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Abstract

A new method is introduced for solving equality constrained nonlinear optimiza-

tion problems. This method does not use a penalty function, nor a filter, and yet can

be proved to be globally convergent to first-order stationary points. It uses different

trust-regions to cope with the nonlinearity of the objective and constraint functions,

and allows inexact SQP steps that do not lie exactly in the nullspace of the local

Jacobian. Preliminary numerical experiments on CUTEr problems indicate that the

method performs well.

Keywords: Nonlinear optimization, equality constraints, numerical algorithms, global con-

vergence.

Context

This paper presents a correction to the results obtained by Gould and Toint (2010), in
which an error was unfortunately discovered. The problem is in the proof of Lemma 3.10
of this reference, where it is claimed that Lemma 6.5.3 of Conn, Gould and Toint (2000)
can be invoked to deduce that ρck ≥ η2, where ρ

c
k is a specific ratio of achieved to pre-

dicted reduction is constraint violation and η2 is a constant in (0, 1). As it turns out, the
reasonning is only correct if the ratio ‖sk‖/‖sRk ‖ is bounded above, where sk is the step
at iteration k and sRk is its projection onto the range of the transposed Jacobian JT

k .
Handling the case where this ratio is unbounded above turned out to be surprisingly

complex. In particular, this required considering separately the cases where the tangential
component of the step at iteration k is large or small with respect to its normal compo-
nent, where the meaning of “large” and “small” has to be defined very specifically. The
convergence proof taking this distinction into account is therefore significantly more in-
volved than the proof of Gould and Toint (2010), and cannot be discussed in the form of
a few corrections in the original text. It is the purpose of the present paper to propose
a corrected version of Gould and Toint (2010), where other minor improvements and up-
dates have also been introduced, including fixing a problematic case where it was possible
to skip the normal step computation although the current iterate was close to the current
infeasibility limit.

1 Introduction

We consider the numerical solution of the equality constrained nonlinear optimization
problem

{

min
x

f(x)

c(x) = 0,
(1.1)

where we assume that f : IRn → IR and c : IRn → IRm are twice continuously differentiable
and that f is bounded below on the feasible domain.

1
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The present paper introduces a new method for the solution of (1.1), which belongs to
the class of trust-region methods for constrained optimization, in the spirit of Omojokun
(1989) in a Ph.D. thesis supervised by R. Byrd, and later developed by several authors,
including Biegler, Nocedal and Schmid (1995), El-Alem (1995, 1999), Byrd, Gilbert and
Nocedal (2000a), Byrd, Hribar and Nocedal (2000b), Liu and Yuan (2000) and Lalee,
Nocedal and Plantenga (1998) (also see Chapter 15 of Conn et al., 2000).

The algorithm presented here has four main features. The first is that it attempts
to consider the objective function and the constraints as independently as possible by
using different models and trust regions for f and c. As is common to the methods
cited, the steps are computed as a combination of normal and tangential components, the
first aiming to reduce the constraint violation, and the second at reducing the objective
function while retaining the improvement in violation by remaining in the plane tangent
to the constraints, but only approximately so. This framework can thus be viewed as
a sequential quadratic programming technique that allows for inexact tangential steps,
which is the second main characteristic of our proposal (shared with Heinkenschloss and
Vicente, 2001, Byrd, Curtis and Nocedal, 2008 and 2010, and Curtis, Schenk and Wächter,
2010). The third distinctive feature is that the algorithm is not compelled to compute
both normal and tangential steps at every iteration, rather only to compute whichever
is/are likely to improve feasibility and optimality significantly. Thus if an iterate is almost
feasible, there is little point in trying to further improve feasibility while the objective
value is far from optimal. The final central feature is that the algorithm does not use any
merit function (penalty, or otherwise), thereby avoiding the practical problems associated
with the setting of the merit function parameters, but nor does it use the filter idea first
proposed by Fletcher and Leyffer (2002). Instead, the convergence is driven by the trust
funnel, a progressively decreasing limit on the permitted infeasibility of the successive
iterates.

It is, in that sense and albeit very indirectly, reminiscent of the “flexible tolerance
method” by Himmelblau (1972), but also of the “tolerance tube method” by Zoppke-
Donaldson (1995). It also has similarities with the SQP methods by Yamashita and Yabe
(2004), Ulbrich and Ulbrich (2003) and Bielschowsky and Gomes (2008). All these meth-
ods use the idea of progressively reducing constraint violation to avoid using a penalty
parameter. The four more modern algorithms are of the trust-region type, but differ
significantly from our proposal. The first major difference is that they all require the
tangential component of the step to lie exactly in the Jacobian’s nullspace: they are thus
“exact” rather than “inexact” SQP methods. The second is that they all use a single
trust region to account simultaneously for constraint violation and objective function im-
provement. The third is that both limit constraint violation a posteriori, once the true
nonlinear constraints have been evaluated, rather than attempting to limit its predicted
value a priori. The “tolerance tube” method resorts to standard second-order correction
steps when the iterates become too infeasible. No convergence seems to be available for
the method, although the numerical results appear satisfactory. At variance, the method
by Yamashita and Yabe (2004), itself motivated by an earlier report by Yamashita (1979),
is provably globally convergent to first-order critical points and involves a combination of
linesearch and trust-regions. The normal step is computed by solving a quadratic program
involving the Hessian of the problem’s Lagrangian, while the tangential step requires the
solution of one linear and two quadratic programs. The method by Ulbrich and Ulbrich
(2003) computes a composite SQP step and accepts the resulting trial iterate on the basis
of non-monotone tests which require both a sufficient reduction of infeasibility and an im-
provement in optimality. Global and fast asymptotic convergence (without the Maratos
effect) is proved for the resulting algorithm. Finally, the algorithm by Bielschowsky and
Gomes (2008) is also provably globally convergent to first-order critical points. It how-
ever involves a “restoration” phase (whose convergence is assumed) to achieve acceptable
constraint violation in which the size of normal component of the step is restricted to be
a fraction of the current infeasibility limit. This limit is updated using the gradient of
the Lagrangian function, and the allowable fraction is itself computed from the norm of
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exact projection of the objective function gradient onto the nullspace of the constraints’
Jacobian.

The paper is organized as follows. Section 2 introduces the new algorithm, whose
convergence theory is presented in Section 3. Conclusions and perspectives are finally
outlined in Section 4.

2 A trust-funnel algorithm

2.1 The normal step

Let us measure, for any x, the constraint violation at x by

θ(x)
def
= 1

2
‖c(x)‖2 (2.1)

where ‖·‖ denotes the Euclidean norm. Now consider iteration k, starting from the iterate
xk, for which we assume we know a bound θmax

k such that 1
2
‖c(xk)‖2 < θmax

k .
Firstly, a normal step nk

(1) is computed if the constraint violation is significant (in a
sense to be defined shortly). This is achieved by reducing the Gauss-Newton model

1
2
‖ck + Jkn‖2 (2.2)

of θ(xk+nk)—here we write ck
def
= c(xk) and Jk

def
= J(xk) is the Jacobian of c at xk—while

requiring that nk remains in the “normal trust region”, i.e.,

nk ∈ Nk
def
= {v ∈ IRn | ‖v‖ ≤ ∆c

k}, (2.3)

for some radius ∆c
k > 0. More formally, this Gauss-Newton-type step is computed by

choosing nk so that (2.2) is reduced sufficiently within Nk in the sense that

δc,nk

def
= 1

2
‖ck‖2 − 1

2
‖ck + Jknk‖2 ≥ κnC‖JT

k ck‖min

[ ‖JT
k ck‖

1 + ‖Wk‖
,∆c

k

]

≥ 0, (2.4)

where Wk = JT
k Jk is the symmetric Gauss-Newton approximation of the Hessian of θ at

xk and κnC ∈ (0, 1
2
]. Condition (2.4) is nothing but the familiar Cauchy condition for

problem approximately minimizing (2.2) within the region Nk.
In addition to (2.4), we also require the normal step to be “normal”, in that it mostly

lies in the space spanned by the columns of the matrix JT
k by imposing that

‖nk‖ ≤ κn‖ck‖ (2.5)

for some κn ≥ 1. These conditions on the normal step are very reasonable in practice,
as it is known that they hold, for instance, if nk is computed by applying one or more
steps of a truncated conjugate-gradient method (see Steihaug, 1983, and Toint, 1981) to
the minimization of the square of the linearized infeasibility. Other Krylov-space based
techniques, such as LSQR (see Paige and Saunders, 1982) or LSTR (see Cartis, Gould
and Toint, 2009) also guarantee that these conditions hold, as is the case if the model
1
2
‖ck + Jkn‖2 is minimized exactly in Nk. Note that the conditions (2.3), (2.4) and (2.5)

allow us to choose a null normal step (nk = 0) if xk is feasible.

2.2 The tangential step

Having computed the normal step, we next consider if some improvement is possible
on the objective function, while not jeopardizing the infeasibility reduction we have just
obtained. Because of this latter constraint, it makes sense to remain in Nk, the region
where we believe that our model of constraint violation can be trusted, but we also need

(1)Not to be confused with n, the number of variables.
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to trust the model of the objective function given, as is traditional in sequential quadratic
programming (see Section 15.2 of Conn et al., 2000), by

mk(xk + nk + t) = fk + 〈gk, nk〉+ 1
2
〈nk, Hknk〉+ 〈gN

k , t〉+ 1
2
〈t, Gkt〉 (2.6)

where
gN

k

def
= gk +Gknk, (2.7)

where fk = f(xk), gk = ∇f(xk) and where Gk is a symmetric approximation of the
Hessian of the Lagrangian ℓ(x, y) = f(x) + 〈y, c(x)〉 given by

Gk
def
= Hk +

m
∑

i=1

[ŷk]iCik. (2.8)

In this last definition, Hk is a bounded symmetric approximation of ∇2f(xk), the matrices
Cik are bounded symmetric approximations of the constraints’ Hessians ∇xxci(xk) and the
vector ŷk may be viewed as a bounded approximation of the local Lagrange multipliers,
in the sense that we require that

‖ŷk‖ ≤ κy (2.9)

for some κy > 0. We assume that (2.6) can be trusted as a representation of f(xk+nk+ t)
provided the complete step s = nk + t belongs to

Tk def
= {s ∈ IRn | ‖s‖ ≤ ∆f

k}, (2.10)

for some radius ∆f
k . Thus our attempts to reduce (2.6) should be restricted to the inter-

section of Nk and Tk, which imposes that the tangential step tk results in a complete step
sk = nk + tk that satisfies the inclusion

sk ∈ Bk
def
= Nk ∩ Tk def

= {s ∈ IRn | ‖s‖ ≤ ∆k}, (2.11)

where the radius ∆k of Bk is thus given by

∆k = min[∆c
k,∆

f
k ]. (2.12)

As a consequence, it makes sense to ask nk to belong to Bk before attempting the com-
putation of tk, which we formalize by requiring that

‖nk‖ ≤ κB∆k, (2.13)

for some κB ∈ (0, 1). We note here that using two different trust-region radii can be
considered as unusual, but is not unique. For instance, the SLIQUE algorithm described
by Byrd, Gould, Nocedal and Waltz (2004) also uses different radii, but for different models
of the same function, rather than for two different functions.

We still have to specify what we mean by “reducing (2.6)”, as we are essentially inter-
ested in the reduction in the hyperplane tangent to the constraints. In order to compute
an approximate projected gradient at xk + nk, we first compute a new local estimate of
the Lagrange multipliers yk such that

‖yk + [JT
k ]IgN

k ‖ ≤ ωy(‖ck‖) (2.14)

for some monotonic bounding function(2) ωy, the superscript
I denoting the Moore-Penrose

generalized inverse, and such that

‖rk‖ ≤ κnr‖gN

k ‖ (2.15)

(2)Here and later in this paper, a bounding function ω is defined to be a continuous function from IR+

into IR with the property that ω(t) converges to zero as t tends to zero.
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for some κnr > 0, and
〈gN

k , rk〉 ≥ 0, (2.16)

where
rk

def
= gN

k + JT
k yk (2.17)

is an approximate projected gradient of the model mk at xk + nk. Conditions (2.14)–
(2.16) are reasonable since they are obviously satisfied by choosing yk to be a solution of
the least-squares problem

min
y

1
2
‖gN

k + JT
k y‖2, (2.18)

and thus, by continuity, by sufficiently good approximations of this solution. In practice,
one can compute such an approximation by applying a Krylov space iterative method
starting from y = 0. If the solution of (2.18) is accurate, rk is the orthogonal projection
of gN

k onto the nullspace of Jk, which then motivates that we require the tangent step
to produce a reduction in the model mk which is at least a fraction of that achieved by
solving the modified Cauchy point subproblem

min
τ>0

xk+nk−τrk∈Bk

mk(xk + nk − τrk), (2.19)

where we have assumed that ‖rk‖ > 0. We know from Section 8.1.5 of Conn et al. (2000)
that this procedure ensures, for some κtC1 ∈ (0, 1], the modified Cauchy condition

δf,tk

def
= mk(xk + nk)−mk(xk + nk + tk) ≥ κtC1πk min

[

πk
1 + ‖Gk‖

, τk‖rk‖
]

> 0 (2.20)

on the decrease of the objective function model within Bk, where we have set

πk
def
=

〈gN

k , rk〉
‖rk‖

≥ 0 (2.21)

(by convention, we define πk = 0 whenever rk = 0), and where τk is the maximal step
length along −rk from xk + nk which remains in the trust-region Bk. But we have that

τk‖rk‖ ≥ (1− κB)∆k

by construction and thus the modified Cauchy condition (2.20) may now be rewritten as

δf,tk

def
= mk(xk + nk)−mk(xk + nk + tk) ≥ κtCπk min

[

πk
1 + ‖Gk‖

,∆k

]

(2.22)

with κtC

def
= κtC1(1 − κB) ∈ (0, 1). We see from (2.22) that πk may be considered as an

optimality measure in the sense that it measures how much decrease could be obtained
locally along the negative of the approximate projected gradient rk. This role as an
optimality measure is confirmed in Lemma 3.2 below.

Our last requirement on the tangential step tk is to ensure that it does not completely
“undo” the improvement in linearized feasibility obtained from the normal step without
good reason. We consider two possible situations. The first is when the predicted decrease
in the objective function is substantial compared to its possible deterioration along the
normal step and the step is not too large compared to the maximal allowable infeasibility,
i.e. when both

δf,tk ≥ −κ̄δ δf,nk (2.23)

and
‖sk‖ ≤ κ∆

√

θmax
k , (2.24)

for some κ̄δ > 1 and some κ∆ > 0, where

δf,nk

def
= mk(xk)−mk(xk + nk).
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xk

nk

xk + nk

−rk

modified Cauchy
point on mk

tk

xk + sk

‖ck + Jks‖
2 ≤ ϑk

∆k

∆c

k

−gk

−gk −Gknk

ck + Jks = 0

c(x) = 0

Figure 2.1: The components of a step sk satisfying (2.26) in the case where ∆k = ∆f
k .

