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Abstract

The VirtualBelgium project aims at developing understanding of the evolution of the Belgian popula-

tion using agent-based simulations and considering various aspects of this evolution such as demographics,

residential choices, activity patterns, mobility, etc. This simulation is based on a validated synthetic pop-

ulation consisting of approximately 10,000,000 individuals and 4,350,000 households localized in the 589

municipalities of Belgium.

The work presented in this paper focuses only on the mobility behaviour, simulated using an activity-

based approach in which the travel demand is derived from the activities performed by the individuals.

The proposed model is distribution based and requires only minimal information, but is designed for easily

taking advantage of any additional network-related data available.

The proposed activity-based has been applied on the Belgian synthetic population. The quality of the

agent behaviour is discussed using statistical criteria extracted from the literature and it is shown that

VirtualBelgium produces satisfactory results.

Keywords Micro-simulation, agent based simulation, activity chains, transport demand forecasting, nationwide
models

1 Introduction and motivation

Activity-based models form a class of travel demand forecasting model originally based on ideas by Hägerstrand
(1970) and Chapin (1974). These were proposed as an alternative to the classical four-stages trip-based models
for travel demand forecasting, whose drawbacks were by then well identified (i.e. Dickey, 1983, Domencich and
McFadden, 1975, Spear, 1977, Oppenheim, 1995). Activity-based approaches rely on the paradigm that people
travel to carry out activities they need or wish to perform. Such models reflect the scheduling of activities
performed by individuals in time and space and the sequence of activities, also names activity chains or activity
patterns, becomes the relevant unit of analysis. This approach is now widely accepted and continues to attract
a lot of attention.

Activity-based models can be classified in at least four families. The first two are discrete choice models
(Adler and Ben-Akiva, 1979, Bhat and Koppelman, 1999, Bradley, Bowman and Griesenbeck, 2010 and Bhat,
Guo, Srinivasan and Sivakumar, 2004) and mathematical programming techniques (Gan and Recker, 2008).
They have the drawbacks that the former approach may requires an extremely large choice set in order to
capture a sufficient fraction of feasible mobility patterns, while the latter may not be tractable as the decision
processes’ formulation may be extremely complex. This last issue also appears in structural equation modelling
techniques, another family of activity-based models, which is rather confirmatory than explanatory. We refer
the reader to Golob (2003) for a review of contributions using this approach and to Hoe (2008) for an insight
on its limitations. Finally, the fourth model’s family exploits the advent of high performance computing: it
uses massive multi-agents micro-simulations in order to reproduce behaviours within a complex system, such
as mobility behaviours of a large population (Kitamura, Chen and Pendyala (1997)).

It has been noted that that ”micro-simulation ... is drawing attention as a new approach to travel demand
forecasting” (Miller 1996), and several operational micro-simulators for activity scheduling are currently in
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use. Examples include ALBATROSS (Arentze and Timmermans (2000)) for the Netherlands, TASHA (a
part of the ILUTE simulator, Salvini and Miller (2005)) for the Greater Toronto Area, SAMS and AMOS
(Kitamura et al. (1996)). A review and comparison of various micro-simulators and discrete choice models for
activity-based modelling can be found in (Goran 2001). These approaches typically implement the first three
steps (generation, distribution and modal choice) of the traditional four-stage model. The last step, namely
traffic assignment, can be handled with dynamic traffic assignment procedures, whose adoption has been made
easier by the the development of powerful open source agent-based simulation systems such as MatSim (see
http://www.matsim.org, accessed on February, 2013), used by Meister et al. (2010) in travel demand forecasting
for Switzerland, Urbansim (Waddell (2002)) and Transim (Nagel, Beckman and Barrett, 1999.

Even though all these approaches have demonstrated their usefulness, they typically requires, in addition
to a complete description of the road network, an a-priori localisation of every housing unit, services, shops,...
This turns out to be a strong requirement: indeed, if this information can often be gathered for a particular
city or even a district of a country, the geo-localisation process is far more complex and cumbersome for a whole
country and may be not feasible. This issue motivates our interest for the design of an alternative methodology
obviating this limitation, but flexible enough to use every information available and making it suitable for a
nationwide application.

