · ‖r(xk)‖

(q−1)(p+1)
p .

(3.6)

But since ‖r(xk)‖ ≥ ‖r(xk+1)‖, we have that

‖r(xk)‖
q − ‖r(xk+1)‖

q = (‖r(xk)‖ − ‖r(xk+1)‖) ·
∑q−1

i=0 ‖r(xk)‖
i‖r(xk+1)‖

q−i−1

≤ (‖r(xk)‖ − ‖r(xk+1)‖) · q‖r(xk)‖
q−1

and thus from (3.6) that

‖r(xk)‖ − ‖r(xk+1)‖ ≥
‖r(xk)‖

q − ‖r(xk+1)‖
q

q‖r(xk)‖q−1

≥ κ−1
s,Φq

β
(q−1)(p+1)

p [χr(xk+1)]
p+1
p · ‖r(xk)‖

q−1
p for all k ∈ Sβ.

(3.7)

Furthermore, conjugacy properties and the monotonic decrease of ‖r(x)‖ give that

‖r(xk)‖
1/2j−1

− ‖r(xk+1)‖
1/2j−1

= (‖r(xk)‖
1/2j+ ‖r(xk+1)‖

1/2j )(‖r(xk)‖
1/2j− ‖r(xk+1)‖

1/2j )

≤ 2‖r(xk)‖
1/2j (‖r(xk)‖

1/2j− ‖r(xk+1)‖
1/2j )

for all j ≥ 1, and therefore in particular

‖r(xk)‖ − ‖r(xk+1)‖≤ 2i‖r(xk)‖
1/2+···+1/2i(‖r(xk)‖

1/2i− ‖r(xk+1)‖
1/2i)

= 2i‖r(xk)‖
(2i−1)/2i(‖r(xk)‖

1/2i− ‖r(xk+1)‖
1/2i).

(3.8)

Thus combining (3.7) and (3.8), we find that

‖r(xk)‖
1/2i− ‖r(xk+1)‖

1/2i ≥
‖r(xk)‖ − ‖r(xk+1)‖

2i‖r(xk)‖(2
i−1)/2i

≥ 2−iκ−1
s,Φq

β
(q−1)(p+1)

p [χr(xk+1)]
p+1
p · ‖r(xk)‖

q−1
p

− 2i−1

2i .

(3.9)

But

q − 1

p
−

2i − 1

2i
=

q − 1− p(2i−1)
2i

p
= 0

from the definitions (3.1) and (3.2). Thus (3.9) gives that

‖r(xk)‖
1/2i− ‖r(xk+1)‖

1/2i ≥ 2−iκ−1
s,Φq

β
(q−1)(p+1)

p [χr(xk+1)]
p+1
p for all k ∈ Sβ . (3.10)

Conversely, let k ∈ S \ Sβ , which gives

‖r(xk+1)‖ ≤ β‖r(xk)‖, and thus ‖r(xk+1)‖
1/2i ≤ β1/2i‖r(xk)‖

1/2i , (3.11)

and so the residuals decrease linearly on such iterations. It follows from (3.11) that on such

iterations we have the following function decrease

‖r(xk)‖
1/2i − ‖r(xk+1)‖

1/2i ≥ (1− β1/2i)‖r(xk)‖
1/2i

≥
1− β1/2i

β1/2i
‖r(xk+1)‖

1/2i for all k ∈ S \ Sβ .
(3.12)

(Note that (3.12) continues to hold if r(xk+1) = 0.) The bound (3.3) now follows from (3.10)

and (3.12). ✷
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The following theorem is our main result, a general evaluation complexity bound for Algo-

rithm 2.1 applied to (1.1) when the termination condition (1.8) is employed.

Theorem 3.4. Given even p, i from (3.1), and q from (3.2), suppose that Φq(x) ∈ Cp with

Lipschitz continuous p-th derivatives, that AS.3 holds, and that we apply Algorithm 2.1 to

Φq(x), with the termination condition (1.8) replacing (2.2). Then the algorithm terminates

after at most

kǫ + 1, where kǫ :=
⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2max(ǫp, rmin)

−1/2i}
⌉

, (3.13)

successful iterations—or, equivalently, derivative evaluations—and at most

κukǫ + 1 (3.14)

total (successful and unsuccessful) iterations—or, equivalently, residual-evaluations, where

κ1 := (‖r(x0)‖
1/2i − r

1/2i

min )2
iκs,Φqβ

−
(q−1)(p+1)

p and κ2 := (‖r(x0)‖
1/2i − r

1/2i

min )(β
−1/2i − 1)−1,

(3.15)

κs,Φq is as in Lemma 3.1, rmin ≥ 0 and χmin ≥ 0 are any lower bounds on ‖r(x)‖ and

χΦ2(x)/‖r(x)‖, respectively, that are independent of ǫp and ǫd, and β ∈ (0, 1) is a fixed

problem-independent constant.

