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Abstract

Evaluation complexity for convexly constrained optimization is considered and it is shown
first that the complexity bound of O(ǫ−3/2) proved by Cartis, Gould and Toint (IMAJNA
32(4) 2012, pp.1662-1695) for computing an ǫ-approximate first-order critical point can
be obtained under significantly weaker assumptions. Moreover, the result is generalized
to the case where high-order derivatives are used, resulting in a bound of O(ǫ−(p+1)/p)
evaluations whenever derivatives of order p are available. It is also shown that the bound

of O(ǫ
−1/2
P ǫ

−3/2
D ) evaluations (ǫP and ǫD being primal and dual accuracy thresholds) sug-

gested by Cartis, Gould and Toint (SINUM, 53(2), 2015, pp.836-851) for the general
nonconvex case involving both equality and inequality constraints can be generalized to

yield a bound of O(ǫ
−1/p
P ǫ

−(p+1)/p
D ) evaluations under similarly weakened assumptions.

Keywords: complexity theory, nonlinear optimization, constrained problems, high-order models,

convex constraints.

1 Introduction

In [4] and [7], we examined the worst-case evaluation complexity of finding an ǫ-approximate
first-order critical point for smooth nonlinear (possibly nonconvex) optimization problems for
a methods using both first and second derivatives of the objective function. The case where
constraints are defined by a convex set was considered in the first of these references while
the general case (with equality and inequality constraints) was discussed in the second.

It was shown in [4] that at most O(ǫ−3/2) evaluations of the objective function and its
derivatives are needed to compute such an approximate critical point. This result, which is
identical in order to the best known result for the unconstrained case, comes at the price of
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potentially restrictive technical assumptions: it was assumed that an approximate first-order
critical point of a cubic model subject to the problem’s constraints can be obtained for the
subproblem solution in a uniformly bounded number of descent steps that is independent of
ǫ, that all iterates remains in a bounded set and that the gradient of the objective function is
also Lipschitz continuous (see [4] for details). The analysis of [7] then built on the result of the
convex case by first specializing it to convexly constrained nonlinear least-squares and then
using the resulting complexity bound in the context of a two-phase algorithm for the problem
involving general constraints. If ǫP and ǫD are the primal and the dual criticality thresholds,

respectively, it was suggested that at most O(ǫ
−1/2
P ǫ

−3/2
D ) evaluations of the objective function

and its derivatives are needed to compute an approximate critical point in that case, where the
Karush-Kuhn-Tucker (KKT) conditions are scaled to take the size of the Lagrange multipliers
into account. Because of the proof of this result is based an the bound obtained for the
convex case, it suffers from the same limitations (not to mention an additional constraint on
the relative sizes of ǫP and ǫD, see [7]).

More recently, Birgin, Gardenghi, Mart́ınez, Santos and Toint [3] provided a new regu-
larization algorithm for the unconstrained problem with two interesting features. The first is
that the model decrease condition used for the subproblem solution is weaker than that used
previously, and the second is that the use of problem derivatives of order higher than two
is allowed, resulting in corresponding reductions in worst-case complexity. In addition, the
same authors also analyzed the worst-case evaluation complexity of the general constrained
optimization problem in [2] also allowing for high-order derivatives and models in a framework
inspired by that of [6,7]. At variance with the analysis of these latter references, their analysis
considers unscaled approximate first-order critical points in the sense that such points satisfy
the standard unscaled KKT conditions with accuracy ǫP and ǫD.

The first purpose of this paper is to explore the potential of the proposals made in [3]
to overcome the limitations of [4] and to extend its scope by considering the use of high-
order derivatives and models. A second objective is to use the resulting worst-case bounds to
establish strengthened evaluation complexity bounds for the general nonlinearly constrained
optimization problem in the framework of scaled KKT conditions, thereby improving [7]. The
paper is thus organized in two main sections, Section 2 covering the convexly constrained case
and Section 3 that allowing general nonlinear constraints. The results obtained are finally
discussed in Section 4.

2 Convex constraints

The first problem we wish to solve is formally described as

min
x∈F

f(x) (2.1)

where we assume that f : IRn −→ IR is p-times continuously differentiable, bounded from
below, and has Lipschitz continuous p-th derivatives. For the q-th derivative of a function
h : IRn → IR to be Lipschitz continuous on the set S ⊆ IRn, we require that i.e. there exists a
constant Lh,q ≥ 0 such that, for all x, y ∈ S,

‖∇q
xh(x) −∇q

xh(y)‖T ≤ (q − 1)!Lh,q‖x− y‖

where ‖ · ‖T is the recursively induced Euclidean norm on the space of q-th order tensors.
We also assume that the feasible set F is closed, convex and non-empty. Note that this
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formulation covers standard inequality (and linear equality) constrained optimization in its
different forms: the set F may be defined by simple bounds, and both polyhedral and more
general convex constraints. We remark though that we are tacitly assuming here that the
cost of evaluating constraint functions and their derivatives is negligible.

The algorithm considered in this paper is iterative. Let Tp(xk, s) be the p-th order Taylor-
series approximation to f(xk + s) at some iterate xk ∈ IRn, and define the local regularized
model at xk by

mk(xk + s)
def
= Tp(xk, s) +

σk
p+ 1

‖s‖p+1, (2.2)

where σk > 0 is the regularization parameter. Note that mk(xk) = Tp(xk, 0) = f(xk). The
approach used in [4] (when p = 2) seeks to define a new iterate xk+1 from the preceding one
by computing an approximate solution of the subproblem

min
x∈F

mk(xk + s) (2.3)

using a modified version of the Adaptive Regularization with Cubics (ARC) method for un-
constrained minimization. By contrast, we now examine the possibility of modifying the ARp
algorithm of [3] with the aim of inheriting its interesting features. As in [4], the modification
involves a suitable continuous first-order criticality measure for the constrained problem of
minimizing a given function h : IRn → IR on F . For an arbitrary x ∈ F , this criticality
measure is given by

πh(x)
def
= ‖PF [x−∇xh(x)] − x‖, (2.4)

where PF denotes the orthogonal projection onto F and ‖ ·‖ the Euclidean norm. It is known
that x is a first-order critical point of problem (2.1) if and only if πf (x) = 0. Also note that
πf (x) = ‖∇xh(x)‖ whenever F = IRn.

