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Abstract

This paper examines worst-case evaluation bounds for finding weak minimizers in unconstrained
optimization. For the cubic regularization algorithm, Nesterov and Polyak (2006) and Cartis, Gould
and Toint (2010a) show that at most O(ǫ−3) iterations may have to be performed for finding an iterate
which is within ǫ of satisfying second-order optimality conditions. We first show that this bound
can be derived for a version of the algorithm which only uses one-dimensional global optimization
of the cubic model and that it is sharp. We next consider the standard trust-region method and
show that a bound of the same type may also be derived for this method, and that it is also sharp
in some cases. We conclude by showing that a comparison of the worst-case behaviour of the ARC
and trust-region algorithms favours the first of these methods.

Keywords: evaluation complexity, worst-case analysis, nonconvex optimization, second-order opti-
mality conditions.

1 Introduction

We consider algorithms for the solution of the unconstrained (possibly nonconvex) optimization problem

min
x

f(x) (1.1)

where we assume that f : IRn → IR is smooth (in a sense to be specified later) and bounded below.
All methods for the solution of (1.1) are iterative and, starting from some initial guess x0, generate a
sequence {xk} of iterates approximating a critical point of f . Many such algorithms exist, and they
are often classified according to their requirements in terms of computing derivatives of the objective
function. In this paper, we focus on second-order methods, that is methods which evaluate the objective
function f(x), its gradient g(x) and its Hessian H(x) (or an approximation thereof) at every iteration.
The advantage of these methods is that they can be expected to converge to solutions x∗ satisfying the
second-order optimality conditions

∇xf(x∗) = 0, and λmin(H(x∗)) ≥ 0 (1.2)

where λmin(A) is the smallest eigenvalue of the symmetric matrix A, rather than only satisfying first-
order optimality (i.e., the first of these relations). In practice, however, a second-order algorithm is
typically terminated as soon as an iterate xk is found which is within ǫ of satisfying (1.2), that is such
that

‖∇xf(x∗)‖ ≤ ǫg and λmin(H(x∗)) ≥ −ǫH , (1.3)
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for some user-specified tolerances ǫg, ǫH ∈ (0, 1), where ‖ · ‖ denotes the Euclidean norm. It is then of
interest to bound the number of iterations which may be necessary to find an iterate satisfying (1.3)
as a function of the thresholds ǫg and ǫH . It is the purpose of worst-case complexity analysis to derive
such bounds. Many results are available in the literature for the case where the objective function f is
convex (see, for instance, Nesterov 2004, 2008, Nemirovski, 1994, Agarwal, Bartlett, Ravikummar and
Wainwright, 2009). The convergence to approximate first-order points in the nonconvex case has also
been investigated for some time (see Vavasis 1992b, 1992a, 1993, Nesterov and Polyak, 2006, Gratton,
Sartenaer and Toint, 2008, Cartis, Gould and Toint 2009a, 2010a, 2010b, 2010d, or Vicente, 2010).

Of particular interest here is the Adaptive Regularization with Cubics (ARC) algorithm independently
proposed by Griewank (1981), Weiser, Deuflhard and Erdmann (2007) and Nesterov and Polyak (2006),

whose worst-case complexity was shown in the last of these references to be of O(ǫ
−3/2
g ) iterations for

finding an iterate xk satisfying the approximate first-order optimality conditions (the first relation in
(1.3) only) and of O(ǫ−3

H ) iterations for finding an iterate xk satisfying the whole of (1.3)(1). These
results were extended by Cartis et al. (2010a) to an algorithm no longer requiring the computation
of exact second-derivatives (but merely of a suitably accurate approximation), nor an (also possibly
approximate) knowledge of the objective function’s Hessian’s Lipschitz constant. More importantly,

these authors showed that the O(ǫ
−3/2
g ) complexity bound for convergence to first-order critical points

can be achieved without requiring multi-dimensional global optimization of the cubic model (see Cartis,
Gould and Toint, 2008). However, such a global minimization on nested Krylov subspaces of increasing
dimensions was still required to obtain the O(ǫ−3

H ) convergence to second-order critical points.
The present paper focusses on worst-case complexity bounds for convergence to second-order critical

points and shows that, as in the first-order case, multi-dimensional global minimization of the cubic
model is unnecessary for obtaining the mentioned O(ǫ−3

H ) bound for the ARC algorithm. This latter
bound is also shown to be sharp. We also prove that a bound of the same type holds for the standard
trust-region method. Moreover, we show that it is also sharp for a range of relative values of ǫg and ǫH .
We finally compare the known bounds for the ARC and trust-region algorithms and show that the ARC
algorithm is always as good or better from this point of view.

The ARC algorithm is recalled in Section 2 and the associated complexity bounds are derived without
multidimensional global minimization. Section 3 then discusses an example showing that the bound on
convergence of the ARC algorithm to approximate second-order critical points is sharp. A bound of this
type is derived in Section 4 for the trust-region methods, its sharpness for suitable values of ǫg and ǫH
is demonstrated, and the comparison with the ARC algorithm discussed. Conclusions and perspectives
are finally presented in Section 5.