Proof. Clearly, if (1.3) is satisfied at the starting point, there is nothing left to prove.

Assume now that (1.3) fails at k = 0. For any iteration (k + 1) at which the algorithm does

not terminate, it follows from (1.3) that we have

‖r(xk+1)‖ > max(ǫp, rmin) and χr(xk+1) > max(ǫd, χmin). (3.16)

From (3.3) and (3.16), we deduce

‖r(xk)‖
1/2i − ‖r(xk+1)‖

1/2i ≥

min

{

2−iκ−1
s,Φq

β
(q−1)(p+1)

p max(ǫd, χmin)
(p+1)/p, (β−1/2i − 1)max(ǫp, rmin)

1/2i
}

(3.17)

for all k ∈ S for which (3.16) holds. Summing up (3.17) over all iterations k ∈ S for which

(3.16) holds, with say jǫ ≤ ∞ as the largest index, and using that the iterates are unchanged

over unsuccessful iterations, we obtain

‖r(x0)‖
1/2i − ‖r(xjǫ)‖

1/2i =

jǫ−1
∑

k=0,k∈S

[

‖r(xk)‖
1/2i − ‖r(xk+1)‖

1/2i
]

≥ |Sǫ|min

{

2−iκ−1
s,Φq

β
(q−1)(p+1)

p max(ǫd, χmin)
(p+1)/p, (β−1/2i − 1)max(ǫp, rmin)

1/2i
}

(3.18)

where |Sǫ| denotes the number of successful iterations up to iteration jǫ. As ‖r(xjǫ)‖
1/2i
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≥ r
1/2i

min , (3.18) ensures that jǫ < ∞ and that

|Sǫ| ≤
‖r(x0)‖

1/2i − r
1/2i

min

min

{

2−iκ−1
s,Φq

β
(q−1)(p+1)

p max(ǫd, χmin)(p+1)/p, (β−1/2i − 1)max(ǫp, rmin)1/2
i

} ,

which gives (3.13) since |Sǫ| must be an integer and since the termination condition is checked

at the next iteration; see [3, (5.21), (5.22)] for full details. To derive (3.14), we apply

Lemma 2.1 and recall that ǫp, ǫd ∈ (0, 1). ✷

The best bound in Theorem 3.4 occurs when p is a power of 2, since then q = p = 2i for some i.

We state this as follows.

Corollary 3.5. Suppose that p is a power of two, that Φp(x) ∈ Cp with Lipschitz p-th

derivatives, that AS.3 holds, and that we apply Algorithm 2.1 to Φp(x), with the termination

condition (1.8) replacing (2.2). Then Algorithm 2.1 terminates after at most

kǫ + 1, where kǫ :=
⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2max(ǫp, rmin)

−1/p}
⌉

,

successful iterations—or, equivalently, derivative evaluations—and at most κukǫ + 1 total

(successful and unsuccessful) iterations—or, equivalently, residual-evaluations, where

κ1 := (‖r(x0)‖
1/p − r

1/p
min)pκs,Φqβ

−(p2−1)/p and κ2 := (‖r(x0)‖
1/p − r

1/p
min)(β

−1/p − 1)−1,

κs,Φq is as in Lemma 3.1, rmin ≥ 0 and χmin ≥ 0 are any lower bounds on ‖r(x)‖ and

χΦ2(x)/‖r(x)‖, respectively, that are independent of ǫp and ǫd, and β ∈ (0, 1) is a fixed

problem-independent constant.

A much stronger result is possible if the lower bound χmin on

χΦ2
(x)/‖r(x)‖ in the statement of Theorem 3.4 is strictly positive. To see this, we show that such

a restriction implies that the sequence {‖r(xk)‖}k≥k0 decreases linearly on successful iterations

once ‖r(xk0)‖ is sufficiently small.
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Theorem 3.6. Given even p, i from (3.1), and q from (3.2), suppose that Φq(x) ∈ Cp with

Lipschitz p-th derivatives, that AS.3 holds, that we apply Algorithm 2.1 to Φq(x) with the

termination condition (1.8) replacing (2.2), and that

χr(xk) ≥ χmin > 0 for all k until termination. (3.19)

