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Abstract In this paper two simple examples of a twice continuously differentiable strictly convex
function f are presented for which Newton’s method with line search converges to a point where
the gradient of f is not zero. The first example uses a line search based on the Wolfe conditions.
For the second example, some strictly convex function f is defined as well as a sequence of descent
directions for which exact line searches do not converge to the minimizer of f . Then f is perturbed
such that these search directions coincide with the Newton directions for the perturbed function
while leaving the exact line search invariant.
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1. Introduction

Let f : IRn → IR be a continuously differentiable function and let x̄ be an accumulation point of
the iterates generated by a descent method for f with a line search subject to the Wolfe conditions
(shortly denoted by Wolfe line search). Then, under mild assumptions x̄ is a stationary point, i.e.
∇f(x̄) = 0. When f is strictly convex and twice continuously differentiable, the Newton direction
for finding a root of ∇f always is a descent direction whenever the Newton direction is well-defined.
In this paper a simple example of a twice continuously differentiable strictly convex function f is
presented which has a unique minimizer and for which Newton’s method with a Wolfe line search
converges to a point x̄ with ∇f(x̄) 6= 0. The line search in this example is chosen as to avoid a
certain set of “regular” points while meeting the Wolfe conditions. The convergence analysis is
carried out for a well-chosen starting point, but is generalizable to other starting points as long
as the line search can be manipulated to avoid the regular points. In a second example, a strictly
convex function is constructed for a given starting point such that Newton’s method with exact
line search also converges to a non-stationary point. As far as the authors can see at this stage,
this second example cannot be extended to general starting points.

While both examples are quite straightforward we are not aware that such an analysis has been
carried out rigorously before.



2. Known results on the convergence of Newton’s method

We start by recalling in this section some results of Chapter 3.2 in [1] and some straightforward
extensions. Given a continuously differentiable function f : IRn → IR, a point x, a direction ∆x
with ∇f(x)T∆x < 0, and constants 0 < c1 < c2 < 1, a step length α is said to satisfy the Wolfe
conditions if the following inequalities hold:

1. f(x+ α∆x) ≤ f(x) + c1α∇f(x)T∆x

2. ∇f(x+ α∆x)T∆x ≥ c2∇f(x)T∆x.

Note that the set of points “x+α∆x” satisfying the Wolfe conditions does not depend on the norm
of ∆x, i.e. setting ∆x̃ := µ∆x for some scalar µ > 0, then x+ α∆x satisfies the Wolfe conditions
if, and only if, x + α

µ∆x̃ satisfies the Wolfe conditions. In the following example, the norm of the
(full) Newton steps will grow unbounded and, at the same time, the norm of the Newton steps with
Wolfe line search will go to zero.

A simple descent algorithm for minimizing f is given as follows:

Descent Algorithm:

1. Let some initial point x(0) be given. Let γ ∈ (0, 1] and 0 < c1 < c2 < 1 be given. Set k := 0.

2. If∇f(x(k)) = 0, stop. Else choose ∆x(k) 6= 0 with∇f(x(k))T∆x(k) ≤ −γ‖∇f(x(k))‖2 ‖∆x(k)‖2.

3. Set x(k+1) := x(k) + αk∆x
(k) where αk satisfies the Wolfe conditions.

4. Set k := k + 1 and go to Step 2.

If f is twice continuously differentiable and bounded below (i.e. ∃M <∞ : f(x) ≥ −M ∀x ∈ IRn),
then the Wolfe condition can be satisfied at every iteration k, and if the algorithm does not terminate
after a finite number of steps it generates a sequence of iterates {x(k)}k, and each accumulation
point x∗ of this sequence is a critical point in the sense that ∇f(x∗) = 0.

To discuss known results for the convex case, the following definitions will be used: For a point
x ∈ IRn and ε > 0, let Uε(x) := {z | ‖x − z‖2 < ε} denote the open ε-neighborhood of x. Let
S ⊂ IRn be convex. A function f : S → IR is strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for all λ ∈ (0, 1) and all x, y ∈ S with x 6= y.