When (2.23) and (2.24) hold, we allow more freedom in the linearized feasibility and merely
require that

1
2
‖ck + Jk(nk + tk)‖2 ≤ κttθ

max
k (2.25)

for some κtt ∈ (0, 1). If, on the other hand, (2.23) or (2.24) fails, meaning that we cannot
hope to trade some decrease in linearized feasibility for a large improvement in objective
function value over a reasonable step, then we require that the tangential step satisfies

‖ck + Jk(nk + tk)‖2 ≤ κtg‖ck‖2 + (1− κtg)‖ck + Jknk‖2 def
= ϑk, (2.26)

for some κtg ∈ (0, 1). Note that this inequality is already satisfied at the end of the normal
step since ‖ck + Jknk‖ ≤ ‖ck‖ and thus already provides a relaxation of the (linearized)
feasibility requirement at xk + nk. Note also that ϑk ≤ ‖ck‖2, an observation which we
will use below. Figure 2.1 illustrate the geometry of the various quantities involved in the
construction of a step sk satisfying (2.26).

2.3 Which steps to compute and retain

We now observe that a tangential step does not make too much sense if rk = 0, and we
do not compute any in this case. By convention we then choose to define πk = 0 and
tk = 0. The situation is similar if πk is small compared to the current infeasibility. Given
a monotonic bounding function ωt, we thus decide that if

πk > ωt(‖ck‖), (2.27)

fails, then the current iterate is still too far from feasibility to worry about optimality, and
we again skip the tangential step computation by setting tk = 0.

In the same spirit, we have imposed above the current violation to be “significant” as
a condition to compute the normal step nk, but didn’t specify what we formally meant,
because our optimality measure πk was not defined at that point. We now complete our
description by requiring that the computation of the normal step only when k = 0 or

‖ck‖ > ωn(πk−1) or θk > κθθθ
max
k (2.28)
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where ωn is some bounding function, κθθ ∈ (0, 1) is a constant and θk
def
= θ(xk). If (2.28)

fails, we remain free to compute a normal step, but we may also skip it. In this latter case,
we simply set nk = 0. For technical reasons which will become clear below, we impose the
additional conditions that

ωn(t) = 0 ⇐⇒ t = 0 and ωt(ωn(t)) ≤ κωt (2.29)

for all t ≥ 0 and for some κω ∈ (0, 1).
While (2.27) and (2.28) together provide considerable flexibility in our algorithm in

that a normal or tangential step is only computed when relevant, our setting also produces
the possibility that both these conditions fail. In this case, we have that sk = nk + tk
is identically zero, and the sole computation in the iteration is that of the new Lagrange
multiplier yk; we will actually show that such behaviour cannot persist unless xk is optimal.

Finally, we may evaluate the usefulness of the tangential step tk after (or during) its
computation, in the sense that we would like a relatively large tangential step to cause a
clear decrease in the model (2.6) of the objective function. We therefore check whether
the conditions

‖tk‖ > κCS‖nk‖ (2.30)

and
δfk

def
= δf,tk + δf,nk ≥ κδδ

f,t
k (2.31)

are satisfied for some κCS > 1 and for κδ = 1 − 1/κ̄δ ∈ (0, 1). The latter inequality is
equivalent to (2.23) and indicates that the predicted improvement in the objective function
obtained in the tangential step is not negligible compared to the predicted change in f
resulting from the normal step. If (2.30) holds but (2.31) fails, the tangential step is not
useful in the sense discussed at the beginning of this pargagraph, and we choose to ignore
it by resetting tk = 0.

2.4 Iterations types

Once we have computed the step sk and the trial point

x+k
def
= xk + sk (2.32)

completely, we are left with the task of accepting or rejecting it. Our proposal is based on
the distinction between y-iterations, f -iterations and c-iterations, in the spirit of Fletcher
and Leyffer (2002), Fletcher, Leyffer and Toint (2002b) or Fletcher, Gould, Leyffer, Toint
and Wächter (2002a). If nk = tk = 0, iteration k is said to be a y-iteration because the
only computation potentially performed is that of a new vector of Lagrange multiplier
estimates. We will say that iteration k is an f -iteration if tk 6= 0, (2.31) holds, and

θ(x+k ) ≤ θmax
k . (2.33)

Condition (2.33) ensures that the step keeps feasibility within reasonable bounds. Thus
the iteration’s expected major achievement is, in this case, a decrease in the value of
the objective function f , hence its name. If sk 6= 0 and either i) condition (2.31) fails;
ii) condition (2.33) fails; or iii) tk = 0 because either (2.13) fails, (2.27) fails, or an
initial nonzero tangential step is computed and rejected because it satisfies (2.30) but
not (2.31), then iteration k is said to be a c-iteration. If (2.31) fails, then the expected
major achievement (or failure) of iteration k is, a contrario, to improve feasibility, which
is also the case when the step only contains its normal component.

The main idea behind the technique we propose for accepting the trial point is to
measure whether the major expected achievement of the iteration has been realized.

• If iteration k is a y-iteration, we do not have any other choice than to restart with
xk+1 = xk using the new multipliers. We then define

∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k (2.34)

and keep the current value of the maximal infeasibility θmax
k+1 = θmax

k .
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• If iteration k is an f -iteration, we accept the trial point if the achieved objective
function reduction is comparable to its predicted value along the step sk. More
formally, the trial point is accepted (i.e., xk+1 = x+k ) if

ρfk
def
=

f(xk)− f(x+k )

δfk
≥ η1, (2.35)

and rejected (i.e., xk+1 = xk) otherwise. The radius of Tk is then updated by

∆f
k+1 ∈







[∆f
k ,∞) if ρfk ≥ η2,

[γ2∆
f
k ,∆

f
k ] if ρfk ∈ [η1, η2),

[γ1∆
f
k , γ2∆

f
k ] if ρfk < η1,

(2.36)

where the constants η2, γ1, and γ2 are given and satisfy the conditions 0 < η1 ≤
η2 < 1 and 0 < γ1 ≤ γ2 < 1, as is usual for trust-region methods. The radius of
Nk is possibly increased if the iteration is successful in the sense that

∆c
k+1 ≥ max

[

κ∆cc‖JT
k+1ck+1‖,∆c

k

]

if ρfk ≥ η1 (2.37)

or
∆c

k+1 = ∆c
k if ρfk < η1, (2.38)

for some constant κ∆cc ∈ (0, 1). The value of the maximal infeasibility measure is

also left unchanged, that is θmax
k+1 = θmax

k . Note that δfk > 0 (because of (2.22) and
(2.31)) unless xk is first-order critical, and hence that condition (2.35) is well-defined.

• If iteration k is a c-iteration, we accept the trial point if the improvement in feasibility
is comparable to its predicted value

δck
def
= 1

2
‖ck‖2 − 1

2
‖ck + Jksk‖2,

and the latter is itself comparable to its predicted decrease along the normal step,
that is

nk 6= 0, δck ≥ κcnδ
c,n
k and ρck

def
=

θ(xk)− θ(x+k )

δck
≥ η1 (2.39)

for some κcn ∈ (0, 1 − κtg]. If (2.39) fails, the trial point is rejected. The radius of
Nk is then updated by

∆c
k+1







∈ [max
[

κ∆cc‖JT
k+1ck+1‖,∆c

k

]

,∞) if ρck ≥ η2 and δck ≥ κcnδ
c,n
k ,

= max
[

κ∆cc‖JT
k+1ck+1‖,∆c

k

]

if ρck ∈ [η1, η2) and δck ≥ κcnδ
c,n
k ,

∈ [γ1∆
c
k, γ2∆

c
k] if ρck < η1 or δck < κcnδ

c,n
k .
(2.40)

and that of Tk is unchanged: ∆f
k+1 = ∆f

k . We also update the value of the maximal
infeasibility by

θmax
k+1 =

{

max
[

κtx1θ
max
k , θ(x+k ) + κtx2(θ(xk)− θ(x+k ))

]

if (2.39) hold,
θmax
k otherwise,

(2.41)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).

We now describe why the last condition in (2.39) is well-defined. Firstly, we only check the
third condition after the first two conditions have been verified. Assuming that nk 6= 0,
the Cauchy condition (2.4) and c(xk) 6= 0 ensure that δc,nk > 0 provided JT

k ck 6= 0. Thus
the third condition is well defined, unless c(xk) 6= 0 and J(xk)

T ck = 0. Such a point xk
is called an infeasible stationary point of θ and is an undesirable situation on which we
comment in Section 3. If such a point is encountered, the algorithm is terminated.
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Algorithm 2.1: Trust-Funnel Algorithm

Step 0: Initialization. An initial point x0, an initial vector of multipliers y−1

and positive initial trust-region radii ∆f
0 and ∆c

0 are given. Define θmax
0 =

max[κca, κcrθ(x0)] for some constants κca > 0 and κcr > 1. Set k = 0.

Step 1: Termination at an infeasible point : If J(xk)
T ck = 0 and c(xk) 6= 0,

terminate the algorithm.

Step 2: Normal step. Possibly compute a normal step nk that sufficiently reduces
the linearized infeasibility (in the sense that (2.4) holds), under the constraint
that (2.3) and (2.5) also hold. This computation must be performed if k = 0 or
if (2.28) holds when k > 0.

If nk has not been computed, set nk = 0.

Step 3: Tangential step. If (2.13) holds, then

Step 3.1: select a vector ŷk satisfying (2.9) and define Gk by (2.8);

Step 3.2: compute yk and rk satisfying (2.14)–(2.17);

Step 3.3: if (2.27) holds, compute a tangential step tk that sufficiently re-
duces the model (2.6) (in the sense that (2.22) holds), preserves linearized
feasibility enough to ensure either all of (2.23)–(2.25) or (2.26), and such
that the complete step sk = nk + tk satisfies (2.11).

If (2.13) fails, set yk = 0. In this case, or if (2.27) fails, or if (2.30) holds but
(2.31) fails, set tk = 0 and sk = nk. In all cases, define x+k = xk + sk.

Step 4: Conclude a y-iteration. If nk = tk = 0, then

Step 4.1: accept x+k = xk;

Step 4.2: define ∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k;

Step 4.3: set θmax
k+1 = θmax

k .

Step 5: Conclude an f-iteration. If tk 6= 0 and (2.31) and (2.33) hold,

Step 5.1: accept x+k if (2.35) holds;

Step 5.2: update ∆f
k according to (2.36) and ∆c

k according to (2.37)–(2.38);

Step 5.3: set θmax
k+1 = θmax

k .

Step 6: Conclude a c-iteration. If either nk 6= 0 and tk = 0, or either one of
(2.31) or (2.33) fails,

Step 6.1: accept x+k if (2.39) hold;

Step 6.2: update ∆c
k according to (2.40);

Step 6.3: update the maximal infeasibility θmax
k using (2.41).

Step 7: Prepare for the next iteration. If x+k has been accepted, set xk+1 = x+k ,
else set xk+1 = xk. Increment k by one and go to Step 1.
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2.5 The trust-funnel algorithm

We are now ready to state our complete algorithm, Algorithm 2.1 on the previous page.

We now comment on Algorithm 2.1. If either (2.35) or (2.39) holds, iteration k is called

successful. It is said to be very successful if, additionally, either ρfk ≥ η2 or ρck ≥ η2, in
which case none of the trust-region radii is decreased. We also define the following useful
index sets:

S def
= {k | xk+1 = x+k }, (2.42)

the set of successful iterations,

Y def
= {k | sk = 0}, F def

= {k | tk 6= 0 and (2.31) and (2.33) hold} and C def
= IN\(Y∪F),

the sets of y-, f - and c-iterations. We further divide this last set into

Cw = C ∩ {k | tk 6= 0 and (2.23)–(2.25) hold} and Ct = C \ Cw. (2.43)

Note that (2.26) must hold for k ∈ Ct. We finally define

A def
= {k | nk is computed to satisfy (2.4)}.

The mechanism of the algorithm ensures that nk = 0 whenever k 6∈ A, but a null nk can
also happen for k ∈ A (if xk is feasible or is an infeasible stationary point).

We conclude this section by stating a few basic properties of Algorithm 2.1. We first
verify that our algorithm is well-defined by deducing a useful “Cauchy-like” condition on
the predicted reduction in the infeasibility measure θ(x) (whose gradient is J(x)T c(x))
over each complete iteration in A ∩ Ct.

Lemma 2.1 For all k ∈ A ∩ Ct, the first inequality of (2.39) holds and

δck ≥ κnC2‖JT
k ck‖min

[ ‖JT
k ck‖

1 + ‖Wk‖
,∆c

k

]

≥ 0, (2.44)

for κnC2 = (1− κtg)κnC.

Proof. We first note that our assumption on k implies that (2.26) holds. In this
case, we easily verify that

2δck = ‖ck‖2 − ‖ck + Jksk‖2

≥ ‖ck‖2 − κtg‖ck‖2 − (1− κtg)‖ck + Jknk‖2

= (1− κtg)
[

‖ck‖2 − ‖ck + Jknk‖2
]

(2.45)

where we have used (2.26). This and the definition of δc,nk in (2.4) give the first
conclusion of the lemma because κcn ≤ 1 − κtg by definition. We may now use (2.45)
and (2.4) to deduce that

δck ≥ (1− κtg)κnC‖JT
k ck‖min

[ ‖JT
k ck‖

1 + ‖Wk‖
,∆c

k

]

,

and inequality (2.44) then follows. 2

We now state an important direct consequence of the definition of our algorithm.

Lemma 2.2 The sequence {θmax
k } is non-increasing and the inequality

0 ≤ θ(xj) ≤ θmax
k (2.46)

holds for all j ≥ k.
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Proof. This results from the initial definition of θmax
0 in Step 0, the inequality (2.33)

(which holds at f -iterations), the fact that θmax
k is only updated by formula (2.41) at

successful c-iterations, at which Lemma 2.1 ensures that δck > 0. 2

Note that this lemma implies that

xk ∈ L def
= {x ∈ IRn | θ(x) ≤ θmax

0 }

for all k ≥ 0.
The monotonicity of the sequence {θmax

k } is what drives the algorithm towards fea-
sibility and, ultimately, to optimality: the iterates can be thought as flowing towards a
critical point through a funnel centered on the feasible set. Hence the algorithm’s name.
We now show a simple useful property of y-iterations.

Lemma 2.3 For all k ∈ Y such that xk is not an infeasible stationary point,

πk ≤ κωπk−1.

