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Abstract

We present an algorithm for nonlinear least-squares and nonlinear feasibility problems, i.e. for

systems of nonlinear equations and nonlinear inequalities, which depend on the outcome of expensive

functions for which derivatives are assumed to be unavailable. Our algorithm combines derivative-

free techniques with filter trust-region methods to keep the number of expensive function evaluations

low and to obtain a robust method. Under adequate assumptions, we show global convergence to a

feasible point. Numerical results indicate a significant reduction in function evaluations compared

to other derivative based and derivative-free solvers for nonlinear feasibility problems.
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1 Introduction

In this paper we consider the solution of the general feasibility problem with expensive functions, where
one seeks a vector x ∈ IRn such that the Expensive System of nonlinear equations and inequalities

cE(x, u(x)) = 0
cI(x, u(x)) ≤ 0

(ES)

holds, where u : IRn → IRm is a sufficiently smooth expensive function and cE : IRn+m → IRp and
cI : IRn+m → IRq are sufficiently smooth cheap functions. In our context, we call a function expensive,
if its evaluation is costly in some sense and plays a major part in the computational cost of the solution
of the system (ES). A function is called cheap if the cost of its evaluation is negligible. In order to find
a solution of (ES), one often uses its well-known reformulation as a nonlinear least-squares problem, in
which one searches a (hopefully global) minimizer x ∈ IRn of the nonlinear unconstrained problem (see,
e.g., [17])

min
x∈IRn

f(x, u(x)) =
1

2
‖ϑ(x, u(x))‖22 (1.1)

where we define

ϑ(x, u(x))
def
=

(

cE(x, u(x))
[cI(x, u(x))]+

)

∈ IRp+q (1.2)

with [cI(x, u(x))]+
def
= max[0, cI(x, u(x))] is the violation of the equations and inequalities, respectively.

Importantly, our developments also apply directly to the nonlinear least-squares problem (1.1).
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Feasibility problems of the form (ES) or nonlinear least-squares of the form (1.1) occur in many
different applications, e.g. as discretized nonlinear partial differential equations [32] or in the restoration
phase of filter methods for nonlinear optimization [10]. A large number of algorithms have been developed
to solve this general class of problem or related variants, such as nonlinear systems of equations and
nonlinear least-squares problems. These algorithms are based on various techniques, including Newton
methods [25, 30], trust-region methods [7, 12, 17, 22] or evolutionary algorithms [19]. For a survey
of algorithms for nonlinear systems of equations, see also [23]. In many engineering contexts, these
feasibility or least-squares systems often involve the outcome of an expensive function such as a numerical
simulation. The evaluation of these expensive functions is typically very time consuming and derivative
information unavailable, which suggests using derivative-free methods (for instance, see [29] for a pattern
search method for solving nonlinear equation systems).

The purpose of this paper is to present a globally convergent method for solving the nonlinear
feasibility problems (ES). The proposed method is a filter-trust-region algorithm akin to FILTRANE [17].
It can also be considered as hybrid in the sense that it handles expensive functions using derivative-free
techniques (see [4, 6]) while more standard technology using derivatives is applied to the cheap functions.

The paper is organized as follows. In Section 2, we describe the general framework of our filter-trust-
region algorithm. Under appropriate assumptions, we show its convergence to a local first-order critical
point in Section 3. A very important step within our method is the determination of a trial point, which
we describe in Section 4. In Section 5, we report promising numerical results and compare our method to
other derivative-based and derivative-free optimization methods. Finally, concluding remarks are given
in Section 6. In what follows, we use the symbols ‖ · ‖2 and ‖ · ‖∞ to denote the standard Euclidean and
infinity norms.

2 An algorithm for nonlinear feasibility problems with expen-

sive functions

2.1 Using cheap systems and valid models

The main idea of our algorithm is to solve the expensive system (ES) by iteratively solving a sequence
of Cheap Systems of nonlinear equations and inequalities in a trust-region framework where, at iteration
k, the expensive function u is replaced by a cheap model function mu

k : IRn → IRm. Our analysis make
much use of the notion that, the cheap model mu

k may be considered valid in a neighbourhood defined
for an iterate xk of the iterative process and some δk > 0 by

Q(xk, δk)
def
= {x ∈ IRn | ‖x− xk‖∞ ≤ δk} , (2.3)

This validity concept, introduced in [4], Section 9.1, is defined as follows(1).

Assumption 1 (Validity of mu
k)

The model mu
k coincides with u at xk, i.e.,

mu
k(xk) = u(xk) (2.4)

and the following error bounds hold for some constants κub > 0, κgu > 0 and all k ≥ 0,

‖u(x)−mu
k(x)‖2 ≤ κubδ

2
k (2.5)

‖∇u(x)−∇mu
k(x)‖2 ≤ κguδk (2.6)

for all x ∈ Q(xk, δk).

Valid models are interesting because it is known that they provide a degree of approximation of the
modelled function which is adequate for their efficient use in optimizaton algorithms such as trust-
region methods (see [4] again). Importantly, valid models in the neighbourhood (2.3) may be computed

(1)We mention that the assumption m
u

k
(xk) = u(xk) could be omitted in this definition, but we use it nevertheless because

it significantly facilitates the subsequent analysis. Similarly, (2.6) could alternatively be derived from (2.5), see [4] (page
309) for more details.
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relatively easily in practice, and we refer the reader to [5, 6] for an explicit derivation of such models.
The details of this derivation are not important in our context, and it is sufficient for our purpose to
assume that validity can be checked and guaranteed in a finite number of steps, whenever needed (see,
e.g. [1, 4]). We formulate this double requirement as follows.