The approach taken in this work is the micro-simulation of the Belgian population’s mobility behaviours as a
part of the VirtualBelgium integrated simulator. The agents are derived from a synthetic population previously
generated and validated (see Barthelemy and Toint, 2012, for a complete description of the synthetic population
generator). The proposed activity scheduling model is a three steps procedure: first, a set of feasible activity
chains is generated for every agent type; a chain is then assigned to every individual agent of the simulation using
a randomized model; and all activities’ characteristics of the chain are finally determined based on statistical
distributions. The outputs of the model can then processed using MATSim for dynamic traffic assignment, if
required. VirtualBelgium’s activity-based models rely mainly on data extracted from the Mobel and Beldam
national mobility surveys conducted in Belgium (Hubert and Toint (2002), ref Cornelis et al. 2012 ) and the
OpenStreetMap project (Haklay and Weber 2008).

The remainder of this paper is organized as follows. Section 2 describes VirtualBelgium’s base architecture,
data sources, agents and activity chains possibly performed by them. In Section 3, we detail the proposed
method for assigning activity chains to individual agents. We next present in Section 4 the results obtained
with this methodology when applied to VirtualBelgium. Concluding remarks and future perspectives are finally
discussed in Section 5.

2 VirtualBelgium: a multi-agent micro-simulation for Belgium

Describing our activity chain generator is difficult without introducing the basic elements of the framework in
which these patterns are exploited. We therefore start with a brief outline of VirtualBelgium, a research project
for simulating mobility behaviour and demographic evolution of the Belgian population using a multi-agent
approach, based on the Repast HPC (Collier and North (2012)) and MATSim frameworks. The agents of
interest in VirtualBelgium consists of individuals in a population P = (I,H) of approximatively 10.000.000
people ∈ I gathered in 4.350.000 households ∈ H and localized in 589 municipalities. A consistent synthetic
population for Belgium was generated using a sample-free generator (see (Barthelemy and Toint 2012) for a
detailed description of the algorithm). Agent’s initial attributes, which significantly influence travel behaviour
(Avery (2011), Hubert and Toint (2002), Cornelis et al. (2012)), are described in Tables 2.1 and 2.2. This work
being focused on agent’s mobility behaviour, their evolution processes will not be discussed in this paper.

Attribute Values
Gender male; female
Age class 0-5; 6-17; 18-39; 40-59; 60+
Age an integer from 0 to 110
Socio-professional status student; active; inactive
Education level primary; high school; higher education; none
Driving license ownership yes; no

Table 2.1: Individuals’ characteristics
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Attribute Values

Type

single man alone
single woman alone
single man with children (and other adults)
single woman with children (and other adults)
couple without children (and other adults)
couple with children (and other adults)

Number of children 0 to 5
Number of other adults 0 to 2 (mate not included)

Table 2.2: Households’ characteristics

An overview of VirtualBelgium’s structure, which follows the standard of agent-based programming ap-
proach (van Dam, Nikolic and Lukszo, 2012), is illustrated on the class diagram of Figure 2.1. The agents
(Individual and Household classes), their actions and the interactions between them are ruled by a scheduler
(belonging to the Model class). One tick of the simulation represents one day of activities scheduling by the
agents. The agents’ environment is the Belgian road network (Network class).