We now describe our algorithm as the ARpCC algorithm (ARp for Convex Constraints)
on the following page.

We first state a useful property of the ARpCC algorithm, which ensures that a fixed
fraction of the iterations 1, 2, . . . , k must be either successful or very successful.

Lemma 2.1 [3, Lem.2.4, 6, Thm.2.2]. Assume that, for some σmax > 0, σj ≤ σmax for
all 0 ≤ j ≤ k. Then the ARpCC algorithm ensures that

k ≤ κu|Sk|, where κu
def
=

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

, (2.11)

where Sk is the number of successful and very successful iterations, in the sense of (2.10),
up to iteration k.

We start our worst-case analysis by formalizing our assumptions

AS.1 The objective function f is p times continuously differentiable on an open set
containing F .
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Algorithm 2.1: Adaptive Regularization using p-th order models for convex
constraints (ARpCC)

A starting point x−1, an initial and a minimal regularization parameter σ0 ≥ σmin > 0,
algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are given, as
well as an accuracy threshold ǫ ∈ (0, 1). Compute x0 = PF [x−1] and evaluate f(x0) and
∇xf(x0).
For k = 0, 1, . . ., until termination, do:

1. Evaluate ∇xf(xk). If
πf (xk) ≤ ǫ, (2.5)

terminate. Otherwise compute derivatives of f of order 2 to p at xk.

2. Compute a step sk by approximately minimizing mk(xk + s) over s ∈ F so that

xk + sk ∈ F , (2.6)

mk(xk + sk) < mk(xk) (2.7)

and
πmk

(xk + sk) ≤ θ ‖sk‖
p. (2.8)

3. Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

Tp(xk, 0) − Tp(xk, sk)
. (2.9)

If ρk ≥ η1, set xk+1 = xk + sk. Otherwise set xk+1 = xk.

4. Set

σk+1 ∈







[max(σmin, γ1σk)σk] if ρk > η2 [very successful iteration]
[σk, γ2σk] if η1 ≤ ρk ≤ η2 [successful iteration]

[γ2σk, γ3σk] otherwise. [unsuccessful iteration],
(2.10)

and go to step 2 if ρk < η1.



Cartis, Gould, Toint: Evaluation complexity of constrained optimization 5

AS.2 The p-th derivative of f is Lipschitz continuous on F .

AS.3 The feasible set F is closed, convex and non-empty.

The ARpCC algorithm is required to start from a feasible x0 ∈ F , which, together with
the fact that the subproblem solution in Step 2 involves minimization over F , leads to AS.3.

We now recall some simple results whose proof can be found in [3] in the context of the
original ARp algorithm.

Lemma 2.2 Suppose that AS.1–AS.3 hold. Then, for each k ≥ 0,

(i)

f(xk + sk) ≤ Tp(xk, sk) +
Lf,p

p
‖sk‖

p+1 (2.12)

and
‖∇xf(xk + sk) −∇sT (xk, sk)‖ ≤ Lf,p‖sk‖

p; (2.13)

(ii)

Tp(xk, 0) − Tp(xk, sk) ≥
σk
p+ 1

‖sk‖
p+1; (2.14)

(iii)

σk ≤ σmax
def
= max

[

σ0,
γ3Lf,p(p+ 1)

p (1 − η2)

]

. (2.15)

Proof. See [3] for the proofs of (2.12) and (2.13), which crucially depend on AS.1 and
AS.2 being valid on the segment [xk, xk + sk], i.e.

‖∇p
xf(xk + ξsk) −∇p

xf(xk)‖p ≤ Lf,pξ‖sk‖ for all ξ ∈ [0, 1]. (2.16)

Observe also that (2.2) and (2.7) ensure (2.14). Assume now that

σk ≥
Lf,p(p+ 1)

p (1 − η2)
. (2.17)

Using (2.12) and (2.14), we may then deduce that

|ρk − 1| ≤
|f(xk + sk) − Tp(xk, sk)|

|Tp(xk, 0) − Tp(xk, sk)|
≤
Lf,p(p+ 1)

p σk
≤ 1 − η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk.
As a consequence, the mechanism of the algorithm ensures that (2.15) holds. ✷

We now prove that, at successful iterations, the step at iteration k must be bounded below
by a multiple of the p-th root of the criticality measure at iteration k + 1.
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Lemma 2.3 Suppose that AS.1–AS.3 hold. Then

‖sk‖ ≥

[

πf (xk+1)

Lf,p + θ + σmax

]
1
p

for all k ∈ S. (2.18)

Proof. Since k ∈ S and by definition of the trial point, we have that xk+1 = xk + sk.
Observe now that (2.13) and (2.15) imply that

‖∇f(xk+1) −∇xmk(xk+1)‖ ≤ Lf,p‖sk‖
p + σk‖sk‖

p ≤ (Lf,p + σmax)‖sk‖
p. (2.19)

Combing this bound with the triangle inequality, the contractive nature of the projection
and (2.8), we deduce that

πf (xk+1) = ‖PF [xk+1 −∇xf(xk+1)] − PF [xk+1 −∇xmk(xk+1)]

+ PF [xk+1 −∇xmk(xk+1)] − xk+1‖

≤ ‖PF [xk+1 −∇xf(xk+1)] − PF [xk+1 −∇xmk(xk+1)]‖ + πmk
(xk+1)

≤ ‖∇xf(xk+1)] −∇xmk(xk+1)‖ + πmk
(xk+1)

≤ (Lf,p + θ + σmax)‖sk‖
p

and (2.18) follows. ✷

We now consolidate the previous results by deriving a lower bound on the objective func-
tion decrease at successful iterations.

Lemma 2.4 Suppose that AS.1–AS.3 hold. Then, if iteration k is successful,

f(xk) − f(xk+1) ≥
1

κfs
πf (xk+1)

p+1
p

where

κfs
def
= max

[

1,
p+ 1

η1σmin

(

Lf,p + θ + σmax

)
p+1
p

]

. (2.20)

Proof. If iteration k is successful, we have, using (2.9), (2.14), (2.10), (2.18) and (2.15)
successively, that

f(xk) − f(xk+1) ≥ η1[Tp(xk, 0) − Tp(xk, sk) ]

≥
η1σmin
p+ 1 ‖sk‖

p+1

≥
η1σmin

(p+ 1)[Lf,p + θ + σmax]
p+1
p

πf (xk+1)
p+1
p .
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✷

It is important to note that the validity of this lemma does not depend on the history of the
algorithm, but is only conditional to the smoothness assumption on the objective function
holding along the step from xk to xk+1. We will make use of that observation in Section 3.