The function f is locally strongly convex at some point x ∈ S, if there exists ε(x) > 0 such that
the function fε,x : Uε(x) ∩ S → IR with fε,x(y) := f(y) − ε(x)‖y‖22 is convex. It is locally strongly
convex on S, if it is locally strongly convex at every x ∈ S. It is (globally) strongly convex on S,
if there exists ε > 0 independent of x such that fε := f(x)− ε‖x‖22 is convex on S. Hence, x 7→ x6

is strictly convex but not locally strongly convex, and x 7→ ex is locally strongly convex but not
globally strongly convex.

When f is locally strongly convex and twice differentiable, the Newton step

∆x := −[∇2f(x)]−1∇f(x)
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for minimizing f satisfies ∇f(x)T∆x < 0. Thus, the Newton step satisfies the condition in Step
2. of the Descent Algorithm, if γ (now depending on x) is sufficiently small. Moreover, if, in
addition, f has a minimizer x∗, then Newton’s method for minimizing f with a Wolfe line search
globally converges to x∗. The same is true for Newton’s method with exact line search. (This
follows from the results in [1] when observing that the assumptions on f imply that the level set
{x | f(x) ≤ f(x(0))} is bounded, and hence, by Heine-Borel, the Hessian of f is uniformly positive
definite on this set.)

In the next section we consider the case where f : IRn → IRn is twice continuously differentiable,
has a unique minimizer x∗, and is strictly convex but not locally strongly convex. Moreover, f is
locally strongly convex at almost all points x. More precisely, the points where f is not locally
strongly convex form a set of measure zero that has empty intersection with the iterates generated
by the Newton algorithm. (In particular, all Newton directions are well defined and all Newton
directions are descent directions for f at the current iterates – however, there does not exist a
positive γ such that the condition in Step 2. of the Descent Algorithm is satisfied for all iterations.)

3. A first example

Define a “hat-shaped-function” ĥ1 : IR→ IR via

ĥ1(t) :=


0 for t < 8
t− 8 for 8 ≤ t < 9
10− t for 9 ≤ t < 10
0 for t ≥ 10.

Then define a continuous function h+
1 : IR→ IR via

h+
1 (t) :=

∞∑
k=0

10−kĥ1(10kt).

The function h+
1 , illustrated in Figure 3.1, is continuous and has infinitely many “hats” in the

interval (0, 10], where the height and width of the k-th “hat” tends to zero as k →∞.
More precisely, on each interval of the form [10−k, 8 · 10−k] for k = 0, 1, 2, . . . and on [10,∞),

the function h+
1 is identically zero; for all other input arguments t ∈ (0, 10) it is strictly positive.

Integrating h+
1 twice yields a convex function f+

1 for which the second derivative is zero on each
interval of the form [10−k, 8 · 10−k]. For the exact definition of f+

1 let g+
1 : IR→ IR be defined via

g+
1 (t) :=

∫ t

0
h+

1 (x) dx.

On each interval of the form [10−k, 8 · 10−k] for k = 0, 1, 2, . . . the function g+
1 is constant, and

(since
∫∞

0 10−iĥ1(10it) dt = 100−i)

g+
1 (10−k) =

∞∑
i=k+1

100−i =
100−(k+1)

0.99
=

1

99
10−2k. (1)
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Fig. 3.1: The shape of the function h+
1 (t).

Let f+
1 : IR→ IR be defined via

f+
1 (t) :=

∫ t

0
g+

1 (x) dx.

By construction, f+
1 (t) = O(t3) for 0 ≤ t ≤ 10 (and f+

1 (t) ≡ 0 for t ≤ 0). Finally, let f1 : IR→ IR,
whose shape is shown in Figure 3.2, be defined as f1(t) = f+

1 (t) + f+
1 (−t).

The function f1 is convex, twice continuously differentiable, and satisfies a cubic growth condi-
tion near its unique minimizer t̄ = 0. Its derivatives are given by

f ′1(t) = g+
1 (t)− g+

1 (−t), f ′′1 (t) = h+
1 (t) + h+

1 (−t).

A point t with f ′′1 (t) > 0 will be called a “regular” point. The following example is constructed as
to avoid such regular points.

Let ρ := 1
30·902

, and let f : IR2 → IR be defined as

f(x) = f

([
x1

x2

])
:= f1(x1) + ρx6

1 + x2 +
1

2
x2

2

The function f is strictly convex, twice continuously differentiable, and has a unique minimizer at

xmin :=

[
0
−1

]
.

