
Universal regularization methods –

varying the power, the smoothness and the accuracy

by C. Cartis, N. I. M. Gould and Ph. L. Toint

2 December 2016

Report NAXYS-07-2016 2 December 2016

University of Namur, 61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.unamur.be/sciences/naxys

∗Mathematical Institute, Oxford University, Oxford OX2 6GG, UK. Email: coralia.cartis@maths.ox.ac.uk
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11

0QX, UK. Email: nick.gould@stfc.ac.uk.
‡NAXYS - University of Namur, 61, rue de Bruxelles, B-5000, Namur, Belgium. Email: philippe.toint@unamur.be.



Universal regularization methods – varying the power, the

smoothness and the accuracy

Coralia Cartis∗, Nicholas I. M. Gould† and Philippe L. Toint‡

December 11, 2016

Abstract

Adaptive cubic regularization methods have emerged as a credible alternative to linesearch and

trust-region for smooth nonconvex optimization, with optimal complexity amongst second-order meth-

ods. Here we consider a general/new class of adaptive regularization methods, that use first- or

higher-order local Taylor models of the objective regularized by a(ny) power of the step size and

applied to convexly-constrained optimization problems. We investigate the worst-case evaluation com-

plexity/global rate of convergence of these algorithms, when the level of sufficient smoothness of the

objective may be unknown or may even be absent. We find that the methods accurately reflect in

their complexity the degree of smoothness of the objective and satisfy increasingly better bounds with

improving accuracy of the models. The bounds vary continuously and robustly with respect to the

regularization power and accuracy of the model and the degree of smoothness of the objective.

Keywords: evaluation complexity, worst-case analysis, regularization methods.

1 Introduction

We consider the (possibly) convexly-constrained optimization problem

min
x∈F

f(x) (1.1)

where f : IRn −→ IR is a smooth, possibly nonconvex, objective and where the feasible set F ⊂ IRn is

closed, convex and non-empty (for example, the set F could be described by simple bounds and both

polyhedral and more general convex constraints)1. Clearly, the case of unconstrained optimization is

covered here by letting F = IRn. We are interested in the case when f ∈ Cp,βp(F), namely, f is p−times

continuously differentiable in F with the pth derivative being Hölder continuous of (unknown) degree

βp ∈ [0, 1]2. We consider adaptive regularization methods applied to problem (1.1) that generate feasible

iterates xk that are (possibly very) approximate minimizers over F of local models of the form

mk(xk + s) = Tp(xk, s) +
σk
r
‖s‖r2,

where Tp(xk, s) is the pth order Taylor polynomial of f at xk and r > p ≥ 1. The parameter σk > 0

is adjusted to ensure sufficient decrease in f happens when the model value is decreased. In this paper,

we derive evaluation complexity bounds for finding first-order critical points of (1.1) using higher-order

adaptive regularization methods. Despite the higher order of the models, the model minimization is

performed only approximately, generalizing the approach in [3]. The proposed methods also ensure that

the steps are ‘sufficiently long’, in a new way, generalizing ideas in [11]. The ensuing complexity analysis

shows the robust interplay of the regularization power r, the model accuracy p and the degree of smoothness

βp of the objective, with some surprising results. In particular, we find that the degree of smoothness of

the objective—which is often unknown and is even allowed to be absent here—is accurately reflected in the

1We are tacitly assuming that the cost of evaluating constraint functions and their derivatives is negligible.
2Note that if βp > 1, then the resulting class of objectives is restricted to multivariate polynomials of degree p. If p = 1,

we only allow β1 ∈ (0, 1], for reasons to be explained later in the paper.
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complexity of the methods, independently of the regularization power, provided the latter is sufficiently

large. Furthermore, for all possible powers r, the methods satisfy increasingly better bounds as the

accuracy p of the models and smoothness level βp are increased. All bounds vary continuously as a function

of the regularization power and smoothness level. Table 4.1 in Section 4 summarizes our complexity

bounds.

We now review existing literature in detail and further clarify our approach, motivation and con-

tributions. Cubic regularization for the (unconstrained) minimization of f(x) for x ∈ IRn was proposed

independently by [12,16,17], with [16] showing it has better global worst-case function evaluation complex-

ity than the method of steepest descent. Extending [16], we proposed some practical variants – Adaptive

Regularization with Cubics (ARC) [5] – that satisfy the same complexity bound as the regularization

methods in [16], namely at most O(ε−
3
2 ) evaluations are needed to find a point x for which