Our worst-case evaluation complexity results can now be proved by combining this last
result with the fact that πf (xk) cannot be smaller than ǫ before termination.

Theorem 2.5 Suppose that AS.1–AS.3 hold and let flow be a lower bound on f on F .
Then, given ǫ > 0, the ARpCC algorithm applied to problem (2.1) needs at most

⌊

κfs
f(x0) − flow

ǫ
p+1
p

⌋

successful iterations (each involving one evaluation of f and its p first derivatives) and
at most

κu

⌊

κfs
f(x0) − flow

ǫ
p+1
p

⌋

iterations in total to produce an iterate xǫ such that πf (xǫ) ≤ ǫ, where κu is given by
(2.11) with σmax defined by (2.15).

Proof. At each successful iteration, we have, using Lemma 2.4, that

f(xk) − f(xk+1) ≥ (κfs )−1πf (xk+1)
p+1
p ≥ (κfs )−1ǫ

p+1
p ,

where we used the fact that πf (xk+1) ≥ ǫ before termination to deduce the last inequality.
Thus we deduce that, as long as termination does not occur,

f(x0) − f(xk+1) =
∑

j∈Sk

[f(xj) − f(xj + sj)] ≥
|Sk|

κfs
ǫ
p+1
p ,

from which the desired bound on the number of successful iterations follows. Lemma 2.1
is then invoked to compute the upper bound on the total number of iterations. ✷

For what follows, it is very important to note that the Lipschitz continuity of ∇q
xf was

only used (in Lemma 2.2) to ensure that (2.16) holds for all k ≥ 0.

3 The general constrained case

We now consider the general smooth constrained problem in the form

min
x∈F

f(x) subject to c(x) = 0 (3.1)

where c : IRn → IRm is sufficiently smooth and f and F are as above. Note that this
formulation covers the general problem involving both equality and inequality constraints,
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the latter being handled using slack variables and the inclusion of the associated simple
bounds in the definition of F .

Our idea is now to first apply the ARpCC algorithm to the problem

min
x∈F

ν(x)
def
= 1

2
‖c(x)‖2. (3.2)

If an approximately feasible point is found, then we may follow the spirit of [5–7] and [2]
and apply the same ARpCC to approximately solve the problem

min
x∈F

µ(x, tk)
def
= 1

2
‖r(x, tk)‖2

def
= 1

2

∥

∥

∥

∥

(

c(x)
f(x) − tk

)
∥

∥

∥

∥

2

(3.3)

in the set for some monotonically decreasing sequence of “targets” tk (k = 1, . . .).

Observe that the recomputations of πµ(xk+1, tk+1) in Step 2.(b) do not require re-evaluating
f(xk+1) or c(xk+1) or any of their derivatives.

We now complete our assumptions.

AS.4 All derivatives of f of order 0 to p are Lipschitz continuous in F .

AS.5 For each i = 1, . . . ,m, the constraint function ci is p times continuously differ-
entiable on an open set containing F .

AS.6 All derivatives of order 0 to p of each ci (i = 1, . . . ,m) are Lipschitz continuous
in F .

AS.7 There exists constants β ≥ ǫP and flow ∈ IR such that f(x) ≥ flow for all

x ∈ Cβ
def
= {x ∈ F | ‖c(x)‖ ≤ β}.

Assume, without loss of generality, that all Lipschitz constants implied by AS.4 and AS.6 are
bounded above by L ≥ 1. Also note the problem of finding an ǫP-feasible minimizer of f(x)
is only meaningful if AS.7 holds.

We first verify that our assumptions are sufficient to imply that ν(x) and µ(x, t) have
Lipschitz p-th derivative on all segments [xk, xj + sj ] generated by the algorithm, allowing us
to exploit the results of Section 2.

Lemma 3.1 Assume that AS.3, AS.5 and AS.6 hold. Let the iteration of the ARpCC
algorithm applied to problem (3.2) be indexed by j. Then the “segment” Lipschitz
condition (2.16) holds for ∇q

xν(x) holds on every segment [xj , xj + sj ] (j ≥ 0) generated
by the ARpCC algorithm during Phase 1 and any q ∈ {1, . . . , p}. If, in addition, AS.1
and AS.4 also hold, then the same conclusion holds for ∇q

xµ(x, t) on every segment
[xj , xj +sj ] (j ≥ 0) generated by the ARpCC algorithm during Step 2.(a) of Phase 2 and
any q ∈ {1, . . . , p}, the Lipschitz constant in this latter case being independent of t.



Cartis, Gould, Toint: Evaluation complexity of constrained optimization 9

Algorithm 3.1: Adaptive Regularization using p-th order models for general
constraints (ARpGC)

A constant β defining Cβ , a starting point x−1, a minimum regularization parameter
σmin > 0, an initial regularization parameter σ0 ≥ σmin are given, as well as a constant
δ ∈ (0, 1). The primal and dual tolerances 0 < ǫP < 1 and 0 < ǫD < 1 are also given.

Phase 1:
Starting from x0 = PF (x−1), apply the ARpCC algorithm to minimize 1

2
‖c(x)‖2

subject to x ∈ F until a point x1 ∈ F is found such that

‖c(x1)‖ < δǫP or π 1
2
‖c‖2(x1) ≤ ǫD‖c(x1)‖. (3.4)

If ‖c(x1)‖ ≥ δǫP, terminate with xǫ = x1.

Phase 2:

1. Set t1 = f(x1) −
√

ǫ2P − ‖c(x1)‖2.