Assumption 2 (Checking validity)
The validity of mu

k in Q(xk, δk) can be checked in finite time for each iterate xk and for any value of
δk > 0.

Assumption 3 (Guaranteeing validity)
The model mu

k can be made valid in Q(xk, δk) in a finite number of model improvement steps for any xk

and any δk > 0.

Using a valid model mu
k for u, we may then propose to construct a cheap approximation of problem (ES)

of the form
cE(x,m

u
k(x)) = 0

cI(x,m
u
k(x)) ≤ 0

x ∈ Q(xk, δk).
(CSk)

The core of our proposal is then to solve the original problem (ES) using its cheap approximation (CSk)
as a local model in a method strongly inspired by the FILTRANE filter-trust-region method and the
conditional trust-region algorithm described in Section 9.1 of [4].

2.2 Computing a step and accepting it

FILTRANE and its derivative-free variant described here are iterative algorithms and use the filter and
trust-region methodologies (we refer the reader to [4] for an extensive coverage of the subject). They
consider the least-squares formulation of the problem at hand, which is given here, for problem (CSk),
by

min
x∈IRn

f(x,mu
k(x)) = 1

2‖ϑ(x,mu
k(x))‖22

s.t. x ∈ Q(xk, δk).
(2.7)

The idea is thus to consider f(x,mu
k(x)) as a model of f(x, u(x)). At each iteration k, a trial point x+

k

is computed by minimizing this model either in a relatively controlled trust region, giving

x+
k ∈ Q(xk, δk) (2.8)

(where the control is exercised by suitably updating δk), or, when the algorithm seems to be progressing
well, in a (potentially much) larger region of the same form, giving

x+
k ∈ Q(xk, κδδk) (2.9)

for some large constant κδ ≥ 1. The label RESTRICT indicates which region is requested. If
RESTRICT is set, x+

k has to satisfy (2.8), otherwise x+
k has to satisfy (2.9). In both cases, the trial

point is computed to ensure a variant of the standard “Cauchy decrease” given by the inequality

f(xk,m
u
k(xk))− f(x+

k ,m
u
k(x

+
k )) ≥ κmdcd‖gk‖2 min

(‖gk‖2
βk

, δk

)

(2.10)

where gk
def
= ∇f(xk,m

u
k(xk)), βk is an upper bound on the norm of the Hessian of f(x,mu

k(x)) inQ(xk, δk)
and κmdcd is a constant in (0, 1). Note that the right-hand side of (2.10) depends on the norm of the
gradient of the nonlinear cheap function f(x,mu

k(x)) and not on the gradient of the original expensive
function f(x, u(x)). How a step can be computed in practice to ensure (2.10) is the subject of Section 4.

Once a trial point x+
k satisfying (2.8) or (2.9) and (2.10) is computed, the algorithm uses a multi-

dimensional filter technique to decide upon its acceptability as the next iterate. This concept is a variant
of the filter method introduced in [11], adapted for feasibility problems. We now outline the idea and refer
to [12] for more details. A filter is based on the idea of dominance, which is borrowed (and modified)



M. Kaiser, K. Klamroth, A. Thekale, Ph. L. Toint: Structured nonlinear feasibility problems 4

from multicriteria optimization. In our context, we say that an iterate xk1
dominates an iterate xk2

whenever
|ϑi(xk1

, u(xk1
))| ≤ |ϑi(xk2

, u(xk2
))| for all i ∈ {1, . . . , p+ q}.

Based on this idea, we define the set Fu as a list of vectors of dimension (p+q) of the form |ϑ(xl, u(xl))| def=
(|ϑ1(xl, u(xl))| , . . . , |ϑp+q(xl, u(xl))|) where l ∈ {1, . . . , k} such that no entry is dominated by another
entry, in the sense that

|ϑi(xk1
, u(xk1

))| < |ϑi(xk2
, u(xk2

))| for at least one i ∈ {1, . . . , p+ q}

for all |ϑ(xk1
, u(xk2

))|, |ϑ(xk2
, u(xk2

))| ∈ Fu and k1 6= k2. The set Fu is called multidimensional filter.
Filter algorihms maintain such a filter Fu by adding and removing entries, and use it in the decision of
whether or not the trial point x+

k can be accepted as the next iterate xk+1. We say that x+
k is acceptable

for the filter Fu when its associate entry
∣

∣ϑi(x
+
k , u(x

+
k ))
∣

∣ is not “dominated”, that is if and only if, for all
|ϑ(xl, u(xl))| ∈ Fu, one has that

∃i ∈ {1, . . . , p+ q}
∣

∣ϑi(x
+
k , u(x

+
k ))
∣

∣ ≤ |ϑi(xl, u(xl))| − γθ min
(

∣

∣ϑ(x+
k , u(x

+
k ))
∣

∣ , |ϑ(xl, u(xl))|
)

where γθ ∈ (0, 1/
√
p+ q) is a constant. The rule to accept the trial as the next iterate is then to accept

it either if it is acceptable for the filter, or if it produces an achieved reduction in f(x, u(x)) which is at
least a fraction of that predicted using the model f(x,mu

k(x)), as in standard trust-region methods. This
decision is also combined with that of allowing larger steps (i.e. (2.9)) or using the more conservative
strategy (2.8), as is described in Algorithm 2.1 below.