‖∇xf(x)‖ ≤ ε, (1.2)

under milder requirements on the algorithm (specifically, inexact model minimization). We further showed

in [4,6] that this complexity bound for ARC is sharp and optimal for a large class of second-order methods

when applied to functions with globally Lipschitz-continuous second derivatives. Quadratic regularization,

namely, a first order accurate model of the objective regularized by a quadratic term, has also been exten-

sively studied, and shown to satisfy the complexity bound of steepest descent, namely, O(ε−2) evaluations

to obtain (1.2) [14]. It was also shown in [5] that one can loosen the requirement that global Lipschitz

continuity of the second derivative holds, to just global Hölder continuity of the same derivative with

exponent β2 ∈ (0, 1]. Then, if one also regularizes the quadratic objective model by the power 2 + β2

of the step, involving the (often unknown) Hölder exponent, the resulting method requires O(ε−
2+β2
1+β2 )

evaluations, which just as a function of ε, belongs to the interval
[
ε−

3
2 , ε−2

]
; these bounds are sharp and

optimal for objectives with corresponding level of smoothness of the Hessian [6]. Note that this bound

also holds if β2 = 0.

An important related question and extension was answered in [3]: if higher-order derivatives are avail-

able, can one improve the complexity of regularization methods? It was shown in [3] that if one considers

approximately minimizing a (r−1)th order Taylor model of the objective regularized by the (weighted) rth

power of the (Euclidean) norm of the step in each iteration (so r = p+ 1), the complexity of the resulting

adaptive regularization method is O(ε−
r
r−1 ) evaluations to obtain (1.2), under the assumption that the

(r−1)th derivative tensor is globally Lipschitz continuous. The method proposed in [3] measures progress

of each iteration by comparing the Taylor model decrease (without the regularization term) to that of

the true function decrease and only requiring mild approximate (local) minimization of the regularized

model. Here, we generalize these higher-order regularization methods from [3] to allow for an arbitrary

local Taylor model, an arbitrary regularization power of the step and varying levels of smoothness of the

highest-order derivative in the Taylor model.

The interest in considering relaxations of Lipschitz continuity to Hölder continuity of derivatives comes

not only from the needs of some engineering applications (such as flows in gas pipelines [10, Section 17] and

properties of nonlinear PDE problems [1]), but also in its own right in optimization theory, as a bridging

case between the smooth and non-smooth classes of problems [13,15]. In particular, a zero Hölder exponent

for a Hölder continuous derivative corresponds to a bounded derivative, an exponent in (0, 1) corresponds to

a continuous but not necessarily differentiable derivative, while an exponent of 1 corresponds to a Lipschitz

continuous derivative that can be differentiated again. For the case of function with Hölder-continuous

gradients, methods have already been devised, and their complexity analysed, both as a weaker set of

assumptions and as an attempt to have a ‘smooth’ transition between the smooth and nonsmooth (convex)

problem classes, without knowing a priori the level of smoothness of the gradient (i.e., the Hölder exponent)

[9,15]; even lower complexity bounds are known [13]. In [7] we considered regularization methods applied

to nonconvex objectives with Hölder continuous gradients (with unknown exponent β1 ∈ (0, 1]), that

employ a first-order quadratic model of the objective regularized by the rth power of the step. We showed

that the worst-case complexity of the resulting regularization methods varies depending on min{r, 1+β1}.
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In particular, when 1 < r ≤ 1 + β1, the methods take at most O
(
ε−

r
r−1
)

evaluations/iterations until

termination, and otherwise, at most O
(
ε−

1+β1
β1

)
evaluations/iterations to achieve the same condition.

The latter complexity bound reflects the smoothness of the objective’s landscape, without prior knowledge

or use of it in the algorithm, and is independent of the regularization power. Here we generalize the

approach in [7] to pth order Taylor models and find that similar bounds can be obtained. Also, we are

able to allow βp = 0 provided p ≥ 2.

Recently, [11] proposed a new cubic regularization scheme that yields a universal algorithm in the

sense that its complexity reflects the (possibly unknown or even absent) degree of sufficient smoothness

of the objective (for this, p = 2, r = 3 and β2 ∈ [0, 1]). Our ARp algorithm includes a modification in a

similar (but not identical) vein to that in [11]. In particular, our approach checks/ensures that the length

of the step is sufficiently large on all iterations on which the objective is sufficiently decreased, while the

technique in [11] uses a specific/new sufficient decrease condition of the objective on each iteration. We

generalize the approach in [11] and achieve complexity bounds with similar universal properties for varying

r, p and unknown βp ∈ [0, 1], provided r ≥ p + βp. We are also able to analyze ARp’s complexity in the

regime p < r ≤ p+ βp providing continuously varying results with r and βp.

Our algorithm can be applied to convexly-constrained optimization problems with nonconvex objec-

tives, where the constraint/feasibility evaluations are inexpensive, offering another generalization of pro-

posals in [3] and [11] which are presented for the unconstrained case only; we also extend [11] by allowing

inexact subproblem solution.