It is locally strongly convex at all points except from points x with x1 = 0. Its first derivative
is given by

∇f(x) = [ f ′1(x1) + 6ρx5
1, 1 + x2 ]T , (2)

and its Hessian

∇2f(x) =

[
f ′′1 (x1) + 30ρx4

1 0
0 1

]
is positive definite at all points x except at points x with x1 = 0.
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Fig. 3.2: The shape of the function f1(t).

The Newton direction for minimizing f at x with x1 6= 0 is given by

∆x :=

[
−(f ′1(x1) + 6ρx5

1)/(f ′′1 (x1) + 30ρx4
1)

−x2 − 1

]
.

Assume for the moment that an iterate x(k) of Newton’s method is of the form x(k) :=

[
10−k

t

]
with

k ∈ IN0 and t ∈ (0, 1
9 ]. In this case, by (1) and since x(k) is not “regular”, the Newton direction

simplifies to

∆x :=

[
−( 1

9910−2k + 6ρ10−5k)/(30ρ10−4k)
−t− 1

]
.

The numerator of the first component of ∆x lies in the interval [− 1
9010−2k, − 1

10010−2k] and the
second component of ∆x lies in the interval [−10

9 ,−1]. Hence the norm of ∆x tends to infinity
when k → ∞ but, as detailed before, this does not influence the set of points that are acceptable
for a line search along ∆x based on the Wolfe conditions.

We now show that a point x(k+1) of the form x(k+1) =

[
−10−k−1

t

]
with k ∈ IN0 and t ∈ (0, 1

9 ]

satisfies the Wolfe conditions. Observe first that the above estimates on the components of ∆x and
(2) imply that

∇f(x(k))T∆x = (
1

99
10−2k + 6ρ10−5k)∆x1 + (1 + t)∆x2 ∈ [−

1
902

10−4k

30ρ10−4k
− (

10

9
)2, −

1
1002

10−4k

30ρ10−4k
− 1].

Recalling that ρ := 1
30·902

this interval reduces to [−181
81 , −

181
100 ]. Likewise,

∇f(x(k+1))T∆x ∈ [
1

1002
10−4k−2

30ρ10−4k
− (

10

9
)2,

1
902

10−4k−2

30ρ10−4k
− 1] ⊂ [−100

81
, − 99

100
].
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Hence, ∇f(x(k))T∆x ≤ −181
100 and ∇f(x(k+1))T∆x ≥ −100

81 . Since 100
81 /

181
100 < 0.7 the point x(k+1)

satisfies the second Wolfe condition when c2 is chosen c2 ∈ [0.7, 1). For points x on the line segment
[x(k), x(k+1)] the above estimates imply that

∇f(x)T∆x <
99

100

81

181
∇f(x(k))T∆x < 0.4∇f(x(k))T∆x

so that the first Wolfe condition is satisfied when c1 is chosen c1 ∈ (0, 0.4].

When the initial point x(0) is chosen as x(0) :=

[
1

1/9

]
, it is a simple exercise to verify that all

iterates can be chosen of the form x(k) =

[
±10−k

t

]
with t ∈ (0, 1

9 ]. Observe now that the total

length of the Newton path in the x1-direction is less than 2. Observe also that the absolute value
of the numerator of the first component of ∆x is at least 1

90·102k
and the denominator is 1

902·104k
, so

that |∆x1| ≥ 90 for k ≥ 0, while |∆x2| ≤ 10
9 . As a result, we obtain that |∆x1| > 81 |∆x2|. Thus,

the x2-component of the step it is always shorter by a factor at least 81 than its x1 component, so
that t converges to a number in the interval (0, 1

9). The minimization algorithm therefore converges
to a non-stationary point.

4. Using exact line searches

The analysis in Section 3. can be generalized to other starting points suggesting that for almost
all starting points the line search can be manipulated (subject to the Wolfe conditions) so that
Newtons method converges to some non-stationary point. The analysis does assume, however, that
the line search can be manipulated in a way that “regular” points are avoided, i.e. only points are
visited for which the second derivative of f1 is zero. If an exact line search is used, this assumption is
difficult to control. Nevertheless, as demonstrated next, even an exact line search is not a guarantee
that Newton’s method converges to a minimizer.