Proof. First suppose that (2.28) is satisfied. This implies that ck 6= 0 and, therefore,
JT
k ck 6= 0 since xk is not an infeasible stationary point by assumption. Since this

condition ensures that a normal step will be computed, we can conclude from (2.4)
that nk 6= 0, which is a contradiction. Thus (2.28) must fail. Next, assume that
(2.27) is satisfied. Since nk = 0 by assumption, we know that (2.13) holds and thus
a tangential step is computed. Since πk > 0 and a tangential step is computed,
condition (2.22) ensures that the computed tangential direction is nonzero. However,
since tk = 0 we must have redefined tk to be zero because the computed tangential
direction satisfied (2.30) but not (2.31). This is a contradiction because (2.31) would
have been satisfied trivially since nk = 0. Thus (2.27) must fail. Since we have shown
that both (2.28) and (2.27) must fail at y-iterations for which xk is not an infeasible
stationary point, we conclude that πk ≤ ωt(‖ck‖) ≤ ωt(ωn(πk−1)) where we used the
monotonicity of ωt. The desired conclusion follows from the second part of (2.29). 2

We conclude this section by stating the basic property of the step length.

Lemma 2.4 We have that, for all k,

‖sk‖ ≤ ∆k ≤ ∆c
k if tk 6= 0 (2.47)

while
‖sk‖ = ‖nk‖ ≤ ∆c

k if tk = 0. (2.48)

Proof. If tk 6= 0 is computed, then (2.13) holds and (2.11) and (2.12) together give
the bound (2.47). In the other case, sk = nk and (2.3) ensures (2.48). 2

3 Global convergence to first-order critical points

3.1 Assumptions and preliminaries

Before starting our convergence analysis, we recall our assumption that both f and c are
twice continuously differentiable. Moreover, we also assume that there exists a constant
κH such that, for all ξ in

⋃

k≥0[xk, x
+
k ] ∪ L, all k and all i ∈ {1, . . . ,m},

1 + max [ ‖gk‖, ‖∇xxf(ξ)‖, ‖∇xxci(ξ)‖, ‖J(ξ)‖, ‖Hk‖, ‖Cik‖ ] ≤ κH. (3.1)

When Hk and Cik are chosen as ∇xxf(xk) and ∇xxci(xk), respectively, this last assump-
tion is for instance satisfied if the first and second derivatives of f and c are uniformly
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bounded, or, because of continuity, if the sequences {xk} and {x+k } remain in a bounded
domain of IRn.

We finally complete our set of assumptions by supposing that

f(x) ≥ flow for all x ∈ L. (3.2)

This assumption is often realistic and is, for instance, satisfied if the smallest singular
value of the constraint Jacobian J(x) is uniformly bounded away from zero. Observe that
(3.2) obviously holds by continuity if we assume that all iterates remain in a bounded
domain.

We first state some useful consequences of (3.1).

Lemma 3.1 For all k,
1 + ‖Wk‖ ≤ κ2

H
, (3.3)

and
‖gNk ‖ ≤ [1 + κn

√

2θmax
0 (1 +mκy)]κH

def
= κg (3.4)

Proof. The first inequality immediately follows from

1 + ‖Wk‖ = 1 + ‖Jk‖2 ≤ (1 + ‖Jk‖)2 ≤ κ2
H
,

where the last inequality is deduced from (3.1). The bound (3.4) is obtained from
(2.7), the inequality

‖gN

k ‖ ≤ ‖gk‖+ ‖Gk‖ ‖nk‖ ≤ ‖gk‖+ κn

[

‖Hk‖ ‖ck‖+m‖ŷk‖ ‖ck‖ max
i=1,...,m

‖Ci,k‖
]

,

Lemma 2.2, (2.9) and (3.1). 2

We also establish a useful sufficient condition for first-order criticality.

Lemma 3.2 Suppose that for some infinite subsequence indexed by K we have

lim
k→∞,k∈K

‖ck‖ = 0. (3.5)

Then
lim

k→∞,k∈K
gN

k = lim
k→∞,k∈K

gk. (3.6)

If, in addition,
lim

k→∞,k∈K
πk = 0, (3.7)

then
lim

k→∞,k∈K
gk + JT

k yk = 0 and lim
k→∞,k∈K

‖Pkgk‖ = 0, (3.8)

where Pk is the orthogonal projection onto the nullspace of Jk, and all limit points of the
sequence {xk}k∈K (if any) are first-order critical.

Proof. Combining the uniform bound (3.4) with (2.15), we obtain that the se-
quence {‖rk‖}K is uniformly bounded and therefore can be considered as the union of
convergent subsequences. Moreover, because of (2.5), the limit (3.5) first implies that

lim
k→∞,k∈K

nk = 0, (3.9)

which then implies with (2.7) and (3.1) that (3.6) holds. This limit, together with
(2.14) and (2.17), ensures that

lim
k→∞,k∈P

rk = lim
k→∞,k∈P

[gk + JT
k yk] = lim

k→∞,k∈P
[gk − JT

k [JT
k ]Igk] = lim

k→∞,k∈P
Pkgk,

(3.10)
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where we have restricted our attention on a particular subsequence indexed by P ⊆ K
such that the limit in the left-hand side is well-defined. Assume now that this limit is a
nonzero vector. Then, using now (2.21), (3.9), (3.6) and the Hermitian and idempotent
nature of Pk, we have that

lim
k→∞,k∈P

πk = lim
k→∞,k∈P

〈gk, rk〉
‖rk‖

= lim
k→∞,k∈P

〈gk, Pkgk〉
‖Pkgk‖

= lim
k→∞,k∈P

〈Pkgk, Pkgk〉
‖Pkgk‖

= lim
k→∞,k∈P

‖Pkgk‖.
(3.11)

But (3.7) implies that this latter limit is zero, and (3.10) also gives that rk must
converge to zero along P, which is impossible. Hence limk→∞,k∈P rk = 0 and the
desired conclusion then follows from (3.10). 2

This lemma indicates that all we need to show for first-order global convergence are the
two limits (3.5) and (3.7) for an index set K as large as possible. Unfortunately, and as
is unavoidable with local methods for constrained optimization, our algorithm may fail
to produce (3.5)–(3.7) and, instead, end up being trapped by a local infeasible stationary
point of the infeasibility measure θ(x). If x⋄ is such a point, then

J(x⋄)
T c(x⋄) = 0 with c(x⋄) 6= 0.

If started from x⋄, Algorithm 2.1 will fail to progress towards feasibility, as no suitable nor-
mal step can be found in Step 2. A less unlikely scenario, where there exists a subsequence
indexed by Z such that

lim
k→∞,k∈Z

‖JT
k ck‖ = 0 with lim inf

k→∞,k∈Z
‖ck‖ > 0, (3.12)

indicates the approach of such an infeasible stationary point. In both cases, restarting
the whole algorithm from a different starting point might be the best strategy. Barring
this undesirable situation, we would however like to show that our algorithm converges to
first-order critical points for (1.1), whenever uniform asymptotic convexity of θ(x) in the
range space of Jk is obtained when feasibility is approached. More specifically, we assume
from now on that, for some small constant κc ∈ (0, 1),

there exists κJ ∈ (0, 1) such that σmin(Jk) ≥ κJ whenever ‖c(xk)‖ ≤ κc, (3.13)

where σmin(A) is the smallest positive singular value of the matrix A. It is important
to note that this assumption holds by continuity if J(x) is Lipschitz continuous and
σmin(J(x)) uniformly bounded away from zero on the feasible set, in which case the Jaco-
bian of the constraints has constant rank over this set.

We also obtain the following useful bound.

Lemma 3.3 There exists a constant κG > κH such that, 1 + ‖Gk‖ ≤ κG for every k.

Proof. The desired conclusion follows from (2.8), (2.9) and (3.1), with

κG

def
= κH +mκH

√

2θmax
0 > κH.

2

The following two simple properties result from the mechanism of the algorithm.

Lemma 3.4 For all k ∈ C ∩ S, one has that

‖tk‖ ≤ κCS‖nk‖. (3.14)
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Proof. Consider k ∈ C ∩S. Hence θ(x+k ) < θ(xk) and, in view of Lemma 2.2, (2.33)
holds. If (3.14) fails, then tk 6= 0, the mechanism of the algorithm implies that (2.31)
must also hold, and thus that k ∈ F which is impossible. Hence (3.14) must hold. 2

Lemma 3.5 We have the following results related to the set A.

(i) If k 6∈ Y and ‖tk‖ ≤ κgen‖nk‖ for some generic constant κgen > 0, then k ∈ A.

(ii) C ∩ S ⊆ A.

Proof. We first prove part (i). Assume that nk = 0. The given assumptions then
imply that tk = 0 and, therefore, that k ∈ Y. This is a contradiction so we may
conclude that nk 6= 0 and thus k ∈ A.

We now prove part (ii). Let k ∈ C ∩ S from which it follows that k 6∈ Y. Moreover,
Lemma 3.4 implies that ‖tk‖ ≤ κCS‖nk‖. We may now apply part (i) with κgen = κCS

to conclude that k ∈ A. 2

As for most of the existing theory for convergence of trust-region methods, we also make
use of the following direct consequences of Taylor’s theorem.

Lemma 3.6 For all k ∈ F , we have that

|f(x+k )−mk(x
+
k )| ≤ κG∆

2
k, (3.15)

while, for all k,
| ‖c(x+k )‖2 − ‖ck + Jksk‖2| ≤ 2κC[∆

c
k]

2, (3.16)

with κC = κ2
H
+mκH

√

2θmax
0 > κH, and

|θ(x+k )− 1
2
‖ck + Jksk‖2| ≤ κθ1‖sk‖3 + κθ2‖ck‖‖sk‖2, (3.17)

with κθ1 = (m+ 1
2

√
m)κ2

H
and κθ2 = 1

2
κH

√
m.

Proof. The inequality (3.15) follows from Lemma 3.3, the fact that f(x) is twice
continuously differentiable and Lemma 2.4 (see Theorem 6.4.1 in Conn et al., 2000).
Similarly, (3.16) follows from the fact that θ(x) is twice continuously differentiable with
its Hessian given by

∇xxθ(x) = J(x)TJ(x) +
m
∑

i=1

ci(x)∇xxci(x), (3.18)

(3.1), Lemma 2.2 and Lemma 2.4.

We now prove (3.17). Using the mean-value theorem, we obtain that

θ(x+k ) = θk + 〈JT
k ck, sk〉+ 1

2
〈sk,∇xxθ(ξk)sk〉

for some ξk ∈ [xk, x
+
k ], which implies, in view of (3.18), that

∣

∣θ(x+k )− θk − 〈ck, Jksk〉 − 1
2
‖J(ξk)sk‖2

∣

∣ = 1
2

∣

∣

∣

∣

∣

m
∑

i=1

ci(ξk)〈sk,∇xxci(ξk)sk〉
∣

∣

∣

∣

∣

. (3.19)

A further application of the mean-value theorem then gives that

ci(ξk) = ci(xk) + 〈ei, J(µk,i)(ξk − xk)〉 = ci(xk) + 〈J(µk,i)
T ei, ξk − xk〉
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for some µk,i ∈ [xk, ξk]. Summing over all constraints and using the triangle inequality,
(3.1) (twice) and the bound ‖ξk − xk‖ ≤ ‖sk‖, we thus obtain that

∣

∣

∣

∣

∣

m
∑

i=1

ci(ξk)〈sk,∇xxci(ξk)sk〉
∣

∣

∣

∣

∣

≤
[

‖ck‖1 + κH

√
m‖sk‖

]

κH‖sk‖2

≤ κH

√
m ‖ck‖ ‖sk‖2 + κ2

H

√
m‖sk‖3

Substituting this inequality into (3.19), we deduce that

|θ(x+k )− 1
2
‖ck + Jksk‖2| ≤ 1

2

∣

∣ ‖J(ξk)sk‖2 − ‖Jksk‖2
∣

∣

+ 1
2
κH

√
m ‖ck‖ ‖sk‖2 + 1

2
κ2

H

√
m‖sk‖3

(3.20)

Define now φk(x)
def
= 1

2
‖J(x)sk‖2. Then a simple calculation shows that

∇xφk(x) =
m
∑

i=1

[J(x)sk]i∇xxci(x)sk.

Using this relation, the mean-value theorem again and (3.1), we obtain that

|φk(ξk)− φk(xk)| = |〈ξk − xk,∇xφk(ζk)〉|
= |〈ξk − xk,

∑m
i=1[J(ζk)sk]i∇xxci(ζk)sk〉|

≤
m
∑

i=1

‖ξk − xk‖ ‖∇xxci(ζk)‖ ‖J(ζk)‖ ‖sk‖2

≤ mκ2
H
‖sk‖3

for some ζk ∈ [xk, ξk] ⊆ [xk, xk + sk]. We therefore obtain that

1
2

∣

∣ ‖J(ξk)sk‖2 − ‖Jksk‖2
∣

∣ = |φk(ξk)− φk(xk)| ≤ mκ2
H
‖sk‖3. (3.21)

We then obtain (3.17) using (3.20) and (3.21), (2.11) successively. 2

The third conclusion of this lemma also allows us to deduce that all c-iterations are in Ct
for ∆c

k sufficiently small.

Lemma 3.7 Suppose that k ∈ C and that

∆c
k ≤ (1− κtt)

κ∆(κθ1κ∆ + κθ2

√
2)

def
= κC . (3.22)

Then k ∈ Ct.

Proof. Assume that k ∈ Cw. Then, using (3.17), (2.1), Lemma 2.2, (2.25), (2.24),
Lemma 2.4 and (3.22) successively, we obtain that

θ(x+k ) ≤ κttθ
max
k + κθ1‖sk‖3 + κθ2

√

2θmax
k ‖sk‖2

≤ κttθ
max
k + κθ1κ

2
∆θ

max
k ∆c

k + κ∆κθ2

√
2 θmax

k ∆c
k

≤ θmax
k .

(3.23)

This implies that (2.33) holds. On the other hand, the fact that k ∈ Cw ensures that
(2.23) holds, and thus, since κ̄δ satisfies κ̄δ = 1/(1− κδ) by definition, that (2.31) also
holds. Combining these observations and noting that a tangential step was computed at
iteration k since k ∈ Cw by assumption, we obtain that k ∈ F , which is a contradiction
because k ∈ C. Hence our assumption that k ∈ Cw is impossible and the desired
conclusion follows. 2
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Lemmas 3.6 and 3.7 have the following useful consequence.

Lemma 3.8 Suppose that k ∈ C and

[∆c
k]

2 ≤ min






1, κ2C ,

1
2
(1− κθθ)

(

‖JT
k ck‖
κH

)2

κθ1 + κθ2

√

2θmax
0







def
=

(

min[κn∆1, κn∆2‖JT
k ck‖]

)2
(3.24)

Then k ∈ A and nk 6= 0.

Proof. Assume that k ∈ C, nk = 0 and (3.24) holds. Observe first that the
mechanism of the algorithm ensures that ∆c

k > 0 for all k, and thus (3.24) implies that
‖Jkck‖ > 0. Now (3.24) and Lemma 3.7 imply that k ∈ Ct. Thus, in view of (2.4),
our assumption that nk = 0 can only hold if nk is not computed to satisfy (2.4) at
iteration k, and (2.28) must therefore fail. This in turn implies that

θk ≤ κθθθ
max
k .