The structure of the paper is as follows. Section 2 describes our main algorithmic framework, ARp.

Section 3 presents our complexity analysis while Section 4 concludes with a summary of our complexity

bounds (see Table 4.1) and a discussion of the results.

2 A universal adaptive regularization framework - ARp

Let f ∈ Cp(F), with p integer, p ≥ 1; let r ∈ IR, r > p ≥ 1. We measure optimality using a suitable

continuous first-order criticality measure for (1.1). We define this measure for a general function h :

IRn −→ IR on F : for an arbitrary x ∈ F , the criticality measure is given by

πh(x)
def
= ‖PF [x−∇xh(x)]− x‖, (2.1)

where PF denotes the orthogonal projection onto F and ‖ · ‖ the Euclidean norm. Letting h(x) := f(x) in

(2.1), it is known that x is a first-order critical point of problem (1.1) if and only if πf (x) = 0. Also note

that

πf (x) = ‖∇xf(x)‖ whenever F = IRn.

For more properties of this measure see [2, 8].

Our ARp algorithm generates feasible iterates xk that (possibly very) approximately minimize the local

model

mk(xk + s) = Tp(xk, s) +
σk
r
‖s‖r subject to xk + s ∈ F , (2.2)

which is a regularization of the pth order Taylor model of f around xk,

Tp(xk, s) = f(xk) +

p∑
j=1

1

j!
∇jxf(xk)[s]j , (2.3)

where ∇jxf(xk)[s]j is the jth order tensor ∇jxf(xk) of f at xk applied to the vector s repeated j times.

Note that Tp(xk, 0) = f(xk). We will also use the measure (2.1) with h(s) := mk(xk + s) for terminating

the approximate minimization of mk(xk + s), and for which we have again

πmk(xk + s) = ‖∇smk(xk + s)‖ whenever F = IRn.

A summary of the main algorithmic framework is as follows.
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Algorithm 2.1: A universal ARp variant.

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter σ0 > 0 are

given, as well as an accuracy level ε > 0. The constants η1, η2, γ1, γ2 and γ3, θ, σmin and α,

are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ3 < 1 < γ1 < γ2 and α ∈
(

0,
1

3

]
. (2.4)

Compute f(x0), ∇xf(x0) and set k = 0. If πf (x0) < ε, terminate. Else, for k ≥ 0, do:

Step 1: Model set-up. Compute derivatives of f of order 2 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the model mk(xk+

s) in (2.2) over xk + s ∈ F such that the following conditions hold,

xk + sk ∈ F , (2.5)

mk(xk + sk) < f(xk) (2.6)

and

πmk(xk + sk) ≤ θ‖sk‖r−1. (2.7)

Step 3: Test for termination. Compute ∇xf(xk + sk). I f πf (xk + sk) < ε, terminate with the

approximate solution xε = xk + sk.

Step 4: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

f(xk)− Tp(xk, sk)
. (2.8)

If ρk ≥ η1, check whether

σk‖sk‖r−1 ≥ αε. (2.9)

If both ρk ≥ η1 and (2.9) hold, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 5: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ3σk), σk] if ρk ≥ η2 and (2.9) holds,

[σk, γ1σk] if ρk ∈ [η1, η2) and (2.9) holds,

[γ1σk, γ2σk] if ρk < η1 or (2.9) fails.

(2.10)

Increment k by one, and go to Step 1 if ρk ≥ η1 and (2.9) hold, and to Step 2 otherwise.
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Iterations for which ρk ≥ η1 and (2.9) hold (and so xk+1 = xk + sk) are called successful, those for

which ρk ≥ η2 and (2.9) hold are referred to as very successful, while the remaining ones are unsuccess-

ful. For a(ny) j ≥ 0, we denote the set of successful iterations up to j by Sj = {0 ≤ k ≤ j : ρk ≥
η1 and (2.9) holds} and the set of unsuccessful ones by Uj = {0, . . . , j} \ Sj . We have the following

simple lemma that relates the number of successful and unsuccessful iterations and that is ensured by the

mechanism of the Algorithm 2.1.

Lemma 2.1. [5, Theorem 2.1] For any fixed j ≥ 0 until termination, let σup > 0 be such that

σk ≤ σup for all k ≤ j in Algorithm 2.1. Then

|Uj | ≤
| log γ3|
log γ1

|Sj |+
1

log γ1
log

(
σup
σ0

)
, (2.11)

where | · | denotes the cardinality of the respective index set.