To start this second example, consider the strictly convex and twice continuously differentiable
function

f̃ : IR2 → IR, f̃(x) := |x1|3 + x2 +
1

2
x2

2. (3)

having the same minimizer xmin :=

[
0
−1

]
as f in Section 3..

The Newton step for minimizing f̃ starting at some point x with x1 6= 0 is given by ∆x =[
−x1/2
−1− x2

]
, i.e. it is “too short” by a factor 1/2 in the x1-direction.

Consider, for the moment, the starting point x(0) :=

[
0.1
0.1

]
such that f̃(x(0)) = 0.106 and a

sequence of exact line search steps for minimizing f̃ along the search directions

∆x(k) :=

[
(−1)k+1

− 1
102k+2

]
,

each line search starting at a point x(k) and leading to a point x(k+1) := x(k) + αk∆x
(k). Because

the sequence {f̃(x(k))} is monotonically decreasing by construction, we have that, for all k,

0.106 ≥ |x(k)
1 |

3 + x
(k)
2 +

1

2
(x

(k)
2 )2 ≥ |x(k)

1 |
3 + min

x2

[
x2 +

1

2
x2

2

]
= |x(k)

1 |
3 − 1

2
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and thus |x(k)
1 |3 ≤ 0.606, implying |x(k)

1 | ≤ 0.85. Since |∆x(k)
1 | = 1 for all k, this in turn ensures

that |αk| ≤ 1.7 for all k, and hence that

x
(k+1)
2 ≥ 0.1− 1.7

k∑
i=0

10−2i−2 > 0.08 > 0.

for k > 0. The exact line search implies further that

0 = ∇f̃(xk+1)T∆x(k) = 3(−1)k+1 sign(x
(k+1)
1 ) (x

(k+1)
1 )2 − 10−2k−2(1 + x

(k+1)
2 ),

and thus

sign(x
(k+1)
1 ) = (−1)k+1 and x

(k+1)
1 = (−1)k+1

√
1 + x

(k+1)
2

3 · 102k+2
. (4)

Because 0 < x
(k+1)
2 ≤ 0.1, this implies that, for k > 0,

|x(k+1)
1 | ∈

[
1

10k+1

√
1

3
,

1

10k+1

√
1.1

3

]
,

resembling the situation of the example in the previous section. The limit of the sequence x(k) is a

point x̄ =

[
0
x̄2

]
with x̄2 > 0.

In the following the function f̃ shall be modified such that the above search directions coincide
(up to positive multiples) with the Newton directions. This is achieved by “increasing” the x1-
component of the Newton step ∆x for minimizing f̃ , and this, in turn, is achieved by locally
reducing ∂2

∂x21
f̃(x(k)) while leaving ∇f̃(x(k)) invariant and while maintaining strict convexity of f̃ .

Convexity and unchanged first derivative at all points x(k) imply that the exact line searches are
not affected by this modification.

We now define the local perturbations of f̃ using a B-spline. More precisely, let s : IR→ IR be
given by

s(t) :=



0 for t < −2
(t+ 2)3 for − 2 ≤ t < −1
1 + 3(t+ 1) + 3(t+ 1)2 − 3(t+ 1)3 for − 1 ≤ t < 0
1− 3(t− 1) + 3(t− 1)2 + 3(t− 1)3 for 0 ≤ t < 1
−(t− 2)3 for 1 ≤ t < 2

0 for t ≥ 2.

Its derivatives are then given by

s′(t) =



0 for t < −2
3(t+ 2)2 for − 2 ≤ t < −1
3 + 6(t+ 1)− 9(t+ 1)2 for − 1 ≤ t < 0
−3 + 6(t− 1) + 9(t− 1)2 for 0 ≤ t < 1
−3(t− 2)2 for 1 ≤ t < 2

0 for t ≥ 2,

s′′(t) =



0 for t < −2
6(t+ 2) for − 2 ≤ t < −1
6− 18(t+ 1) for − 1 ≤ t < 0
6 + 18(t− 1) for 0 ≤ t < 1
−6(t− 2) for 1 ≤ t < 2

0 for t ≥ 2.