2. For k = 1, 2, . . ., do:

(a) Starting from xk, apply the ARpCC algorithm to minimize µ(x, tk) as a
function of x ∈ F until an iterate xk+1 ∈ F is found such that

‖r(xk+1, tk)‖ < δǫP or f(xk+1) < tk or πµ(xk+1, tk) ≤ ǫD‖r(xk+1, tk)‖
(3.5)

(b) i. If ‖r(xk+1, tk)‖ < δǫP, define tk+1 according to

tk+1 = f(xk+1) −
√

ǫ2P − ‖c(xk+1)‖2. (3.6)

and terminate with (xǫ, tǫ) = (xk+1, tk+1) if πµ(xk+1, tk+1) ≤
ǫD‖r(xk+1, tk+1).

ii. If ‖r(xk+1, tk)‖ ≥ δǫP and f(xk+1) < tk, define tk+1 according to

tk+1 = 2f(xk+1) − tk (3.7)

and terminate with (xǫ, tǫ) = (xk+1, tk+1) if πµ(xk+1, tk+1) ≤
ǫD‖r(xk+1, tk+1)‖.

iii. If ‖r(xk+1, tk)‖ ≥ δǫP and f(xk+1) ≥ tk, terminate with (xǫ, tǫ) =
(xk+1, tk)
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Proof. Since

∇q
xν(x) =

m
∑

i=1





∑

ℓ,j>0, ℓ+j=q

αℓ,j∇
ℓ
xci(x)∇j

xci(x) + ci(x)∇q
xci(x)





(where {αℓ,j} are suitable positive and finite coefficients), condition (2.16) is satisfied on

the segment [xj , xj + sj ] if (i) the derivatives {∇
min[ℓ,j]
x ci(x)}mi=1 are Lipschitz continuous

on [xj , xj + sj ], (ii) {∇
max[ℓ,j]
x ci(x)}mi=1 are uniformly bounded on [xj , xj + sj ], and (iii) we

have that

m
∑

i=1

‖ci(xj + ξsj)∇
q
xci(xj + ξsj) − ci(xj)∇

q
xci(xj)‖q ≤ L1ξ‖sj‖ (3.8)

for some constant L1 > 0. The first of these conditions is ensured by AS.6, the second by
the observation that AS.6 again implies that ‖∇ℓ

xci(x)‖ ≤ L for ℓ ∈ {1, . . . , q} (see [11,
Lem. 1.2.2, p. 21]). Moreover,

‖ci(xj + ξsj)∇
q
xci(xj + ξsj) − ci(xj)∇

q
xci(xj)‖

≤ |ci(xj + ξsj) − ci(xj)| ‖∇
q
xci(xj + ξsj)‖q

+|ci(xj)| ‖∇
q
xci(xj + ξsj) −∇q

xci(xj)‖q

and the first term on the right-hand side is bounded above by L2ξ‖sj‖ and the second by
|ci(xj)|Lξ‖sj‖. Hence (3.8) holds with

L1 =
m
∑

i=1

(

L2 + |ci(xj)|L
)

≤ mL2 +m‖c(xj)‖L ≤ mL2 +m‖c(x0)‖L

because the ARpCC algorithm ensures that ‖c(xj)‖ ≤ ‖c(x0)‖ for all j ≥ 0. As a conse-
quence, AS.3, AS.5 and AS.6 guarantee that (2.16) holds with the Lipschitz constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(x0)‖L

]

.

If we now assume that AS.1 and AS.4 also hold, we may repeat, for µ(x, t) (with fixed
t) the same reasoning as above and obtain that condition (2.16) holds for each segment
[xj , xj + sj ] generated by the ARpCC algorithm applied in Step2.(a) of Phase 2, with
Lipschitz constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(xj,0)‖L

]

+

(

max
i=1,...,m

αi

)

L2 + L2 + |f(xj,0) − tj |L

≤ (m+ 1)L2

[

1 +

(

max
i=1,...,m

αi

)]

+ 2mL
def
= Lµ,p,

where we have used (3.14) and ǫP ≤ 1 to deduce the inequality. Note that this constant
is independent of tj , as requested. ✷
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We now start our complexity analysis as such by examining the complexity of Phase 1.

Lemma 3.2 Suppose that AS.3, AS.5 and AS.6 hold. Then Phase 1 of the ARpGC
algorithm terminates after at most

⌊

κcCC‖c(x0)‖ max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p

D

]⌋

+ 1.

evaluations of c and its derivatives, where κcCC

def
= 1

2
κuκ

1
2
‖c‖2

s δ
1
p with κ

1
2
‖c‖2

s being the
problem-dependent constant defined in (2.20) for the function 1

2
‖c(x)‖2 corresponding to

(3.2).

Proof. Let us index the iteration of the ARpCC algorithm applied to problem (3.2) by
j and assume that iteration j is successful and that

‖c(xj)‖ ≥ δǫP. (3.9)

If ‖c(xj+1)‖ ≤ 1
2
‖c(xj)‖, then

‖c(xj)‖ − ‖c(xj+1)‖ ≥ 1
2
‖c(xj)‖ ≥ 1

2
δ ǫP (3.10)

By contrast, if ‖c(xj+1)‖ > 1
2
‖c(xj)‖, then, using the decreasing nature of the sequence

{‖c(xj)‖}, Lemma 2.4 (which is applicable because of Lemma 3.1) and the second part of
(3.4), we obtain that

(‖c(xj)‖ − ‖c(xj+1)‖) ‖c(xj)‖ ≥ 1
2
‖c(xj)‖

2 − 1
2
‖c(xj+1)‖

2

≥

(

κ
1
2
‖c‖2

s

)−1

(ǫD‖c(xj+1)‖)
p+1
p

≥

(

κ
1
2
‖c‖2

s

)−1

( 1
2
ǫD‖c(xj)‖)

p+1
p

and thus that

‖c(xj)‖ − ‖c(xj+1)‖ ≥

(

κ
1
2
‖c‖2

s

)−1

2
− p+1

p ‖c(xj)‖
1
p ǫ

p+1
p

D ≥ 1
2

(

κ
1
2
‖c‖2

s

)−1

δ
1
p ǫ

1
p

P ǫ
p+1
p

D .

where we have used (3.9) to derive the last inequality. Because of (2.20), we thus obtain
from this last bound and (3.10) that, for all j,

‖c(xj)‖ − ‖c(xj+1)‖ ≥ 1
2

(

κ
1
2
‖c‖2

s

)−1

δ
1
p min

[

ǫP, ǫ
1
p

P ǫ
p+1
p

D

]

As in Theorem 2.5, we then deduce that the number of successful iterations required for
the ARpCC algorithm to produce a point x1 satisfying (3.4) is bounded above by

1
2
κ

1
2
‖c‖2

s δ
1
p ‖c(x0)‖ max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p

D

]

.
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The desired conclusion then follows by using Lemma 2.1 and adding one for the final
evaluation at termination. ✷

Note that an improved complexity bound for convexly-constrained least-squares problems,
and hence for Phase 1, was given in [8]. In particular, the bound in Lemma 3.2 improves to

⌊

κcCC-1‖c(x0)‖
1
p max

[

ǫ
− 1

p

P , ǫ
− p+1

p

D

]⌋

+ 1

whenever p is a power of 2. However, we are not aware how to use the better Phase 1 result
to improve the complexity of Phase 2, and so we are omitting including it here in full.
We now partition the Phase 2 outer iterations (before that where termination occurs) into
two subsets whose indexes are given by

K+
def
= {k ≥ 0 | ‖r(xk+1, tk)‖ < δǫP and (3.6) is applied } (3.11)

and
K−

def
= {k ≥ 0 | ‖r(xk+1, tk)‖ ≥ δǫP and (3.7) is applied } (3.12)

This partition allows us to prove the following technical results.