Proof. The proof of (2.11) follows identically to the given reference; note that the sets Sj and Uj
are not identical to the usual ARC ones in [5] but the mechanism for modifying σk in ARp coincides

with the one in ARC on these iterations and that is why the proof of this lemma follows identically

to [5, Theorem 2.1]. 2

Now we comment on the construction of the ARp algorithm. Note that the model minimization

conditions (Step 2) and the definition of ρ in Step 4 are straightforward generalizations of the approach

in [3] to pth order Taylor models regularized by different powers r of the norm of the step. However,

there are two main differences to the by-now standard approaches to (cubic or higher order) regularization

methods. Firstly, we check whether the gradient goes below ε at each trial points, and if so, terminate on

possibly unsuccessful iterations (Step 3). Secondly, we check whether the step sk is sufficiently long (in

the sense of condition (2.9)) on every successful steps, and only allow such sufficiently long steps to be

taken by the algorithm; if the step is not sufficiently long (or ρk ≤ η1), σk is increased. Note that though

the length of the step sk decreases as σk is increased, this is not the case for the expression σk‖sk‖r−1
in (2.9), which increases with σk, as Lemma 3.4 implies. These two additional ingredients—the gradient

calculation at each trial point and the step length condition (2.9)—are directly related to trying to achieve

universality of ARp, extending ideas from [11].3

Remarks. Instead of requiring (2.9) on each successful step, we could ask that each model minimiza-

tion step calculated in Step 2 satisfies (2.9); if (2.9) failed, σk would be increased at the end of Step 2 and

the model minimization step would be repeated. This approach may result in an unnecessarily small step

in practice. Similarly, following [11], one could replace (2.9) with a different definition for ρk, namely, the

denominator in ρk would be replaced by a rational function in ε and σk to achieve the desired order of

model/function decrease for universal complexity and behaviour. We found the implicit way of controlling

the length of the step to be less intuitive but accept this is simply a matter of opinion. According to our

calculations, qualitatively similar complexity bounds would be obtained for these two ARp variants.

3 Worst-case complexity analysis of ARp

3.1 Some preliminary properties

We have the following simple consequence of (2.6).

3We note that without the condition (2.9) on the length of the step, or a similar measure of progress, the complexity of

ARp would dramatically worsen (according to our calculations) in the regime when r > p+ βp.



6 C. Cartis, N. I. M. Gould and Ph. L. Toint

Lemma 3.1. On each iteration of Algorithm 2.1, we have the decrease

f(xk)− Tq(xk, sk) ≥ σk
r
‖sk‖r. (3.1)

Proof. Note that condition (2.6) and the definition of mk(s) in (2.2) immediately give (3.1). 2

We have the following upper bound on sk.

Lemma 3.2. On each iteration of Algorithm 2.1, we have

‖sk‖ ≤ max
1≤j≤p

{(
pr

j!σk
‖∇jxf(xk)‖

) 1
r−j
}
. (3.2)

Proof. It follows from (2.6), (2.2) and (2.3) that

sTk∇xf(xk) +
1

2
∇2
xf(xk)[sk, sk] + . . .+

1

p!
∇pxf(xk)[sk, sk, . . . , sk] +

σk
r
‖sk‖r < 0,

which from Cauchy-Schwarz and norm properties, further implies

−‖sk‖ · ‖∇xf(xk)‖ − 1

2
‖sk‖2 · ‖∇2

xf(xk)‖ − . . .− 1

p!
‖sk‖p · ‖∇pxf(xk)‖+

σk
r
‖sk‖r < 0,

or equivalently,
p∑
j=1

(
σk
pr
‖sk‖r −

1

j!
‖sk‖j · ‖∇jxf(xk)‖

)
< 0.

The last displayed equation cannot hold unless at least one of the terms on the left-hand side is

negative, which is equivalent to (3.2), using also that r > p ≥ 1. 2

Let us assume that f ∈ Cp,βp , namely,

A.1 f ∈ Cp(F) and ∇pxf is Hölder continuous on the path of the iterates and trial points, namely,

‖∇pxf(y)−∇pxf(xk)‖T ≤ (p− 1)!Lp‖y − xk‖βp

holds for all y ∈ [xk, xk + sk], k ≥ 0 and some constants Lp ≥ 0 and βp ∈ [0, 1], where ‖ · ‖ is the

Euclidean norm on IRn and ‖ · ‖T is recursively induced by this norm on the space of the pth order

tensors.

A simple consequence of A.1 is that

|f(xk + sk)− Tp(xk, sk)| ≤ Lp
p(βp + 1)

‖sk‖p+βp , k ≥ 0, (3.3)

and

‖∇xf(xk + sk)−∇sTp(xk, sk)‖ ≤ Lp
βp + 1

‖sk‖p+βp−1, k ≥ 0; (3.4)

see [2] for a proof of (3.3) and (3.4), with A.1 replacing Lipschitz continuity of the pth derivative.

