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In this technical report we describe the activity research carried out in the years 2010-2012
at Department of Mathematics, University of Namur, Namur (Belgium) in collaboration with
LMS Samtech, Angleur (Belgium), in the framework of the project “Méthodes de résolution de
problèmes d’optimisation de grande taille pour les structures en matériaux composites” (Acronym
LARGO “LARge-scale Optimization problems”). LARGO was granted by the Walloon Region
and LMS Samtech in the context of the First Program (convention number 916981).

1 Overview of the LARGO project

We address the optimization problem of sizing an aircraft fuselage and we focus on the problem
of computing the dimensions of the different elements constituting a fuselage minimizing the
total mass subject to some constraints. These constraints are mechanical stability constraints
criteria (e.g. damage tolerance, buckling and post buckling) and they are formulated using
Reserve Factors (RF): usually a structure is validated provided all its RFs are greater than one.
These functions can be evaluated analytically by dedicated software but practically they have
to be considered as black-box functions, i.e. as unknown functions whose corresponding outputs
can be obtained from a given list of inputs without knowing its expression or internal structure.
Moreover these functions are computationally-expensive since their evaluation is rather costly
and plays the major role in the solution of the optimization problem.

In the first stage of the project, we studied the features of the involved functions and analyzed
the problem structure. This analysis yielded to confirm that the problem possesses a natural
hierarchical structure that could be exploited in the design of its numerical solution. In fact, clas-
sically, this problem has been addressed using a decomposition approach: individual components
of the problems are optimized separately, hence without considering the entire hierarchy, see [6]
for a survey on this topic. This approach may lead to designs that are optimal with respect
to individual component demands but also to non-optimal structures that are a combination of
such individually optimal components. We proposed to tackle the problem by optimizing the
problem at the global level exploiting at the same time its multilevel structure. To this purpose,
in the second stage of the project, we considered the class of multilevel methods and in this class
we propose a new algorithm, named AL-RMTR (Augmented Lagrangian Recursive Multilevel
Trust Region), that is suitable to solve the addressed aeronautical optimization.
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The last stage of the project was dedicated to the numerical validation of AL-RMTR with
particular attention to its application to the solution of the optimization problem under con-
sideration. This comprises the development of an efficient implementation of AL-RMTR, its
integration with BOSS quattro and COMBOX (software platforms available at LMS Samtech),
numerical experiments on test problems and comparison of its performance with those of the
optimization packages available in BOSS quattro.

1.1 Outline of the document

In this report, we introduce the optimization problem under consideration in Section 2; in Section
3 we review the main ideas of the multigrid approach and we present the new AL-RMTR

algorithm for solving general nonlinear programming problems. Section 4 is dedicated to the
presentation of the numerical experiments. Finally, we give some conclusions in Section 5.

2 The optimization problem

An aircraft fuselage is mainly made of stiffened panels, i.e. thin shells reinforced in the orbital
direction by stiffeners called frames or ribs and in the effort direction (i.e. orthogonally to the
ribs) by stiffeners of smaller sections called stringers. Two consecutive ribs identify one ring
of a fuselage that generally is composed by about twenty rings. Each ring may be considered
as decomposed into elementary parts, called super-stringers, which consist in the theoretical
union of one stringer and two half panels. Each super-stringer is characterized by some Design
Variables (DV) which are firstly local geometry parameters such as panel thickness and stringer
height and secondly composite laminate variables such as panel laminate percentages, see Figure
1.

Figure 1: Super-stringer and DVs.

Remarkably, we can reduce the total number of DVs needed to describe the problem by
grouping panels and stringers with common features into regions of panels and regions of stringers
respectively, so that members of the same region share the same DVs, see Figure 2. Therefore,
we can define a hierarchical description of the model by aggregating the elements in different
ways. In particular, we may have coarse description of the model by defining a small number of
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regions, i.e. using a small set of DVs, or we may have a fine description of the same model by
using a larger number of regions, i.e. a larger set of DVs.

Figure 2: A region with 4 panels and a region made of 4 stringers.

We consider the problem of computing the optimal size (and more precisely minimizing the
total mass) of these super-stringers considering different load cases, i.e. different load configura-
tions of the aircraft. Denoting the full list of DVs characterizing a design by a vector x of DVs,
we address the following optimization problem

Minimize M(x)
subject to RF (x) ≥ 1

l ≤ x ≤ u,
(1)

i.e. minimize the overall mass M subject to strength and geometrical constraints formulated by
RFs. The vectors l and u define lower and upper bounds on the variables.

The objective function M is computed at the global level, calculating the total weight of the
Finite Element model being used for the internal loads analysis, and results to be a piecewise
linear function. The management of the RFs constitutes one of the most difficult task in the
solution of problem (1). In fact, their computation is performed running a set of Fortran codes
(the “black-box” functions mentioned above) which evaluate the function analytically. Input of
these codes includes both local geometry and local internal loads. The codes commonly used
for computing the RFs are Fortran implementations called skill tools. These tools are generally
time-consuming and therefore interpolation algorithms have been proposed to save some time in
the computation of the RFs (rapid sizing techniques).

Since we do not have any a priori knowledge of the regularity of the involved functions, we
performed a local parametric analysis of the skill tools to investigate more their geometry. From
this analysis, it turned out that most of the RFs are “smooth” but there are also RFs which
present serious discontinuities and poles. This “non-smoothness” might be ascribed to “if-then-
else” procedures in the skill tools or to some physical reasons. In Figure 3, we plot 2D section of
two RFs (the damage tolerance RF and the strain RF) obtained by selecting two DVs (0◦ and
the 90◦ ply percentage).

3 The multilevel (multigrid) approach

Techniques have been developed in the literature to solve linear systems to exploit the case
where the problem hierarchy arises from the multilevel discretization of an underlying continuous
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Figure 3: 2D sections of two RFs.

problem, see [2]. These methods are known as multigrid methods. This well-researched field,
is based on a double observation: on one hand there exist iterative solution methods (called
smoothers) which are very efficient at reducing the high-frequency, oscillatory components of
the error while being possibly very inefficient at reducing their smooth, low-frequency part (the
Jacobi and Gauss-Seidel methods are preeminent examples); on the other hand, the definition
of a high frequency component is intrinsically tied to the discretization grid since the finer the
grid, the higher the frequency representable on this grid. Multigrid methods then proceed by
using smoothers to reduce the oscillatory error components on a fine grid, and then consider the
remaining smooth components on this fine grid as oscillatory ones on a coarser grid. Broadly
speaking, these can again be eliminated using smoothers on the coarser grid, and this technique
may be applied recursively. One of the main attractions of multigrid methods for linear systems
is that their workload increases only linearly with problem size, a feature crucial to the solution
of very large instances.