This bound, (3.17), (2.26), (2.1) and Lemmas 2.2 and 2.4 then give that

θ(x+k ) ≤ κθθθ
max
k + κθ1[∆

c
k]

3 + κθ2

√

2θmax
0 [∆c

k]
2,

which, with (3.24), yields that

θ(x+k ) ≤ κθθθ
max
k + (κθ1 + κθ2

√

2θmax
0 )[∆c

k]
2

≤ κθθθ
max
k + (1− κθθ)

‖JT
k ck‖2
2κ2

H

.
(3.25)

But (2.46) and (3.1) imply that

θmax
k ≥ θk ≥ ‖JT

k ck‖2
2κ2

H

.

Combining this last inequality with (3.25), we obtain that θ(x+k ) < θmax
k and (2.33)

holds. Now observe that we must have that tk 6= 0 (otherwise iteration k would be a

y-iteration). Moreover, (2.31) trivially holds since δfk = δf,tk . But this in turn implies
that k ∈ F , which is a contradiction, and thus nk 6= 0 and k ∈ A. 2

3.2 A “limit inferior” result

We now investigate the relation between the trust-region radii and their associated criti-
cality measures.

Lemma 3.9 If k ∈ F and

∆k ≤ κδκtCπk(1− η2)

κG

, (3.26)

then ρfk ≥ η2, iteration k is very successful and ∆f
k+1 ≥ ∆f

k . Similarly, if k ∈ C and

∆c
k ≤ min

[

κC ,
κnC2‖JT

k ck‖(1− η2)

κ2
H

, κn∆1, κn∆2‖JT
k ck‖

]

def
= min

[

κ∆c1, κ∆c2‖JT
k ck‖

]

,

(3.27)
then k ∈ A, nk 6= 0, ρck ≥ η2, iteration k is very successful and ∆c

k+1 ≥ ∆c
k.
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Proof. The proof of both statements is identical to that of Theorem 6.4.2 of Conn
et al. (2000) for the objective functions f(x) and θ(x), respectively. In the first case,
one uses (2.22), (2.31) and (3.15). For proving the second statement, we first observe
that JT

k ck 6= 0 since ∆c
k > 0. Furthermore, (3.27) and Lemma 3.8 together imply that

k ∈ A and nk 6= 0. One then notices that (3.27) also implies, in view of Lemma 3.7,
that k ∈ Ct and thus, because of Lemma 2.1 that the first inequality of (2.39) and
(2.44) hold. This last inequality in then used together with (3.1), (3.16) and the bound
(3.3) to deduce the second conclusion. 2

The mechanism for updating the trust-region radii then implies the next crucial lemmas,
where we show that the radius of either trust region cannot become arbitrarily small
compared to the considered criticality measure for dual and primal feasibility.

Lemma 3.10 Suppose that, for some ǫf > 0,

πk ≥ ǫf for all k ∈ F . (3.28)

Then, for all k,

∆f
k ≥ γ1 min

[

κδκtCǫf (1− η2)

κG

,∆f
0

]

def
= ǫF . (3.29)

Proof. The statement immediately results from the mechanism of the algorithm,
Lemma 3.9 and the inequality ∆k ≤ ∆f

k , given that ∆f
k is only decreased at f -iterations.

2

Lemma 3.11 We have that, for all k,

∆c
k ≥ min

[

κ∆c3, κ∆c4‖JT
k ck‖

]

(3.30)

for some κ∆c3 and κ∆c4 both in (0, 1). In particular, if we assume that, for some ǫθ > 0,

‖JT
k ck‖ ≥ ǫθ for all k ∈ C, (3.31)

then, for all k,

∆c
k ≥ γ1 min [κ∆c3, κ∆c4ǫθ]

def
= ǫC . (3.32)

Proof. Assume that, at iteration k,

∆c
k ≥ γ1 min[∆c

0, κ∆c1, κ∆cc, κ∆c2‖JT
k ck‖], (3.33)

and note that this assumption is obviously verified for k = 0. We now distinguish
different cases depending on the nature of iteration k. Assume first that k ∈ Y∪(F\S).
Since ∆c

k is unmodified and xk+1 = xk at such an iteration, we conclude that (3.33)
again holds at iteration k + 1. Assume next that k ∈ F ∩ S. Then (2.37) ensures that
(3.33) also holds at iteration k + 1 since γ1 < 1. Similarly, (2.40) ensure that (3.33)
holds at iteration k + 1 if k ∈ C ∩ S. Assume finally that k ∈ C \ S. In this case, the
second part of Lemma 3.9 implies that (in addition to (3.33))

∆c
k ≥ min[κ∆c1, κ∆c2‖JT

k ck‖],

and (2.40) and the identity xk+1 = xk then imply that

∆c
k+1 ≥ γ1 min[∆c

0, κ∆c1, κ∆cc, κ∆c2‖JT
k+1ck+1‖].

Thus (3.33) again holds at iteration k + 1. We therefore obtain that (3.30) holds for
all k ≥ 0 with κ∆c3 = γ1 min[∆c

0, κ∆c1, κ∆cc] and κ∆c4 = γ1κ∆c2. The bound (3.32) then
directly follows from (3.30), (3.31) and the observation that ∆c

k can only be decreased
at c-iterations. 2
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We now start our analysis proper by considering the case where the number of successful
iterations is finite.

Lemma 3.12 Suppose that |S| < +∞. Then there exists an x∗ and a y∗ such that xk = x∗
and yk = y∗ for all sufficiently large k, and either

J(x∗)
T c(x∗) = 0 and c(x∗) 6= 0,

or
P∗g(x∗) = 0 and c(x∗) = 0,

where P∗ is the orthogonal projection onto the nullspace of J(x∗).

Proof. The existence of a suitable x∗ immediately results from the mechanism of
the algorithm and the finiteness of S, which implies that x∗ = xks+j for all j ≥ 1,
where ks is the index of the last successful iteration.

Assume first that there are infinitely many c-iterations. This yields that ∆c
k is decreased

in (2.40) at every such iteration for k ≥ ks and therefore that {∆c
k} converges to zero,

because it is never increased at y-iterations or unsuccessful f -iterations. Lemma 3.7
then implies that all c-iterations are in Ct for k large enough. Since, for such a k,
‖JT

k ck‖ = ‖J(x∗)T c(x∗)‖ for all k > ks, this in turn implies, in view of the Lemma 3.11,
that ‖J(x∗)T c(x∗)‖ = 0. If x∗ is not feasible, then we obtain the first of the two
possibilities listed in the lemma’s statement. On the other hand, if c(x∗) = 0 then we

have from (2.5) that nk = 0, and thus that δfk = δf,tk ≥ 0 for all k sufficiently large.
Hence (2.31) holds for k large. Moreover, we also obtain from (2.26) (which must hold
for k large because C is asymptotically equal to Ct) that ‖ck + Jksk‖ = 0 and also,
since θmax

k is only reduced at successful c-iterations, that θmax
k = θmax

∗ > 0 for all k
sufficiently large. Combining these observations, we then obtain from Lemma 3.6 that

θ(x+k ) = θ(x+k )− 1
2
‖ck + Jksk‖2 ≤ κC[∆

c
k]

2 ≤ θmax
∗ = θmax

k ,

and thus (2.33) holds for all sufficiently large k. We have that tk must be zero for all
k ∈ C sufficiently large (otherwise iteration k would be a f -iteration). Since we already
know that nk = 0 for all k large enough, we thus obtain that sk = 0 for these k and
must eventually be y-iterations, which is a contradiction. Hence our assumption that
there are infinitely many c-iterations is impossible.

Assume now that C is finite but F infinite. Since there must be an infinite number of
unsuccessful f -iterations after ks, and since the radii are not updated at y-iterations,
we obtain that {∆f

k}, and hence {∆k}, converge to zero. Using now Lemma 3.10, we
conclude that πk = 0 along some infinite subsequence, and because (2.27) holds at
f -iterations, that ‖ck‖ = 0 along that subsequence. Thus c(x∗) = 0. As above, the
second of the lemma’s statements then holds because of this equality, the fact that
πk = 0 for for an infinite subsequence of k with gk = g∗ and Pk = P∗ and Lemma 3.2.

Assume finally that C ∪F is finite. Thus all iterations must be y-iterations for k large
enough. In view of Lemma 2.3, we must have π∗ = 0. If c(x∗) = 0, we are done because
of Lemma 3.2. Otherwise, we know from Lemma 2.3, (2.29), and (2.28) that we must
have computed a normal step nk, but since by assumption nk = tk = 0, we must have
that JT

k ck = 0. Hence J(x∗)
T c(x∗) = 0 and the first part of the lemma holds. 2

We now turn to the more complicated case where there are infinitely many successful
iterations, and start by proving a result directly inspired by Lemma 6.5.1 of Conn et al.

(2000) and using sRk
def
= (I − Pk)sk, the projection of sk onto the range space of JT

k .

Lemma 3.13 Suppose that k ∈ A ∩ Ct, and that

‖ck‖ ≤ κc. (3.34)
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Then

‖sRk ‖ ≤ 2

κ2
J

‖JT
k ck‖ (3.35)

and
δck ≥ κR‖sRk ‖2, (3.36)

where

κR

def
= 1

2
κ2

J
κnC2 min

[

κ2
J

2κ2
H

, 1

]

. (3.37)

Proof. The proof of (3.35) is identical to that of Lemma 6.5.1 in Conn et al.
(2000) (applied on the minimization of θ(x) in the range space of JT

k using the model
(2.2)), taking into account that the smallest eigenvalue of Wk is bounded below by κ2

J

because of (3.34) and (3.13). Substituting now (3.35) in (2.44) (which must hold since
k ∈ A ∩ Ct) and using (3.3) then yields that

δck ≥ 1
2
κ2

J
κnC2‖sRk ‖min

[

κ2
J
‖sRk ‖
2κ2

H

,∆c
k

]

,

which, using the bound ‖sRk ‖ ≤ ‖sk‖ ≤ ∆c
k, gives (3.36) with (3.37). 2

Our analysis now focuses on unsuccessful c-iterations (the only one at which ∆c
k can be

decreased) and first consider what happens if the constraints’ violation is small enough.

Lemma 3.14 Suppose that k ∈ A ∩ Ct \ S such that

‖ck‖ ≤ min

[

κc,
κ∆c1

κ∆c2κJ

]

. (3.38)

Then
‖ck + Jksk‖2 ≤ κcld‖ck‖2 (3.39)

and
‖sRk ‖ ≥ κsRn‖nk‖ (3.40)

with

κcld

def
= 1− 2(1− κtg)κnCκ

2
J
min

[

1

κ2
H

, κ∆c2

]

∈ (0, 1) and κsRn

def
= (1−√

κcld)/κnκH ∈ (0, 1).

Proof. Since k ∈ A ∩ Ct,, we may use Lemma 2.1, (3.38) and (3.13) to obtain

‖ck + Jk(nk + tk)‖2 ≤ ‖ck‖2 − 2κnC2‖JT
k ck‖min

[

‖JT
k ck‖
κ2

H

,∆c
k

]

≤ ‖ck‖2 − 2κnC2κJ‖ck‖min

[

κJ

‖ck‖
κ2

H

,∆c
k

]

.

(3.41)

But we know from Lemma 3.9 that, at unsuccessful c-iterations,

∆c
k > min

[

κ∆c1, κ∆c2‖JT
k ck‖

]

and hence
∆c

k ≥ min [κ∆c1, κ∆c2κJ‖ck‖] ≥ κ∆c2κJ‖ck‖,
where we again used (3.38) and (3.13). Substituting this last bound in (3.41) then
yields that

‖ck + Jksk‖2 ≤ ‖ck‖2 − 2κnC2κJ‖ck‖min

[

κJ

κ2
H

‖ck‖, κ∆c2κJ‖ck‖
]

≤ κcld‖ck‖2.
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Note that κcld ∈ (0, 1). We have therefore proved the first statement of the lemma.
Using the definition of sRk and the reverse triangle inequality, we may also deduce that,
for k ∈ K sufficiently large,

‖ck‖ − ‖JksRk ‖ ≤ ‖ck + Jks
R
k ‖ ≤ √

κcld‖ck‖,

and therefore, using (3.1), that, for such k,

κH‖sRk ‖ ≥ ‖JksRk ‖ ≥ (1−√
κcld)‖ck‖ ≥ 1−√

κcld

κn

‖nk‖,

where we used (2.5) to deduce the last inequality. This in turn yields (3.40). 2

We now distinguish the case where ‖nk‖ is small with respect to ‖tk‖ at unsuccessful
c-iterations from the case where it is large. We start by considering the former.

Lemma 3.15 Suppose that k 6∈ Y and that

πk ≥ ǫf > 0, (3.42)

∆c
k ≤ min

[

1, κC ,
ǫf
κG

]

def
= κδC (3.43)

and
‖tk‖ ≥ ς(ǫf )‖nk‖, (3.44)

where

ς(ǫ)
def
= max

[

2κG

(1− κδ)(κCS − 1)κtCǫ
, 1

]

κCS .

Then tk 6= 0 and (2.31) holds.

Proof. First note that the conclusions of the lemma hold by definition if k ∈ F .
Suppose therefore that k ∈ C, and consider first the case where nk = 0. We must then
have that tk 6= 0, otherwise iteration k would be a y-iteration. Moreover δfk = δf,tk and
thus (2.31) holds.

Suppose now that nk 6= 0. Because (3.44) holds, we have that tk 6= 0. Now we have,
on one hand, that

∆k ≥ ‖sk‖ ≥ ‖tk‖ − ‖nk‖ = ‖tk‖
(

1− ‖nk‖
‖tk‖

)

≥
(

1− 1

κCS

)

‖tk‖ (3.45)

where we have successively applied (2.47), the reverse triangle inequality and (3.44).
On the other hand, we know that

−δf,nk = 〈gk, nk〉+ 1
2
〈nk, Gknk〉

and we may therefore deduce from the Cauchy-Schwarz inequality, (3.1) and Lemma 3.3
that

|δf,nk | ≤ κG

(

‖nk‖+ 1
2
‖nk‖2

)

.

Using (2.3) and (3.43), we then obtain that

|δf,nk | ≤ 2κG‖nk‖. (3.46)

We now observe that (2.22), (3.42), and Lemma 3.3 imply that

δf,tk ≥ κtCǫf min

[

ǫf
κG

,∆k

]

= κtCǫf∆k,
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where we used (3.43) and (2.12) to deduce the last equality. Combining this bound
with (3.46), we obtain that

|δf,nk |
δf,tk

≤ 2κG‖nk‖
κtCǫf∆k

≤ 2κGκCS

(κCS − 1)κtCǫf

‖nk‖
‖tk‖

≤ 1− κδ,

where we used (3.45) to derive the second inequality and (3.44) to deduce the third.
It is now easy to see that this last inequality implies (2.31). 2

We now turn to the case where ‖tk‖ is relatively small compared to ‖nk‖.