2.3 The outer algorithm

We now can state our algorithm for solving (1.1).

Algorithm 2.1 Filter trust-region algorithm for feasibility problems with expensive func-

tions

Step 0: Initialization. An initial point x̄, an initial trust-region radius δ0 = δref > 0 and k0 ≥ 0 as
well as the constants mentioned below are given. Build an initial model mu

0 of u that is valid in Q(x̄, δ0),
define X0 as set of corresponding interpolation points and determine x0 such that

f(x0, u(x0)) = min
x∈X0

f(x, u(x)).

Compute c0 = c(x0, u(x0)), ϑ0 and f0. Set k = 0, unset RESTRICT and initialize the filter Fu = ∅.
Step 1: Stopping test. If ϑ(xk, u(xk)) = 0, or if ‖gk‖2 < εend for a valid model mu

k in Qk(xk, δend)
for some δend ∈ (0, µ‖gk‖2], STOP.
If ‖gk‖2 < εend and mu

k is not valid in Qk(xk, δend) for some δend ∈ (0, µ‖gk‖2], perform as many im-
provement steps as necessary until the model is valid in Qk(xk, µ‖gk‖2) and return to the beginning of
Step 1.

Step 2: Trial point determination. Attempt to compute a trial point x+
k that satisfies (2.10)

and, if RESTRICT is set, also satisfies (2.8), or, if RESTRICT is unset and k ≥ k0, also satisfies (2.9).
If this is impossible, set RESTRICT , δk+1 = γ0δk, ρk = −∞, Xk = {xk} and go to Step 4.

Step 3: Evaluation of the residual at the trial point. Compute u(x+
k ) and f(x+

k , u(x
+
k )). Set

ρk =
f(xk, u(xk))− f(x+

k , u(x
+
k ))

f(xk,mu
k(xk))− f(x+

k ,m
u
k(x

+
k ))

. (2.11)

If ρk ≥ η1 set Xk = {x+
k }, otherwise set Xk = {xk}.

Step 4: Model improvement. If ρk < η2 or mu
k is invalid in Q(xk, δk), perform model improve-

ment steps until the model is valid, possibly enlarging Xk by adding the newly evaluated points from the
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improvement steps, and define mu
k+1 as the improved model.

Step 5: Trial point determination. Determine x̂k ∈ Xk such that

f(x̂k, u(x̂k)) = min
x∈Xk

f(x, u(x)), (2.12)

set ϑ̂k
def
= ϑ(x̂k) and define, if ρk > −∞,

ρ̂k =
f(xk, u(xk))− f(x̂k, u(x̂k))

f(xk,mu
k(xk))− f(x+

k ,m
u
k(x

+
k ))

, (2.13)

else define ρ̂k = −∞.

Step 6: Acceptance test.

• If (2.8) holds for x̂k and ρ̂k ≥ η1, set xk+1 = x̂k and unset RESTRICT .

• Else if x̂k is acceptable for the current filter Fu, set xk+1 = x̂k, unset RESTRICT and add ϑ̂k to
Fu.

• Else, set xk+1 = xk and set RESTRICT .

Step 7: Trust-region radius update.

• If (2.8) holds: If ρ̂k ≥ η2 holds or mu
k is valid in Q(xk, δk), set δref = δk. Update the trust-region

radius by choosing

δk+1 ∈







[γ0δref , γ1δref ] if ρ̂k < η1
[γ1δref , δref ] if ρ̂k ∈ [η1, η2)
[δref , γ2δref ] if ρ̂k ≥ η2.

• If (2.8) does not hold: Set δk+1 = δk.

Increment k by one and go to Step 1.

This algorithm uses the constants 0 < γ0 ≤ γ1 < 1 ≤ γ2, γϑ ∈ (0, 1/
√
p+ q), 0 < η1 < η2 < 1,

µ > 0, κδ ≥ 1 and εend > 0. A reasonable choice for these parameters appears to be γ0 = 0.1, γ1 = 0.25,
γ2 = 7.5, γϑ = 10−4, η1 = 0.2, η2 = 0.9, µ = 0.5, κδ = 103 and εend = 10−6. Some further comments on
Algorithm 2.1 are also useful.

1. The title of this paragraph is motivated by the fact that Algorithm 2.1 is intended to solve (ES),
but it still relies on an inner algorithm for finding a trial point in Step 2. The complete method
can therefore be viewed as consisting of an outer and an inner algorithm, the latter being described
in Section 4.

2. The criticality test in Step 1 causes practical problems if ‖gk‖2 = 0 since in this situationQ(xk, δend)
degenerates to {xk} and it is impossible to build a valid model. Therefore, the model should be
chosen in a very small region around xk if this situation occurs. For the convergence theory it is
assumed that Q(xk, δend) can be arbitrarily small.

3. In Step 2, we attempt to compute a trial point x+
k satisfying (2.10) with some appropriate subrou-

tine. An example of such a method satisfying the assumptions needed for our convergence analysis
(see Section 3) is presented in Section 4. If this method does not succeed to determine a trial point
satisfying (2.10) in iteration k (this may happen, for example, if mu

k represents u very badly), we
call iteration k a failed iteration. The set of all failed iterations is denoted by F .