Individual

-id: int

-household_id: int

-household_relationship: char = H, M, C, A

-gender: char = M, F

-age_class: int = 0-4

-age: int = 0-104

-education_level: char = O, P, S, U

-socio_professional_status: char = I, A, S

-driving_licence: char = O, P

-activity_chain: vector<Activity>

+setActivityChain(): void

Household

-id: int

-type: char = I, C, N, F

-number_of_children: int = 0-5

-number_of_additional_adults: int = 0-2

-list individual: vector<int>

-ins: int

-house_node_id: long = a network node id

+localizeHouse(): void

Activity

-type: char = d, m, v, t, e, r, c, p, f, b, l, o

-type_num: int = 1-12

-end_time: float

-duration: float

-distance: float

-node_id: long

composition

schedule

Network

-nodes: map<long, Node>

-links: map<long, Link>

+getDestinationFromSource(source_id:long,distance:float): long

localization

localization

Model

-individual_agents: SharedContext<Individual>

-household_agents: SharedContext<Household>

-model properties: Properties

+step(): void

+scheduler(): void

agents agents

Node

-id: long

-x: double

-y: double

-indicators: map<string,long>

-links_out: vector<long>

Link

-id: long

-start_node_id: long

-end_node_id: long

-lenght: float

composition composition

Figure 2.1: Class diagram

2.1 Activity chains, general assumptions and data source

Activity chains data used by VirtualBelgium is derived from the Mobel 2001 and Beldam 2012 mobility surveys
conducted in Belgium. These surveys highlighted 12 base activities:
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d pick up or drop someone

m staying home

v work related visit

t work

e school

r eating outside

c shopping

p personal reason

f visiting relatives

b going for a walk

l leisure activity

o other

Each activity is also characterized by a duration and a localization, i.e. a node of Belgium’s road network,
extracted from OpenStreetMap. Note that individual below 5 years old (included) are discarded as it is assumed
that they always travel with their relatives and they don’t have proper activity chains.

An activity chain is then a sequence of these base activities. It is assumed that each activity chains begins
and ends at the individual’s home. These concepts are formally described in Definition 1.

Definition 1 (Activity chain) An activity α performed by an individual is a quadruplet (αp, αl, αs, αd) where

• αp = the purpose ;

• αl = the localization ;

• αs = the starting time ;

• αd = the duration ;

of the activity. An activity chain α∗ = (αn)n∈{1,...,k} of size k is then a sequence α1, · · · , αk of activities.

The variety of observed activity chains is significant, as approximately 10,000 different such chains have
been extracted from the mentioned national surveys.

3 Activity chains generation and assignment

How to assign activity chains to each individual in the VirtualBelgium simulation? This section presents a
proposal for performing this assignment which does not rely on the geo-localization of each of the potential
activity sites, an information which is (unfortunately) missing in our context. We start by outlining the main
steps of our approach before a more formal description.

The first step is to generate a set of feasible activity-chains for each individual type available. It is also
required that every individual is assigned to a house localized in the network, a task which is necessary because
the synthetic population generator only specifies the homes’ municipality. This house will be the starting and
ending point of the activity chain for each individual living inside it. Once these preliminary steps have been
performed, the assignment of a fully characterized activity chain to an individual consists in drawing an activity
chain α∗ from the appropriate activity-chain set and finally determining the characteristics of every activity
α ∈ α∗. This methodology is fully described in the remainder of this Section.

3.1 Generation of activity chains patterns by individual type

In our context, an individual is characterized by a vector of m attributes V = (V1, . . . , Vm), whose components
may take a discrete and ordered set of values (see Table 2.1). Let’s denote by TI , Ai and ni the set of all
individual type, the set of activity chain patterns that could be extracted from the data relative to i ∈ TI and
the size of Ai, respectively. Definition 2 introduces the concept of neighbourhood for an individual type by
shifting its attributes’ values.

Definition 2 (l-neighbourhood) For an individual type i and a integer l ∈ {1, . . . ,m}, the l-neighbourhood
of i, denoted by N l

i , is the set of all individual types obtained by at most l shifts between contiguous values of
the attributes of type i.

Depending on the data, the number of observed activity chains may be lower than a desired minimal
threshold t for a subset of individual type TJ ⊆ TI . It is then necessary to add activity chains to the
problematic Aj such that the constraint

nj ≥ t ∀j ∈ TJ (3.1)
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yields. We propose to augment Aj with the activity chains in Ak, where k ∈ N l
j and l is as small as possible.

For VirtualBelgium, a threshold value t set to 5 has shown to produce reasonable diverse results. As one can
observe in Figure 3.2, out of 192 individual types, 116 problematic classes were identified in the raw data and
an at most a 3-neighbourhood was required to satisfy the constraint. In our implementation, the N l

j (l = 1, 2, 3)
are generated by sequentially modifying the following attributes:

1. gender;

2. gender and age class;

3. gender, age class and education level.