Remark Note that throughout the paper we assume r > p ≥ 1, r ∈ IR and p ∈ IN; and that either

p ≥ 1 and βp ∈ (0, 1] or p ≥ 2 and βp ∈ [0, 1]. Thus in both cases p+ βp − 1 > 0. 2

Two useful preliminary lemmas follow.
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Lemma 3.3. Assume that A.1 holds. Then on each iteration of Algorithm 2.1, we have

πf (xk + sk) ≤ Lp
βp + 1

‖sk‖p+βp−1 + (σk + θ)‖sk‖r−1. (3.5)

Proof. We have that

∇smk(xk + s) = ∇sTp(xk, s) + σk‖s‖r−1
s

‖s‖

and so

‖∇xf(xk + sk)−∇smk(xk + sk)‖ ≤ ‖∇xf(xk + sk)−∇sTp(xk, sk)‖+ σk‖sk‖r−1

≤ Lp
βp+1‖sk‖

p+βp−1 + σk‖sk‖r−1,
(3.6)

where we also used (3.4). Now using the contractive property of the projection operator PF and

triangle inequality, we have

πf (xk + sk) = ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]

+ PF [xk + sk −∇smk(xk + sk)]− (xk + sk)‖

≤ ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]‖+ πmk(xk + sk)

≤ ‖∇xf(xk + sk)]−∇smk(xk + sk)‖+ θ‖sk‖r−1,

where in the last inequality, we also employed the termination condition (2.7). Now (3.5) follows from

(3.6). 2

Lemma 3.4. Assume that A.1 holds and that Algorithm 2.1 has not terminated. Then, if

σk ≥ max
{
θ, κ2‖sk‖p+βp−r

}
, (3.7)

where

κ2
def
=

rLp
p(1 + βp)(1− η2)

, (3.8)

both ρk ≥ η2 and (2.9) hold, and so iteration k is very successful.

Proof. Evaluating ρk in (2.8), we deduce

|ρk − 1| ≤ |f(xk + sk)− Tp(xk, sk)|
f(xk)− Tp(xk, sk)

≤
Lp

p(βp+1)‖sk‖
p+βp

σk
r ‖sk‖r

=
rLp

p(βp + 1)σk
‖sk‖p+βp−r

where we also used (3.1) and (3.3). It follows from (2.8) that if |1− ρk| ≤ 1− η2, then ρk ≥ η2. The

former condition is satisfied if (3.7) holds.

It remains to show that while Algorithm 2.1 does not terminate, (3.7) also implies (2.9). It follows

from (3.5) and σk ≥ θ that

πf (xk + sk) ≤ ‖sk‖p+βp−1
(

Lp
βp + 1

+ 2σk‖sk‖r−p−βp
)
≤ ‖sk‖p+βp−1

(
κ2 + 2σk‖sk‖r−p−βp

)
,
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where in the last inequality, we used the definition of κ2, r > p and η2 ∈ (0, 1). Using (3.7), the last

displayed inequality further becomes

πf (xk + sk) ≤ ‖sk‖p+βp−1
(
3σk‖sk‖r−p−βp

)
= 3σk‖sk‖r−1.

Thus σk‖sk‖r−1 ≥ 1
3πf (xk + sk), which in turn implies (2.9) since α ≤ 1

3 and πf (xk + sk) ≥ ε as

Algorithm 2.1 has not terminated. 2

3.2 The case when r > p+ βp

Using Lemmas 3.3 and 3.4, we have the following result, which was inspired by and generalizes the result

in [11, Lemma 4].

Lemma 3.5. Let r > p+ βp and assume A.1. While Algorithm 2.1 has not terminated, if

σk ≥ max

{
θ, κ1ε

p+βp−r
p+βp−1

}
, (3.9)

where

κ1
def
=
(
3r−p−βpκr−12

) 1
p+βp−1 and κ2 is defined in (3.8), (3.10)

then (3.7) holds, and so iteration k is very successful.

Proof. While Algorithm 2.1 does not terminate, we have πf (xk + sk) ≥ ε.

Assume that (3.7) does not hold on iteration k, and so

σk‖sk‖r−p−βp < κ2. (3.11)

Then (3.5), σk ≥ θ and πf (xk + sk) ≥ ε imply

ε ≤ Lp
βp + 1

‖sk‖p+βp−1 + 2σk‖sk‖r−1 ≤ ‖sk‖p+βp−1
(

Lp
βp + 1

+ 2σk‖sk‖r−p−βp
)
,

and further using (3.11), r > p and η2 ∈ (0, 1), and that r > p+ βp > 1,

ε < ‖sk‖p+βp−1
(

Lp
βp + 1

+ 2κ2

)
<

(
κ2
σk

) p+βp−1

r−p−βp
(

Lp
βp + 1

+ 2κ2

)
<

(
κ2
σk

) p+βp−1

r−p−βp

· (3κ2).