Lemma 3.3 The sequence {tk} is monotonically decreasing. Moreover, in every Phase
2 iteration of the ARpGC algorithm of index k ≥ 1, we have that

f(xk) − tk ≥ 0, (3.13)

‖r(xk+1, tk+1)‖ = ǫP for k ∈ K+, (3.14)

‖r(xk+1, tk+1)‖ = ‖r(xk+1, tk)‖ ≤ ǫP for k ∈ K−, (3.15)

‖c(xk)‖ ≤ ǫP and f(xk) − tk ≤ ǫP, (3.16)

tk − tk+1 ≥ (1 − δ)ǫP for k ∈ K+. (3.17)

Finally, at termination of the ARpGC algorithm,

‖r(xǫ, tǫ)‖ ≥ δǫP and f(xǫ) ≥ tǫ and πµ(xǫ, tǫ) ≤ ǫD‖r(xǫ, tǫ)‖. (3.18)

Proof. The inequality (3.13) follows from (3.6) for k − 1 ∈ K+ and from (3.7) for
k − 1 ∈ K−. (3.14) is also deduced from (3.6) while (3.7) implies the equality in (3.15),
the inequality in that statement resulting from the monotonically decreasing nature of
‖r(x, tk)‖ during inner iterations in Step 2.(a) of the ARpGC algorithm. The inequalities
(3.16) then follow from (3.13), (3.14) and (3.15). We now prove (3.17), which only occurs
when ‖r(xk+1, tk)‖ ≤ δǫP, that is when

(f(xk+1) − tk)2 + ‖c(xk+1)‖
2 ≤ δ2ǫ2P. (3.19)

From (3.6), we then have that

tk − tk+1 = −(f(xk+1) − tk) +
√

‖r(xk, tk)‖2 − ‖c(xk+1)‖2. (3.20)
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Now taking into account that the global minimum of the problem

min
(f,c)∈IR2

ψ(f, c)
def
= −f +

√

ǫ2P − c2 subject to f2 + c2 ≤ ω2,

for ω ∈ [0, ǫP] is attained at (f∗, c∗) = (ω, 0) and it is given by ψ(f∗, c∗) = ǫP − ω (see [7,
Lemma 5.2]), we obtain from (3.19) and (3.20) (setting ω = δǫP) that

tk − tk+1 ≥ ǫP − ω = (1 − δ)ǫP for k ∈ K+

for k ∈ K+, which is (3.17). Note that, if k ∈ K−, then we must have that tk > f(xk+1)
and thus (3.7) ensures that tk+1 < tk. This observation and (3.17) then allow us to
conclude that the sequence {tk} is monotonically decreasing.

In order to prove (3.18), we need to consider, in turn, each of the three possible cases where
termination occurs in Step 2.(b). In the first case (i), ‖r(xk+1, tk)‖ is small (in the sense
that the first inequality in (3.5) holds) and (3.6) is then used, implying that (3.14) holds
and that f(xk+1) > tk+1. If termination occurs because π(xk+1, tk+1) ≤ ǫD‖r(xk+1, tk+1)‖,
then (3.18) clearly holds at (xk+1, tk+1). In the second case (ii), ‖r(xk+1, tk)‖ is large (the
first inequality in (3.5) fails), but f(xk+1) < tk, and tk+1 is then defined by (3.7), en-
suring that f(xk+1) > tk+1 and, because of (3.15), that ‖r(xk+1, tk+1)‖ is also large.
As before (3.18) holds at (xk+1, tk+1) if termination occurs because π(xk+1, tk+1) ≤
ǫD‖r(xk+1, tk+1)‖. The third case (iii) is when ‖r(xk+1, tk)‖ is sufficiently large and
f(xk+1) ≥ tk. But (3.5) then guarantees that π(xk+1, tk) ≤ ǫD‖r(xk+1, tk)‖, and the
inequalities (3.18) are again satisfied at (xk+1, tk). ✷

Using the results of this lemma allows us to bound the number of outer iterations in K+.

Lemma 3.4 Suppose that AS.7 holds. Then

|K+| ≤
f(x1) − flow + 1

1 − δ
ǫ−1
P .

Proof. We first note that (3.14) and (3.15) and AS.7 ensure that xk ∈ Cβ for all
k ≥ 0. The result then immediately follows from AS.7 again and the observation that,
from (3.17), tk decreases monotonically with a decrease of at least (1 − δ)ǫP for k ∈ K+.
✷

We now state a very useful consequence of Lemmas 3.1 and 3.3.

Lemma 3.5 Suppose that AS.1 and AS3–AS.6 hold. Then there exists a constant
σµ,max > σmin such that all regularization parameters arising in the ARpCC algorithm
within Step 2.(a) of the ARpGC algorithm are bounded above by σµ,max.
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Proof. AS.1, AS.4–AS.6 and Lemma 3.1 guarantee the existence of a Lipchitz constant
independent of t such that the “segment-wise” Lipschitz condition (2.16) holds for each
segment [xj,ℓ, xj,ℓ +sj,ℓ]. The result is then derived by introducing Lµ,p in (2.15) to obtain
σµ,max. ✷

The main consequence of this result is that we may apply the ARpCC algorithm to the
minimization of µ(x, tk) in Step 2.(a) of the ARpGC algorithm and use all the properties
of the former (as derived in the previous section) using problem constants valid for every
possible tk.