None Gender + Age class + Education
0

20

40

60

80

100

120
Problematic ind. types

N variables modified

N
 in

d.
 ty

pe
s

Figure 3.2: Numbers of problematic individual class with respect to the neighbourhood’s level.

3.2 Activity chains assignment

Once a set of activity chains Ai is available for each individual type i ∈ TI , the next step is to assign a chain to
every individual agent. This is done by randomly drawing an activity chain α in Ai if the considered individual
is of type i, using the empirical distribution obtained from the Mobel survey. For instance, Table 3.3 illustrates
the set A of feasible activity chains and their respective weights for a student woman between 18 and 39 years
old with a higher education degree and without a driving licence.

Pattern 2 5 10 2 2 9 2 2 5 2 2 5 2 10 2 2 5 6 5 2 2 11 2
Weight 0.272 1.025 0.913 0.412 0.412 0.284

Table 3.3: Weighted A for a given individual agent (Mobel).

3.3 Household’s house localization

As stated previously each household and its constituent members are already located in one of the 589 mu-
nicipality. Nevertheless, as the goal is to locate an activity at network-node level, and no data is available at
a more disaggregate level, the first part of the process consists in assigning each household to a node of their
municipality’s road network. The node, randomly drawn following a discrete uniform distribution (in order to
preserve the population density of the municipality), will be referred as the household’s house.

3.4 House departure time

The first step taken by an agent is to leave its home in order to perform the first activity of the day, i.e. a
house departure time h must be determined. Regarding the activity type to be performed, the time departure
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distribution H varies and is approximated by a mixture distribution which is fitted to the empirical distribution
obtained from the Mobel survey. The mixture is of the form

H ∼ f(x | p) =
l

∑

i=1

wiCi(x;µi, σ
2
i | p)

where p is the activity purpose, l the number of components, wi is the weight associated with the component
Ci such that wi ≥ 0 and

∑

i wi = 1. The Ci considered here follow a Log-Normal distribution LN (µi, σ
2
i ) with

location parameter µi ∈ IR and scale parameter σ2
i . For a detailed description of such mixture distributions,

see McLachlan and Peel (2000).
The empirical and fitted distributions are illustrated in Figures 3.3 and 3.4. It is important to note that

the number of components is determined such that each mixture distribution obtained is statically similar to
the empirical distribution according to the univariate Kolmogorov-Smirnov goodness-of-fit test (Massey, 1951)
at 5% significance level.

The departure time is then randomly drawn accordingly to the appropriate distribution(1).

3.5 Activity localization

We now turn to the details of how the localization of an activity is determined inside the road network of
Belgium. Given that each individual has a house, it is possible to localize each of his/her activities in the
network, the house being the starting point of the activity chain. These activities will also take place at a node
of the network, which is determined as follow:

1. a distance d is drawn from a distribution pertaining to the considered activity;

2. a set of nodes at distance d from the current localization is generated;

3. finally a node is drawn from the set generated at previous step.

We now give more detail on these three steps.

3.5.1 Random draw of a distance

Similarly to the house departure time, the random draw of the distance d travelled to perform an activity and
follow a mixture of distribution conditional to the type of the activity chain which is fitted to the empirical
distribution obtained from the Mobel survey. Empirical and resulting fitted probability density functions are
illustrated in Figures 3.5 and 3.6.

3.5.2 Generation of a set of feasible nodes for a given activity

The next step is to generate a set of node at distance d from the current localization, at which the considered
activity could take place. A Dijkstra algorithm relying on a Fibonacci heap data structure (Fredman and Tarjan,
1987), is then used to explore the network and find these feasible nodes. For a network with n nodes and m

arcs, this algorithmic variant has the crucial advantage in our context of requiring O((n log n + m) operations,
instead of O(n2) for a more direct implementation. If no suitable node is found at the desired distance, then
the same procedure is applied but with a range of distances [d− ǫ, d + ǫ]. This error term ǫ is increased(2) until
at least one node is discovered.