4. The statement of the acceptance test in Step 6 is different from that used in [17], but is equivalent
and maybe more intuitive. See also Figure 2.1 on the following page.
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Figure 2.1: Illustration of the decision scheme (Step 6) in Algorithm 2.1

5. An important step in the convergence analysis for trust-region methods is to guarantee that the
trust-region cannot become arbitrarily small whenever the current iterate is not first-order critical.
Using δref in the trust-region update (Step 7) instead of δk ensures this desirable property even in
the unfavourable situation where arbitrarily many trial points x+

k are accepted because of the filter
in a situation when current model is poor, i.e. ρk < η1.

6. We found best in practice to allow large steps in the early iterations if RESTRICT is unset using
x+ ∈ IRn instead of (2.9), which motivates the restriction imposed in the algorithm (Step 2) that k
has to exceed k0 (typically k0 = 10n) for this option to be considered. But note that it is important
to ensure a bound on the step length x+

k −xk for all iterations k ≥ k0 for some k0 ∈ IN to maintain
the convergence of Algorithm 2.1, as we show below.

3 Convergence analysis

We now investigate the convergence properties of Algorithm 2.1. In addition to the assumptions we
made on the model mu

k of the expensive function (Assumption 1, 2 and 3), we assume the following.

Assumption 4 (Functions’ smoothness)
The functions ci : IR

n × IRm → IR, i ∈ E ∪ I, are twice continuously differentiable on IRn × IRm. The
expensive function u : IRn → IRm is twice continuously differentiable on IRn.

Assumption 5 (Boundedness)
All points that are evaluated in f or mu

k , for all k, remain in a bounded convex domain Ω ⊂ IRn.

Assumption 6 (Model’s smoothness)
The model mu

k : IRn → IRm is twice continuously differentiable in x for all k.

Assumption 7 (Method determining the trial point)
For all k, if the trial point x+

k can be determined in Step 2 of Algorithm 2.1, it satisfies (2.10). Moreover,
for all ε > 0 there exists an εmdc > 0 such that, if RESTRICT is set, ‖gk‖2 > ε and δk ≤ εmdc, then
x+
k can be determined, i.e. k /∈ F .

Note that Assumptions 2 and 3 imply that the validity test in Steps 1 and 4 of Algorithm 2.1 is always
possible and that, whenever a model improvement is necessary to ensure its validity, no infinite loop is
produced by the algorithm. Assumptions 4 and 5 together imply that there exists a bounded convex
domain Ω∗ ⊆ IRm such that

u(Ω) ⊆ Ω∗.

Assumption 7 is not common for trust-region methods and it is not obvious that it can be satisfied. We
show in Section 4 how to ensure it. Also note that whenever mu

k is valid, (2.4) in Assumption 1 implies
that

f(x,mu
k(xk)) =

1

2
‖ϑ(xk,m

u
k(xk))‖22 =

1

2
‖ϑ(xk, u(xk))‖22 = f(x, u(xk)).
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Assumptions 4 and 5 together imply that there exists a constant κlbf such that, for all x ∈ IRn,

f(x, u(x)) ≥ κlbf

and that there exists a constant κubc > 0 such that

|u(x)| ≤ κubc, ‖∇u(x)‖2 ≤ κubc and ‖∇2u(x)‖2 ≤ κubc (3.1)

for all x ∈ Ω and

|ci(x, u)| ≤ κubc, ‖∇ci(x, u)‖2 ≤ κubc and ‖∇2ci(x, u)‖2 ≤ κubc (3.2)

for all x ∈ Ω, u ∈ Ω∗ and all i ∈ E ∪ I.
The first step of our convergence analysis considers the case where infinitely many entries ϑk

def
=

|ϑ(xk, u(xk))| are added to the filter Fu. In this case, we may directly apply Theorem 3.1 in [12] (with
adapted notation), because it is independent of the definition of ϑ.

Lemma 3.1 (Theorem 3.1 in [12]) Suppose that Assumptions 4, 5 and 6 hold and that infinitely
many values of ϑk are added to the filter by Algorithm 2.1. Then

lim
k→∞, i∈E∪I

‖ϑi(xk, u(xk))‖2 = lim
k→∞

‖∇f(xk, u(xk))‖2 = 0.

Thus, if infinitely many entries are added to the filter, the sequence of iterates generated by Algorithm
2.1 converges to a feasible point. Algorithm 2.1 therefore terminates after finitely many iterations in the
stopping test of Step 1 if ϑk = 0 is replaced by ‖ϑk‖2 ≤ ε for some small threshold ε > 0.

After having considered the case where infinitely many points are added to the filter, we now investi-
gate the case where only finitely many points are added to the filter. Convergence to a first-order critical
point therefore has to rely on the trust-region mechanism for this case. We may restrict our attention
to the iterations that occur after the last iteration where the corresponding iterate is added to the filter,
and the mechanism of the algorithm ensures that we may view them as standard trust-region iterations,
except for the update of the model and the trust-region radius. In particular, this guarantees that (2.8)
holds whenever a trial point is accepted as next current iterate. We verify below that the model is valid
whenever necessary for the convergence analysis.

Our analysis now proceeds analogously to the convergence theory of the derivative-free trust-region
method presented in Chapter 9.2 in [4], with suitable modifications in the proofs needed to accommodate
the composite structure of (1.1). First we investigate the error between the expensive objective function
in (1.1) and the objective in the cheap model problem (2.7) as well as that between the corresponding
gradients at a given point x ∈ Q(xk, δk).