Exploiting hierarchical problem structure in optimization is much more recent and, in particu-
lar, to our knowledge, the algorithms proposed for constrained problems are very few [8, 9, 11, 14].
We focused on the Recursive Multilevel Trust Region (RMTR) method proposed in [7] for un-
constrained problems and extended to bound-constrained problems in [8, 9]. In fact, RMTR pos-
sesses good global convergence properties and resulted very efficient and reliable in solving very
large problems for which a hierarchy of description exists. Typical cases are infinite-dimensional
problems for which the levels of the hierarchy correspond to discretization levels, from coarse to
fine. Moreover, the method has been efficiently implemented into a Fortran 90 package made
available by the authors that can be used as a basis for a new multilevel code to solve generally
constrained problems.

We refer the reader to [9, 13] for a full description of RMTR for solving bound-constrained
problems and in the next section we just give the main idea of the procedure.

4



3.1 The Recursive Multilevel Trust Region method

RMTR belongs to the class of trust-region methods and then proceed iteratively by minimizing
a model of the objective function in a region where the model can be trusted and which is
defined in a specific norm. Moreover, the method is able to exploit the problem structure when
the problem at hand can be decomposed into hierarchical levels. If fact, it is assumed that an
appropriate hierarchy of descriptions is known for the problem under consideration. Suppose
that a collection of functions {fi}

r
i=0, is known, where fi : IRni → IR, is twice-continuously

differentiable, ni ≥ ni−1 and fi is “more costly” to minimize than fi−1, for each i = 1, . . . , r.
This may be because fi has more variables than fi−1 (as would typically be the case if the fi
represent increasingly finer discretizations of the same infinite-dimensional objective), or because
the structure (in terms of partial separability, sparsity, or eigenstructure) of fi is more complex
than that of fi−1, or for any other reason. To fix terminology, we will refer to a particular i as a
level. Then, we assume that nr = n and fr(x) = f(x) for all x ∈ IRn giving back to the original
problem. The number of levels r is strongly problem-dependent (typical values vary from 3 to
10) and, in general, the only requirement is that the problem at coarsest level is meaningful in
the context of the problem at hand.

Moreover, some relationship between the variables of fi−1 and fi must exist. So, we assume
that there exist two full-rank linear operators Ri : IRni → IRni−1 (the restriction) and Pi :
IRni−1 → IRni (the prolongation) such that

σiPi = RT
i , (2)

for some constant σi > 0, i = 1, . . . , r. Moreover, the restriction operator is normalized to ensure
‖Ri‖∞ = 1 and the entries of Ri and Pi are nonnegative. We consider linear operators since
they work well in practice and may represent interpolation operators. From a theoretical point
of view, we might consider more general operators granted that they have bounded condition
number. Figure 4 represents a typical multilevel scheme.

Figure 4: Multilevel scheme.

Being based on the trust-region framework, the RMTR method computes its steps by (ap-
proximately) minimizing some models inside some trust regions. However it uses a two-pronged
strategy to define the model at a given iteration k. First, it may use (as many practical trust-
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region algorithms) the quasi-Newton quadratic model

mk(xk + s) = f(xk) + gTk s+
1

2
sTBks,

where Bk ∈ IRn×n is a symmetric approximation of the objective Hessian ∇2f(xk). A sufficient
decrease in this model inside the trust region is then obtained by (approximately) solving the
problem

min mk(xk + s), s.t. ‖s‖∞ ≤ ∆k, l ≤ x+ s ≤ u,

given some trust-region radius ∆k. The philosophy of the RMTR method is however to use the
multilevel hierarchy to efficiently construct minimization steps. This yields the second strategy to
compute an appropriate step. More precisely, considering xi,k, the k-th iterate at level i > 0, we
first build a local coarse model hi−1(xi−1,0+si−1) around the restricted point xi−1,0 = Rixi,k. We
then minimize this model (using a trust-region method) inside a coarse set of bound constraints
Li, which represent both the feasibility with respect to the original problem bound constraints,
and the constraints on the step size inherited from the trust regions of the finer levels. Let xi−1,∗

thus be the (approximate) solution of this local coarse subproblem at level i− 1, given by

min hi−1(xi−1,0 + si−1), s.t. xi−1,0 + si−1 ∈ Li. (3)

The coarse step si−1 = xi−1,∗ − xi−1,0 is finally prolongated (using Pi) into a trust-region step
si at level i.

Although other strategies are possible and available in the RMTR package, the code uses by
default the Galerkin approximation to define the local coarse model, i.e. a restricted version of
the current level quadratic Taylor’s model:

hi−1(xi−1,0 + si−1) = sTi−1Rigi,k +
1

2
sTi−1Ri∇

2hi(xi,k)Pisi−1.

This choice is covered by the theory and it has better performance compared to other tested
models. Interestingly, the Galerkin approximation does not require evaluation of fi−1 or its
derivatives.

Except at the coarsest level where the subproblem is solved with a projected truncated
conjugate gradient method (PTCG) [5], the subproblem is solved with a method inspired by the
Gauss-Seidel method. Indeed, the model is successively minimized along the coordinate axis,
yielding the Sequential Coordinate Minimization (SCM). This process has been shown to act as
a smoothing procedure [7].

Moreover, the RMTR procedure leaves flexibility in the way to choose between the coarse
model hi−1 and the Taylor’s model mi,k and in the recursion pattern, allowing for free or fixed
(V-cycles) recursion. In a V-cycle, minimization at lower levels (above the coarsest) consists of
one successful smoothing iteration followed by a successful recursive iteration, itself followed by
a second successful smoothing iteration. In particular, we considered three implementations: the
full multilevel (FM) strategy where the choice to use the coarse model may be associated with
that to start from a good initial point (Figure 5), the multilevel on finest (MF) strategy, where
we apply the RMTR algorithm on the finest level (Figure 6) and the all on finest (AF) strategy
which is a standard Newton trust-region algorithm (with PTCG as subproblem solver) applied
at the finest level, without recourse to coarse-level computations.