3.5.3 Activity node choice

If no additional data is available, the destination node αl is then randomly chosen from a discrete uniform draw.
Otherwise, the draws can be empirically weighted in order to take information on specific activity localization
at specific nodes/municipalities (for instance using geo- localization) into account. To illustrate our proposal,

(1)Directly drawing from empirical distribution has also been investigated, but this was up to 3 times slower in the conducted
experiments. As a very large number of draws is involved (in the hundred of millions), random number generation speed becomes
an essential issue to address and this approach has been discarded.

(2)In practice, doubled with initial value of 250m.
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Figure 3.3: House departure time (minutes after midnight) : empirical and estimated cumulative distribution
functions by purpose.
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Figure 3.4: House departure time (minutes after midnight) : empirical and estimated cumulative distribution
functions by purpose.
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Figure 3.5: Distance (meters) : empirical and estimated cumulative distribution functions by activity type.
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Figure 3.6: Distance (meters) : empirical and estimated cumulative distribution functions by activity type.
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assume a road network and an activity choice resulting in a set of 4 feasibles nodes, whose indicators for 3
types of activity are detailed in Table 3.5.3 (nodes 1 and 2 belongs to the same municipality). If no indicators
is available, such as for leisure, then the line is set to na; work is municipality-related indicator and school is
a node-related indicator used for precise geo-localization of schools.

Indicator Node 1 Node 2 Node 3 Node 4
work 1000 1000 500 800
school 0 1 0 0
leisure na na na na

Table 3.4: Nodes’ indicators

The proposed technique has the advantage of using localization data whenever available, but also allows for
a reasonable alternative, would such information be missing.

3.6 Activity duration

An activity duration depends on its starting time, which is obtained by adding the ending time of the previous
activity and the trip duration performed to reach the current localization. The time spent to carry out an
activity is then determined by

1. drawing a trip duration t to a compute a starting time αs;

2. and drawing an activity duration αd conditional to s.

These two steps are detailed in the remaining of this Section.

3.6.1 Trip duration and starting time

It is clear that a trip duration t is related to its distance d. This observation lead us to fit a mixture a bivariate
distribution to approximate the joint-distribution of (D,T ) where T and D are respectively the random variables
associated with the duration and the distance of the trip. The resulting bivariate distribution is illustrated in
Figure 3.7 and is defined by

(D,T ) ∼ f(x) =

l
∑

i=1

wiCi(x;µi,Σi)

were l the number of components, wi is the weight associated with the component Ci such that wi ≥ 0 and
∑

i wi = 1. The Ci considered here follow a bivariate Log-Normal distribution LN (µi,Σi) with location vector

µi = (µi,1, µi,2)

and scale matrix

Σi =

(

σi,11 σi,12

σi,21 σi,22

)

.

As for the distributions of the house departure time and the distance performed to reach an activity, the
number of components l is determined in order to obtained a fitted distribution that is statistically similar to
the empirical distribution according to the Fasano and Franceschini’s generalization of the Kolmorov-Smirnov
goodness-of-fit test (Fasano and Franceschini, 1987) at significance level of 5%.

The fitted distribution is illustrated in Figure 3.7. As one could expect, there is a positive correlation
between the distance and the duration of trip, i.e. the further an individual go, the more time he spend on the
road. It can also be noted the variance of the duration is higher for smaller trip, and gradually decrease as the
distance increase.

Since the distance d is computed in Section 3.5, it follows from (Eaton, 1983) that the trip duration t can
be draw from the univariate conditional distribution of T given D = d defined by

T | D = d ∼ f(x |D = d) =

l
∑

i=1

wiCi(x;µi, σi)



J. Barthelemy, Ph.L. Toint: Activity-based simulation for Belgium 12

5 6 7 8 9 10 11 12

4

5

6

7

8

9

log(distance)

lo
g(

du
ra

tio
n)

 

 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3.7: Fitted probability density function of log(distance) (meters) × log(duration) (seconds)

where l is the number of components, wi are the weights of the mixture and Ci follow a univariate Log-Normal
distribution LN (µi, σi) such that

µi = µi,2 +
σi,12

σi,11
(d − µi,1)

and

σi = σi,22 −
(σi,12)

2

σi,11
.