Lemma 3.2 Suppose that Assumptions 1, 4-6 hold and that mu
k is valid in Q(xk, δk). Then

|f(x, u(x))− f(x,mu
k(x))| ≤ κubhδ

2
k (3.3)

‖∇f(x, u(x))−∇f(x,mu
k(x))‖2 ≤ κubh max[δ2k, δ

4
k] (3.4)

for all x ∈ Q(xk, δk), where κubh

def
= max[2κ2

ubc
κub, (p+ q)κ2

ubc
κub(1 + κub)].

Proof: Due to Assumptions 4 and 5, the bounds (3.2) hold. To prove the desired result, we first
state some additional error bounds. Let us first consider the error caused by the use of mu

k instead of u
within a single constraint function ci, i ∈ E ∪ I, at x ∈ Q(xk, δk). A Taylor expansion yields that

|ci(x, u(x))− ci(x,m
u
k(x))| ≤ ‖∇ci(x, ζ)‖2‖u(x)−mu

k(x)‖2 (3.5)

for some ζ ∈ IRm on the line segment connecting u(x) and mu
k(x). As x ∈ Ω and ζ ∈ Ω∗, we obtain from

(3.2) that ‖∇ci(x, ζ)‖2 ≤ κubc. Due to Assumption 1, (2.5) holds and we obtain from (3.5) that

|ci(x, u(x))− ci(x,m
u
k(x))| ≤ κubcκubδ

2
k. (3.6)
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Analogously, we obtain for the gradient ∇ci, i ∈ E ∪ I, that

‖∇ci(x, u(x))−∇ci(x,m
u
k(x))‖2 ≤ ‖∇2ci(x, ξ)‖2‖u(x)−mu

k(x)‖2 ≤ κubcκubδ
2
k (3.7)

for some ξ ∈ Ω∗ on the line segment connecting u(x) and mu
k(x). Next we derive an upper bound for

∇ci(x,m
u
k(x)) using the triangle inequality, (3.7) and (3.2) and obtain that

‖∇ci(x,m
u
k(x))‖2 ≤ ‖∇ci(x, u(x))−∇ci(x,m

u
k(x))‖2 + ‖∇ci(x, u(x))‖2 ≤ κubcκubδ

2
k + κubc. (3.8)

Moreover note that case differentiation directly yields that

|[ci(x, u(x))]+ − [ci(x,m
u
k(x))]+| ≤ |ci(x, u(x))− ci(x,m

u
k(x))|. (3.9)

Having obtained these preliminary error bounds, we next prove (3.3). Successively using the definition
of f and ϑ, Assumption 4, the triangle inequality and the fact that ‖ · ‖2 ≤ ‖ · ‖1, we obtain that

|f(x, u(x))− f(x,mu
k(x))| =

1

2

∣

∣

∣

∣

‖ϑ(x, u(x))‖22 − ‖ϑ(x,mu
k(x))‖22

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

‖cE(x, u(x))‖22 − ‖cE(x,mu
k(x))‖22

+‖[cI(x, u(x))]+‖22 − ‖[cI(x,mu
k(x))]+‖22

∣

∣

∣

∣

≤ 1

2
· 2κubc

∣

∣

∣

∣

‖cE(x, u(x))− cE(x,m
u
k(x))‖2

+‖[cI(x, u(x))]+ − [cI(x,m
u
k(x))]+‖2

∣

∣

∣

∣

≤ κubc

(

∑

i∈E

∣

∣

∣

∣

ci(x, u(x))− ci(x,m
u
k(x))

∣

∣

∣

∣

+
∑

i∈I

∣

∣

∣

∣

[ci(x, u(x))]+ − [ci(x,m
u
k(x))]+

∣

∣

∣

∣

)

.

Using now (3.9) and (3.6), we directly deduce that

|f(x, u(x))− f(x,mu
k(x))| ≤ (p+ q)κ2

ubc
κubδ

2
k ≤ κubhδ

2
k.

Let us now consider (3.4) and note that

∇f(x, u(x)) =
∑

i∈E

ci(x, u(x))∇ci(x, u(x)) +
∑

i∈I

[ci(x, u(x))]+∇ci(x, u(x))

and thus
‖∇f(x, u(x))−∇f(x,mu

k(x))‖2

≤
∑

i∈E

‖ci(x, u(x))∇ci(x, u(x))− ci(x,m
u
k(x))∇ci(x,m

u
k(x))‖2

+
∑

i∈I

‖[ci(x, u(x))]+∇ci(x, u(x))− [ci(x,m
u
k(x))]+∇ci(x,m

u
k(x))‖2

≤
∑

i∈E

[|ci(x, u(x))|‖∇ci(x, u(x))−∇ci(x,m
u
k(x))‖2

+|ci(x, u(x))− ci(x,m
u
k(x))|‖∇ci(x,m

u
k(x))‖2]

+
∑

i∈I

[|[ci(x, u(x))]+|‖∇ci(x, u(x))−∇ci(x,m
u
k(x))‖2

+|[ci(x, u(x))]+ − [ci(x,m
u
k(x))]+|‖∇ci(x,m

u
k(x))‖2] .
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As |[ci(x, u(x))]+| ≤ |ci(x, u(x))| and (3.9) hold, we obtain that

‖∇f(x, u(x))−∇f(x,mu
k(x))‖2 ≤

∑

i∈E∪I

[|ci(x, u(x))|‖∇ci(x, u(x))−∇ci(x,m
u
k(x))‖2

+|ci(x, u(x))− ci(x,m
u
k(x))|‖∇ci(x,m

u
k(x))‖2] .