2 The ARC algorithm and its worst-case complexity

The Adaptive Regularization with Cubics (ARC) algorithm is based on the approximate minimization,
at iteration k, of the (possibly nonconvex) cubic model

mk(s) = 〈gk, s〉+ 1

2
〈s,Bks〉+ 1

3
σk‖s‖

3, (2.1)

were 〈·, ·〉 denotes the Euclidean inner product. Here Bk is a symmetric n×n approximation of H(xk)
def
=

Hk, σk > 0 is a regularization weight and gk = ∇xmk(0) = ∇xf(xk). By “approximate minimization”,
we mean that a step sk is computed to ensure the following conditions.

We first require that the step satisfies the conditions

〈gk, sk〉+ 〈sk, Bksk〉+ σk‖sk‖
3 = 0 (2.2)

and
〈sk, Bksk〉+ σk‖sk‖

3 ≥ 0, (2.3)

As noted in Cartis et al. (2010a), these conditions must hold if sk is a global minimizer of mk along the
direction sk (see Lemma 3.2 in Cartis et al., 2009a). In order to guarantee convergence to first-order

(1)It appears that this latter result is the first worst-case complexity bound for convergence to approximate second-order
critical points ever proved.
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critical points, we also require the familiar “Cauchy condition”

mk(sk) ≤ mk(s
C

k) (2.4)

with
sC

k = −αC

kgk and αC

k = argmin
α≥0

mk(−αgk). (2.5)

Because we are, in addition, interested in convergence to second-order critical points, we also require the
following variant of the “eigen condition” whenever Bk is not positive semi-definite (see Section 6.6.1 in
Conn, Gould and Toint, 2000): we require in that case that

mk(sk) ≤ mk(s
E

k), (2.6)

where
sE

k = αE

kuk and αE

k = argmin
α

mk(αuk), (2.7)

with uk being an approximate eigenvector of Bk associated with its smallest eigenvalue λmin(Hk)
def
= τk,

in the sense that
〈gk, uk〉 ≤ 0 and 〈uk, Bkuk〉 ≤ κsncτk‖uk‖

2 (2.8)

for some constant κsnc ∈ (0, 1]. The knowledge of τk and uk may be obtained, for instance, by applying
the power method to Bk. Note that we require the minimization in (2.5) and (2.7) to be global, which
means that (2.2) and (2.3) also hold with sk replaced by sC

k and sE

k. Finally, we may also optionally
require that

‖∇xmk(sk)‖ = ‖gk +Bksk + σk‖sk‖sk‖ ≤ κθ min[1, ‖sk‖] ‖gk‖, (2.9)

for some given constant κθ ∈ (0, 1) if we wish to accelerate the convergence to first-order critical points.
Remarkably, conditions (2.2)-(2.9) can all be ensured algorithmically and hold, in particular, if sk

is a (computable) global minimizer of mk (see Griewank, 1981, Nesterov and Polyak, 2006, see also
Cartis, Gould and Toint, 2009b). We also note that, if sk is computed as the global minimizer of
mk in a subspace Lk containg the gradient and satisfies (2.9), then all the above conditions also hold
with uk = Qkwk, where τk and wk are respectively the most negative eigenvalue of QT

kBkQk and its
corresponding eigenvector, and Qk is an orthonormal basis of Lk. We also note that they require global
minimization of the cubic model along −gk, (possibly) uk and sk, but that global minimization in
subspaces of dimension larger than one is not necessary.

The ARC algorithm may then be stated as presented on the following page. In this description, we
assume that the constants satisfy γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0 and σ0 > 0.

Let S denote the index set of all successful or very successful iterations in the sense of (2.11), and define

Sj = {k ∈ S | k ≤ j} and Uj = {0, . . . , j} \ Sj , (2.12)

the sets of successful and unsuccessful iterations up to iteration j.
We now recall the main complexity results for this method, as well as the assumptions under which

these hold. We first restate our assumptions.

A.1: The objective function f is twice continuously differentiable on IRn and its gradient and Hessian
are Lipschitz continuous on the path of iterates with Lispchitz constants Lg and LH , i.e., for all
k ≥ 0 and all α ∈ [0, 1],

‖∇xf(xk)−∇xf(xk + αsk)‖ ≤ Lgα‖sk‖ (2.13)

and
‖∇xxf(xk)−∇xxf(xk + αsk)‖ ≤ LHα‖sk‖. (2.14)

A.2: The objective function f is bounded below, i.e. there exists a constant flow such that, for all
x ∈ IRn,

f(x) ≥ flow.
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Algorithm 2.1: ARC

Step 0: A starting point x0, an initial regularization parameter σ0, and user-defined accuracy
thresholds ǫg, ǫH ∈ (0, 1) are given. Set k = 0.

Step 1: If conditions (1.3) hold, terminate with approximate solution xk.

Step 2: Compute a Hessian approximation Bk and a step sk satisfying (2.2)–(2.9).

Step 3: Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

−mk(sk)
. (2.10)

Set xk+1 = xk + sk if ρk ≥ η1, or xk+1 = xk otherwise.

Step 4: Set

σk+1 ∈







(0, σk] if ρk > η2, [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.11)

Increment k by one and return to Step 1.

A.3: For all k ≥ 0, the Hessian approximation Bk satisfies

‖Bk‖ ≤ κB (2.15)

and
‖(∇xxf(xk)−Bk)sk‖ ≤ κBH‖sk‖

2 (2.16)

for some constants κB > 1 and κBH > 0.