Lemma 3.16 Suppose that k ∈ Ct, that ǫ > 0 is given, that

‖tk‖ ≤ ς(ǫ)‖nk‖ (3.47)

and that

‖ck‖ ≤ min

[

κc,
κ∆c1

κ∆c2κJ

,
κ2

sRn
κR(1− η1)

(1 + ς(ǫ))2[κθ1(1 + ς(ǫ))κn + κθ2]

]

. (3.48)

Then iteration k is successful, ρck ≥ η1 and ∆c
k+1 ≥ ∆c

k.

Proof. First observe that part (i) of Lemma 3.5 with the choice κgen = ς(ǫ) implies
that k ∈ A. Now assume that k 6∈ S and note that (3.48) then allows us to apply
Lemmas 3.13 and 3.14. Since Lemma 2.1 ensures that the first part of (2.39) holds,
we deduce that ρck < η1 since the iteration is unsuccessful. But using now successively
(2.39), (3.17), (3.36), (3.40), the triangle inequality, (3.47), (2.5) and (3.48), we have

|ρck − 1| =

∣

∣

∣

∣

θ(x+k )− 1
2
‖ck + Jksk‖2
δck

∣

∣

∣

∣

≤
∣

∣

∣

∣

κθ1‖sk‖3 + κθ2‖ck‖ ‖sk‖2
κR‖sRk ‖2

∣

∣

∣

∣

≤ ‖sk‖2
κ2

sRn
κR‖nk‖2

[κθ1‖sk‖+ κθ2‖ck‖]

≤ (1 + ς(ǫ))2

κ2
sRn
κR

[κθ1(1 + ς(ǫ))‖nk‖+ κθ2‖ck‖]

≤ (1 + ς(ǫ))2

κ2
sRn
κR

[κθ1(1 + ς(ǫ))κn + κθ2] ‖ck‖

≤ 1− η1.

Thus ρck ≥ η1, which is a contradiction. As a consequence, iteration k is successful and
the desired conclusion follows. 2

We now return to the convergence properties of our algorithm, and, having covered in
Lemma 3.12 the case of finitely many successful iterations, we consider the case where
there are infinitely many of those. We start by assuming that they are all f -iterations for
k large.

Lemma 3.17 Suppose that |S| = +∞, that | C ∩S| < +∞ and that no subsequence exists
such that (3.12) holds. Then there exists an infinite subsequence indexed by K such that

lim
k→∞,k∈K

‖ck‖ = 0 (3.49)

and
lim

k→∞,k∈K
πk = 0. (3.50)
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Proof. As a consequence of our assumptions, we immediately obtain that all suc-
cessful iterations must belong to F for k sufficiently large, and that there are infinitely
many of them. We also deduce that the sequence {f(xk)} is monotonically decreasing
for large enough k. Assume now, for the purpose of deriving a contradiction, that (3.28)
holds. Hence (3.29) also holds because of Lemma 3.10. Moreover, (2.22), Lemma 3.3
and (3.29) together give that, for all k ∈ S sufficiently large,

δf,tk ≥ κtCǫf min

[

ǫf
κG

,min[∆c
k, ǫF ]

]

. (3.51)

Assume now that there exists an infinite subsequence indexed by Kf ⊆ S such that
{∆c

k} converges to zero in Kf . Since ∆c
k is only decreased at unsuccessful c-iterations,

this in turn implies that there is a subsequence of such iterations indexed Kc ⊆ C \ S
with ∆c

k converging to zero. Because of Lemma 3.7, we may also assume, without loss
of generality, that Kc ⊆ Ct \S. Also note that, since θmax

k is only updated at successful
c-iterations, the assumption that | C ∩ S| < +∞ ensures that

θmax
k = θmax

∞ (3.52)

for some θmax
∞ > 0 and for all k sufficiently large. Also observe that the second part of

Lemma 3.9 implies that ‖JT
k ck‖ converges to zero along Kc. Because no subsequence

exists such that (3.12) holds, we then obtain from (3.13) and (2.1) that ‖ck‖ and θk
converge to zero along Kc. Moreover, using the convergence of both ∆c

k and ‖ck‖ to
zero, the inclusion Kc ⊆ C and Lemma 3.8, we deduce that k ∈ A for k sufficiently
large. Using now Lemma 3.14 and the inclusion Kc ⊆ C \ S, we therefore obtain that
‖ck + Jksk‖ ≤ κcld‖ck‖2 for k sufficiently large. As a consequence, and taking (2.1),
(3.52), (3.17) and Lemma 2.4 into account, we deduce that, for large enough k,

θ(x+k ) ≤ κcldθ
max
∞ + κθ1[∆

c
k]

3 + κθ2

√

2θmax
∞ [∆c

k]
2

and thus (2.33) holds as soon as

[∆c
k]

2 ≤ min

[

1,
(1− κcld)θ

max
∞

κθ1 + κθ2

√

2θmax
∞

]

,

and therefore
θ(x+k ) ≤ θmax

k (3.53)

for all k ∈ Kc sufficiently large because ∆c
k converges to zero along that subsequence.

Now assume that | A ∩Kc| < +∞. Not only (2.33) holds for k ∈ Kc large enough, but

(2.31) also holds as soon as nk = 0 because then δfk = δf,tk , and this is the case for all
k ∈ Kc sufficiently large. Finally, tk 6= 0 for these k since otherwise k ∈ Y. But these
arguments then imply that k ∈ F , which is a contradiction. Thus | A∩Kc| = +∞ and
we may restrict our attention to the subsequence indexed by K1 = A ∩ Kc, yielding
that K1 ⊆ A.

Assume that
‖tk‖ ≤ ς(ǫf )‖nk‖ (3.54)

holds for all k ∈ K1 sufficiently large. We may then apply Lemma 3.16 and deduce
that ‖ck‖ must be bounded away from zero along Kc, which is impossible because we
have already proved that ‖ck‖ converges to zero along this subsequence. Hence there
exists an infinite subsequence indexed by K2 ⊆ K1 such that (3.54) fails (i.e. (3.44)
holds) for k ∈ K2. We now verify that we may apply Lemma 3.15 for k sufficiently
large in K2 ⊆ C \S. First, (3.42) holds because we have assumed (3.28). The condition
(3.43) also holds for sufficiently large k in K2 because we have ∆c

k converges to zero
along Kc and hence along K2. Applying Lemma 3.15, we then deduce that tk 6= 0 and
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(2.31) holds for all k ∈ K2 sufficiently large. But, in view of (3.53), this implies that
k ∈ F for such k, which is impossible.

We therefore conclude that the sequence Kf described above cannot exist, and hence
that there must exist an ǫ∗ > 0 such that ∆c

k ≥ ǫ∗ for k ∈ S. Substituting this bound
in (3.51) then yields that

δf,tk ≥ κtCǫf min

[

ǫf
κG

,min[ǫ∗, ǫF ]

]

> 0 (3.55)

for k sufficiently large, say k ≥ k0. But we also have that

f(xk0
)− f(xk) =

k−1
∑

j=k0,j∈S

[f(xj)− f(xj+1)] ≥ η1

k−1
∑

j=k0,j∈S

δf,tj . (3.56)

This bound combined with (3.55) and the identity |F ∩ S| = +∞ then implies that
f is unbounded below, which, in view of (2.46), contradicts (3.2). Hence (3.28) is
impossible and we deduce that

lim
k→∞,k∈K

πk = 0 (3.57)

for some index set K ⊆ F , which immediately gives (3.50). For all k ∈ K ⊆ F we have
by definition that tk 6= 0 and thus (2.27) must hold. We then conclude from (3.57)
that (3.49) must hold, which concludes the proof. 2

After considering the case where the number of successful c-iterations is finite, we now
turn to the situation where it is infinite. In the next two lemmas we first deduce global
convergence for the problem of minimizing θ.

Lemma 3.18 Suppose that | C ∩ S| = +∞. Then,

lim inf
k→∞,k∈C∩S

‖JT
k ck‖ = 0. (3.58)

Proof. Assume, for the purpose of deriving a contradiction, that

‖Jkck‖ ≥ ǫθ for all k ∈ C ∩ S (3.59)

and some ǫθ > 0. Observe that the value of θmax
k is updated (and reduced) in (2.41)

at each of the infinitely many iterations indexed by C ∩ S.
Let us first assume that the maximum in (2.41) is attained infinitely often by the first
term. Since κtx1 < 1, we deduce that

lim
k→∞

θmax
k = 0.

Using the uniform boundedness of the constraint Jacobian (3.1) and (2.46), we then
immediately deduce from this limit that

lim
k→∞,k∈C∩S

‖JT
k ck‖ ≤ κH lim

k→∞,k∈C∩S
‖ck‖ ≤ κH lim

k→∞,k∈C∩S
θmax
k = κH lim

k→∞
θmax
k = 0,

which is impossible in view of (3.59). Hence the maximum in (2.41) can only be
attained a finite number of times by the first term. Now let k ∈ C ∩ S be the index
of an iteration where the maximum is attained by the second term and observe that
k ∈ A because of part (ii) of Lemma 3.5. Combining (2.46), (2.41), (2.39), (2.4), (3.3),
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Lemma 3.11 and (3.59), we obtain that

θmax
k − θmax

k+1 ≥ θ(xk)− θmax
k+1

≥ (1− κtx2)
[

θ(xk)− θ(xk+1)
]

≥ (1− κtx2)η1δ
c
k

≥ (1− κtx2)η1κcnδ
c,n
k

≥ (1− κtx2)η1κcnκnCǫθ min

[

ǫθ
κ2

H

,min[κ∆c3, κ∆c4ǫθ]

]

> 0.

(3.60)

Since the value of θmax
k is monotonic, this last inequality and the infinite nature of | C∩S|

implies that the sequence {θmax
k } is unbounded below, which obviously contradicts

(2.46). Hence, the maximum in (2.41) also cannot be attained infinitely often by
the second term. We must therefore conclude that our initial assumption (3.59) is
impossible, which gives (3.58). 2

Lemma 3.19 Suppose that | C ∩ S| = +∞. Then either there is a subsequence indeed by
Z such that (3.12) holds, or we have that

lim
k→∞

‖ck‖ = 0, (3.61)

lim
k→∞

θmax
k = 0, (3.62)

lim
k→∞

nk = 0, (3.63)

and
lim
k→∞

δf,nk = 0. (3.64)

If, in addition to (3.61), (3.47) holds for some ǫ > 0 and for all k ∈ Ct, then there exists
an ǫ∗ > 0 such that

∆c
k ≥ ǫ∗, (3.65)

for all k sufficiently large.

Proof. Assume that no Z exists such that (3.12) holds. Then Lemma 3.18, (2.1),
and (3.1) imply that there must exist an infinite subsequence indexed by G ⊆ C ∩ S
such that

0 = lim
k→∞,k∈G

‖JT
k ck‖ = lim

k→∞,k∈G
‖ck‖ = lim

k→∞,k∈G
θ(xk). (3.66)

As above, if the maximum in (2.41) is attained infinitely often in G by the first term,
then we may conclude from the inequality κtx1 < 1 and (2.41) that (3.62) must hold,
and then (3.61) follows from (2.46) and (2.1). If this is not the case, we deduce from
(2.41) that

lim
k→∞,k∈G

θmax
k+1 ≤ lim

k→∞,k∈G
θ(xk) = 0.

and thus, because of the monotonicity of the sequence {θmax
k }, that (3.62) and (3.61)

again hold. The limit (3.61) and (2.5) then give that (3.63) holds, while (3.64) follows
from the identity

−δf,nk = 〈gk, nk〉+ 1
2
〈nk, Gknk〉, (3.67)

the Cauchy-Schwarz inequality, (3.63), Lemma 3.3 and (3.1).

Suppose now that (3.47) holds for all k ∈ Ct. It then follows from part (i) of Lemma 3.5
with the choice κgen = ς(ǫ) that Ct ⊆ A. Consider k large enough to ensure (3.48),
which is possible because of (3.61). Lemma 3.16 then implies that ∆c

k+1 ≥ ∆c
k for all

k ∈ Ct sufficiently large. In addition, Lemma 3.7 ensures that ∆c
k is bounded below by

a constant for all k ∈ Cw = C \ Ct. These two observations and the fact that ∆c
k is only

decreased for k ∈ C finally imply (3.65). 2



Gould, Robinson, Toint: Optimization without a penalty function or a filter 25

Observe that it is not crucial that θmax
k is updated at every iteration in C ∩ S, but rather

that such updates occur infinitely often in a subset of this set along which ‖JT
k ck‖ converges

to zero. Other mechanisms to guarantee this property are possible, such as updating θmax
k

every p iteration in C∩S at which ‖JT
k ck‖ decreases. Relaxed scheme of this type may have

the advantage of not pushing θmax
k too quickly to zero, therefore allowing more freedom

for f -iterations.
We next consider what can happen at unsuccessful c-iterations whenever ‖ck‖ and θmax

k

are both small.

Lemma 3.20 Suppose that k ∈ C \ S, that (3.38) holds, that

θmax
k ≤ min

[

{

min

[

1,
1−max[κcld, κtt, κθθ]

κθ1 + κθ2

√
2

]}4

, κ
12
5

C

]

(3.68)

and
∆c

k ≤ [θmax
k ]

5
12 . (3.69)

Then (2.33) holds.

Proof. Observe first that (3.69) and (3.68) imply that ∆c
k ≤ κC and hence, in view

of Lemma 3.7 that k ∈ Ct.
First, assume that k ∈ A. From (3.17), Lemma 3.14 (which is applicable because of
(3.38)) and Lemma 2.4, we deduce that

θ(x+k ) ≤ 1
2
κcld‖ck‖2 + κθ1[∆

c
k]

3 + κθ2

√

2θmax
k [∆c

k]
2.

Using (2.1), (2.46), (3.69) and (3.68) successively yields that

θ(x+k ) ≤ θmax
k

[

κcld + κθ1[θ
max
k ]

3
12 + κθ2

√
2 [θmax

k ]
4
12

]

≤ θmax
k ,

which is (2.33). If k 6∈ A, the successive use of (3.17), Lemma 2.4, (2.25), (2.26), (2.28),
(3.69) and (3.68) then similarly gives that

θ(x+k ) ≤ 1
2
‖ck + JT

k sk‖2 + κθ1[∆
c
k]

3 + κθ2

√

2θmax
k [∆c

k]
2

≤ max[κttθ
max
k , 1

2
ϑk] + κθ1[∆

c
k]

3 + κθ2

√

2θmax
k [∆c

k]
2

≤ max[κttθ
max
k , θk] + κθ1[∆

c
k]

3 + κθ2

√

2θmax
k [∆c

k]
2

≤ max[κtt, κθθ]θ
max
k + κθ1[∆

c
k]

3 + κθ2

√

2θmax
k [∆c

k]
2

≤ θmax
k

[

max[κtt, κθθ] + κθ1[θ
max
k ]

3
12 + κθ2

√
2 [θmax

k ]
4
12

]

≤ θmax
k

which is (2.33). 2

Convergence of the criticality measure πk to zero then follows for a subsequence of itera-
tions, as we now prove.