3.2 The bound-constrained Augmented Lagrangian approach

Clearly, the application of the RMTR algorithm to solution of the general constrained problem
(1) is not trivial since we need to take into account the presence of the nonlinear inequality
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Figure 5: Scheme of the Full Multilevel strategy.

Figure 6: Scheme of the Multilevel on Finest strategy.

constraints. The existing class of methods to solve problem (1) comprises Augmented Lagrangian
methods, Sequential Quadratic Programming methods and Interior Point methods, [12]. We
choose to consider a bound-constrained Augmented Lagrangian approach [4, 5] which handles a
general constrained problem by solving a sequence of bound-constrained subproblems.

The bound-constrained Augmented Lagrangian approach is proposed to solve the equality
constrained problem

minx∈IRn f(x)
subject to h(x) = 0,

l ≤ x ≤ u,
(4)

where f : IRn → IR and h : IRn → IRm are smooth function. The basic idea of this strategy is to
incorporate only the equality constraints in (4) in the Augmented Lagrangian, that to is

LA(x, λ;µ) = f(x)− λTh(x) +
µ

2
h(x)Th(x), (5)

where λ ∈ IRm is the vector of the Lagrangian multipliers and the positive scalar µ denotes the
penalty parameter. The kth iteration of the algorithm consists in fixing the penalty parameter
to some value µk > 0 fixing λ at the current estimate λk, and performing the minimization with
respect to x, i.e. compute xk+1 that solves the subproblem

minx∈IRn LA(x, λk;µk)
subject to l ≤ x ≤ u.

(6)

Note that the first-order optimality condition for x to be a solution of problem (6) is that
(for fixed λ and µ)

x− P[l,u](x−∇xLA(x, λ;µ)) = 0,

where P[l,u](v) is the projection onto the box [l, u] defined as P[l,u](v) = max{l,min{v, u}}.
At each iteration, the subproblem (6) is solved with an increasing accuracy. The parameters

λk and µk are updated taking into account the constraint violation measure ‖h(xk)‖∞: if it is
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sufficiently “small”, µk is left unchanged and λk is modified as λk+1 = λk−µkh(xk), otherwise λk

is left unchanged and µk is increased by a fixed factor, see [5]. These updates ensure convergence
of the scheme and the penalty parameter is guaranteed to remain bounded away from zero.

This scheme has been implemented in the well-known LANCELOT software package [5] which
has been intensively tested giving excellent numerical results showing that the bound-constrained
Augmented Lagrangian approach is reliable and efficient.

3.3 The Augmented Lagrangian RMTR (AL-RMTR) method

The problem (1) under consideration, can be classified as an optimization problem with simple
bound and general nonlinear inequality constraints of the form

minx∈IRn f(x)
subject to c(x) ≤ 0,

l ≤ x ≤ u,
(7)

where f : IRn → IR and c : IRn → IRm. For the solution of this problem, we propose an algorithm
called AL-RMTR that combines the bound-constrained Augmented Lagrangian approach and
the RMTR algorithm presented above. From these methods, AL-RMTR inherits the conver-
gence properties and, at the same time, is able to exploit an available multilevel structure of
problem (7).

In fact, we assume not only the availability of multilevel structure in the variable space, i.e.
a collection of objective functions {fi}

r
i=0, where fi : IR

ni → IR, but also the availability of such
structure in the constraint (i.e. Lagrange multiplier) space. Then we assume the existence of a
collection of coarse constraint functions {ci}

r
i=0, with ci : IR

ni → IRmi where mi is the number
of constraints at level i (mi ≥ mi−1) and cr(x) = c(x),mr = m.

Therefore, in addition to the transfer operators (2) for variables, we assume the existence of
a relationship between the constraints ci−1 and ci, i.e. the existence of a restriction operator
Rc

i : IR
mi → IRmi−1 and a prolongation operator P c

i : IRmi−1 → IRmi such that

σc
iP

c
i = Rc

i
T , (8)

for some constant σc
i > 0, i = 1, . . . , r. Moreover, to each constraint ci we can associate the

corresponding coarse approximation of the Lagrange multipliers λi ∈ IRmi and we can relate λi

with the coarser λi−1 with the operators P c
i and Rc

i .
It is important to remark that the lagrangian multipliers associated with continuous con-

straints are not necessarily continuous and may exhibit δ-function-like behaviour. Therefore,
when the operators Rc

i and P c
i are linear interpolation operators (as it is commonly the case),

the multipliers are approximated by a piece-wise linear function and this may not fully capture
their behaviour. We followed a strategy proposed in [1] where the multipliers are “smoothed”
before applying the Prolongation-Restriction operator and the inverse of the Laplacian operator
∆−1 is used as a smoother. For instance, the computation of the lagrangian multiplier at the
lower level i− 1 is made from the value at the upper level i as follows:

λi−1 = ∆Rc
i∆

−1λi,

see Figures 7 and 8.
The fist step to use the Augmented Lagrangian function in (3.1), is to reformulate problem

(7) as problem (4), that is to convert the nonlinear inequalities c(x) ≤ 0 into the equalities
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h(x) = 0. We propose two reformulations: the first (R-max2) is obtained using the continuously
differentiable function [t]+ = max{t, 0}2/2 so that h takes the form

h(x) = max{c(x), 0}2/2; (9)

the second (R-slack) is obtained adding a nonnegative slack variable s ∈ IRm so that h is defined
on IRn+m and takes the form

h(x, s) = c(x) + s, (10)

with the additional bound constraint s ≥ 0 which must be added to the simple bounds l ≤ x ≤ u.
We denote the new bounds as l̂ = [l, 0] and û = [u,∞].