Then Algorithm 2.1 terminates after at most

kǫ + 1 (3.20)

successful iterations—or, equivalently, derivative evaluations—and at most

κukǫ + 1 (3.21)

total (successful and unsuccessful) iterations—or, equivalently, residual-evaluations, where

kǫ :=







⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2ρ

−1}
⌉

+
⌈

| logβ(ǫp/ρ
2i)|

⌉

if ǫp < ρ2
i

⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2ǫ

−1/2i

p }
⌉

otherwise,
(3.22)

ρ := 0.99 · 2−iκ−1
s,Φq

β
(q−1)(p+1)

p χ
(p+1)

p

min , (3.23)

κ1 := (‖r(x0)‖
1/2i − ρ1/2

i
)2iκs,Φqβ

−
(q−1)(p+1)

p and κ2 := (‖r(x0)‖
1/2i − ρ1/2

i
)(β−1/2i − 1)−1,

(3.24)

κs,Φq is as in Lemma 3.1 and β ∈ (0, 1) is a fixed problem-independent constant.

Proof. First, observe that since Theorem 3.4 shows that Algorithm 2.1 ensures (1.8) for

any given ǫp, ǫd > 0, and as (3.19) forces χr(xk) > ǫd whenever ǫd < χmin, it must be that

the algorithm terminates with ‖r(x)‖ ≤ ǫp. As this is true for arbitrary ǫp, we conclude that

‖r(x)‖ may be made arbitrarily small within F by picking ǫp appropriately small, and thus

certainly rmin = 0.

Now consider the set Sβ just as in (3.4) in the proof of Lemma 3.3, and suppose that k0 is

the smallest k for which

‖r(xk)‖ ≤ ρ2
i
. (3.25)

where ρ is defined in (3.23). Then if k ∈ Sβ, (3.10) holds, and thus

‖r(xk)‖
1/2i− ‖r(xk+1)‖

1/2i ≥ 2−iκ−1
s,Φq

β
(q−1)(p+1)

p χ
(p+1)

p

min > ρ ≥ ‖r(xk)‖
1/2i . (3.26)

because of (3.19) and (3.25). Since this then implies ‖r(xk+1)‖
1/2i < 0 which is impossible,

we must have that k ∈ S \ Sβ for all successful k ≥ k0, and thus

‖r(xk+1)‖ ≤ β‖r(xk)‖ for all k ≥ k0 ∈ S. (3.27)

We may then invoke Theorem 3.4 to deduce that Algorithm 2.1 will achieve

‖r(xk)‖ ≤ max(ǫp, ρ
2i) or χr(xk) ≤ ǫd
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after at most

kρ + 1, where kρ :=
⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2max(ǫp, ρ

2i)−1/2i}
⌉

,

successful iterations, and thus from Lemma 2.1 that

k0 ≤ κukρ + 1,

where κ1 and κ2 are given by (3.24). If ǫp < ρ2
i
, the linear rate of convergence of subsequent

successful iterations from (3.27) implies that most a further
⌈

| logβ(ǫp/ρ
2i)|

⌉

successful itera-

tions will be required. This gives (3.20), and (3.21) then follows from Lemma 2.1. ✷

The reader might be concerned that (3.22) indicates an evaluation bound dependence on ǫd and

ǫp via max(ǫd, χmin)
−(p+1)/p and ǫ

−1/2i

p when ǫp ≥ ρ2
i
, but of course the (weaker) bounds

max(ǫd, χmin)
−(p+1)/p ≤ χ

−(p+1)/p
min and ǫ−1/2i

p ≤ ρ−1

in this case should allay any such fears. The only true dependence on either tolerance is via the

very mild term ⌈| logβ(ǫp/ρ
2i)|⌉ when ǫp < ρ2

i
.

When F = IRn, the condition (3.19) is of course nothing other than the well-know assumption

that the smallest singular value of J(x) is bounded away from zero at points encountered. It is

also easy to infer directly from Lemma 3.1 that

‖r(xk)‖
q ≥ qκ−1

s,Φq
χ

(p+1)
p

min ‖r(xk + sk)‖
(q−1)(p+1)

p ,

or equivalently that

‖r(xk + sk)‖ ≤ [qκ−1
s,Φq

]
−p

(q−1)(p+1)χ
−1

(q−1)

min ‖r(xk)‖
pq

(q−1)(p+1) ,

when condition (3.19) holds, and thus from (3.2), that the successful iterates then ultimately

converge superlinearly (with Q-factor pq/(q − 1)(p + 1) = pq/(pq − o), or p2/(p2 − 1) when p is

a power of 2); such a result is given by [9, Thm.7] in the case p = 2. While this may lead us to

improve the iteration count marginally over that given in Theorem 3.6, we feel such a general

result is uninformative and the effort needed is thus unwarranted.