For τ ∈ IR\{0} let sτ : IR→ IR, a scaled and shifted version of s, be defined via

sτ (t) :=
τ2

192
s

(
4(t− τ)

τ

)
.
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Fig. 4.3: The shape of “6 |x1|+ ρs′′τ (x1)” for τ = 1 and ρ = 6τ .

By construction, the support of sτ lies in the interval (1
2τ,

3
2τ) when τ > 0 and in (3

2τ,
1
2τ) when

τ < 0, and the minimizer of s′′τ is at the point t = τ with

s′τ (τ) =
4

τ

τ2

192
s′(0) = 0 and s′′τ (τ) =

16

τ2

τ2

192
s′′(0) = −1. (5)

Now, consider a perturbation of f̃ρ,τ of f̃(x) defined by

f̃ρ,τ (x) := f̃(x) + ρsτ (x1)

for some parameters ρ > 0 and τ ∈ IR\{0}. Using (3), we obtain that

∇f̃ρ,τ (x) =

[
3 sign(x1)x2

1 + ρs′τ (x1)
1 + x2

]
and ∇2f̃ρ,τ (x) =

[
6 |x1|+ ρs′′τ (x1) 0

0 1

]
. (6)

To prove strict convexity of fρ,τ (x), it obviously suffices to show that 6 |x1| + ρs′′τ (x1) > 0 for all
x1 6= 0. Sketching the piecewise linear graph for this quantity (see Figure 4.3), it is easy to see that
it is strictly positive for all x1 6= 0 if 6 |τ |+ ρs′′τ (τ) > 0, i.e., in view of (5), if ρ < 6 |τ |.
In Figure 4.3 the values of s′′τ are nonzero in the interval x1 ∈ [0.5, 1.5] and the lowest value of
6|x1|+ ρs′′τ (x1) is at x1 = 1.

Returning to the example at the beginning of this section, let τk = x
(k)
1 for k = 0, 1, 2, . . . where

x
(k)
1 is given in (4). Then, the supports of sτk and of sτl are disjoint for k 6= l (compare with

Figure 4.3). Moreover, let

ρk := 6 |x(k)
1 | − 3 · 10−2k−2 (x

(k)
1 )2

1 + x
(k)
2

< 6 |τk|,

thereby ensuring the strict convexity of the function f̃
ρk,x

(k)
1

. Moreover, we obtain from (5) and (6)

that the Newton step from x(k) on f̃
ρk,x

(k)
1

is given by

−

[
(3 sign(x

(k)
1 ) (x

(k)
1 )2)/(6 |x(k)

1 | − ρk)
1 + x

(k)
2

]
=

1 + x
(k)
2

10−2k−2

[
(−1)k+1

−10−2k−2

]
,

8



which is a positive multiple of ∆x(k). Moreover, the function f with f(x) := f̃(x)+
∑∞

k=0 ρksτk(x1)
is well defined since at most one term in the sum is nonzero. That it is also twice continuously
differentiable can be deduced from the same argument for x1 6= 0 and the fact that the boundedness

of sτk , s′τk and s′′τk and the limit ρk < 6|τk| = 6|x(k)
1 | → 0 together ensure the desired property at

x1 = 0. Thus we have constructed a function f such that Newton’s method with exact line search
generates the same iterates as in (4) converging to a point where the first derivative is nonzero.

A necessary property for the above example to work is that the second derivative of f̃ at x̄ is
singular. Adding a term ‖x − x̄‖42 to f̃(x) will effect that x̄ is the only point at which the second
derivative of f̃ is singular. The somewhat tedious details for perturbing f̃( . ) +‖ . − x̄‖42 such that
the line search still generates the same iterates have not been considered; it is conceivable, however,
that the example can be modified such that f is locally strongly convex at all points except from
x̄.

5. Concluding remarks

In the above examples, the Newton iterates converge to a non-stationary point x̄ where the Hessian
of f is singular, and the Newton directions ∆x

‖∆x‖2 with ∆x := −∇2f(x)−1∇f(x) have two limit

directions at x̄ (namely ±
[

1
0

]
). Both of these limit directions are not descent directions for f at

x̄. This particular situation allows for the construction of artificial examples for which Newton’s
method fails. While this simple observation might be interesting from a theoretical point of view,
its practical implications seem to be negligible.
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