We start by noting that the form of the cubic model (2.1) and (2.2)-(2.3) ensure a remarkable bound on
the the step norm and model decrease.

Lemma 2.1 [Lemma 4.2 in Cartis et al. (2010a)] We have that

mk(sk) ≤ − 1

6
σk‖sk‖

3. (2.17)

For our purposes it is also useful to consider the following bounds on the value of the regularization
parameter.

Lemma 2.2 Suppose that (2.13) and (2.15) hold. Then there exists a constant κσ > 0 independent of
n such that, for all k ≥ 0

σk ≤ max

[

σ0,
κσ

ǫg

]

. (2.18)

If, in addition, (2.14) and (2.16) also hold, then there exists a constant σmax > 0 independent of n, ǫg
and ǫH such that, for all k ≥ 0,

σk ≤ σmax. (2.19)

Proof. See Lemmas 3.2 and 3.3 in Cartis et al. (2010a) for the proof of (2.18) and Lemma 5.2 in
Cartis et al. (2009a) for that of (2.19). 2

A first complexity bound can then be derived.
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Lemma 2.3 [Corollary 3.4 in Cartis et al. (2010a)] Assume that (2.13), A.2 and (2.15) hold. Then
there exists a constant κ0

ARC,S > 0 independent of n such that N1
ARC,S, the total number of successful and

very successful iterations of the ARC algorithm with ‖gk‖ ≥ ǫg, is bounded above by
⌈

κ0
ARC,S ǫ

−2
g

⌉

.

If we are ready to stengthen our assumption by assuming (2.14) and to impose (2.9), then, crucially,
the step sk can then be proved to be sufficiently long compared to the gradient’s norm at iteration k+1.

Lemma 2.4 [Lemma 5.2 in Cartis et al. (2010a)] Suppose that A.1, A.3 and (2.9) hold. Then, for all
k ≥ 0, one has that, for some κg > 0 independent of n,

‖sk‖ ≥ κg

√

‖∇xf(xk + sk)‖. (2.20)

Combining (2.17) with this last result, it is then not difficult to show the second complexity result.

Lemma 2.5 [Corollary 5.3 in Cartis et al. (2010a)] Suppose that A.1–A.3 and (2.9) hold. Suppose
also that

σ ≥ σmin (2.21)

for some σmin > 0. Then there exists a constant κ1
ARC,S > 0 independent of n such that N1

ARC,S is

bounded above by
⌈

κ1
ARC,S ǫ

−3/2
g

⌉

.

The final important observation in the first-order analysis is that the total number of iterations required
by the ARC algorithm to terminate may be bounded in terms of the number of successful iterations
needed.

Lemma 2.6 [Theorem 2.1 in Cartis et al. (2010a)] Suppose that (2.21) holds and, for any fixed j ≥ 0,
let Sj and Uj be defined in (2.12). Then one has that

|Uj | ≤

⌈

(|Sj |+ 1)
1

log γ1
log

(

σmax

σmin

)⌉

. (2.22)

We may now use this last result with Lemmas 2.3 and 2.5, and deduce the following worst-case bounds.

Theorem 2.7 [See Corollary 5.5 in Cartis et al. (2010a)] Suppose that (2.13), A.2 and (2.15) hold.
Suppose also that there exist a σmin > 0 such that (2.21) hold for all k ≥ 0. Then, the ARC algorithm
produces an iterate xk satisfying the first part of (1.3) after at most

⌈

κ1st
ARC,Sǫ

−2
g

⌉

(2.23)

successful iterations and at most
⌈

κ1st
ARCǫ

−2
g

⌉

(2.24)

iterations in total, where κ1st
ARC,S and κ1st

ARC are positive constants independent of n. Moreover, if (2.14)
and (2.9) also hold, then the bounds (2.23) and (2.24) respectively become

⌈

κ1st
ARC,S ǫ

−3/2
g

⌉

and
⌈

κ1st
ARC ǫ−3/2

g

⌉

. (2.25)

The bounds (2.25) are known to be qualitatively(2) tight and optimal for a wide class of second-order
methods (see Cartis et al. 2010b, 2010d).

After reviewing the complexity of convergence to first-order critical points, we now turn to the analysis
of the number of iterations necessary to ensure the second part of (1.3) under our present assumptions
(which do not require multi-dimensional global model minimization).

Lemma 2.8 Suppose that A.1–A.3 hold. Then there exists a constant κ2
S > 0 independent of n such

that N2
ARC,S, the total number of successful and very successful iterations of the ARC algorithm with

τk < −ǫH , is bounded above by
⌈

κ2
ARC,S ǫ

−3
H

⌉

.