The choice of using R-max
2 or R-slack yields to different exploitable structures for the gra-

dient and the Hessian of the Augmented Lagrangian function. Concerning the gradient, let Jc
and Jh denote the Jacobian matrices of c and h in (7) and (4) respectively. Then, if R-max2 is
used, the gradient of the Augmented Lagrangian function takes the form

∇LA(x, λ;µ) = ∇f(x)− JT
h λ+ µJT

h h(x),

where
(Jh)j = max{((c(x))j , 0}(Jc)j , j = 1, . . . ,m
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and (J)j denotes the jth row of a matrix J and (c(x))j is the jth component of the vector c(x).
On the other hand, by using R-slack we have the following structure for ∇LA:

∇LA((x, s), λ;µ) =

(

∇f(x)
0

)

−

(

JT
c

Im

)

λ+ µ

(

JT
c

Im

)

h(x, s).

It is important to remark that R-slack involves an increase in the number of variables from n to
n+m. In this case, we define the prolongation/restriction operator in the variable space IRn+m

blockwise, as e.g for the restriction,
(

Ri

Rc
i

)

, (11)

so that Ri acts on the original variables x and Rc
i is applied on the slack variables s.

Once problem (7) has been reformulated as (4), one can straightforwardly apply the bound-
constrained Augmented Lagrangian scheme and use the RMTR algorithm to solve the subprob-
lems (6). In particular, fixed µ, if hi is computed from ci by (9), then at each level i the coarse
Augmented Lagrangian LA,i : IR

ni × IRmi → IR is given by

LA,i(x, λ;µ) = fi(x)− λT
i hi(x) +

µ

2
hi(x)

Thi(x),

whereas if hi is computed from ci by (10), then LA,i : IR
ni+mi × IRmi → IR has the form

LA,i((x, s), λ;µ) = fi(x)− λT
i hi(x, s) +

µ

2
hi(x, s)

Thi(x, s).

The resulting AL-RMTR algorithm in sketched in Algorithm 3.1: the string R-choice de-
notes the reformulation used to convert inequalities into equalities, i.e. it is either R-max

2 or
R-slack, and τk is the following criticality measure

τk = ‖xk − P[l,u](xk −∇xLA(xk, λk;µk))‖2, (12)

for R-max2 and

τk = ‖(xk, sk)− P[l̂,û]((xk, sk)−∇xLA((xk, sk), λk;µk))‖2, (13)

otherwise.

Concerning the implementation of Algorithm 3.1, we have to remark that it depends on the
recurrence scheme chosen in the calling of RMTR and on the reformulation used to convert
inequalities into equalities. If the MF recurrence is chosen (AL-RMTR-MF) or the AF version
is used (AL-RMTR-AF), the Augmented Lagrangian and its derivatives needs to be evaluated
only at the finest level whereas if the FM is employed (AL-RMTR-FM), coarser values of the
Augmented Lagrangian (i.e. coarser values of the objective and constraint functions) and its
derivatives have to be provided.

Moreover, if AL-RMTR-MF or AL-RMTR-AF are used with R-max
2, then the transfer

operators Rc
i and P c

i are not employed in practice. On the other hand, if R-slack is used, these
operators Rc

i and P c
i in the constraints space are always activated, at least in the variable space

when using (11).

4 Experiments

In this section we report on the numerical experiments carried out in the third stage of LARGO.
We first give a description of the test problem set pointing out the multilevel properties of the
problems.
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Algorithm 3.1: The AL-RMTR algorithm: kth iteration

Given R-choice, xk, λk, µk and ωk, ηk (and tolerances η∗ and ω∗)

Step 1: Solve the bound-constrained subproblem with RMTR. If
R-choice=R-max

2 , find an approximate solution xk+1 of

minx LA(x, λk;µk)
subject to l ≤ x ≤ u.

such that τk+1 ≤ ωk.
Else, find an approximate solution xk+1 of

minx,s LA((x, s), λk;µk)
subject to l ≤ x ≤ u,

0 ≤ s,

such that τk+1 ≤ ωk.

Step 2: Check for convergence. If

‖h(xk+1)‖∞ ≤ η∗ and τk+1 ≤ ω∗

stop with approximate solution xk+1;

Step 3: Updates. If ‖h(xk+1)‖∞ ≤ ηk, set λk+1 = λk − µkh(xk).
Else, set µk+1 ≥ µk. Decrease ηk and ωk.

11



Two academic problems: MSP and vBRATU

We consider two optimization problems of the form

minx∈IRn f(x)
subject to c(x) ≤ 0,

(14)

where f : IRn → IR is given by the discretization of two very well known PDE problems that
will be described further on, and the constraint function c : IRn → IRm is constructed as follows.
Let x ∈ IRn be a given surface discretized on a N ×N grid (n = N2) and for each internal node
of the grid, let (χ(x))j be the local curvature of x around the node j, for j = 1, . . . ,m with
m = (N − 2)2. Then we define the function c : IRn → IRm such that

(c(x))j = ((χ(x))j − χ̄)/m, (15)

with j = 1, . . . ,m and χ̄ ∈ IR, and we impose the inequality c(x) ≤ 0, i.e. that the scaled
curvature of the surface x is upper bounded by some value χ̄. Note that the constraint function
is locally defined on the grid and that both its dimension and its value depend on the dimension
of the grid so that coarser versions of the constraints can be trivially defined varying N .

Concerning the objective function of problem (14), we consider the following function

fms(v) =

∫

[0,1]×[0,1]

√

1 + ‖∇tv‖22,

with v ∈ H1([0, 1]× [0, 1]) that satisfies the condition v(t) = v0(t) on ∂([0, 1]× [0, 1]) with

v0(x) =

{

t1(1− t1), t2 ∈ {0, 1} t1 ∈ (0, 1)
0, t2 ∈ (0, 1) t1 ∈ {0, 1)

which is classically referred to the very well-known Minimal Surface problem, and

fvb(v) =

∫

[0,1]×[0,1]

‖∇tv‖
2
2 + βvev,

with β = 6.8 and v ∈ H1([0, 1]× [0, 1]) has to satisfies the condition v(t) = 0 on ∂([0, 1]× [0, 1]),
which is related to a variant of the BRATU problem. Here, H1([0, 1]× [0, 1]) denotes the Hilbert
space of all functions with compact support in the domain [0, 1]×[0, 1] such that if v ∈ H1([0, 1]×
[0, 1]) then v and ‖∇v‖22 belong to L2([0, 1]× [0, 1]).