The latter inequality implies σk < κ1ε
p+βp−r
p+βp−1 , which contradicts (3.9). Thus (3.7) must hold and

Lemma 3.4 implies that ρk ≥ η2 and (2.9) hold, and so k is very successful. 2

Lemma 3.6. Let r > p + βp and assume A.1. Then, while Algorithm 2.1 has not terminated, we

have

σk ≤ max

{
σ0, γ2θ, γ2κ1ε

p+βp−r
p+βp−1

}
, (3.12)

where κ1 is defined in (3.10).
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Proof. Let the right-hand side of (3.9) be denoted by σ. It follows from Lemma 3.5 and the

mechanism of the algorithm that

σk ≥ σ =⇒ σk+1 ≤ σk. (3.13)

Thus, when σ0 ≤ γ2σ, it follows that σk ≤ γ2σ, where the factor γ2 is introduced for the case when

σk is less than σ and the iteration k is not very successful. Letting k = 0 in (3.13) gives (3.12) when

σ0 ≥ γ2σ since γ2 > 1. 2

We are ready to establish an upper bound on the number of successful iterations until termination.

Theorem 3.7. Let r > p+βp, assume A.1 and that {f(xk)} is bounded below by flow and ε ∈ (0, 1].

Then for all successful iterations k until the termination of Algorithm 2.1, we have

f(xk)− f(xk+1) ≥ κs,pε
p+βp
p+βp−1 , (3.14)

where

κs,p
def
=

η1
r

(
αr

σmax

) 1
r−1

, σmax
def
= max {σ0, γ2θ, γ2κ1} , (3.15)

and κ1 is defined in (3.10). Thus Algorithm 2.1 takes at most⌊
f(xk)− flow

κs,p
ε
− p+βp
p+βp−1

⌋
(3.16)

successful iterations/evaluations of derivatives of degree 2 and above of f until termination.

Proof. On every successful iteration k, we have ρk ≥ η1; this and Lemma 3.1 imply

f(xk)− f(xk+1) ≥ η1(f(xk)− Tp(xk, sk)) ≥ η1
σk
r
‖sk‖r. (3.17)

On every successful iteration k we also have that (2.9) holds. Thus, applying the latter inequality

twice, we deduce

f(xk)− f(xk+1) ≥ η1
r

(σk‖sk‖r−1)‖sk‖ ≥
η1
r
αε‖sk‖ ≥

η1
r
αε

(
αε

σk

) 1
r−1

=
η1
r

(αε)
r
r−1

σ
1
r−1

k

. (3.18)

We use that ε ∈ (0, 1] in (3.12) to deduce that

σk ≤ σmaxε
p+βp−r
p+βp−1 , (3.19)

where σmax is defined in (3.15). We combine this upper bound with (3.18) to see that

f(xk)− f(xk+1) ≥ η1
r

(αε)
r
r−1σ

− 1
r−1

max ε
r−p−βp

(p+βp−1)(r−1) =
η1
r

(
αr

σmax

) 1
r−1

· ε
p+βp
p+βp−1 ,

which gives (3.14). Using that f(xk) = f(xk+1) on unsuccessful iterations, and that f(xk) ≥ flow for

all k, we can sum up over all successful iterations to deduce (3.16). 2

We are left with counting the number of unsuccessul iterations until termination, and the total iteration

and evaluation upper bound.
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Lemma 3.8. Let r > p+ βp and ε ∈ (0, 1]. Then, for any fixed j ≥ 0 until termination, Algorithm

2.1 satisfies

|Uj | ≤
| log γ3|
log γ1

|Sj |+
1

log γ1
log

σmax

σ0
+

r − p− βp
(p+ βp − 1) log γ1

| log ε|, (3.20)

where σmax is defined in (3.15).

Proof. We apply Lemma 2.1. To prove (3.20), we use ε ∈ (0, 1] and the upper bound (3.19) in place

of σup in (2.11). 2

Corollary 3.9. Let r > p+βp and assume A.1, that {f(xk)} is bounded below by flow and ε ∈ (0, 1].

Then Algorithm 2.1 takes at most⌊
f(xk)− flow

κs,p

(
1 +
| log γ3|
log γ1

)
ε
− p+βp
p+βp−1 +

r − p− βp
(p+ βp − 1) log γ1

| log ε|+ 1

log γ1
log

σmax

σ0

⌋
(3.21)

iterations/evaluations of f and its derivatives until termination, where κs,p and σmax are defined in

(3.15).