Consider now xk for k ∈ K+ and denote by xk+ℓ(k) the next iterate such that k+ℓ(k) ∈ K+

or the algorithm terminates at k + ℓ(k). Two cases are then possible: either a single pass in
Step 2.(a) of the ARpGC algorithm is sufficient to obtain xk+ℓ(k) (ℓ(k) = 1) or two or more
passes are necessary, with iterations k + 1, . . . , k + ℓ(k) − 1 belonging to K−. Assume that
the iterations of the ARpCC algorithm at Step 2.(a) of the outer iteration j are numbered
(j, 0), (j, 1), . . . , (j, ej) and note that the mechanism of the ARpGC algorithm ensures that
iteration (j, ej) is successful for all j. Now define, for k ∈ K+, the index set of all inner
iterations necessary to deduce xk+ℓ(k) from xk, that is

Ik
def
= {(k, 0), . . . , (k, ek), . . . , (j, 0), . . . , (j, ej), . . . , (k+ℓ(k)−1, 0), . . . (k+ℓ(k)−1, ek+ℓ(k)−1)}

(3.21)
where k < j < k + ℓ(k) − 1. Observe that, by the definitions (3.11) and (3.21), the index set
of all inner iterations before termination is given by ∪k∈K+Ik, and therefore that the number
of evaluations of problem’s functions required to terminate in Phase 2 is bounded above by

|
⋃

k∈K+

Ik| + 1 ≤

(

f(x1) − flow + 1

1 − δ
ǫ−1
P × max

k∈K+

|Ik|

)

+ 1, (3.22)

where we added 1 to take the final evaluation into account and where we used Lemma 3.4
to deduce the inequality. We now invoke the complexity properties of the ARpCC algorithm
applied to problem (3.3) to obtain an upper bound on the cardinality of each Ik.

Lemma 3.6 Suppose that AS.1, AS.3–AS.6 hold. Then, for each k ∈ K+ before termi-
nation,

|Ik| ≤ (1 − δ)κµCC max

[

1, ǫ
p−1
p

P ǫ
− p+1

p

D

]

.

where κµCC is independent of ǫP and ǫD and captures the problem-dependent constants
associated with problem (3.3) for all values of tk generated by the algorithm.

Proof. Observe first that, because of Lemma 3.5, we may apply the ARpCC algorithm
for the minimization of µ(x, tj) for each j such that k ≤ j < k+ ℓ(k). Observe that (3.15)
and the mechanism of this algorithm guarantees the decreasing nature of the sequence

{‖r(xj , tj)‖}
k+ℓ(k)−1
j=k and hence of the sequence {‖r(xj,s, tj)‖}(j,s)∈Ik . This reduction starts

from the initial value ‖r(xk,0, tk)‖ = ǫP and is carried out for all iterations with index in
Ik at worst until it is smaller than δǫP (see the first part of (3.5)). We may then invoke
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Lemmas 3.5 and 2.4 to deduce that, if (j, s) ∈ Ik is the index of a successful inner iteration
and as long as the third part of (3.5) does not hold,

(‖r(xj,s, tj)‖ − ‖r(xj,s+1, tj)‖)‖r(xj,s, tj)‖ ≥ 1
2
‖r(xj,s, tj)‖

2 − 1
2
‖r(xj,s+1, tj)‖

2

≥ [κµ,sCC ]
−1

(ǫD‖r(xj,s+1, tj)‖)
p+1
p ,

(3.23)
for 0 ≤ s < ej and for some constant κµ,sCC > 0 independent of ǫP, ǫD, s and j, while

1
2
‖r(xj,ej , tj)‖ −

1
2
‖r(xj+1,0, tj+1)‖ = 0.

As above, suppose first that ‖r(xj,s+1, tj)‖ ≤ 1
2
‖r(xj,s, tj)‖. Then

‖r(xj,s, tj)‖ − ‖r(xj,s+1, tj)‖ ≥ 1
2
‖r(xj,s, tj)‖ ≥ 1

2
δǫP (3.24)

because of the first part of (3.5). If ‖r(xj,s+1, tj)‖ > 1
2
‖r(xj,s, tj)‖ instead, then (3.23)

implies that

‖r(xj,s, tj)‖ − ‖r(xj,s+1, tj)‖ ≥ [κµ,sCC ]
−1

2
− p+1

p ‖r(xj,s, tj)‖
1
p ǫ

p+1
p

D ≥ [κµ,sCC ]
−1

2
− p+1

p δ
1
p ǫ

1
p

P ǫ
p+1
p

D .

Combining this bound with (3.24) gives that

‖r(xj,s, tj)‖ − ‖r(xj,s+1, tj)‖ ≥ [κµ,sCC ]
−1

2
− p+1

p δ
1
p min

[

ǫP, ǫ
1
p

P ǫ
p+1
p

D

]

.

As a consequence, the number of successful iterations of the ARpCC algorithm needed to
compute xk+ℓ(k) from xk cannot exceed

κµ,sCC 2
p+1
p δ

− 1
p









ǫP − δǫP

min

[

ǫP, ǫ
1
p

P ǫ
p+1
p

D

]









= (1 − δ)κµ,sCC 2
p+1
p δ

− 1
p max

[

1, ǫ
p−1
p

P ǫ
− p+1

p

D

]

.

We now use Lemma 3.5 again and invoke Lemma 2.1 to account for possible unsuccessful
inner iterations, yielding that the total number of successful and unsuccessful iterations
of the ARpCC algorithm necessary to deduce xk+ℓ(k) from xk is bounded above by

κu(1 − δ) 2
p+1
p δ

− 1
p κµ,sCC max

[

1, ǫ
p−1
p

P ǫ
− p+1

p

D

]

def
= (1 − δ)κµCC max

[

1, ǫ
p−1
p

P ǫ
− p+1

p

D

]

.

✷

We now state a useful property of the set F .

Lemma 3.7 For arbitrary x ∈ F , v ∈ IRn and τ ∈ IR with τ ≥ 1,

‖PF [x+ τv] − x‖ ≤ τ ‖PF [x+ v] − x‖.
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Proof. The result follows immediately from [1, Lem.2.3.1] which states that ‖PF [x +
τv]−x‖/τ is a monotonically non-increasing function of τ > 0 for any x in a given convex
set F . ✷

We finally combine our results in a final theorem stating our evaluation complexity bound
for the ARpGC algorithm.