For both problems, the surfaces are defined on the square [0, 1]× [0, 1] and we discretize them
by a finite-element basis (P1) defined using a uniform triangulation of [0, 1] × [0, 1], with the
same grid spacing along the two coordinate axes. The discretization of the function fms and
fvb constitutes the objective function f in (14) and we call MSP and vBRATU the resulting
problems, respectively. Analogously to the constraints, coarser and finer description of f are
obtained by using few or many nodes in the discretization grids.

In Figure 9 and 10, the unconstrained solutions of MSP and vBRATU (i.e. without bounding
their curvature) and their curvature are plotted.

The industrial problem: RFUSE

We considered problem (1) applied to a small model consisting of a rectangular piece of an
aircraft fuselage made of 6× 8 panels and 7× 8 stringers, see Figure 11 (model provided by LMS
Samtech). For each panel and each stringer we take into account one DV, the panel thickness t
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Figure 9: The unconstrained solution of MPS, its curvature and the upper bound χ̄ = 3.
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Figure 10: The unconstrained solution of vBRATU, its curvature and the upper bound χ̄ = 2.5.

and the stiffener section s, respectively, so that the total number of DVs (and regions) is 104, i.e.
M : IR104 → IR. Concerning the constraints, we consider 3 RF constraints for each Calculation
Point (CP) (combination of one stringer and its two adjacent panels) which are approximated
by using the Rapid Sizing analysis tool. This way, we have 3 RF values per internal stringer, i.e.
RF : IR104 → IR120. We will refer to this problem with the name RFUSE.

Now we give a possible multilevel description for RFUSE.
Let the panel be modelled as the grid of Figure 12 with Nl = 8 lines ad Nc = 6 columns

where each sub-rectangle represents a panel and the vertical segments represent a stringer. For
each panel, let ti, i = 1, . . . , 48 denote the panel thickness DV and let ai, i = 1, . . . , 48 be the
panel area parameter; for each stringer, let si, i = 1, . . . , 56 represent the stiffener section DV
and di, i = 1, . . . , 56 be the stringer length parameter.

In order to define coarser levels with smaller design variable space, we can suitably aggregate
groups of panels and groups of stringers. Figure 13 shows the choice we follow: we group 4
panels into 1 and the corresponding 6 stringers into 2. This way, we have 3 different levels and
the number of variables is n3 = 104 at level 3 (the finest), n2 = 28 at level 2 and n1 = 10 at level
1 (the coarsest). Clearly, the border structural elements have to be considered separately: if the
number of columns or the number of lines is not even, we only take 2 elements (or 1 if both are
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Figure 11: The RFUSE test model.

Figure 12: Design variables (left) and parameters (right).

odd).
Consider now the constraint space. For each CP (or internal stringers), we have 3 RFs which

are denoted as RF 1, RF 2 and RF 3 and their 40 components are ordered as in Figure 14 (omitting
the superscript 1,2,3). Applying the aggregation rule of Figure 13 to the CPs, the number of
constraints at each level is: m3 = 3 × 40 = 120 at level 3, m3 = 3 × 8 = 24 at level 2 and
m3 = 3× 2 = 6 at level 1.

The number of DVs (t and s) and constraints (RF 1, RF 2 and RF 3) at each level are sum-
marized in Table 1.

4.1 Numerical Results

In this section we study the the practical behaviour of AL-RMTR in comparison with that
of the optimization packages available in BOSS quattro on the test problems described in the
previous section. The implementation of AL-RMTR is based on Algorithm 3.1 and uses the
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Figure 13: Multilevel structure.

Figure 14: Reserve Factors.

packages RMTR [13] as a solver for Step 1 and LTS [10] for the Hessian approximation.

We performed 3 sets of experiments:

Experiment set 1: AL-RMTR and the BOSS quattro packages are compared in the solution
of MSP using R-max

2;

Experiment set 2: the two reformulations R-max2 and R-slack are tested by using AL-RMTR

in the solution of vBRATU;

Experiment set 3: RFUSE is solved by AL-RMTR and GCM [3].

To measure the efficiency of the algorithms, we consider the CPU time and the equivalent
number of finest evaluations

Ffe =

r
∑

i=0

Ffei
fer

,

where F is a generic function and Ffei is the number of F -function evaluations at level i (r
corresponds to the finest level), that takes into account that function evaluations at coarser

15



level Nl Nc # t # s # DVs # CPs # RFs
3 8 6 48 56 104 40 120
2 4 3 12 16 28 6 24
1 2 2 4 6 10 2 6

Table 1: Multilevel dimensions for RFUSE.

levels are considerably cheaper than those at higher ones.
In the Experiment sets 1 and 2, we chose the finest grid size N = 17 for MSP and N = 15

for vBRATU. The operators Pi and P c
i are chosen as linear interpolation operators imposing

nonzero Dirichlet conditions on the boundary for MSP and interior conditions on the boundary
for VBRATU. Then Ri and Rc

i are given by transposing Pi and P c
i , respectively. Moreover, we

set χ̄ = 3 and χ̄ = 2.5 in (15) for MSP and vBRATU, respectively. A summary of the multilevel
dimensions is given in Table 2.

MSP vBRATU
level n m n m
3 289 225 225 225
2 81 49 49 49
1 25 9 9 9

Table 2: Multilevel dimensions for MSP and vBRATU.

Concerning the Experiment set 3, we now describe two-block-restriction linear operators for
the DVs of RFUSE which make use the panel area a and the stringer length d parameters.

To obtain the DVs at a coarser level, we define a two-block-restriction linear operator: one
block acts only on the panel DVs and one block has effect only on the stringer DVs. The
operator takes into account some of the given problem parameters, in particular the panel area
a and the stringer length d. These parameters are aggregated through the levels in analogy with
the corresponding DVs. From now on, assume that the DVs and the parameters are numbered
as in Figure 12.

We now discuss the definition of the block of the restriction operator corresponding to the
panel thickness t. Assume to aggregate the 4 “internal” variables tij , t

i
j+1, t

i
j+Nc

, tij+Nc+1 at level

i into the variable ti−1
j at the coarser level i− 1. Then we have

ti−1
j =

aijt
i
j + aij+1t

i
j+1 + aij+Nc

tij+Nc
+ aij+Nc+1t

i
j+Nc+1

aij + aij+1 + aij+Nc
+ aij+Nc+1

and for the corresponding parameter we have

ai−1
j = aij + aij+1 + aij+Nc

+ aij+Nc+1.