Lemma 3.21 Suppose that | C ∩S| = +∞. Then either there is a subsequence indexed by
Z such that (3.12) holds, or (3.61) holds and

lim inf
k→∞

πk = 0. (3.70)

Proof. Assume that no subsequence exists such that (3.12) holds. We may then
apply Lemma 3.19 and deduce that (3.61)–(3.64) hold. Assume now, again for the
purpose of deriving a contradiction, that

πk ≥ ǫf > 0 (3.71)
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for all k ≥ 0. This assumption and Lemma 3.10 then guarantee that (3.29) holds for
all k sufficiently large. Also, given ǫ = ǫf , it follows from (3.61) and (3.62) that there
exists a k0 ∈ C sufficiently large to ensure that (3.48) (and thus (3.34) and (3.38)) and
(3.68) hold for k ∈ C, k ≥ k0.

The first step of our proof is to show that, under these conditions, the trust-region
radius ∆k cannot be arbitrarily small compared to θmax

k along C. To this aim, we
distinguish two cases. The first (i) is when (3.47) holds for all k ∈ Ct, k ≥ k0 sufficiently
large. We may then apply Lemma 3.19 and deduce that (3.65) holds for all k ∈ C
sufficiently large.

The second case (ii) is when the subsequence indexed by

K1
def
= {k ∈ Ct | ‖tk‖ ≥ ς(ǫf )‖nk‖ }

is infinite.

Suppose first, in this case, that there is a k ∈ (K1 \ S) \ A with k ≥ k0. Then tk must
be computed (otherwise k ∈ Y) and (2.31) holds since nk = 0. But Lemma 3.20 then
gives that, if (3.69) holds, then (2.33) also holds and thus k ∈ F , which is impossible.
Hence (3.69) must fail and

∆c
k > [θmax

k ]
5
12 for all k ∈ (K1 \ S) \ A, k ≥ k0. (3.72)

Consider now a k ∈ (K1 \ S) ∩ A such that k ≥ k0 and note that the definition of
K1 ensures that (3.44) holds with ǫ = ǫf . Suppose that (3.43) and (3.69) both hold.
Then, on one hand, the first of these inequalities and Lemma 3.15 imply that tk 6= 0
and that (2.31) holds. On the other hand, (3.69) and Lemma 3.20 ensure that (2.33)
also holds. As consequence, k ∈ F , which is again impossible. We therefore deduce
that one of (3.43) and (3.69) must fail, yielding that

∆c
k ≥ min

[

κδC, [θ
max
k ]

5
12

]

for all k ∈ (K1 \ S) ∩ A, k ≥ k0.

Combining (3.72) and this inequality, we obtain that

∆c
k ≥ min

[

κδC, [θ
max
k ]

5
12

]

for all k ∈ K1 \ S, k ≥ k0. (3.73)

Moreover Lemma 3.16 implies that any k ∈ Ct \ K1, k ≥ k0, must belong to S, and
hence that Ct \ S = K1 \ S beyond k0. Thus (3.73) holds for all k ∈ Ct \ S, k ≥ k0.
Using this conclusion and Lemma 3.7, we therefore deduce that

∆c
k ≥ min

[

κδC, κC , [θ
max
k ]

5
12

]

for all k ∈ C\S sufficiently large. But we know that ∆c
k is only decreased at unsuccessful

c-iterations (at which θmax
k is unchanged), while it is only increased at successful c-

iterations (at which θmax
k is decreased) or at successful f -iterations (at which θmax

k is
unchanged). Thus we obtain that, in case (ii),

∆c
k ≥ γ1 min

[

κδC, κC , [θ
max
k ]

5
12

]

for all k sufficiently large. Considering the two cases distinguished above together then
gives that, for k ∈ C large enough,

∆c
k ≥ min

[

ǫ∗, γ1κδC, γ1κC , γ1[θ
max
k ]

5
12

]

,

and therefore, taking (2.12) and (3.29) into account, that, for k ∈ C large enough,

∆k ≥ min
[

ǫF , ǫ∗, γ1κδC, γ1κC , γ1[θ
max
k ]

5
12

]

def
= min

[

κ∆∞, γ1[θ
max
k ]

5
12

]

. (3.74)
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The second step in our proof is to deduce the contradiction sought from (3.71). We
start by observing that, if iteration k is a successful c-iteration, then (2.33) must
hold because of (2.46) and the second part of (2.39). The successful c-iterations thus
asymptotically come in two types:

1. iterations for which the tangential step has been computed but (2.31) fails,

2. iterations for which the tangential step has not been computed.

Assume first that there is an infinite number of successful c-iterations of type 1. Since
(2.31) does not hold, we deduce that, for the relevant indices k,

|δf,nk |
δf,tk

> 1− κδ. (3.75)

But, as in the proof of Lemma 3.15, we deduce from (2.5) and (3.61) that

|δf,nk | ≤ κG‖nk‖+ 1
2
κG‖nk‖2 ≤ κnκG‖ck‖ (1 + 1

2
κn‖ck‖) ≤ 2κnκG‖ck‖

for large enough k. Moreover, using (2.22), (3.71), (3.74), (3.62) and (2.46), we verify
that

δf,tk ≥ κtCǫf min
[

ǫf
κG
,∆k

]

≥ κtCǫf min
[

ǫf
κG
, κ∆∞, γ1[θ

max
k ]

5
12

]

= κtCǫfγ1[θ
max
k ]

5
12

≥ κtCǫfγ1[ 12 ]
5
12 ‖ck‖

5
6

≥ 1
2
κtCǫfγ1‖ck‖

5
6

for large enough k. Combining these latter two inequalities and using (3.61) then yields
that

|δf,nk |
δf,tk

≤ 4κnκG‖ck‖
1
6

κtCǫfγ1
≤ 1− κδ

for k large enough. But this last inequality contradicts (3.75). Hence this situation is
impossible.

Assume otherwise that there is an infinite number of successful c-iterations of type 2.
These iterations occur because either (2.13) or (2.27) fails, the latter being impossible
since both (3.71) and (3.61) hold. But the fact that tk = 0 implies that nk 6= 0 (since
otherwise k ∈ Y). Moreover, using (2.5), (3.74), (3.62), (2.46) and (3.61), we see that

‖nk‖
∆k

≤ κn‖ck‖
γ1[θmax

k ]
5
12

≤ κn‖ck‖
γ1[ 12‖ck‖2]

5
12

≤ κB

for k large enough, which yields that (2.13) holds. We may therefore conclude that
an impossible situation occurs for infinite subsequences of each of the two types of
successful c-iterations. This in turn implies that | C ∩ S| is finite, which is also a
contradiction. Our assumption (3.71) is therefore impossible, and (3.70) follows. 2

We now combine our results so far and state a first important convergence property of our
algorithm.

Theorem 3.22 As long as infeasible stationary points are avoided, there exists a subse-
quence indexed by K such that (3.5), (3.7) and (3.8) hold, and thus at least one limit point
of the sequence {xk} (if any) is first-order critical. Moreover, we also have that (3.61)
holds when | C ∩ S | = +∞.

Proof. The desired conclusions immediately follow from Lemmas 3.2, 3.12, 3.17,
3.19 and 3.21. 2
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3.3 A true “limit” result

Our intention is now to prove that the complete sequences {πk} and {‖Pkgk‖} both con-
verge to zero, rather than merely subsequences. The first step to achieve this objective
is to prove that the projection P (x) onto the nullspace of the Jacobian J(x) is Lipschitz
continuous when x is sufficiently close to the feasible domain.

Lemma 3.23 There exists a constant κP > 0 such that, for all x1 and x2 satisfying
max

[

‖c(x1)‖, ‖c(x2)‖
]

≤ κc, we have that

‖P (x1)− P (x2)‖ ≤ κP‖x1 − x2‖. (3.76)

Proof. Because of (3.13) and our assumption on c(x1) and c(x2), we know that

P (xi) = I − J(xi)
T [J(xi)J(xi)

T ]−1J(xi) (i = 1, 2). (3.77)

Denoting J1
def
= J(x1) and J2

def
= J(x2), we first observe that

[J1J
T
1 ]−1 − [J2J

T
2 ]−1 = [J1J

T
1 ]−1

(

(J2 − J1)J
T
1 − J2(J1 − J2)

T
)

[J2J
T
2 ]−1. (3.78)

But the mean-value theorem and (3.1) imply that, for i = 1, . . . ,m,

‖∇xci(x1)−∇xci(x2)‖ ≤
∥

∥

∥

∥

∫ 1

0

∇xxci(x1 + t(x2 − x1))(x1 − x2) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖∇xxci(x1 + t(x2 − x1))‖ ‖x1 − x2‖

≤ κH‖x1 − x2‖,

which in turn yields that

‖(J1 − J2)
T ‖ = ‖J1 − J2‖ ≤ mκH‖x1 − x2‖. (3.79)

Hence, using (3.78), (3.1) and (3.13), we obtain that

‖[J1JT
1 ]−1 − [J2J

T
2 ]−1‖ ≤ 2mκ2

H

κ4
J

‖x1 − x2‖. (3.80)

Computing now the difference between P (x1) and P (x2) and using (3.77), we deduce
that

P (x1)− P (x2) = JT
1 [J1J

T
1 ]−1(J2 − J1) + (J2 − J1)

T [J2J
T
2 ]−1J2

−JT
1

(

[J1J
T
1 ]−1 − [J2J

T
2 ]−1

)

J2

and thus, using (3.1) and (3.13) again with (3.79) and (3.80),

‖P (x1)− P (x2)‖ ≤ mκ2
H

κ2
J

‖x1 − x2‖+
mκ2

H

κ2
J

‖x1 − x2‖+
2mκ4

H

κ4
J

‖x1 − x2‖.

This then yields (3.76) with κL =
2mκ2

H

κ2
J

(

1 +
κ2
H

κ2
J

)

. 2

We now refine our interpretation of the criticality measure πk, and verify that it approxi-
mates the norm of the projected gradient when the constraint violation is small enough.

Lemma 3.24 Suppose that

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

> κHκGκn‖ck‖+ κ2
H
ωy(‖ck‖). (3.81)

Then we have that
πk = ψk‖Pkgk‖ (3.82)

for some ψk ∈ [ 1
9
, 11

3
].
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Proof. From (2.14) we know that

yk = −[JT
k ]IgN

k + ωy(‖ck‖)uk

for some uk with ‖uk‖ ≤ 1. Therefore, using (2.17) and (2.7) yields that

rk = (I − JT
k [JT

k ]I)gN

k + ωy(‖ck‖)JT
k uk = Pk(gk +Gknk) + ωy(‖ck‖)JT

k uk (3.83)

and thus, using (2.21),

πk
(

‖Pkgk + PkGknk + ωy(‖ck‖)JT
k uk‖

)

= πk‖rk‖ = 〈gk, rk〉+ 〈Gknk, rk〉. (3.84)

Now, using the triangle inequality, (3.1), (2.5), (3.81), Lemma 3.3 and the bounds
‖Pk‖ ≤ 1, ‖uk‖ ≤ 1, and κH ≥ 1, we verify that

‖rk‖ = ‖Pkgk + PkGknk + ωy(‖ck‖)JT
k uk‖

≤ ‖Pkgk‖+ ‖PkGknk‖+ ωy(‖ck‖)‖JT
k uk‖

≤ ‖Pkgk‖+ ‖Gknk‖+ κHωy(‖ck‖)‖uk‖
≤ ‖Pkgk‖+ κGκn‖ck‖+ κHωy(‖ck‖)
< ‖Pkgk‖+ 1

2
‖Pkgk‖.

Similarly,

‖rk‖ ≥ ‖Pkgk‖ − ‖PkGknk + ωy(‖ck‖)JT
k uk‖ > ‖Pkgk‖ − 1

2
‖Pkgk‖.

Thus ‖rk‖ = ‖Pkgk‖(1+αk) for some |αk| < 1
2
. Substituting this relation in (3.84) and

using (3.83) and the symmetric and idempotent nature of the orthogonal projection
Pk, we obtain that

πk = 1
1 + αk

‖Pkgk‖+ 〈gk, PkGknk + ωy(‖ck‖)JT
k uk〉

(1 + αk)‖Pkgk‖ +
〈Gknk, rk〉

‖rk‖ .

But the Cauchy-Schwarz inequality, (2.5), (3.1), Lemma 3.3, the bounds ‖Pk‖ ≤ 1 and
κH ≥ 1 and (3.81) then ensure that

∣

∣

∣

∣

〈Gknk, rk〉
‖rk‖

∣

∣

∣

∣

≤ κGκn‖ck‖ < 1
2
‖Pkgk‖

and that
∣

∣

∣

∣

〈gk, PkGknk + ωy(‖ck‖)JT
k uk〉

(1 + αk)‖Pkgk‖

∣

∣

∣

∣

≤ κHκGκn‖ck‖+ κ2
H
ωy(‖ck‖)

(1 + αk)‖Pkgk‖
<

1

12(1 + αk)
‖Pkgk‖.

Hence we deduce that, for some βk ∈ [− 1
2
, 1

2
] and some ζk ∈ [− 1

12
, 1

12
],

πk =
1 + ζk
1 + αk

‖Pkgk‖+ βk‖Pkgk‖ =
1 + ζk + βk + αkβk

1 + αk

‖Pkgk‖.

This in turn yields (3.82) because

ψk
def
=

1 + ζk + βk + αkβk
1 + αk

∈ [ 1
9
, 11

3
]

for all (αk, βk, ζk) ∈ [− 1
2
, 1

2
]× [− 1

2
, 1

2
]× [− 1

12
, 1

12
]. 2

The preceding result ensures the following simple but useful technical consequence.
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Lemma 3.25 Suppose that ǫ > 0 is given and that

κHκGκn‖ck‖+ κ2
H
ωy(‖ck‖) ≤ ǫ. (3.85)

Then, for any α > 1
5
,

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 5αǫ implies that πk ≥ αǫ.

Proof. Assume first that (3.81) fails. We then obtain, using (3.85), that

5αǫ ≤ min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≤ κHκGκn‖ck‖+ κ2
H
ωy(‖ck‖) ≤ ǫ,

which is impossible because α > 1
5
. Hence (3.81) must hold. In this case, we see, using

Lemma 3.24, that

1
2
πk = 1

2
ψk‖Pkgk‖ ≥ ψk min

[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 5
9
αǫ > 1

2
αǫ,

as desired. 2

We now examine the consequences of the existence of a subsequence of consecutive f -
iterations where πk is bounded away from zero.