Once again, the best bound in Theorem 3.6 occurs when p is a power of 2, as follows.
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Corollary 3.7. Suppose that p is a power of two, that Φp(x) ∈ Cp with Lipschitz p-th

derivatives, that AS.3 holds, that we apply Algorithm 2.1 to Φp(x) with the termination

condition (1.8) replacing (2.2), and that (3.19) holds. Then Algorithm 2.1 terminates after

at most kǫ + 1 successful iterations—or, equivalently, derivative evaluations—and at most

κukǫ+1 total (successful and unsuccessful) iterations—or, equivalently, residual-evaluations,

where

kǫ :=

{ ⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2ρ

−1}
⌉

+
⌈

| logβ(ǫp/ρ
p)|

⌉

if ǫp < ρp
⌈

max{κ1max(ǫd, χmin)
−(p+1)/p, κ2ǫ

−1/p
p }

⌉

otherwise,

ρ := 0.99 · p−1κ−1
s,Φq

β(p2−1)/pχ
(p+1)/p
min ,

κ1 := (‖r(x0)‖
1/p − ρ1/p)pκs,Φqβ

−(p2−1)/p and κ2 := (‖r(x0)‖
1/p − ρ1/p)(β−1/p − 1)−1,

κs,Φp is as in Lemma 3.1 and β ∈ (0, 1) is a fixed problem-independent constant.

Finally, we comment on our blanket assumption that Φq(x) ∈ Cp with Lipschitz p-th deriva-

tives. These allow us to specify the constants in our complexity bounds very succinctly, but it

is also straightforward to show that the assumptions are implied by the more straightforward

assumption that

AS.4 each component ri(x) of r(x) is p-times continuously differentiable, and each derivative

of order 0 to p is Lipschitz continuous.

To see why this might be so, since p is even, so is q and we then have q = 2j for some integer j.

Thus

Φq(x) =
2j−1

j
[Φ2(x)]

j . (3.28)

We note that assumptions AS.1 and AS.2 were only actually required to hold for f(x) in Lemma

2.2—and thus to establish the complexity bounds in Theorem 2.5—on segments [xk, xk + sk]

generated by the algorithm, and thus the same is required of Φq(x) to establish Theorems 3.4 and

3.6. It has been shown [6, Lem.3.1] that AS.4 implies that Φ2(x) and its p derivatives are Lipschitz

on [xk, xk + sk]. The identity (3.28) implies that to show the same for Φq(x) simply requires that

we use the chain rule on [Φ2(x)]
j . The details are fiendishly complicated (and omitted); the p

derivatives of Φq(x) involve weighted sums of products of Φ2(x) and its derivatives up to order

p, and just as in the proof of [6, Lem.3.1], Lipschitz continuity and boundedness of derivatives

of Φ2(x) that are implied by [6, Lem.3.1], together with boundedness of Φ2(xk) that follow since

the algorithm generates monotonically-decreasing ‖r(x)‖, give the result.

4 Comments and conclusions

We have demonstrated that it is possible to design an algorithm for least-Euclidean-norm mini-

mization that is guaranteed to find a value x̄ for which ‖r(x̄)‖2 ≤ ǫp or ‖∂(‖r(x̄)‖2)‖2 ≤ ǫd using at

most O(max({max(ǫd, χmin)
−(p+1)/p,max(ǫp, rmin)

−1/2i)) evaluations of r(x) and its derivatives;

here rmin ≥ 0 is any lower bound on ‖r(x)‖2, χmin ≥ 0 is any lower bound on χΦ2(x)/‖r(x)‖, and
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2i is the highest power of 2 that divides p. The algorithm relies on using a globally-convergent

algorithm to approximately minimize a model m(x, s, σ) := Tp(x, s)+
σ

p+1‖s‖
p+1
2 in which Tp(x, s)

be the p-th order Taylor-series approximation to 1
q
‖r(x)‖q2, q = 1 + p(2i − 1)/2i, and σ > 0 is

an iteration-dependent parameter. The evaluation-complexity bound may be improved signif-

icantly if a suitable full-rank assumption holds as then the algorithm will ultimately converge

(super)linearly.

The reader may be interested in the relationship between a given p and the implied o, i (and

2i) from (3.1) and q from (3.2). We illustrate these for the first 16 positive even integers:

p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o 1 1 3 1 5 3 7 1 9 5 11 3 13 7 15 1

i 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

2i 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32

q 2 4 4 8 6 10 8 16 10 16 12 22 14 22 16 32

It is easy to show that 1+p/2 ≤ q ≤ p, and clearly q = p if and only if p = 2i; the best complexity

bounds in Theorems 3.4 and 3.6 occur when p is a power of two.
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