The boundary variables may be grouped analogously.
For the stringer section s, we consider different cases depending on the position of the variables

in the model. In Figure 15 we use the superscripts lo and up to denote the “lower” and “upper”
stringer, and the subscript L,C and R for the “left”, “central” and “right” stringer, respectively.
Referring to Figure 15, we define the following stringer elements at coarser level:
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Figure 15: Grouping stringers: central element (a), right bound (b) and left bound (c).

• Central element (a):

slo =
dlo
L sloL /2+dlo

C sloC+dlo
R sloR /2

dlo
L
/2+dlo

C
+dlo

R
/2

, dlo =
dloL /2 + dloC + dloR/2

2
,

sup =
dup

L
sup

L
/2+dup

C
sup

C
+dup

R
sup

R
/2

dup

L
/2+dup

C
+dup

R
/2

, dup =
dupL /2 + dupC + dupR /2

2
,

s∗C =
dloslo + dupsup

dlo + dup
=

(

dloL s
lo
L /2 + dloCs

lo
C + dloRs

lo
R/2

)

+ (dupL supL /2 + dupC supC + dupR supR /2)
(

dloL /2 + dloC + dloR/2
)

+ (dupL /2 + dupC + dupR /2)

• Right element (b):

slo =
dlo
L sloL /2+dlo

C sloC
dlo
L
/2+dlo

C

, dlo =
dloL /2 + dloC

3/2
,

sup =
dup

L
sup

L
/2+dup

C
sup

C

dup

L
/2+dup

C

, dup =
dupL /2 + dupC

3/2
,

s∗R =
dloslo + dupsup

dlo + dup
=

(

dloL s
lo
L /2 + dloCs

lo
C

)

+ (dupL supL /2 + dupC supC )
(

dloL /2 + dloC
)

+ (dupL /2 + dupC )
,

• Left element (c):

slo =
dlo
C sloC+dlo

R sloR /2

dlo
C
+dlo

R
/2

, dlo =
dloC + dloR/2

3/2
,

sup =
dup

C
sup

C
+dup

R
sup

R
/2

dup

C
+dup

R
/2

, dup =
dupC + dupR /2

3/2
,

s∗L =
dloslo + dupsup

dlo + dup
=

(

dloCs
lo
C + dloRs

lo
R/2

)

+ (dupC supC + dupR supR /2)
(

dloC + dloR/2
)

+ (dupC + dupR /2)
.

Note that right and left elements correspond to boundary stringers of the model. Analogously,
for the stringer length parameter d we have

d∗C =

(

dloL /2 + dloC + dloR/2
)

+ (dupL /2 + dupC + dupR /2)

4
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for the central element, and for the right and left bound we have

d∗R =

(

dloL /2 + dloC
)

+ (dupL /2 + dupC )

3
, d∗L =

(

dloC + dloR/2
)

+ (dupC + dupR /2)

3
.

The resulting restriction operator is very sparse and its infinity norm is always equal to 1 so
that we can define the prolongation operator just as its transpose (σi = 1 in (2)). It is important
to remark that the multilevel structure presented above may be generalized to any rectangular
model, see Table 3.

level no. of lines no. of columns dim. of t dim. of s
i Nl Nc Nl ×Nc Nl × (Nc + 1)

i− 1 Ql +Rl Qc +Rc (Ql +Rl)× (Qc +Rc) (Ql +Rl)× (Nc +Rc + 1)

Table 3: Nl = 2 ∗Ql +Rl and Nc = 2 ∗Qc +Rc.

Concerning the constraint aggregation, we designed the following three-block-restriction linear
operator and for the sake of simplicity, we will give the details of Rc

3 from level 3 to level 2.
Assume, up to permutation, that the constraints are ordered so that

RF = (RF 1
1 , . . . , RF 1

40, RF 2
1 , . . . , RF 2

40, RF 3
1 , . . . , RF 3

40)

Then we define Rc
3 of dimension 24× 120 of the form

Rc
3 =





Qc
3

Qc
3

Qc
3



 ,

with blocks Qc
3 of dimension 8× 40; each block Qc

3 can be written as

Qc
3 =









T c
3

T c
3

T c
3

T c
3









,

with T c
3 of dimension 2× 10 defined as

T c
3 =

(

1 1 1/2 0 0 1 1 1/2 0 0
0 0 1/2 1 1 0 0 1/2 1 1

)

.

We conclude this section remarking that Tables 4, 6 and 7 refer to Algorithm 3.1 and to
performance of AL-RMTR. They give information on: the iteration number k, the constraint
violation ‖h(xk)‖∞ and the criticality measure τk given in (12) or (13) at at the solution computed
at Step 1 of Algorithm 3.1, the equivalent number of finest evaluations Lfek performed by RMTR
at the kth iteration and the total elapsed CPU time (in seconds).

Experiment set 1

In this section we address the solution of MSP and we choose to convert the inequalities into
equalities by using R-max

2.
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In Algorithm 3.1 we set η∗ = ω∗ = 10−4 and the following initial parameters η0 = 0.79, ω0 =
10−1, µ0 = 10, λ0 = 0, x0 = 0. The gradient of the Augmented Lagrangian function is approx-
imated by finite differences and its Hessian is approximated by a 7-diagonal finite difference
matrix, see [10].

In Table 4 we report the results obtained with Algorithm 3.1 and the three variants of RMTR:
AL-RMTR-MF, AL-RMTR-FM and AL-RMTR-AF. The three procedures all converge to the
solution and the CPU time is favorable toAL-RMTR-FM which exploits the multilevel structure
in both variable and constraint space.

We consider now the optimization solvers GCM, CONLIN and SQP available in BOSS quat-
tro. Since BOSS quattro requires the definition of lower and upper bound in the model, we
set l = −10, u = 10 so that they should not be involved in the minimization process. With
this setting, GCM and CONLIN failed and the BOSS-SQP declares convergence to a solution
in 18 iterations starting from x0 = 0 and in 45 iterations from x0 = 1. In Table 5, we summa-
rize the results obtained by BOSS-SQP: f∗ and ‖h∗‖∞ denote the objective function value and
the constraint violation attained at the computed solution and #h∗

v is the number of violated
constraints. Taking into account that the value of f∗ computed at the solution given by AL-

RMTR-MF is f∗ = 1.08, BOSS-SQP seems to find good value for the objective function but the
number of violated constraints is high and the constraint violation as well. This fact indicates
that the computed solution is nonoptimal and this is evident in Figures 17 and 18 where we plot
the solution x∗ computed by AL-RMTR-MF and BOSS-SQP with x0 = 1 and their curvature
χ(x∗). Clearly, the multilevel procedures find a better solution than BOSS-SQP.