Proof. The proof follows from Theorem 3.7 and (3.20), where we let j denote the first iteration with

πf (xj + sj) < ε (so the iteration where ARp terminates) and we use j = |Sj |+ |Uj |. 2

We note that the lower bound on σk, σk ≥ σmin > 0 for all k, imposed in (2.10), has not been employed

in the above proofs. It seems that in the case r ≥ p+ βp, such a lower bound on σk may follow implicitly

from (2.9). However, the requirement involving σmin is needed for the case r < p+ βp.

3.3 The case when p < r ≤ p+ βp

Note that p < r ≤ p + βp imposes that βp > 0 in this case. Also, note that the proof of Lemma 3.5 fails

to hold for r ≤ p + βp. Thus we need a different approach here to upper bounding σk. In particular, we

need the following additional assumption (for the case when r < p+ βp).

A.2 For j ∈ {1, . . . , p}, the derivative {∇jf(xk)} is uniformly bounded above with respect to k, namely,

‖∇jf(xk)‖ ≤Mj for all k ≥ 0, j ∈ {1, . . . , p}.

We let M
def
= max

1≤j≤p

{(
rp

j!σmin
Mj

) 1
r−j
}

where σmin is defined in (2.10).

Lemma 3.10. Let r ≤ p+ βp and assume A.1. If r < p+ βp assume also A.2. While Algorithm 2.1

has not terminated, if

σk ≥ max
{
θ, κ2M

p+βp−r
}
, (3.22)

where κ2 and M are defined in (3.8) and A.2, respectively, then (3.7) holds, and so iteration k is very

successful.
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Proof. If r = p+ βp, then (3.22) clearly implies (3.7) and so Lemma 3.4 applies.

If r < p + βp, then we upper bound ‖sk‖ by using A.2 in (3.2), as well as σk ≥ σmin, to deduce that

‖sk‖ ≤ M where M is defined in A.2. Now (3.22) implies (3.7) and so Lemma 3.4 again applies,

yielding that iteration k is very successful. 2

We are ready to bound σk from above for all iterations.

Lemma 3.11. Let r ≤ p+ βp and assume A.1. If r < p+ βp assume also A.2. While Algorithm 2.1

has not terminated, we have

σk ≤ max
{
σ0, γ2θ, γ2κ2M

p+βp−r
} def

= σup, (3.23)

where κ2 and M are defined in (3.8) and A.2, respectively.

Proof. The proof follows a similar argument to that of Lemma 3.6, with (3.9) replaced by (3.22). 2

We are now ready to upper bound the number of successful iterations of Algorithm 2.1 until termination.

Theorem 3.12. Let r ≤ p+βp, assume A.1 and that {f(xk)} is bounded below by flow. If r < p+βp
assume also A.2. Then for all successful iterations k until the termination of Algorithm 2.1, we have

f(xk)− f(xk+1) ≥ κs,rε
r
r−1 , (3.24)

where

κs,r
def
=

η1
r

(
αr

σup

) 1
r−1

, (3.25)

and σup is defined in (3.23). Thus Algorithm 2.1 takes at most⌊
f(xk)− flow

κs,r
ε−

r
r−1

⌋
(3.26)

successful iterations/evaluations of derivatives of degree 2 and higher of f until termination.

Proof. Note that (3.17) and (3.18) continue to hold in this case (they only use general ARp properties

and the mechanism of the algorithm). Applying (3.23) in (3.18), we deduce

f(xk)− f(xk+1) ≥ η1
r

(αε)
r
r−1σ

− 1
r−1

up =
η1
r

(
αr

σup

) 1
r−1

· ε
r
r−1 , (3.27)

which gives (3.24).

Using that f(xk) = f(xk+1) on unsuccessful iterations, and that f(xk) ≥ flow for all k, we can sum

up over all successful iterations to deduce (3.26). 2

We are left with counting the number of total iterations and evaluations.
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Algorithm p < r ≤ p+ βp p+ βp < r

ARp with p = 1 O
(
ε−

r
r−1
)

=
[
O
(
ε−

1+β1
β1

)
,∞
)

O
(
ε−

1+β1
β1

)
ARp with p = 2 O

(
ε−

r
r−1
)

=
[
O
(
ε−

2+β2
1+β2

)
,O
(
ε−2
))

O
(
ε−

2+β2
1+β2

)
ARp with p = 3 O

(
ε−

r
r−1
)

=
[
O
(
ε−

3+β3
2+β3

)
,O
(
ε−

3
2

))
O
(
ε−

3+β3
2+β3

)
. . . . . . . . .