Using the bounds (3.2), (3.7), (3.6) and (3.8), we may finally conclude that

‖∇f(x, u(x))−∇f(x,mu
k(x))‖2 ≤ (p+ q)[κ2

ubc
κubδ

2
k + κubcκubδ

2
k(κubcκubδ

2
k + κubc)]

≤ (p+ q)κ2
ubc

κub(1 + κub)max[δ2k, δ
4
k]

= κubh max[δ2k, δ
4
k].

2

Analogously to the convergence analysis in Section 9.2 in [4], we use (3.4) to derive an error bound
for the gradient of the original objective function f(x, u(x)) in (1.1). This is necessary because, due to
the lack of derivative information of u, the only gradient information available is that with respect to the
model mu

k . Thus we can only test gk = ∇f(x,mu
k(x)) within the stopping test in Step 1 in Algorithm 2.1.

How do we reconcile this information with our desire to detect if ∇f(x, u(x)) is small, which indicates
that we have found a first-order critical point? The following lemma yields a suitable error bound on
the norm of ∇f(x, u(x)).

Lemma 3.3 (similar to Lemma 9.2.4 in [4]) Suppose that Assumptions 1 and 4–6 hold. Suppose
furthermore that xk is the current iterate, ‖gk‖2 < εend and that mu

k is valid in Qk(xk, δend) for some
δend ∈ (0, µ‖gk‖2], µ > 0. Then

‖∇f(xk, u(xk))‖2 ≤ κend max[εend, ε
4
end], (3.10)

where
κend

def
= (1 + κubh)max[1, µ4].

Furthermore, if
lim
k→∞

‖gk‖2 = 0,

then
lim
k→∞

‖∇f(xk, u(xk))‖2 = 0.

Proof: As Assumptions 1 and 4–6 hold and mu
k is valid in Qk(xk, δend), we can apply Lemma 3.2

and obtain, using successively triangle inequality, (3.4), the definition of gk and the assumptions,

‖∇f(xk, u(xk))‖2 ≤ ‖∇f(xk, u(xk))−∇f(xk,m
u
k(xk))‖2 + ‖∇f(xk,m

u
k(xk))‖2

≤ κubh max[δ2end, δ
4
end] + ‖gk‖2

≤ κubh max[µ2‖gk‖22, µ4‖gk‖42] + ‖gk‖2
≤ (1 + κubh)max[1, µ4] max[‖gk‖2, ‖gk‖42]
≤ κend max[εend, ε

4
end]

This proves the first statement. The second statement follows immediately from the penultimate line of
this chain of inequalities. 2

The assumptions in Lemma 3.3 correspond to the situation of termination in Step 1 in Algorithm 2.1,
and therefore the bound (3.10) holds for the point xk that is returned as approximate solution of problem
(ES). In practice, it might be reasonable to choose εend ≪ 1. In this situation, (3.10) reduces to

‖∇f(xk, u(xk))‖2 ≤ (1 + κubh)max[1, µ4]εend.

As κubh might be large, it is reasonable to choose a small εend to achieve a good accuracy. For the
convergence analysis of Algorithm 2.1, the second statement of Lemma 3.3 ensures that it is sufficient to
investigate the convergence properties of the sequence {gk}k instead of {∇f(xk, u(xk))}k.
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We now pursue our convergence analysis for Algorithm 2.1. In trust-region methods, the acceptance
of a trial point x+

k and the update of the trust-region radius δk are usually performed using the ratios
of achieved to predicted reductions ρk. In Algorithm 2.1, both are performed using the modified ratio
ρ̂k. Thus we have to revisit our definition of a successful iteration: we now defined the set of successful
iterations by

S def
= {k ≥ 0 | ρ̂k ≥ η1}.

Lemma 9.1.2 in [4] then enables us to link ρk and ρ̂k and we obtain the following two properties.

Lemma 3.4 (part of Lemma 9.1.2 in [4]) Suppose that Assumptions 2–3 hold. Then the following
statements hold.

1. If ρk ≥ η2, then ρ̂k ≥ η2 ≥ η1, and thus iteration k is very successful. Moreover, δref = δk is set
whenever k ∈ S.

2. There can only be a finite number of iterations such that ρk < η2 before δref = δk is set.

The following lemma shows that the trust-region radius δk is bounded away from zero if gk is also bounded
away from zero. This is important since otherwise the algorithm might get stuck at a non-critical iterate.

Lemma 3.5 (Theorem 9.2.1 in [4]) Suppose that Assumptions 1-7 hold. Suppose furthermore that
‖gk‖2 > ε for all k and some ε > 0. Then

δk ≥ γ0 min

[

γ0κmdcdε(1− η2)

max[κubh, κumh]
, εmdc

]

def
= κlbd

for all k.

Proof: Because ‖gk‖2 > ε, Assumption 7 guarantees that x+
k exists and satisfies (2.10) whenever

δk ≤ εmdc. The desired result now follows exactly as in the proof of Theorem 9.2.1 in [4] with adapted
notation. 2

The next step in our analysis is to investigate the situation where only finitely many successful iterations
are generated by Algorithm 2.1.