Theorem 3.8 Suppose that AS.1, and AS.3–AS.7 hold. Then, for some constants κcCC

and κµCC independent of ǫP and ǫD, the ARpGC algorithm applied to problem (3.1) needs
at most

⌊(

κcCC‖c(x0)‖ + κµCC[f(x1) − flow + 1]

)

max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p

D

]

+ 1

⌋

(3.25)

evaluations of f , c and their derivatives up to order p to compute a point xǫ such that
either

‖c(xǫ)‖ > δǫP and π 1
2
‖c‖2(xǫ) ≤ ǫD‖c(xǫ)‖ (3.26)

or
‖c(xǫ)‖ ≤ ǫP and πΛ(xǫ, yǫ) ≤ ǫD‖(yǫ, 1)‖ (3.27)

where Λ(x, y)
def
= f(x)+yT c(x) is the Lagrangian with respect to the equality constraints

and yǫ is a vector of Lagrange multipliers associated with the equality constraints.

Proof. If the ARpGC algorithm terminates in Phase 1, we immediately obtain that
(3.26) holds, and Lemma 3.2 then ensures that the number of evaluations of c and its
derivatives cannot exceed

⌊

κcCC‖c(x0)‖ max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p

D

]⌋

+ 1. (3.28)

The conclusions of the theorem therefore hold in this case.

Let us now assume that termination does not occur in Phase 1. Then the ARpGC algo-
rithm must terminate after a number of evaluations of f and c and their derivatives which
is bounded above by the upper bound on the number of evaluations in Phase 1 given by
(3.28) plus the bound on the number of evaluations of µ given by (3.22) and Lemma 3.6.
Using the fact that ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋ for a, b ≥ 0 and ⌊a + i⌋ = ⌊a⌋ + i for a ≥ 0 and
i ∈ IN, this yields the combined upper bound

⌊

κcCC‖c(x0)‖ max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p

D

]

+

[

(1 − δ)κµCCǫ
p−1
p

P max

[

1, ǫ
p−1
p

P ǫ
− p+1

p

D

]]

×

[

f(x1) − flow + 1
1 − δ

ǫ−1
P

]⌋

+ 2,

and (3.25) follows.

Remember now that (3.18) holds at termination of Phase 2, and therefore that

ǫP ≥ ‖r(xǫ, tǫ)‖ ≥ δǫP. (3.29)
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Moreover, we also obtain from (3.18) that

|PF [xǫ − J(xǫ)
T c(xǫ) − (f(xǫ) − tk)∇xf(xǫ)] − xǫ‖ = πµ(xǫ, tǫ) ≤ ǫD‖r(xǫ, tǫ)‖. (3.30)

Assume first that f(xǫ) = tǫ. Then, using the definition of r(x, t), we deduce that

π 1
2
‖c‖2(xǫ) = ‖PF [xǫ − J(xǫ)

T c(xǫ)] − xǫ‖ ≤ ǫD‖c(xǫ)‖

and (3.26) is again satisfied because (3.29) gives that ‖c(xǫ)‖ = ‖r(xǫ, tǫ)‖ ≥ δǫP.

Assume now that f(xǫ) > tǫ (the case where f(xǫ) < tǫ is excluded by (3.18)) and note
that

0 < f(xǫ) − tǫ ≤ ǫP ≤ 1

because of the second bound in (3.16) and the decreasing nature of ‖r(x, tk)‖ during inner
iterations. Defining now

yǫ
def
=

c(xǫ)

f(xǫ) − tǫ
.

and successively using Lemma 3.7 with x = xǫ, v = −(J(xǫ)
T c(xǫ) + (f(xǫ)− tǫ)∇xf(xǫ))

and τ = 1/(f(xǫ) − tǫ) ≥ 1, the third part of (3.5), (3.29) and the definition of r(x, t), we
deduce that

πΛ(xǫ, yǫ) = ‖PF [xǫ − J(xǫ)
T c(xǫ)
f(xǫ) − tǫ

−∇xf(xǫ)] − xǫ‖

≤ 1
f(xǫ) − tǫ

‖PF [xǫ − J(xǫ)
T c(xǫ) − (f(xǫ) − tǫ)∇xf(xǫ)] − xǫ‖

= 1
f(xǫ) − tǫ

πµ(xǫ, tǫ)

≤ ǫD
‖r(xǫ, tǫ)‖
f(xǫ) − tǫ

= ǫD‖(yǫ, 1)‖

This implies (3.27) since ‖c(xǫ)‖ ≤ ‖r(xǫ, tǫ)‖ ≤ ǫ. ✷

Note that the bound (3.25) is O(ǫ
− p+2

p ) whenever ǫP = ǫD = ǫ.
It is important to note that the complexity bound given by Theorem 3.8 depends on f(x1),

the value of the objective function at the end of Phase 1. Giving an upper bound on this
quantity is in general impossible, but can be done in some case. A trivial bound can of course
be obtained if f(x) is bounded above in Cβ . This has the advantage of providing a complexity
result which is self-contained (in that it only involves problem-dependent quantities), but it
is quite restrictive as it excludes, for instance, problems only involving equality constraints
(F = IRn) and coercive objective functions. A bound is also readily obtained if the set
F is itself bounded (for instance when the variables are subject to finite lower and upper
bounds) or if one assumes that the iterates generated by Phase 1 remain bounded. This
may for example be the case if the set {x ∈ IRn | c(x) = 0} is bounded. An ǫP-dependent
bound can finally be obtained if one is ready to assume that all derivatives of order 1 to

p of c(x) (and thus of ν(x)) are bounded by a constant in the level set C0
def
= {x ∈ F |

‖c(x)‖ ≤ ‖c(x0)‖} because it can then be shown that ‖sk‖ is uniformly bounded above and
hence that ‖x1 − x0‖ is itself bounded above by a constant times the (ǫP-dependent) number
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of iterations in Phase 1 given by Lemma 3.2. Using the boundedness of the gradient of
ν(x) on the path of iterates then ensures the (extremely pessismistic) upper bound f(x1) =

f(x0) +O

(

max

[

ǫ−1
P , ǫ

− 1
p

P ǫ
− p+1

p+1−q

D

])

. Substituting this bound in (3.25) in effect squares the

complexity of obtaining (xǫ, tǫ).