(2)The constants may not be optimal.
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Proof. We first note that, when τk < 0, sE

k gives a minimizer of the model in the direction uk by
(2.7), from which we derive, using (2.3) for sE

k, that, for all k ≥ 0,

σk‖s
E

k‖ ≥ −
〈sE

k), Bks
E

k〉

‖sE

k‖
2

≥ κsnc|τk|, (2.26)

where we have used (2.7) to derive the last inequality. Combining this bound with (2.17) applied for sE

k,
and (2.19), we then obtain that

−mk(sk) ≥ −mk(s
E

k) ≥
κsnc|τk|

3

6σ2
k

≥
κsnc

6σ2
max

|τk|
3 ≥

κsncǫ
3
H

6σ2
max

(2.27)

for all k such that the second part of (1.3) fails. If we now restrict our attention to the subset of those
iterations which are successful or very successful, we obtain, using A.2 and the monotonically decreasing
nature of the sequence {f(xk)}, that

f(x0)− flow ≥
∑

k=0,k∈S

(f(xk)− f(xk+1)) ≥ N2
ARC,S

η1κsncǫ
3
H

6σ2
max

.

We therefore obtain the desired result with κ2
ARC,S

def
= 6σ2

max(f(x0)− flow)/κsncη1. 2

As was the case for convergence to first-order critical points, we may now combine Lemmas 2.3 and 2.6
with our last result to obtain worst-case complexity bounds for convergence of the ARC algorithm to
approximate second-order critical points.

Theorem 2.9 Suppose that A.1–A.3 hold. Suppose also that there exist a σmin > 0 such that (2.21)
hold for all k ≥ 0. Then, the ARC algorithm produces an iterate xk satisfying (1.3) (and thus terminates)
after at most

⌈

κ2nd
ARC,S max

[

ǫ−2
g , ǫ−3

H

]⌉

(2.28)

successful or very successful iterations and at most
⌈

κ2nd
ARC max

[

ǫ−2
g , ǫ−3

H

]⌉

(2.29)

iterations in total, where κ2nd
ARC,S and κ2nd

ARC are positive constants independent of n. Moreover, if (2.9)
also holds, then the bounds (2.28) and (2.29) respectively become

⌈

κ2nd
ARC,S max

[

ǫ−3/2
g , ǫ−3

H

]

⌉

and
⌈

κ2nd
ARC max

[

ǫ−3/2
g , ǫ−3

H

]

⌉

. (2.30)

Proof. Lemmas 2.3 and 2.8 yield that the total number of successful iterations such that the first
or the second part of (1.3) is violated cannot exceed

κ0
ARC,S ǫ

−2
g + κ2

ARC,S ǫ
−3
H .

We thus immediately deduce (2.28) with κ2nd
ARC,S

def
= κ0

ARC,S + κ2
ARC,S. The bound (2.29) follows by

applying Lemma 2.6, while (2.30) directly is obtained by using Lemma 2.5 instead of Lemma 2.3 in this
reasoning. 2

3 An example of slow convergence of ARC

We now show by an example that the bounds (2.28) and (2.29) cannot be improved. Our example is
unidimensional and is inspired by the technique used in Cartis et al. (2010b) and Cartis et al. (2010d).

We first choose the starting point and sequences of gradient and Hessian values and steps to be, for
all k ≥ 0,

x0 = 0, gk = 0, sk =

(

1

k + 1

)
1

3
+δ

and Bk = Hk = τk = −

(

1

k + 1

)
1

3
+δ

(3.1)



Cartis, Gould, Toint: Complexity bounds for second-order minimization 7

where δ ∈ (0, 1) is a (small) positive constant. Because it is straightforward to verify that the conditions
(2.2)–(2.9) hold with this choice and σk = 1 for all k, we may consider these values as produced by the

k-th iteration of the ARC algorithm at iterate xk = x0 +
∑k−1

j=0 sj . We also define fk
def
= f(xk) for all k

by the relations

f0 = ζ(1 + 3δ) and fk+1 = fk −

(

1

k + 1

)1+3δ

, (3.2)

where ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann zeta function, which is finite for all t > 1 (and thus for t = 1+3δ).

Observe that, since (2.2) and (2.3) both hold as equalities, we have that

−mk(sk) =
1

6
‖sk‖

3 =
1

6

(

1

k + 1

)1+3δ

and (3.2) therefore implies that all iterations are very successful, allowing us to keep σk fixed to 1.
We now use Hermite interpolation to construct the objective function f on the successive intervals

[xk, xk+1], and define

f(x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0, (3.3)

where pk is the polynomial

pk(s) = c0,k + c1,ks+ c2,ks
2 + c3,ks

3 + c4,ks
4 + c5,ks

5,

with coefficients defined by the interpolation conditions

pk(0) = fk − fk+1, pk(sk) = 0;

p′k(0) = gk, p′k(sk) = gk+1;

p
′′

k(0) = Hk, p
′′

k(sk) = Hk+1.

(3.4)

These conditions yield the following values for the first three coefficients

c0,k = fk − fk+1, c1,k = gk = 0, c2,k = 1

2
Hk;

and the remaining coefficients satisfy




s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k









c3,k
c4,k
c5,k



 =





∆fk − gksk − 1

2
skHksk

∆gk −Hksk
∆Hk



 ,

where
∆fk = fk+1 − fk, ∆gk = gk+1 − gk and ∆Hk = Hk+1 −Hk.