Lemma 3.26 Suppose that there exist k1 ∈ S and k2 ∈ S with k2 > k1 such that all
successful iterations between k1 and k2 − 1 are f -iterations, i.e.

{k1, . . . , k2 − 1} ∩ S ⊆ F , (3.86)

with the property that

πj ≥ ǫ for all j ∈ {k1, . . . , k2 − 1} ∩ S (3.87)

for some ǫ > 0. Assume furthermore that

f(xk1
)− f(xk2

) ≤ η1κδκtCǫ
2

2κG

. (3.88)

Then

‖xk1
− xk2

‖ ≤ 1

η1κδκtCǫ

[

f(xk1
)− f(xk2

)
]

. (3.89)

Proof. Consider a successful iteration j in the range k1, . . . , k2 − 1 and note that
the sequence {f(xj)}k2

j=k1
is monotonically decreasing. We then deduce from (2.22),

(3.87), and Lemma 3.3 that

δf,tj ≥ κtCπj min

[

πj
1 + ‖Gj‖

,∆j

]

≥ κtCǫmin

[

ǫ

κG

,∆j

]

.

Since j ∈ S, we may use the previous bound, (2.35), and (2.31) to conclude that

f(xj)− f(xj+1) ≥ η1δ
f
k ≥ η1κδκtCǫmin

[

ǫ

κG

,∆j

]

. (3.90)

But the bound (3.88) and the inequality f(xj) − f(xj+1) ≤ f(xk1
) − f(xk2

) yield
together that the minimum in the right-hand side of (3.90) must be achieved by the
second term. This in turn implies that

‖xj − xj+1‖ ≤ ∆j ≤
1

η1κδκtCǫ

[

f(xj)− f(xj+1)
]

,
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where we have used (2.47) to derive the first inequality. Summing now over all success-
ful iterations from k1 to k2 − 1 and using the triangle inequality, we therefore obtain
that

‖xk1
− xk2

‖ ≤
k2−1
∑

j=k1,j∈S

‖xj − xj+1‖ ≤ 1

η1κδκtCǫ

k2−1
∑

j=k1,j∈S

[

f(xj)− f(xj+1)
]

and (3.89) follows. 2

We now extend Lemma 3.17 by showing that the constraint violation goes to zero not
only along the subsequence for which the criticality πk goes to zero, but actually along
the complete sequence of iterates.

Lemma 3.27 Suppose that | C ∩ S | < +∞, that | S | = +∞, that no subsequence exists
such that (3.12) holds, and that ωt is strictly increasing on [0, tω] for some tω > 0. Then

lim
k→∞

‖ck‖ = 0.

Proof. Let k0 be the index of the last successful iteration in C (or -1 if there is
none). Thus all successful iterations beyond k0 must be f -iterations. In this case, we
know that the sequence {f(xk)} is monotonically decreasing (by the mechanism of the
algorithm) and bounded below by flow because of (3.2); it is thus convergent to some
limit f∗ ≥ flow. Assume first that there exists a subsequence indexed by Kc ⊆ F ∩ S
such that

‖ck‖ ≥ ǫ0

for some ǫ0 > 0 and all k ∈ Kc with k > k0. Because of (2.27) and the monotonicity
of ωt, we then deduce that

πk ≥ ωt(ǫ0)

for all k ∈ Kc with k > k0. On the other hand, Lemma 3.17 implies the existence of an
infinite subsequence K such that (3.5) and (3.7) both hold. We now choose an ǫ > 0
small enough to ensure that

ǫ ≤ min [ 1
2
ωt(ǫ0), tω] and ω−1

t (ǫ) + 1
4
ǫ ≤ 1

2
ǫ0. (3.91)

(Note that the first part of the condition and our assumption on ωt ensures that this
bounding function is invertible for all t sufficiently small.) We next choose an index
k1 ∈ Kc large enough to ensure that k1 > k0 and also that

fk1
− f∗ ≤ min

[

η1κδκtCǫ
2

2κG

,
η1κδκtCǫ

2

4κH

]

, (3.92)

which is possible since {f(xk)} converges in a monotonically decreasing manner to f∗.
We finally select k2 to be the first index in K after k1 such that

πj ≥ ǫ for all k1 ≤ j < k2, j ∈ S, and πk2
< ǫ. (3.93)

Because f(xk1
)− f(xk2

) ≤ f(xk1
)− f∗ and (3.92), we may then apply Lemma 3.26 to

the iterations k1 and k2, and deduce that (3.89) holds, and therefore, using (3.88) we
obtain that

‖xk1
− xk2

‖ ≤ ǫ

4κH

.

Thus, using the vector-valued mean-value theorem, we then obtain that

‖ck1
− ck2

‖ ≤
∥

∥

∥

∥

∫ 1

0

J(xk1
+ t(xk2

− xk1
))(xk1

− xk2
) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖J(xk1
+ t(xk2

− xk1
))‖ ‖xk1

− xk2
‖

≤ κH‖xk1
− xk2

‖

≤ 1
4
ǫ.
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As a consequence, using the triangle inequality, the fact that ωt(‖ck2
‖) ≤ πk2

(since
k2 ∈ F), (3.93), and the second part of (3.91), we deduce that

ǫ0 ≤ ‖ck1
‖ ≤ ‖ck2

‖+ 1
4
ǫ ≤ ω−1

t (πk2
) + 1

4
ǫ ≤ ω−1

t (ǫ) + 1
4
ǫ ≤ 1

2
ǫ0

which is a contradiction. Hence our initial assumption on the existence of the subse-
quence Kc is impossible and ‖ck‖ must converge to zero, as required. 2

Our next result analyzes some technical consequences of the fact that there might be
an infinite number of c-iterations. In particular, it indicates that feasibility improves
linearly at c-iterations for sufficiently large k, and hence that these iterations must play a
diminishing role as k increases.

Lemma 3.28 Suppose that | C ∩S| = +∞ and that no subsequence exists such that (3.12)
holds. Then both {θk} and {θmax

k } converge linearly to zero along C ∩ S , i.e. there exist
κθ ∈ (0, 1) and κθm ∈ (0, 1) such that, for k ∈ C ∩ S sufficiently large,

θk+1 < κθθk (3.94)

and
θmax
k+1 ≤ κθmθ

max
k . (3.95)

Proof. We first note that (3.61) holds because of Lemma 3.19, which implies that
(3.13) also holds for k sufficiently large.

Now let kc be the index of the first iteration beyond which κ∆c2‖JT
k ck‖ ≤ κ∆c1 for

k ≥ kc, which is well-defined because of (3.61). Lemma 3.9, (3.61) and (3.13) then
imply that, for k ∈ C \ S, k ≥ kc sufficiently large,

∆c
k ≥ min [κ∆c2κJ‖ck‖] = κ∆c2κJ‖ck‖.

Observe also that ∆c
k is maintained above κ∆cc‖JT

k ck‖ ≥ κ∆ccκJ‖ck‖ at successful f -
iterations because of (2.37) and (3.13) for k large enough. The ratio of ∆c

k to ‖ck‖ also
does not decrease at successful c-iterations, because then ∆c

k+1 ≥ ∆c
k and ‖ck+1‖ ≤

‖ck‖. Moreover, ∆c
k and ‖ck‖ do not change at unsuccessful f -iterations or y-iterations.

Hence we deduce that
∆c

k ≥ γ1 min [κ∆cc, κ∆c2]κJ‖ck‖ (3.96)

for all k ≥ kc sufficiently large.

If now restrict our attention to k ∈ C ∩ S ⊆ A (the last inclusion being guaranteed by
part (ii) of Lemma 3.5), we obtain by using (2.39), (2.4), and (3.3) that

θk − θk+1 ≥ η1κcnκnC‖JT
k ck‖min

[‖JT
k ck‖
κ2

H

,∆c
k

]

. (3.97)

Combining (3.96), (3.97), (3.13) and (2.1), we then obtain that for k ∈ C∩S sufficiently
large,

θk − θk+1 ≥ 2η1κcnκnC min

[

1

κ2
H

, γ1κ∆cc, γ1κ∆c2

]

κ2
J
θk.

Thus (3.94) holds for k ∈ C ∩ S sufficiently large, with

κθ
def
= 1− 2η1κcnκnC min

[

1

κ2
H

, γ1κ∆cc, γ1κ∆c2

]

κ2
J
∈ (0, 1),

this last inclusion following from the definition of the various constants and particularly
κnC ≤ 1

2
.
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We now observe that θmax
k is decreased in (2.41) at every successful c-iteration, yielding

that, for k ∈ C ∩ S large enough,

θmax
k+1 = max

[

κtx1θ
max
k , θ(xk)− (1− κtx2)(θ(xk)− θ(x+k ))

]

≤ max
[

κtx1θ
max
k , θ(xk)− (1− κtx2)(1− κθ)θ(xk)

]

≤ max[κtx1, 1− (1− κθ)(1− κtx2)]θ
max
k

= κθmθ
max
k ,

where we have used (3.94) and Lemma 2.2 to deduce the last inequalities, and where

we have defined κθm
def
= max[κtx1, 1− (1−κθ)(1−κtx2)] ∈ (0, 1). This yields (3.95) and

concludes the proof. 2

The penultimate step in our convergence analysis is to show that the variation in the
objective function along the subsequence of c-iterations is bounded.

Lemma 3.29 Suppose that |C ∩S| = +∞ and that no subsequence exists such that (3.12)
holds. Then

∑

k∈C

| f(xk)− f(xk+1) | < +∞ (3.98)

and
∑

k∈C∩S

‖sk‖ < +∞. (3.99)

Proof. Consider k ∈ C ∩S and remember that Lemma 3.4 ensures that (3.14) holds
for such a k. Using this property, the triangle inequality, (2.5) and (2.1), we verify that

‖sk‖ ≤ ‖nk‖+ ‖tk‖ ≤ (1 + κCS)‖nk‖ ≤ (1 + κCS)κn‖ck‖ = (1 + κCS)κn

√

2θk. (3.100)

Choose now k0 large enough to ensure that (3.95) holds in Lemma 3.28 for all k ≥ k0.
Then (3.100) yields that

∑

k∈C∩S,k≥k0

‖sk‖ ≤ (1 + κCS)κn

√
2

∑

k∈C∩S,k≥k0

√

θk

≤ (1 + κCS)κn

√
2

∑

k∈C∩S,k≥k0

√

θmax
k

≤ (1 + κCS)κn

√

2θmax
k0

1−√
κθm

(3.101)

where we used (2.46) to deduce the second inequality, and the convergence of the
geometric series implied by (3.95) and the monotonicity of the sequence {θmax

k } to
deduce the third. This yields (3.99). As a consequence, we obtain that there is a
k1 ≥ k0 such that ‖sk‖ ≤ 2 for all k ≥ k1. Using now the mean-value theorem, we
deduce that, for k ∈ C ∩ S, k ≥ k1,

| f(xk)− f(xk+1) | = | 〈gk, sk〉+ 1
2
〈sk,∇xxf(ξk)sk〉 |

≤ κH‖sk‖+ 1
2
κH‖sk‖2

≤ 2κH‖sk‖
(3.102)

for some ξj ∈ [xj , xj+1), and where we have used the Cauchy-Schwarz inequality, (3.1),
and the bound ‖sk‖ ≤ 2. The bound (3.102), the inequality k1 ≥ k0 and (3.101) then
together yield that

∑

k∈C∩S,k≥k1

| f(xk)− f(xk+1) | ≤ 2κH

∑

k∈C∩S,k≥k1

‖sk‖ ≤ 2(1 + κCS)κnκH‖ck0
‖

1−√
κθm

. (3.103)
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Note that this bound remains valid if | C ∩ S | < +∞ since the sum on the left-hand
side is empty in that case. The desired conclusion immediately follows from the fact
that xk = xk+1 for k ∈ C \ S. 2

We finally strengthen the convergence results obtained in Theorem 3.22 by avoiding taking
limits along subsequences.

Theorem 3.30 Suppose that ωt is strictly increasing in [0, tω] for some tω > 0. Then,
we have that, either there exists a subsequence indexed by Z such that (3.12) holds, or

lim
k→∞

‖ck‖ = 0 and lim
k→∞

‖Pkgk‖ = 0, (3.104)

and all limit points of the sequence {xk} (if any) are first-order critical.

Proof. Assume that no subsequence exists such that (3.12) holds. If there are
only finitely many successful iterations, the desired conclusion directly follows from
Lemma 3.12. Assume therefore that |S| = +∞. If | C ∩ S | = ∞, then the first limit in
(3.104) follows from Theorem 3.22. On the other hand, if | C ∩ S | < ∞, then the first
limit in (3.104) follows from Lemma 3.27. Thus we only need to prove the second limit
in (3.104) when there are infinitely many successful iterations.

To derive a contradiction, we assume that there exists an infinite subsequence indexed
by K such that for some ǫ ∈ (0, 1

5
)

min
[

1
2
‖Pkgk‖, 1

12
‖Pkgk‖2

]

≥ 10ǫ for all k ∈ K. (3.105)

Now choose k1 ∈ K large enough to ensure that, for all k ≥ k1, (3.85) holds,

‖ck‖ ≤ κc, (3.106)

and
ωt(‖ck‖) ≤ 1

2
ǫ. (3.107)

If | C ∩ S | = +∞, we also require that the conclusions of Lemma 3.28 apply for all k
sufficiently large, and so that

∞
∑

j=k1,j∈C∩S

‖sj‖ ≤ ǫ

κ2
H
(κP + 1)

(3.108)

and
∞
∑

j=k1,j∈C∩S

| f(xj)− f(xj+1) | ≤
η1κδκtCǫ

2

2κ2
H
(κP + 1)

, (3.109)

which is possible because of Lemma 3.29. Conversely, if | C ∩ S | < +∞, we require
that k1 is larger than the index of the last successful c-iteration (in which case (3.108)
and (3.109) also hold since the sums on the left-hand sides are empty). Observe that,
because of (3.85) and Lemma 3.25 (with α = 2), (3.105) implies that

πk1
≥ 2ǫ > 0. (3.110)

We now choose k2 to be the (first) successful iteration after k1 such that

πk2
< ǫ, (3.111)

which we know must exist because of Theorem 3.22. Note that this last inequality,
(3.85) and Lemma 3.25 (with α = 1) then give that

min
[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2
]

≤ 5ǫ. (3.112)
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Our choice of k1 and k2 also yields that

πj ≥ ǫ for k1 ≤ j < k2. (3.113)

We now observe that the objective function is decreased at every successful f -iteration
and the total decrease, from iteration k1 on, cannot exceed the maximum value of f(xk)
for k ≥ k1 minus the lower bound flow specified by (3.2). Moreover the maximum of
f(xk) for k ≥ k1 cannot itself exceed f(xk1

) augmented by the total increase occurring
at all c-iterations beyond k1, which is given by (3.109). As a consequence, we may
conclude that

∞
∑

j=k1,j∈S

| f(xj)− f(xj+1) | =

∞
∑

j=k1,j∈F∩S

[

f(xj)− f(xj+1)
]

+

∞
∑

j=k1,j∈C∩S

| f(xj)− f(xj+1) |

≤
[

f(xk1
) +

η1κδκtCǫ
2

2κ2
H
(κP + 1)

− flow

]

+
η1κδκtCǫ

2

2κ2
H
(κP + 1)

,

which in turn implies that

∞
∑

j=0,j∈S

| f(xj)− f(xj+1) | < +∞ and lim
ℓ→∞

∞
∑

j=ℓ,j∈S

| f(xj)− f(xj+1) | = 0.