4 Discussion

We have first shown in Section 2 that, if derivatives of the objective function up to order
p can be evaluated and if the p-th one is Lipschitz continuous, then the ARpCC algorithm

applied to the convexly constrained problem (2.1) needs at most O(ǫ
p+1
p ) evaluations of f and

its derivatives to compute an ǫ-approximate first-order critical point. This worst-case bound
corresponds to that obtained in [4] when p = 2, but with significantly weaker assumptions.
Indeed, the present proposal no longer needs any assumption on the number of descent steps
in the subproblem solution, the iterates are no longer assumed to remain in a bounded set and
the Lipschitz continuity of the gradient is no longer necessary. That these stronger results
are obtained as the result of a considerably simpler analysis is an added bonus. While we
have not developed here the case (covered for p = 2 in [4]) where the p-th derivative is only
known approximately (in the sense that ∇p

xf(xk) is replaced in the model’s expression by
some tensor Bk such that the norm of (∇p

xf(xk) − Bk) applied p − 1 times to sk must be
O(‖sk‖

p)), the generalization of the present proposal to cover this situation is easy.
The proposed worst-case evaluation bound also generalizes that of [3] for unconstrained

optimization to the case of set-constrained problems, under very weak assumptions on the
feasible set. As was already the case for p ≤ 2, it is remarkable that the complexity bound
for the considered class of problems (which includes the standard bound constrained case) is,
for all p ≥ 1, identical in order to that of unconstrained problems.

The present framework for handling convex constraints is however not free of limitations,
resulting from the choice to transfer difficulties associated with the original problem to the
subproblem solution, thereby sparing precious evaluations of f and its derivatives. The first
is that we need to compute projections onto the feasible set to obtain values of πf and πmk

.
While this is straightforward and computationally inexpensive for simple convex sets such
boxes, spheres, cylinders or the order-simplex, the process might be more intensive for the
general case. The second limitation is that, even if the projections can be computed, the
approximate solution of the subproblem may also be very expensive in terms of internal
calculations (we do not consider here suitable algorithms for this purpose). Observe never-
theless that, crucially, neither the computation of the projections nor the subproblem solution
involve evaluating the objective function or its derivatives: despite their potential computa-
tional drawbacks, they have therefore no impact on the evaluation complexity of the original
problem. However, as the cost of evaluating any constraint function/derivative possibly nec-
essary for computing projections is neglected by the present approach, it must therefore be
seen as a suitable framework to handle “cheap inequality constraint” such as simple bounds.

We have also shown in Section 3 that the evaluation complexity of finding an approxi-
mate first-order scaled critical point for the general smooth nonlinear optimization problem

involving both equality and inequality constraints is at most O(ǫ
−1/p
P ǫ

−(p+1)/p
D ) evaluations of

the objective function, constraints and their derivatives up to order p. We refer here to an
“approximate scaled critical point” in that such a point is required to satisfy (3.26) or (3.27),
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where the accuracy is scaled by the size of the constraint violation or that of the Lagrange
multipliers. Because this bound now only depends on the assumptions necessary to prove the
evaluation complexity bound for the ARpCC algorithm in Section 2, it therefore strengthens
and generalizes that of [7] since the latter directly hinges on [4]. Moreover, it also corrects
an unfortunate error(1) in [7], that allows a vector of Lagrange multipliers whose sign is arbi-
trary (in line with a purely first-order setting where minimization and maximization are not
distinguished). The present analysis now yields the multiplier with the sign associated with
minimization.

Interestingly, an O(ǫPǫ
−(p+1)/p
D min[ǫD, ǫP]−(p+1)/p) evaluation complexity bound was also

proved by Birgin, Gardenghi, Mart́ınez, Santos and Toint in [2] for unscaled, standard KKT
conditions and in the least expensive of three cases depending on the degree of degeneracy
identifiable by the algorithm(2). Even if the bounds for the scaled and unscaled cases coincide
in order when ǫP ≤ ǫD, comparing the two results is however not straightforward. On one
hand the scaled conditions take into account the possibly different scaling of the objective
function and constraints. On the other hand the same scaled conditions may result in earlier
termination with (3.27) if the Lagrange multipliers are very large, as (3.27) is then consistent
with the weaker requirement of finding a John’s point. But the framework discussed in the
present paper also differs from that of [2] in two additional significant ways. The first is that
the present one provides a potentially stronger version of the termination of the algorithm at
infeasible points (in Phase 1): indeed the second part of (3.26) can be interpreted as requiring
that the size of the feasible gradient of ‖c(x)‖ is below ǫD, while [2] considers the gradient
of ‖c(x)‖2 instead. The second is that, if termination occurs in Phase 2 for an xǫ such that
π 1

2
‖c‖2(xǫ) = ‖J(xǫ)

T c(xǫ)‖ is itself of order ǫPǫD (thereby covering the case where f(xǫ) = tk

discussed in Theorem 3.8) , then Birgin et al. show that the  Lojaciewicz inequality [10] must
fail for c in the limit for ǫP and ǫD tending to zero (see [2] for details). This observation
is interesting because smooth functions satisfy the  Lojaciewicz inequality under relatively
weak conditions, implying that termination in these circumstances is unlikely. The same
information is also obtained in [2], albeit at the price of worsening the evaluation complexity
bound mentioned above by an order of magnitude in ǫD. We also note that the approach
of [2] requires the minimization, at each iteration, of a residual whose second derivatives
are discontinuous, while all functions used in the present paper are p times continuously
differentiable. A final difference between the two approaches is obviously our introduction
of πΛ and π 1

2
‖c‖2 in the expression of the criticality condition in Theorem 3.8 for taking the

inequality constraints into account.
We conclude our discussion by a remark about criticality measures. At variance with [4]

and [7], we have preferred, in this paper, to use the first-order criticality measure πf (x) rather
than χf (x), the decrease in the linearized function in the intersection of the feasible set and
the ball of radius one. While a similar result can indeed be obtained for this latter measure (in
this case for general closed non-empty convex sets even in Section 3), our choice is motivated
by the observation made by Gratton, Mouffe and Toint [9] that πf is backward stable as a
criticality measure (in the sense that an approximate solution of problem (2.1) yielding a small
value of πf can be interpreted as the exact solution of a neighbouring problem), while this is
not the case for χf even when F is described by simple bounds on the problem’s variables.

(1)The second equality in the first equation of Lemma 3.4 in [7] only holds if one is ready to flip the gradient’s
sign if necessary.

(2)This result also assumes boundedness of f(x1).
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