Hence we obtain, also from (3.1) and ∆gk = 0, that

c3,k = 10
∆fk
s3k

− 4
∆gk
s2k

+ ∆Hk
2sk

− 10
gk
s2k

− Hk
sk = 10

∆fk
s3k

+ ∆Hk
2sk

− Hk
sk ;

c4,k = −15
∆fk
s4k

+ 7
∆gk
s3k

− ∆Hk

s2k
+ 15

gk
s3k

+ Hk

2s2k
= −15

∆fk
s4k

− ∆Hk

s2k
+ Hk

2s2k
;

c5,k = 6
∆fk
s5k

− 3
∆gk
s4k

+ ∆Hk

2s3k
− 6

gk
s4k

= 6
∆fk
s5k

+ ∆Hk

2s3k
.

(3.5)

It remains to show that the constructed f satisfies A.1-A.3. One easily sees from its construction that
f is twice continuously differentiable. Moreover its third derivative exists everywhere and, on the k-th
interval, satifies the bound

|f
′′′

(xk + s)| = |p
′′′

k (s)| ≤ 6|c3,k|+ 24|c4,k|sk + 60|c5,k|s
2
k, s ∈ [0, sk].

But (3.1), (3.5) and the resulting inequality |∆Hk| ≤ |Hk| imply that |c3,k|, |c4,k|sk and |c5,k|s
2
k are

uniformly bounded, and thus so is f
′′′

. As a consequence, f has a Lipschitz continuous Hessian and
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A.1 holds. The definition (3.2) and the definition of the Riemann function together imply that A.2

holds with flow = 0(3) and A.3 directly results from (3.1). Figure 3.1 shows plots of f and its first three
derivatives for δ = 0.0001 and for k = 0, . . . , 15. The figure reveals the objective functions’s nonconvexity
and monotonically decreasing nature.
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Figure 3.1: The function f and its first three derivatives (from top to bottom and left to right) on the
first 16 intervals

We have thus verified that the ARC algorithm applied on f (which satisfies A.1–A.3) starting from
x0 = 0 and σ0 = 1 produces iterates such that

λmin(Hk) = −

(

1

k + 1

)
1

3
+δ

and for which the second part of (1.3) fails for exactly
⌈

1

ǫ
3(1+δ)
H

⌉

− 1

iterations, for any ǫH ,ǫg and δ in (0, 1). Since we know from Cartis et al. (2010b) that the bound in

O(ǫ
−3/2
g ) is sharp for obtaining a mere first-order approximate critical point, we deduce that the bound

(2.30) cannot be improved. As a consequence it is sharp as far as the ARC algorithm is concerned.

4 Second-order complexity for the trust-region method

We may wonder if the worst-case complexity for convergence to approximate second-order points is
better or worse for the standard trust-region method than for ARC. We show in this section that they

(3)Note that we have shown that f(x) is bounded below for x ≥ 0, which is the domain of interest since xk ≥ 0; we may
extend f by continuity for x < 0.
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are (qualitatively) identical. Our first step is to establish an upper bound on this complexity for the trust-
region method, which requires revisiting some of its convergence theory. For the sake of completeness,
we briefly recall the basic formulation of this method, as based on Section 6.1 of Conn et al. (2000). The
main idea of the trust-region method is similar to that of the ARC algorithm: at iteration k, a quadratic
model

mk(s)
def
= 〈gk, s〉+ 1

2
〈s,Bks〉 (4.1)

is minimized in the “trust region” defined by

Bk
def
= {s ∈ IRn | ‖s‖ ≤ ∆k}, (4.2)

where ∆k is the (dynamically updated) trust-region radius. The other conditions on the step sk are
again similar to what happens for the ARC method: one typically requires sk to satisfy (2.4)–(2.8)
where the model mk(s) is now defined by (4.1) instead of (2.1) and where minimization in (2.4) and (2.6)
is restricted to the trust-region. Note that, in this context, global optimization of the model along sC

k

or sE

k within the trust region no longer implies (2.2) and (2.3). In practice, the condition (2.9) is often
replaced by

‖∇xmk(sk)‖ = ‖gk +Bksk‖ ≤ κθ min[1, ‖gk‖
α] ‖gk‖, (4.3)

for some given constant κθ ∈ (0, 1) and some exponent α > 0, but this is irrelevant for the complexity
analysis developed below. Global optimization of the model along sk within the trust region is not
necessary.

The basic trust-region algorithm may then be stated as follows.

Algorithm 4.1: Trust-region algorithm

Step 0: A starting point x0, an initial radius ∆0 > 0 and user-defined accuracy thresholds ǫg, ǫH ∈
(0, 1) are given. Set k = 0.

Step 1: If conditions (1.3) holds, terminate with approximate solution xk.

Step 2: Compute a Hessian approximation Bk and a step sk ∈ Bk satisfying (2.4)–(2.8) and
(optionally) (4.3).

Step 3: Compute f(xk + sk) and ρk given by (2.10). Set xk+1 = xk + sk if ρk ≥ η1, or xk+1 = xk

otherwise.

Step 4: Set

∆k+1 ∈







[∆k, γ3∆k]) if ρk > η2, [very successful iteration]
[γ2∆k,∆k] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1∆k, γ2∆k] otherwise. [unsuccessful iteration]

(4.4)

Increment k by one and return to Step 1.