As an example, we now focus on the plot of the curvature of the solution x∗ computed by AL-

RMTR-MF. The constraint violation is tiny (‖h∗‖∞ = 6.9E − 05) indicating that the equality
constraints h(x) = 0 are well satisfied. On the contrary, if we measure the violation in terms of
inequalities, we have ‖c∗‖∞ = 8.3E − 03 and |χ∗ − χ̄| = 2.4, that is very large, see Figure 18.
This is due to the use of R-max2 which amplifies the discrepancy between the equality and non
scaled inequality violation.

Experiment set 2

The aim of the Experiment set 2 is to reduce the inequality violation observed in the Experiment
set 1 due to the use of R-max2. Here we consider R-slack as an alternative to R-max2 to transform
inequalities into equalities and we compare the two reformulations by solving vBRATU with AL-

RMTR.
In Algorithm 3.1 we set η∗ = ω∗ = 10−4 for R-max2 and η∗ = 10−4, ω∗ = 10−3 for R-slack.

Moreover we set: η0 = 0.79, ω0 = 10−1, µ0 = 100, λ0 = 0, x0 = 0 and s0 = 0 in R-slack. The
gradient of the Augmented Lagrangian function is approximated by finite differences and its
Hessian is approximated by a 13-diagonal finite difference matrix for R-max

2 and for R-slack

the Hessian has the following block structure [10]

(

13-diagonal 5-diagonal
5-diagonal diagonal

)

.

In Tables 6 and 7 we report the results obtained with R-max
2 and R-slack, respectively. Both

versions succeed in finding a solution and the MF scheme is the most efficient. The CPU time
is in favor of AL-RMTR with R-max

2 and this may be ascribed to the fact that the problem
slack structure is not fully exploited in the implementation of AL-RMTR-MF with R-slack.
Both plots of the solutions computed by the two versions of AL-RMTR-MF look similar to the
ones in Figures 9 and 10 and are not reported. On the other hand, in Figure 19 we plot the
corresponding curvatures. From this figure, we notice that the inequality violation is lower if

19



R-slack is employed. In fact, despite the value of the equality violation is smaller in both cases,
we have |χ∗ − χ̄| ≈ 10−1 and |χ∗ − χ̄| ≈ 10−6 for R-max2 and R-slack, respectively.

Experiment set 3

The model RFUSE is handled by COMBOX, a software application developed at LMS Samtech.
From now on, we restrict the description of the functionalities of COMBOX and BOSS quattro
to what concerns our testing experience.

The definition of RFUSE is made in COMBOX in an interactive way and we followed the
description of the model made at the beginning of this section. For example, we specified the
order of the DVs and RFs in Figure 12 and 14 and selected three RFs per CP. Function values
and derivatives of problem (1) are provided by COMBOX.

Concerning the solution of the model, a set of optimization solvers are available (e.g. the
mentioned SQP, GCM, CONLIN) and the optimization process is performed by using BOSS
quattro within COMBOX. Therefore, in order to apply AL-RMTR to RFUSE, it is crucial to
embed it into BOSS quattro. In practice this means to create an interface (a Fortran file called
Bossol) that allows BOSS quattro and AL-RMTR to interact by reading and writing files and,
at the same time, the realization of a reverse communication interface in the RMTR package.
The integration of AL-RMTR in COMBOX allowed to select the code among the optimization
solvers included in COMBOX by choosing the BC LARGO algorithm, see Figure 16.

Figure 16: COMBOX graphical interface: BC LARGO is referred to AL-RMTR-MF.

The RFUSE model data (number of panels and stringers, panel area, stringer length, bounds,
initial DV value) are provided by COMBOX and they are collected in a file read at the beginning
ofAL-RMTR. Then, the multilevel structure of RFUSE is built and the iteration process proceed
by writing file with the current DVs and waiting for the corresponding function value (objective,
constraints and derivatives) that has to be supplied by BOSS quattro through another file. On its
side, BOSS quattro waits for file with the DV value and generates a file with the function values.
This way, the optimization process is handled by AL-RMTR (stopping criteria, information
printout) and BOSS quattro serves only as a function value supplier. It is important to remark
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that BOSS quattro is able to compute function values only at the finest level. Therefore, we had
to use the MF scheme in AL-RMTR that does not require coarser function value.

Among the solvers available in BOSS quattro we chose to use GCM as a term of comparison
in the solution of RFUSE. BOSS-GCM was run with default parameters and declared conver-
gence to a solution x∗

gcm such that f∗

gcm = 27.55 in 5 iterations. Moreover, at such point the
number of violated constraints is 18 but the constraint violation is negligible and, interestingly,
64 components are active, that is equal to the lower or to the upper bound.

Concerning AL-RMTR-MF, in Algorithm 3.1 we set η0 = 0.79, ω0 = 10−1, µ0 = 1, λ0 = 0
and x0, l, u were supplied by COMBOX.

Consider first the R-max2 formulation. After the first outer iteration, the procedure computes
a point that lies on the lower bound of the problem. At this point, the optimality measure is
exactly zero but the inequality constraint violation is quite large (of the order of 10−1). In the
following iterations, this violation only slightly decreases and the optimality measure gets worse.
Therefore, taking into account the experience developed in the Experiment set 2, we considered
R-slack in order to get a solution with a smaller inequality violation. In this case, we set the
initial slack variables as s0 = sf0 with sf0 = RF (x0)− 1 so that h(x0, s0) = 0. Unfortunately, the
iteration process stagnates at a point where the criticality measure is quite large (of the order
of 10−1) as well as the inequality violation. Now, the point does not lie on the boundary of the
box since only 48 components are active. Among other attempts, we changed the starting guess
setting x0 = x∗

gcm, s0 = RF (x∗

gcm)− 1. With this initial choice, the process computes a different
point with a lower value of f∗ but that it is still not accurate enough. Moreover, using R-slack,
no V-cycles were performed and, more seriously, we observed a dubious relationship between the
step size and the ratio between the decrease in the function value and the decrease in the model
value. This seems to indicate an issue in the calculation of the derivatives that deserve more
investigation.