Lemma 3.6 (Theorem 9.2.4 in [4]) Suppose that Assumptions 1-7 hold. Suppose furthermore that
there are only finitely many successful iterations. Then xk = x∗ for all sufficiently large k and x∗ is
first-order critical.

The only remaining case is thus that where infinitely many successful iterations are produced by Algo-
rithm 2.1. First, we show that the sequence of iterates {xk} has at least one accumulation point x∗ with
∇f(x∗,mu

k(x
∗)) = 0.

Lemma 3.7 (Theorem 9.2.5 in [4]) Suppose that Assumptions 1-7 hold. Then one has that

lim inf
k→∞

‖∇f(xk, u(xk))‖2 = 0.

We may now directly state the final convergence result from Section 9.2 in [4], in the proof of which (2.9)
plays a crucial role.

Lemma 3.8 (Theorem 9.2.6 in [4]) Suppose that Assumptions 1-7 hold. Then every limit point x∗

of the sequence {xk} is first-order critical, that is, ∇f(x∗, u(x∗)) = 0.

Combining this with Lemma 3.1 allows us to state our final convergence result.

Theorem 3.9 Suppose that Assumptions 1-7 hold. Then every limit point x∗ of the sequence {xk} is
first-order critical, that is, ∇f(x∗, u(x∗)) = 0. Moreover, if infinitely many entries are added to the filter,
then we have that limk→∞ ‖ϑ(xk, u(xk))‖2 = 0.
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4 Computing the trial point

In this section we concentrate on the question of determining a trial point x+
k in Step 2 of Algorithm

2.1 that satisfies Assumption 7. In standard trust-region methods, the model of the original objective
function is usually a rather simple, in many cases a quadratic model of the objective function in the
unconstrained case (see, e.g. Chapter 6 in [4]) or of the Lagrangian in the constrained case (see, e.g.
[10]). The main advantage of these “easy” models is the existence of highly specialized subproblem
solvers directly constructed to determine a trial point that automatically satisfies a sufficient model
decrease condition analogous to (2.10), see, e.g. Chapter 6.3 in [4]. For trust-region subproblem solvers
for quadratic models see, e.g. [4, 9, 13, 26]. In our case, the trust-region subproblem (CSk) is still “easy”
compared to the original problem (ES), in the sense that function evaluations are fast and derivative
information is accessible, which suggests that the determination of the trial point could also be fast.
Observe at this stage that the least-squares formulation of the subproblem comes in three very similar
flavors, depending on the RESTRICT flag and the value of k: if RESTRICT is set, the subproblem is
defined by (2.7), while it is given by

min
x∈IRn

f(x,mu
k(x)) = 1

2‖ϑ(x,mu
k(x))‖22

s.t. x ∈ Q(xk, κδδk).
(4.1)

if RESTRICT is unset and k ≥ k0, and by

min
x∈IRn

f(x,mu
k(x)) = 1

2‖ϑ(x,mu
k(x))‖22 (4.2)

if RESTRICT is unset and k < k0.

4.1 Using a trust-region inner solver

Modeling the subproblem as a general nonlinear feasibility problem (CSk) as shown in Section 2 has
the advantage to maintain all the available information. However, since the problem (CSk) remains
arbitrarily nonlinear, (2.10) cannot be guaranteed in general. Even the model minimizer, the global
solution of (2.7), need not to satisfy a sufficient model decrease condition in all situations. Nevertheless,
it is usually a good candidate as it predicts the best reduction of f within the current trust-region Qk

in iteration k. Our strategy is thus to attempt to generate this model minimizer in Step 2 of Algorithm
2.1 using an inner solver. But since we also need to guarantee (2.10), we have to add an additional
criterion to this inner solver. Note that (2.10) is Cauchy condition of the type guaranteed by typical
trust-region methods. It therefore makes sense to consider an algorithm of this class as inner solver. The
trial points generated within this solver then satisfy a sufficient model decrease condition in the inner
(typically quadratic) model used inside this method, which we denote by q. Our main idea is now to
link this inner sufficient decrease with the outer model decrease we need in Step 2 of Algorithm 2.1. To
be able to describe this, we need some further notation. We denote the iterates generated within our
trust-region inner solver by yk,p and the associated trial points by y+k,p with double indices (k, p), where
k denotes the iteration in Algorithm 2.1 (the outer solver) and p the current iteration within the inner
solver. The trust-region radii of the inner solver are denoted by ∆k,p and the corresponding trust-region
is then given by

Bk,p(yk,p,∆k,p)
def
= {y ∈ IRn : ‖y − yk,p‖∞ ≤ ∆k,p} .

Once we have applied our inner trust-region solver to either (2.7), (4.1) or (4.2) and produced some
feasible approximate solution y of this problem, we must then decide if y can be accepted as a trial point
x+
k in the outer solver. We propose the following test.

Acceptance Test 1 The feasible outcome ȳ produced by the inner solver is accepted as new trial point
x+
k if and only if

f(xk,m
u
k(xk))− f(ȳ,mu

k(ȳ))

qk,0(yk,0)− qk,0(y
+
k,0)

≥ κδ∆ (4.3)

for some κδ∆ ∈ (0, η2]. Otherwise, we declare the outer iteration k to be a failed iteration, that is k ∈ F .
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The condition (4.3) guarantees that the model reduction in the cheap nonlinear objective function of
(2.7) at the trial point is at least a fraction of the predicted model decrease in the first iteration of the
inner solver. To guarantee the desired sufficient model decrease (2.10), we need the following assumptions
on the initialization of the inner solver.