In this algorithm, we have assumed that the constants satisfy the inequalities

∆0 ≤ ∆max, 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3 (4.5)

and we define the sets of very successful, successful and unsuccessful iterations just as in (2.12).
In order to establish the desired complexity bound, we start by re-examining the size of the discrep-

ancy between the model and the objective function in the case where Lipschitz continuity of the Hessian
is assumed (an assumption never made in Chapter 6 of Conn et al., 2000).
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Lemma 4.1 Suppose that A.1 and A.3 hold. Then, for each k ≥ 0,

|f(xk + sk)−mk(sk)| ≤ κfm∆
3
k. (4.6)

for some κfm > 0.

Proof. (See the proof of Lemma 6.4.1 in Conn et al., 2000.) Using A.1, we may apply the mean-
value theorem on the objective function and obtain that

f(xk + sk) = f(xk) + 〈gk, sk〉+ 1

2
〈sk, H(ξk)sk〉

for some ξk in the segment [xk, xk + sk]. Substracting (4.1), taking absolute values and using A.1, A.3,
the inequality ‖ξk − xk‖ ≤ ‖sk‖ and the Cauchy-Schwarz inequality yields that

|f(xk + sk)−mk(sk)| = 1

2
|〈sk, H(ξk)sk〉 − 〈sk, Bksk〉|

≤ 1

2
|〈sk, [H(ξk)−H(xk) +H(xk)−Bk]sk〉|

≤ 1

2
[LH‖sk‖

3 + κBH‖sk‖
3]

and (4.6) with κfm = 1

2
(LH + κBH) then follows from the inequality ‖sk‖ ≤ ∆k. 2

We then recall a standard result on the model decrease in the presence of significant gradient or negative
curvature.

Lemma 4.2 [Theorems 6.3.1 and 6.6.1 in Conn et al. (2000)] Suppose that mk is given by (4.1). Then,
if ‖gk‖ > 0, we have that

−mk(sk) ≥ −mk(s
C

k) ≥
1

2
‖gk‖min

[

‖gk‖

κB

,∆k

]

(4.7)

while, if τk < 0, then
−mk(sk) ≥ −mk(s

E

k) ≥
1

2
κsnc|τk|∆

2
k. (4.8)

From this result, we may deduce the following crucial lemma.

Lemma 4.3 Suppose that A.1 and A.2 hold and that mk is given by (4.1). Suppose furthermore that
τk < 0 and that

∆k ≤
(1− η2)κsnc|τk|

2κfm

. (4.9)

Then iteration k of the trust-region algorithm is very successful and ∆k+1 ≥ ∆k.

Proof. Suppose that (4.9) holds. We obtain from (4.6) and (4.8) that

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk)−mk(sk)

−mk(sk)

∣

∣

∣

∣

≤
κfm

1

2
κsnc|τk|

∆k ≤ 1− η2,

where we used (4.9) to deduce the last inequality. Thus ρk ≥ η2 and the mechanism of the trust-region
algorithm then ensures that iteration k is very successful and, by (4.4), that ∆k+1 ≥ ∆k. 2

We may then use this result to show that, as long as second-order optimality is not reached in the sense
of (1.3), then the trust-region radius is bounded away from zero. To make our result more precise we
first observe that

either ‖gk‖ ≥ ǫg or −min(0, τk) ≥ ǫH (4.10)

as long as the trust-region algorithm does not terminate.

Lemma 4.4 Suppose that A.1 and A.2 hold and that mk is given by (4.1). Then,there exists a constant
κ∆ ∈ (0, 1) independent of n such that, if the trust-region algorithm does not terminate at iteration k,

∆k ≥ κ∆ min[ǫg, ǫH ]. (4.11)
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Proof. Assume, for the purpose of deriving a contradiction, that iteration k is the first such that

∆k+1 ≤ γ1 min

[

1

2κB

,
κsnc

2κfm

]

(1− η2) min
[

ǫg, ǫH
]

. (4.12)

Then we have from (4.4) that, either

∆k ≤ min

[

1

2κB

,
κsnc

2κfm

]

(1− η2) min
[

ǫg, ǫH
]

≤
(1− η2)

2κB

ǫg ≤
(1− η2)

2κB

‖gk‖

if the first part of (4.10) holds, or

∆k ≤ min

[

1

2κB

,
κsnc

2κfm

]

(1− η2) min
[

ǫg, ǫH
]

≤
(1− η2)κsnc

2κfm

ǫH ≤
(1− η2)κsnc|τk|

2κfm

.

if the second part of (4.10) holds. In the first case, Theorem 6.4.3 in Conn et al. (2000) implies that
iteration k is very successful and ∆k+1 ≥ ∆k. In the second case, the same conclusion follows from
Lemma 4.3. Thus ∆k+1 ≥ ∆k in both cases and our assumption that iteration k is the first such that
(4.12) holds must be false. As a consequence, there cannot be any iteration such that inequality (4.12)
holds as long as the algorithm does not terminate, and we obtain the desired conclusion with

κ∆
def
= γ1 min

[

1

2κB

,
κsnc

2κfm

]

(1− η2) < 1, (4.13)

the last inequality following from the bound κB ≥ 1 and (4.5). 2

We may now compute an upper bound on the number of successful or very successful iterations such
that (1.3) does not hold.

Lemma 4.5 Suppose that A.1 and A.2 hold and that mk is given by (4.1). Then there exists a constant
κ2nd
TR,S > 0 independent of n such that N2nd

TR,S, the number of successful or very successful iterations of the

trust-region method before (1.3) holds, is bounded above by ⌈κ2nd
TR,S max

[

ǫ−2
g ǫ−1

H , ǫ−3
H

]

⌉.