The starting time of αi ∈ α∗ (i > 1) is then obtained by adding the transportation duration and the ending
time of the previous activity of the chain, i.e.

αs
i = (αs

i−1 + αd
i−1) + t.

3.6.2 Activity duration

Since an activity duration is correlated with its starting time and purpose, the computation of αd follow a
similar process applied for determining a trip duration, i.e. for each purpose the joint- distribution of an
activity starting time and its duration is fitted to the data. Figure 3.8 and 3.9 illustrate the resulting joint-
distributions, from which behavioural patterns can be observed. For instance

• individuals mainly start working at 8:30 for 9 hours, but the distribution also highlights the part-time
worker starting at 8:30 or 13:00;

• students usually start the school at 8:30 am, and remains there either 4 hours (on Wednesday) or 8 hours
(the other school opening days). Also the later a student arrives at school, the less time he spend there;

• eating outside occurs at midday and in the evening. An average midday and evening lunch takes 1:20
hour and 2:15 respectively. This indicates that midday lunch duration is more constrained by the time
budget available for the remaining activities of the day.

These observation are shows that the fitted distributions produces realistic behaviours.
A duration αp is then draw from the distribution pertaining to the considered activity purpose conditionally

to the starting time computed previously.
Finally, the activity chain of the individual is completed by generating a return to home after the end of

the last activity.



J. Barthelemy, Ph.L. Toint: Activity-based simulation for Belgium 13

log(start)

lo
g(

du
ra

tio
n)

pick up/drop someone

 

 

10 10.5 11

3

4

5

6

7

8

9

10

log(start)

lo
g(

du
ra

tio
n)

home

 

 

10.4 10.6 10.8 11 11.2

6

7

8

9

10

11

log(start)

lo
g(

du
ra

tio
n)

work visit

 

 

10 10.5 11

5

6

7

8

9

10

11

log(start)

lo
g(

du
ra

tio
n)

work

 

 

10 10.2 10.4 10.6 10.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

log(start)

lo
g(

du
ra

tio
n)

school

 

 

10.2 10.25 10.3 10.35 10.4

9.2

9.4

9.6

9.8

10

10.2

10.4

log(start)

lo
g(

du
ra

tio
n)

eating outside

 

 

10.6 10.8 11 11.2

6

7

8

9

10

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2

4

6

8

10

12

14

16

18

20

Figure 3.8: Starting time × Duration (minutes) : estimated probability density functions by purpose.
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Figure 3.9: Starting time × Duration (minutes) : estimated probability density functions by purpose.
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4 Application on VirtualBelgium: results

Our activity-based model has been successfully applied to the Belgian synthetic population to simulate an
average day. As stated in Section 2, the simulation involved 10,300,000 agents and 4,350,000 households
and an average of 4.33 activity per individual i.e. 43.300.000 activities to characterize. The road network
considered is illustrated in Figure 4.10, which is made of 66.304 nodes and 125.889 links. It is detailed up
to the OpenStreeMap tertiary road network. The sheer size of the simulation generates a substantial amount
of computation, whose efficient organization and structuration is truly challenging. The main computational
burden is the execution of many shortest-path calculations for activity localization, as well as efficient random
draws. After several preliminary attempts, our current best execution time is approximatively 11:00 hours
using 500 Intel Xeon X5650 processors’ cores and 1GB of RAM per core, a speed up of a factor 50 on our initial
implementation.

Figure 4.10: Belgian road network - 66.304 nodes and 125.889 links

The main output of VirtualBelgium consist of a standard XML file describing the agenda of every agent of
the simulation. Listing 1 illustrates the agenda of an agent.