Because of this last limit, we may therefore possibly increase k1 ∈ K (and k2 accord-
ingly) to ensure that

∞
∑

j=k1,j∈S

| f(xj)− f(xj+1) | ≤ min

[

η1κδκtCǫ
2

2κG

,
η1κδκtCǫ

2

2κ2
H
(κP + 1)

]

(3.114)

in addition to (3.85), (3.106), (3.107), as well as the conclusions of Lemma 3.28, (3.108)
and (3.109).

Consider now a range of consecutive successful f -iterations (i.e. a range containing at
least one successful f -iteration and no successful c-iteration), indexed by {ka, . . . , kb−1}
lying between k1 and k2. Observe that (3.114) gives that

f(xka
)− f(xkb

) ≤ η1κδκtCǫ
2

2κG

.

Then, using Lemma 3.26 (which is applicable because of (3.113) and this last bound),
we deduce that

‖xka
− xkb

‖ ≤ 1
η1κδκtCǫ

[

f(xka
)− f(xkb

)
]

.

We now sum on all disjoint sequences {ka,ℓ, . . . , kb,ℓ}pℓ=1 of this type between k1 and
k2 − 1 (if any), and find that

k2−1
∑

j=k1,j∈F∩S

‖xj−xj+1‖ =

p
∑

ℓ=1

‖xka,ℓ
−xkb,ℓ

‖ ≤ 1

η1κδκtCǫ

p
∑

ℓ=1

[

f(xka,ℓ
)−f(xkb,ℓ

)
]

. (3.115)

We now decompose this last sum and obtain, using (3.109) and (3.114), that

p
∑

ℓ=1

[

f(xka,ℓ
)− f(xkb,ℓ

)
]

≤
∞
∑

j=k1,j∈F∩S

[

f(xj)− f(xj+1)
]

=

∞
∑

j=k1,j∈S

[

f(xj)− f(xj+1)
]

−
∞
∑

j=k1,j∈C∩S

[

f(xj)− f(xj+1)
]

≤
∞
∑

j=k1,j∈S

|f(xj)− f(xj+1)|+
∞
∑

j=k1,j∈C∩S

∣

∣f(xj)− f(xj+1)
∣

∣

≤ η1κδκtCǫ
2

κ2
H
(κP + 1)
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Substituting this inequality in (3.115), we obtain that

k2−1
∑

j=k1,j∈F∩S

‖xj − xj+1‖ ≤ ǫ

κ2
H
(κP + 1)

and thus, using the triangle inequality and (3.108), that

‖xk1
−xk2

‖ ≤
k2−1
∑

j=k1,j∈C∩S

‖xj −xj+1‖+
k2−1
∑

j=k1,j∈F∩S

‖xj −xj+1‖ ≤ 2ǫ

κ2
H
(κP + 1)

. (3.116)

We now return to considering the sizes of the projected gradients at iterations k1 and
k2. We know from the triangle inequality that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ ‖Pk1
gk1

− Pk2
gk2

‖
≤ ‖(Pk1

− Pk2
)gk1

‖+ ‖Pk2
(gk1

− gk2
)‖

≤ ‖Pk1
− Pk2

‖ ‖gk1
‖+ ‖Pk2

‖ ‖gk1
− gk2

‖.

In view of (3.106), we may now apply Lemma 3.23 and, recalling that the norm of an
orthogonal projection is bounded above by one, deduce that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ κPκH‖xk1
− xk2

‖+ ‖gk1
− gk1

‖, (3.117)

where we have used (3.1) to bound ‖gk1
‖. But the vector-valued mean-value theorem

ensures that

‖gk1
− gk2

‖ ≤
∥

∥

∥

∥

∫ 1

0

∇xxf(xk1
+ t(xk2

− xk1
))(xk1

− xk2
) dt

∥

∥

∥

∥

≤ max
t∈[0,1]

‖∇xxf(xk1
+ t(xk2

− xk1
))‖ ‖xk1

− xk2
‖

≤ κH‖xk1
− xk2

‖,

where we also used (3.1). Substituting this last inequality in (3.117) and using (3.116),
we finally obtain that

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ κH(κP + 1)‖xk1
− xk2

‖ ≤ 2ǫ

κH

. (3.118)

Observe now that the inequality ǫ ≤ 1
5
and (3.112) imply together that

‖Pk2
gk2

‖ ≤ 10ǫ ≤ 2 or ‖Pk2
gk2

‖2 ≤ 60ǫ ≤ 12 < 16,

which in turn implies that
‖Pk2

gk2
‖ < 4 (3.119)

and thus that
min

[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2
]

= 1
12
‖Pk2

gk2
‖2. (3.120)

Suppose now that
‖Pk1

gk1
‖ ≤ 6, (3.121)

in which case
min

[

1
2
‖Pk1

gk1
‖, 1

12
‖Pk1

gk1
‖2
]

= 1
12
‖Pk1

gk1
‖2. (3.122)
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Then, successively using (3.105), (3.112), (3.122), (3.120), the bound of one on the
norm of orthogonal projections, (3.1) and (3.118), we conclude that

5ǫ ≤ min
[

1
2
‖Pk1

gk1
‖, 1

12
‖Pk1

gk1
‖2
]

−min
[

1
2
‖Pk2

gk2
‖, 1

12
‖Pk2

gk2
‖2
]

= 1
12

[

‖Pk1
gk1

‖2 − ‖Pk2
gk2

‖2
]

= 1
12

[

‖Pk1
gk1

‖+ ‖Pk2
gk2

‖
][

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖
]

≤ 1
6
κH

[

‖Pk1
gk1

‖ − ‖Pk2
gk2

‖
]

≤ 1
3
ǫ

which is impossible. Hence (3.121) must be false. Combining now this observation
with (3.118) and (3.119), we obtain that

2 < ‖Pk1
gk1

‖ − ‖Pk2
gk2

‖ ≤ 2ǫ

κH

,

which is again impossible because κH ≥ 1 > ǫ. Hence our assumption (3.105) is itself
impossible and the second limit of (3.104) must hold. 2

3.4 Comments

We end our theoretical developments at this point, but the theory and results presented
so far suggest some comments.

1. Although different from filter methods and penalty-type methods, the proposed al-
gorithm unsurprisingly shares some of the main broad concepts used by these tech-
niques to ensure global convergence.

One can view the pair (θ(xk), f(xk)) as some kind of temporary filter entry: an f -
iteration from xk needs not improve on feasibility, but should then result in progress
on the objective function minimization, while, by contrast, a c-iteration allows the
objective function to increase, but produces a significant decrease in infeasibility.
This is very similar to what happens in filter methods, except that the filter entry is
then remembered in the filter. By contrast, the pair is not stored in the trust-funnel
method, but memory is instead provided by the decreasing nature of the sequence
{θmax

k }. Note that a similar mechanism is also included is some filter methods (see
for Fletcher and Leyffer, 2002 for instance). It is also interesting to note that we
have proved that every limit point of the sequence of iterates must be first-order
critical, a result which has not been established for filter algorithms.

The trust-funnel method is also related to penalty approaches, in that the decreas-
ing bound θmax

k may possibly be interpreted as the effect of an increasing penalty
parameter in this context. In this interpretation, the need to explicitly manage the
parameter in the course of a penalty-based algorithm (which can be viewed as an
indirect control on acceptable infeasibility) is replaced here by a more direct version
of this control.

2. Assumption (3.2) is not really crucial in the sense that one may apply c-iterations (by
temporarily setting f ≡ 0 and keeping ŷk = 0) a priori (hence reducing infeasibility)
to reduce the domain. If a global lower bound on the objective function value on the
feasible domain is known, a comparison of the infeasibility and objective function
value at the starting point may be useful to decide whether pure c-iterations should
be applied first, or if the complete algorithm can be applied directly from the starting
point.
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3. When the Jacobian Jk is of full-rank, we can rewrite the test (2.14) in the form

‖Jk(gN

k + JT
k yk)‖ ≤ ωy(‖ck‖),

which provides an implementable version of (2.14).

4. Convergence of trust-region methods for unconstrained optimization may be ob-
tained as a by-product of the results presented here. Indeed, if there are no con-
straints, the algorithm reduces to the basic trust-region method by setting θmax

0 =
κca, and, for every k, nk = 0, yk = 0, ŷk = 0, rk = gk. Since πk = ‖gk‖, we have that
πk > ωt(0) = 0 and a non-zero tk is always computed. Moreover, every iteration is

then an f -iteration with δfk = δf,tk at which we choose, as allowed by (2.37), not to
update the (irrelevant) ∆c

k.

5. Obviously, one could use Gk = Hk and still obtain global convergence. The vector
ŷk then becomes irrelevant. This is particularly apt when the constraints are linear.

6. The tangential step is only required to satisfy the modified Cauchy condition (2.22),
but there is no theoretical need to compute the associated modified Cauchy point
(the solution of (2.19)). If one considers that tk results from an iterative process
starting (and possibly ending) at this modified Cauchy point, it is then necessary
to ensure that this point satisfies either (2.26) or (2.23)-(2.24)-(2.25). A possible
technique is to first solve (2.18) accurately enough to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ κttθ
max
k , (3.123)

which is possible since it holds trivially if (2.18) is solved exactly, because then
Jkrk = 0 by construction and ϑk < ‖ck + Jknk‖2. As soon as (3.123) holds, then
the modified Cauchy point can be computed and (2.23) and (2.24) tested. If any of
these fail, then the solution of (2.18) must be continued to ensure that

‖ck + Jk(nk − τkrk)‖2 ≤ ϑk

and a new, improved, modified Cauchy point can then be found along −rk at which
(2.26) holds.

7. It is interesting to observe that the conditions (2.25) or (2.26) happen to be irrelevant
for successful f -iterations in the theory discussed above. For such iterations, the role
of limiting the acceptable infeasibility is played by (2.33).

In a situation where evaluating the value of the infeasibility measure θ is cheap and
the tangential step is computed by an iterative process, it may be possible to detect
that (2.31) holds before the end of this process, and then simply replace conditions
(2.25)/(2.26) by the verification that (2.33) holds. Of course, if (2.35) then fails or
if (2.33) cannot be enforced, then the iteration has to be handled as an unsuccessful
c-iteration, since we can no longer turn it into a successful c-iteration for which
(2.25)/(2.26) is meaningful.

8. Preliminary numerical experience has shown that our algorithm, like many SQP
methods, might suffer from the Maratos effect. A well documented cure for this
problem (see Mayne and Polak, 1982, Coleman and Conn, 1982, or Section 15.3.2
of Conn et al., 2000) is to use second-order correction steps. In our context, we
define such a step sCk as a step performed from xk + sk to correct for an unsuccessful
f -iteration, and such that

‖sk + sCk‖ ≤ ∆k (3.124)

and
θ(xk + sk + sCk) ≤ θmax

k . (3.125)
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Of course, for the f -iteration using the augmented step sk + sCk to be successful , we
still require, extending (2.35), that

ρC

k

def
=

f(xk)− f(xk + sk + sCk)

mk(xk)−mk(xk + sk)
≥ η1. (3.126)

Using the comment just made on the irrelevant nature of (2.25) or (2.26) for suc-
cessful f -iterations, we may now verify that the convergence theory presented above
is not modified by the presence of these correction steps. Indeed, a successful iter-
ation using the augmented step satisfies all the conditions required for a successful
f -iteration where mk(x + sk) is then interpreted, in the spirit of Section 10.4.2 in
Conn et al. (2000), as a prediction of f(xk + sk + sCk) and where the infeasibility-
limiting condition (2.33) is replaced by (3.125).

In practice, a second-order correction is often computed by producing a step sCk that
reduces infeasibility, typically by “projecting” the trial point lying in or close to the
nullspace of J(xk) onto the actual feasible set. In this case, sCk not only improves
feasibility (ensuring (3.125)), but often makes mk(xk + sk) to be a better prediction
of the value of f(xk + sk + s

C

k) than of f(xk + sk) (which tends to make the iteration
acceptable in (3.126)). Because ‖sCk‖ is then of the order of ‖sk‖2, condition (3.124)
usually follows from (2.47).

9. The first term in the maximum of (2.37) is only necessary to prove the “true limit”
convergence result of Theorem 3.30, and, in this proof, only in the limit when ‖ck‖
converges to zero and ‖ck+1‖ > ‖ck‖. Relaxed forms of (2.37) are therefore possible
without affecting the theory developed above. It is also possible, in this update,
to replace κ∆cc by the line coordinate of the Cauchy step νuk+1 along the direction

−JT
k+1ck+1, since this quantity is bounded below by κ−2

H
. This strategy essentially

amounts to choosing ∆c
k+1 large enough to allow the full Cauchy step at iteration

k + 1, which can be useful if ‖ck+1‖ > ‖ck‖.

10. The authors anticipate that the convergence rate for the new method is essentially
that which is known for composite step SQP methods (i.e., Q-superlinear or, under
stronger assumptions, Q-quadratic). It seems most likely that either a second-order
correction or a non-monotone acceptance rule will be required to obtain these results.
The verification of this intuition is left for a future report.

The authors are well aware that many theoretical questions remain open at this stage of
analysis, such as convergence to second-order critical points, rate of convergence, inequality
constraints and worst-case complexity analysis. Furthermore, the many degrees of freedom
in the algorithm provide considerable room for implementation tuning.

4 Conclusion and perspectives

We have presented a new SQP algorithm for the solution of the equality constrained
nonlinear programming problem, that avoids the use of penalty parameters and that allows
for inexact step computations. Convergence to first-order critical point has been proved.

A first line of work is the inclusion of a multi-dimensional filter mechanism (see Gould,
Leyffer and Toint, 2005) in the algorithm, with the objective to make the constraint
on decreasing infeasibility more flexible. Other non-monotone techniques, such as only
requiring a decrease from the worst infeasibility over some past iterations could also be
investigated. A second interesting development is the inclusion of bound or more general
inequalities in the present framework. A third line of development is the design of a
linesearch variant of the new method, possibly following ideas in Section 10 of Conn et al.
(2000). On a more practical level, extensive numerical testing of the ideas presented here
is necessary. These tests are ongoing, and preliminary results are encouraging.
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