Proof. Consider an iteration k of the trust-region algorithm (before it terminates). Then either
‖gk‖ > ǫg or τk < −ǫH . In the first of these cases, (4.7), (4.11) and (4.13) yield that

−mk(sk) ≥ 1

2
ǫg min

[

ǫg
κB

, κ∆ min
[

ǫg, ǫH
]

]

= 1

2
κ∆ ǫg min

[

ǫg, ǫH
]

,

while we obtain, in the second case, that

−mk(sk) ≥ 1

2
κsnc|τk|∆

2
k ≥ 1

2
κsncκ

2
∆ǫH min

[

ǫg, ǫH
]2

from (4.8) and (4.11). We thus obtain, using A.2 and the monotonically decreasing nature of the
sequence {f(xk)}, that

f(x0)− flow ≥
∞
∑

k=0

[

f(xk)− f(xk+1)
]

≥
∑

k=0,k∈S

[

f(xk)− f(xk+1)
]

≥ 1

2
η1

∑

k=0,k∈S

min
[

κ∆ ǫg min
[

ǫg, ǫH
]

, κsncκ
2
∆ǫH min

[

ǫg, ǫH
]2
]

= 1

2
η1κsncκ

2
∆

∑

k=0,k∈S

min
[

ǫg, ǫH
]

min
[

ǫg, ǫHǫg, ǫ
2
H

]

= 1

2
N2nd

TR,S η1κsncκ
2
∆ǫH min

[

ǫg, ǫH
]2

(4.14)
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where N2nd
TR,S is the total number of successful or very successful iterations such that (1.3) fails, and where

we used the inequalities κ∆ < 1, κsnc ≤ 1 and max[ǫg, ǫH ] < 1. The desired conclusion follows from this
last inequality with

κ2nd
TR,S

def
=

2(f(x0)− flow)

η1κsncκ2
∆

.

2

Before concluding, we still need an analog of Lemma 2.6 for the trust-region algorithm. Such a result is
also described in Gratton et al. (2008), but we formalize it for the sake of clarity.

Lemma 4.6 Suppose that A.1 and A.3 hold and, for any fixed j ≥ 0, let Sj and Uj be defined in (2.12).
Then one has that

|Uj | ≤

⌈

log γ3
| log γ2|

|Sj |+
1

| log γ2|
log

(

∆0

κ∆ min
[

ǫg, ǫH
]

)⌉

. (4.15)

Proof. It follows from the mechanism of the trust-region algorithm that

∆k+1 ≤ γ3∆k for all k ∈ Sj and ∆k+1 ≤ γ2∆k for all k ∈ Uj .

Thus we obtain that
∆j ≤ ∆0γ

|Uj |
2 γ

|Sj |
3 .

But Lemma 4.4 gives that, as long as the trust-region alsgorithm has not terminated, (4.11) must hold.
Therefore, we obtain that

|Sj | log γ3 + |Uj | log γ2 ≥ log

(

κ∆ min
[

ǫg, ǫH
]

∆0

)

.

Reorganizing this inequality using γ2 < 1 and taking into account that |Uj | is an integer then yields
(4.15). 2

We may now state the final worst-case complexity bound for convergence of the trust-region algorithm
to approximate second-order critical points.

Theorem 4.7 Suppose that A.1–A.3 hold. Then, the trust-region algorithm produces an iterate xk

satisfying (1.3) (and thus terminates) after at most

⌈

κ2nd
TR,S max

[

ǫ−2
g ǫ−1

H , ǫ−3
H

]⌉

(4.16)

successful iterations and at most
⌈

κ2nd
TR max

[

ǫ−2
g ǫ−1

H , ǫ−3
H

]⌉

(4.17)

iterations in total, where κ2nd
TR,S and κ2nd

TR are positive constants independent of n.

Proof. The first part of the theorem immediately results from Lemma 4.5. The second bound
follows by applying Lemma 4.6 and noting that the term in log(1/ǫ) arising from the second term on the
left-hand side of (4.15) is dominated by the first as, obviously, log(1/ǫ) = O(ǫ−3) for ǫ ∈ (0, 1). 2

As for the ARC algorithm, we now show that the bound stated in Theorem 4.7 cannot be improved.
Again this is achieved by exhibiting a unidimensional example where this bound is attained. The example
is itself a modification of that introduced in Section 3 and uses the definitions of x0, gk and Bk = Hk = τk
given by (3.1). We now define

sk = ∆k =

(

1

k + 1

)
1

3
+δ

(4.18)

(which gives the same steps as in Section 3) and

f(x0) = 1

4
(η1 + η2)ζ(1 + 3δ) and fk+1 = fk − 1

4
(η1 + η2)

(

1

k + 1

)1+3δ

(4.19)
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and therefore the sequence {fk} is bounded below by zero. It is also clear from the derivation of the
example in Section 3 that we may use Hermite interpolation to define the objective function f on IR
such that it is twice continuously differentiable and has a Lipschitz continuous Hessian. It therefore
satisfies both A.1 and A.2. In order to verify that these functions and step values may be generated by
a trust-region algorithm, we first note, using (3.1), (4.18) and (4.19), that

fk+1 = fk − 1

4
(η1 + η2)|τk|∆

2
k.