ARp with p ≥ 2 O
(
ε−

r
r−1
)

=

[
O
(
ε
− p+βp
p+βp−1

)
,O
(
ε−

p
p−1

))
O
(
ε
− p+βp
p+βp−1

)

Table 4.1: Summary of complexity bounds for regularization methods for ranges of r. Recall we assumed

that ε ∈ (0, 1], r > p ≥ 1, r ∈ IR and p ∈ IN; and that either p ≥ 1 and βp ∈ (0, 1], or p ≥ 2 and βp ∈ [0, 1].

Also, the ranges in the second column are as a function of the dominating terms in ε and varying r in the

appropriate interval and they are plotting the changing bound O(ε
r
r−1 ).

Corollary 3.13. Let r ≤ p+βp, assume A.1 and that {f(xk)} is bounded below by flow. If r < p+βp
assume also A.2. Then Algorithm 2.1 takes at most⌊

f(xk)− flow
κs,r

(
1 +
| log γ3|
log γ1

)
ε−

r
r−1 +

1

log γ1
log

σup
σ0

⌋
(3.28)

iterations/evaluations of f and its derivatives until termination, where κs,r and σup are defined in

(3.26) and (3.23), respectively.

Proof. We first upper bound the total number of unsuccessful iterations; for this, we apply Lemma

2.1 to upper bound |Uj | with σup defined in (3.23). To prove (3.28), use (3.26) and (2.11), where we

let j denote the first iteration with πf (xj + sj) < ε (so the iteration where ARp terminates), and we

use j = |Sj |+ |Uj |. 2

4 Discussion of complexity bounds

Table 4 gives a summary of our complexity bounds as a function of r and q.

Several remarks and comparisons are in order concerning these bounds.

• The first-order case. Note that the case p = 1 is also covered, with a more general quadratic

model and using a Cauchy analysis, in [7]; the same complexity bounds ensue (as a function of the

accuracy) as in Table 4 for p = 1; the case β1 = 0 is also not covered in [7].

• Sharpness. The bound for the case p = 1 and r ≥ 1 + β1 was shown to be sharp in [7]. Also,

the bounds for ARp with p = 2 and 2 < r ≤ 2 + β2 are sharp and optimal for the corresponding

smoothness classes [6].

• Continuity. All bounds vary continuously with r and βp ∈ [0, 1]. In particular, when r = p + βp,

the complexity bounds in the second and third column match (for a given p and βp).

• Universality [11, 13, 15]. For fixed p and βp, the best complexity bounds are obtained when

r ≥ p + βp. These bounds do not depend on the regularization power r, and even though the
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smoothness parameter βp is (usually) unknown, its value is captured accurately in the complexity,

even for the case when βp = 0 and p ≥ 2. Note that the values of the complexity bounds as a

function of the accuracy indicate that one should choose r ≥ p + 1 to achieve the best complexity

when βp is unknown; and there seems to be little reason, from an evaluation complexity point of

view, to pick anything other than r = p+ 1.

• Complexity values in the order of the accuracy. Table 4 shows the increasingly good complex-

ity obtained as p grows and βp ∈ (0, 1], namely, the more derivatives are available and the smoother

these derivatives are. In particular, purely as a function of ε and as r varies, we obtain the following

ranges of complexity powers : [ε−2,∞) (p = 1); [ε−
3
2 , ε−2] (p = 2); [ε−

4
3 , ε−

3
2 ] (p = 3); [ε−

5
4 , ε−

4
3 ]

(p = 4); and so on.

• Loss of smoothness Note that for fixed p ≥ 2, βp = 0 corresponds to the case when the objective

has the highest level of non-smoothness compared to βp ∈ (0, 1]. Then ARp can still be applied, and

the good complexity bounds for the case r ≥ p+ βp ≥ 2 hold.

5 Conclusions

We have generalized and modified the regularization methods in [3] to allow for varying regularization

power, accuracy of Taylor polynomials and different (Hölder) smoothness levels of derivatives. Our results

show the robustness of the evaluation complexity bounds with respect to such perturbations. We found

that complexity bounds of regularization methods improve with growing accuracy of the Taylor models and

increasing smoothness levels of the objective. Furthermore, when the regularization power r is sufficiently

large (say r ≥ p + 1) our modification to ARp in the spirit of [11] allows ARp’s worst-case behaviour

to be independent of the regularization power and to accurately reflect the (often unknown) smoothness

level of the objective. We have also generalized [3] and [11] to problems with convex constraints and

inexact subproblem solutions. The question as to whether the complexity bounds we obtained are sharp

remains open when r 6= p + βp and p ≥ 3. This question is particularly poignant in the case when

p < r < p+ βp: could a suitable modification of ARp achieve an (improved) evaluation complexity bound

that is independent of the regularization power in this case as well?
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