All the results are collected in Table 8 where #RF ∗

v is the number of violated inequality
constraints, maxRF ∗

v the maximum constraint violation and #a∗ the number of active compo-
nents of x∗. Moreover, in Figures 20 and 21 we plot the value of the DVs (panel thickness and
stringer section area) computed by BOSS-GCM and AL-RMTR-MF with R-slack and s0 = sf ,
respectively.

5 Achievements and conclusions

The first phase of LARGO was dedicated to the study of the aeronautical optimization problem
addressed by LMS Samtech. In particular, we performed a systematic exploration of the geometry
of the constraint set that provided useful information in the understanding of the problem and
highlighted properties of the functions and their derivatives which were unknown. The analysis
of these properties constitutes the subject of further research at LMS Samtech.

In the second phase, we studied the structural sizing problem in terms of its multilevel
structure and we proposed a new multilevel approach that can take advantage of this structure.
Moreover, we made significant modification in the available RMTR package [9] to make it suitable
to be employed within the industrial software (reverse communication interface).

The last phase, was focused on the implementation of the new algorithm AL-RMTR, its
integration with the platforms available at LMS Samtech and its validation on test problems.
The new code widens the applicability of the RMTR package since it can be used in the solution
of generally constrained nonlinear programming problems. Moreover, a big effort was made in
this phase to link the AL-RMTR code with COMBOX and BOSS quattro and this involved the
optimization team at LMS Samtech which gave its technical support.
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Concerning the experiments, first we tuned the algorithm on problems available in literature
which were modified in order to mimic the behavior of the aeronautical problem under study.
Second, we compared AL-RMTR with the optimization solvers available in BOSS quattro and
AL-RMTR resulted more robust and computed more accurate solutions. After this preliminary
experiments, we considered a small-scale industrial test case supplied by LMS Samtech and we
gave its first multilevel description in the DV and constraint space. The results of the experiments
on this model were not very satisfying for AL-RMTR and we believe that further work has to be
made. In particular, the implementation of AL-RMTR should be improved to take into account
the problem structure as well as the interface with COMBOX which provides the model data.

The initial main objective of LARGO was to develop a new approach for large-scale optimiza-
tion problems (for a full fuselage we expect to deal with around 104 DVs and 106 constraints).
We firmly think that the multilevel approach is the right way to reach this goal and that the
work performed within LARGO allowed to compute a first step in this direction. Nonetheless,
the practical use of multilevel optimization in this context deserves further research.
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k ‖h(xk)‖∞ τk Lfek CPU
1 1.09E-03 4.90E-03 10.3
2 8.42E-04 8.92E-05 36.81
3 7.31E-04 4.79E-05 48.7

AL-RMTR-FM 4 1.84E-04 5.58E-05 92.3 22.7
5 1.17E-04 4.76E-05 79.3
6 1.42E-05 9.10E-05 241.9
1 1.01E-03 3.69E-03 9.0
2 8.49E-04 7.39E-05 26

AL-RMTR-MF 3 7.36E-04 8.85E-05 14.0 11.4
4 1.84E-04 4.41E-05 37.0
5 1.17E-04 8.09E-05 27.0
6 1.42E-05 7.99E-05 143.0
1 1.08E-03 9.15E-03 7.0
2 8.37E-04 7.76E-05 27.0

AL-RMTR-AF 3 7.28E-04 7.79E-05 23.0 29.1
4 1.84E-04 4.70E-05 31.0
5 1.17E-04 8.94E-05 22.0
6 1.42E-05 6.97E-05 129.0

Table 6: vBRATU: AL-RMTR results with R - max2.

k ‖h(xk)‖∞ τk Lfek CPU
1 2.43E-02 7.29E-03 32.4
2 1.79E-02 9.00E-04 63.25

AL-RMTR-FM 3 1.43E-02 8.42E-04 47.3 421.34
4 1.18E-03 9.85E-03 2108.7
5 1.83E-04 8.77E-04 5450.8
6 1.58E-05 9.98E-04 5557.0
1 2.39E-02 8.79E-03 44.0
2 1.80E-02 7.94E-04 32

AL-RMTR-MF 3 1.44E-02 7.12E-04 10.0 70.2
4 1.32E-03 9.95E-03 649.0
5 4.79E-05 9.98E-04 2260.0
1 2.38E-02 8.24E-03 41.0
2 1.83E-02 8.43E-04 19

AL-RMTR-AF 3 1.45E-02 4.20E-04 19.0 174.16
4 1.46E-03 8.09E-03 46.0
5 1.19E-04 8.75E-04 4490.0
6 3.23E-05 8.32E-04 28.0

Table 7: vBRATU: AL-RMTR results with R - slack.
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f∗ ‖h∗‖∞ #RF ∗

v maxRF ∗

v τ∗ #a∗

BOSS-GCM 27.55 18 2.3E-05 64

AL-RMTR-MF 25.25 6.5E-02 49 3.6E-01 0.0E+00 104
R - max

2

AL-RMTR-MF 39.41 3.4E-01 26 3.3E-01 8.7E-02 48
R - slack, s0 = sf
AL-RMTR- MF 26.32 3.3E-01 40 3.3E-01 8.5E-02 64
R - slack

x0 = x∗

gcm, s0 = RF (x∗

gcm)− 1

Table 8: Results for RFUSE.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

0.2

0.25

plot of x with boundaries

0

0.5

1

0
0.2

0.4
0.6

0.8
1

−0.05

0

0.05

0.1

0.15

0.2

plot of x with boundaries

Figure 17: Solution of MPS computed by AL-RMTR-MF (left) and BOSS-SQP (right).
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Figure 18: Curvature of the solution of MPS computed by AL-RMTR-MF (left) and BOSS-SQP
(right).
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Figure 19: Curvature of the solution of vBRATU computed by AL-RMTR-MF with R-max
2

(left) and with R-slack (right).
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Figure 20: DVs of RFUSE computed by BOSS-GCM.
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Figure 21: DVs of RFUSE computed AL-RMTR-MF with R-slack and s0 = sf .
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