Hence we obtain(4) from (2.10) that

ρk =
1

4
(η1 + η2)|τk|∆

2
k

1

2
|τk|∆2

k

= 1

2
(η1 + η2),

for each k ≥ 0. Every iteration is therefore successful (but not very successful). According to (4.4), we
may then choose ∆k+1 in the range [γ2∆,∆k] and our choice

∆k+1 =

(

k + 1

k + 2

)
1

3
+δ

∆k

is thus acceptable assuming, without loss of generality, that γ2 ≤ ( 1

2
)

1

3
+δ.

As in Section 3, we have constructed an objective function f satisfying A.1-A.2 on which the trust-

region algorithm will need, for any ǫg, ǫH and δ in (0, 1), at least of the order of O(ǫ
−3/(1+δ)
H ) successful

iterations to achieve approximate second-order optimality. The bounds given by (4.16) and (4.17) are
therefore sharp when ǫg ≥ ǫH . We have not been able to show that these bounds are sharp whenever
ǫg ≤ ǫH .

We conclude this paper by comparing the bounds for achieving (1.3) given for the ARC algorithm by
(2.30) in Theorem 2.9 and for the trust-region algorithm by (4.16)-(4.17) in Theorem 4.7.

• If one assumes that ǫH ≤ ǫg, then the two sets of bounds are qualitatively identical(5), and we have
seen that both are sharp.

• If ǫg < ǫH < ǫ
1/2
g , then the worst-case bound for the trust-region method is O(ǫ−2

g ǫ−1
H ) = O(ǫ−θ

H )
iterations at most for some θ ∈ (3, 5), while the corresponding (sharp) bound for the ARC algorithm
remains O(ǫ−3

H ), which is more favourable.

• Finally, if ǫ
1/2
g ≤ ǫH , the worst-case bound for the trust-region method is nowO(ǫ−2

g ǫ−1
H ) = O(ǫ

−5/2
g )

iterations at most, but Cartis et al. (2010b) show that it is also at least O(ǫ−2
g ). By comparison,

the worst-case bound for the ARC algorithm is shown to be no worse than O(ǫ2g), while if (2.9)

holds this improves to O(ǫ
−3/2
g ), which, according to Cartis et al. (2010b) is sharp. The choice of

ǫH of the order of the square root of ǫg (which falls at the limit between this third case and the
second) makes sense if one wishes to ensure independence of the stopping rule (1.3) from the effect
of linear transformations of the problem’s variables, and we note that such a choice is also implied
by the definition of the measure of local optimality in Nesterov and Polyak (2006).

We therefore see that the ARC algorithm has equal or better worst-case bounds than the trust-region
algorithm in all cases, and that the difference is largest for the most practically relevant choice ofthe
relative sizes of the first- and second-order stopping tolerances.

We conclude this section by observing that both presented examples are independent of the value of ǫg
relative to ǫH , disentangling the interaction between the first- and second-order optimality measures. In
particular, this is notable for the trust-region case, where Lemma 4.4 implies a strong interaction between
the measures, reflected in Theorem 4.7. Note however, that in both Lemma 4.4 and in Theorem 4.7,
if ‖gk‖ ≤ ǫg for all k (which is the case of our example), then it must be that τk < −ǫH for all k
until termination. Furthermore, then (4.11) becomes ∆k ≥ κ∆ǫH , only the second-order model decrease
applies in the proof of Lemma 4.5 and depends entirely on ǫH , yielding an upper bound of order ǫ−3

H

(4)Note that κsnc = 1 because our example is unidimensional.
(5)The constants differ.
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for the evaluation complexity of trust-region. Thus, for the particular case when only the curvature
condition needs to be satisfied, this upper bound is sharp for the trust-region algorithm. (Similarly,
when only the size of the gradient needs to be decreased, Theorem 4.7 yields an upper bound of order
ǫ−2
g , which was shown in (Cartis et al. 2010b) to be sharp for trust-region.) These remarks illustrate that
it is not just the relationship between ǫg and ǫH which matters for the worst-case bounds, but also how
“close” ‖gk‖ and |τk| are to these thresholds.

5 Summary and perspectives

We have considered the worst-case complexity of achieving approximate second-order optimality for
the ARC and trust-region algorithms. We have started by showing that the known bound of O(ǫ−3

H )
ARC iterations can be derived for a variant of the algorithm not requiring multi-dimensional global
optimization, and have then shown that the obtained bound is sharp. In addition, we have proved that
a bound of the same type also holds for the standard trust-region algorithm, and that this second bound
is also sharp whenever ǫH = O(ǫg). We also showed that the worst-case behaviour of the ARC algorithm
is always as good or preferable to that of the trust-region method.

An obvious next step is to extend the worst-case analysis for second-order optimality to finite-
difference and derivative-free schemes, in the spirit of Cartis, Gould and Toint (2010c), and to constrained
problems, possibly working along the lines of Cartis et al. (2008). It is also interesting to verify if the
optimality properties of the ARC algorithm for convergence to approximate first-order point (Cartis et
al., 2010d) can be extended to the ARC algorithm for the second-order case.
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