<person id="9993331">

<plan selected="yes">

<act type="m" x="415857.564773" y="596350.923224" end_time="11:25:24"/>

<leg mode="car"/>

<act type="c" x="410815.268373" y="595582.660781" end_time="13:50:8"/>

<leg mode="car"/>

<act type="m" x="415857.564773" y="596350.923224" end_time="14:18:41"/>

<leg mode="car"/>

<act type="l" x="416014.612566" y="595111.030150" end_time="15:46:33"/>

<leg mode="car"/>
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<act type="m" x="415857.564773" y="596350.923224" end_time="19:34:1"/>

<leg mode="car"/>

<act type="r" x="456142.165279" y="605678.510457" end_time="23:33:24"/>

<leg mode="car"/>

<act type="m" x="415857.564773" y="596350.923224"/>

</plan>

</person>

Listing 1: An agent’s schedule (XML)

Figure 4.11 show the histogram of proportions of activities starting at each hour of the day. One can easily
observe the morning and evening peaks occurring a 8:00 am and 4:00 pm. The comparison of the cumulative
distribution functions and the probability density function between the Mobel data and VirtualBelgium is given
in Figures 4.12 and 4.13. The Kolmogorov-Smirnov test indicates that these distribution are not significantly
different. This result is crucial since it in shows that at an aggregate level, the VirtualBelium agents behave as
expected.

−5 0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Starting time

P
ro

po
rt

io
n

Figure 4.11: Histogram of the number of the number of activity starting at each hour of the day.

The difference between VirtualBelgium and Mobel in proportion of activity is presented at Figure 4.14. One
can easily see that the differences remains very small, with a mean error of ≃ 0 and a maximum difference less
than 10%. This observation seems to validate the generation of activity chain patterns by individual type and
the assignment process.

The map illustrated in Figure 4.15 represent the number of activities starting between 8:00 a.m. and 9:00
a.m. by municipalities. As expected, the main cities of Belgium attracts the most part of the activities. This
result is encouraging as no indicators were used. This is certainly explained by the fact that these cities have
a more dense road network, thus the activity localization process naturally favours them.

As the XML output of VirtualBelgium is compatible with MATSim, it is possible to use it to perform
dynamic traffic assignment. For instance Figure 4.16 illustrate a snapshot of the beginning of the morning peak
on the Namur city road network. It is nevertheless important to note that every agents use the same transport
mode, namely the car, as no mode choice model is currently available in VirtualBelgium.

5 Conclusions and future work

This paper detailed a flexible activity based model implemented in VirtualBelgium, a large agent-based micro-
simulation designed to replicate the mobility behaviour of the Belgian population and its evolution. This work
demonstrates that assigning and fully characterized (temporally and spatially) a sequence of activities to more
than 10.000.000 agents is nowadays feasible.
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Figure 4.12: Comparison of the empirical and resulting cumulative distributions.
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Figure 4.13: Comparison of the empirical and resulting probability density distributions.

The models developed in the VirtualBelgium micro-simulator are data driven and require no a priori informa-
tion about the localization of activities. Indeed the minimal requirements are a road network and distributions
of the distance and duration for each activity type. Nevertheless the methodology is designed to easily take
advantage of any new data sources available such as precise geo-localization of schools and shopping centres, job
and services indicators by municipality,... in order to weight or constraints the random draws to specific nodes
or municipalities. Moreover the results are promising as the agents mobility behaviour is statistically similar
to the ones observed in the Mobel mobility survey. Lastly, the outputs of VirtualBelgium are compatible with
MATSim, a powerful and validated micro-simulator for traffic assigment.

Unsurprisingly, the model still requires improvements in order to increase the quality and the reliability
of the results. One of the important issue of the current implementation is the lack of a true mode choice
for reaching an activity (public transportation, car, walking). In the short term, investigating modal choice ,
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Figure 4.14: Difference of activity type proportions between VirtualBelgium and Mobel.
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Figure 4.15: Number of starting activities by municipality between 8:00 am and 9:00 am.

improving data for destination choice (job and service indicators by municipality, schools localization, ...) will
also be investigated. Finally, the use of the new tool for estimating OD-matrices is also considered.
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T. Hägerstrand. What about people in regional science. Papers of the Regional Science, 4(1), 6–21, 1970.

M. M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive Computing,
7(4), 12–18, 2008.

S.L. Hoe. Issues and procedures in adopting structural equation modeling technique. Journal of Applied
quantitative methods, 3(1), 76–83, 2008.
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