Assumption 8 (Conditions on the inner solver)

• The inner subproblem solver is a trust-region algorithm initialized with trust-region radius ∆k,0 = δk
and starting point yk,0 = xk.

• βk is sufficiently large such that it is also an upper bound on the Hessian of qk,0, e.g. βk,0 ≤ βk.

• All iterates yk,p generated by the inner solver are feasible in the sense that they belong to Q(xk, δk)
if RESTRICT is set, or to Q(xkκδδk) if RESTRICT is unset and k ≥ k0.

These conditions are very reasonable and can be guaranteed very easily since the global convergence
theory for trust-region methods is independent of the choice of the initial starting point and of the initial
trust-region radius.

The following corollary now directly shows that the desired sufficient decrease condition (2.10) holds
for any point passing Acceptance Test 1.

Corollary 4.1 Suppose that the inner solver satisfies Assumption 8. Then, every point ȳ passing the
Acceptance Test 1 also satisfies (2.10).

Proof: Observe first that, because of item 1 in Assumption 8, we have that the trust region
Bk,0(yk,0,∆k,0) is entirely included in the feasible domain of the subproblem. Hence iteration 0 of
the subproblem solver computes a trial point minimizing the model qk,0 within a trust region of radius
∆k,0 = δk. The standard Cauchy condition therefore applies for this first minimization (see Section 6.3
of [4]), yielding that

qk,0(yk,0)− qk,0(y
+
k,0) ≥ κmdc‖gk‖2 min

[‖gk‖2
βk,0

,∆k,0

]

≥ κmdc‖gk‖2 min

[‖gk‖2
βk

, δk

]

(4.4)

for some constant κmdc ∈ (0, 1), where we have used Assumption 8 to deduce the second inequality. As
a consequence, we obtain from (4.3) that

f(xk,m
u
k(xk))− f(ȳ,mu

k(ȳ)) ≥ κδ∆[qk,0(yk,0)− qk,0(y
+
k,0)] ≥ κmdcd‖gk‖2 min

(‖gk‖2
βk

, δk

)

with κmdcd

def
= κδ∆κmdc, and the conclusion follows. 2

This result directly implies that the first part of Assumption 7 holds under Acceptance Test 1. It also
allows us to formulate our algorithmic framework for the determination of the trial point x+

k in iteration
k of Algorithm 2.1 as follows.

Algorithm 4.1 Computation of the trial point at Step 2 of Algorithm 2.1

Step 1: (Solve the cheap problem) Solve Problem (2.7) using an (inner) trust-region method for
which Assumption 8 holds. Let

Y def
= {yk,p | yk,p 6= yk,0} (4.5)

be the set of (feasible) iterates produced by this trust-region method beyond the starting point. Save
qk,0(yk,0) and qk,0(y

+
k,0).

Step 2: (Trial point) Choose ȳ ∈ Y such that the Acceptance Test 1 is satisfied and set x+
k

def
= ȳ.

If the acceptance test fails for all yk,p ∈ Y or if Y = ∅, declare iteration k failed, i.e. k ∈ F .
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If there are several iterates in Y satisfying Acceptance Test 1, the theory does not specify which one to
choose. In practice, an iterate with a low value of f(ȳ,mu

k(ȳ)) is typically preferred. Note that Y might
include, in addition to what is specified by (4.5), other candidate points that could be generated using
some other subproblem solver.

To complete our discussion on how to determine the trial point, we finally have to ensure that the
inner trust-region method applied in Step 1 of Algorithm 4.1 generates at least one feasible ȳ ∈ Y that
passes Acceptance Test 1 if we are in the situation of Assumption 7, i.e. if the gradient gk is still large
and the trust-region radius δk is sufficiently small. We use the following lemma from the trust-region
convergence theory for this purpose.

Lemma 4.2 (Lemma 6.4.2 in [4]) Suppose that Assumptions 4 and 5 hold, that there exists a constant
κumh > 0 such that

|f(y+k,0,mu
k(y

+
k,0))− qk,0(y

+
k,0)| ≤ κumh∆

2
k,0 (4.6)

and that ‖yk,0 − y+k,0‖∞ ≤ ∆k,0. Suppose furthermore that gk 6= 0 and that

∆k,0 ≤ κmdc‖gk‖2(1− η2)

κumh

. (4.7)

Then we have that iteration k, 0 is very successful, e.g. ρk,0 ≥ η2 and ∆k,1 ≥ ∆k,0.

The existence of κumh satisfying (4.6) follows under standard trust-region assumptions, see the Assump-
tions AF.1, AF.3, AM.1-AM.4 and Lemma 6.4.1 in [4]. This is analogous to stating Lemma 3.2 in
our framework. The following theorem then guarantees that Algorithm 4.1 satisfies the second part of
Assumption 7.

Theorem 4.3 Suppose that Assumption 4, 5 and 8 hold. Suppose that we apply a trust-region algorithm
as subproblem solver in Algorithm 4.1 holds. Suppose furthermore that RESTRICT is set in iteration
k, ‖gk‖2 > ε and

δk ≤ κmdcε(1− η2)

κumh

def
= εmdc.

Then Assumption 7 is satisfied for iteration k.

Proof: We first verify that

∆k,0 = δk ≤ κmdcε(1− η2)

κumh

≤ κmdc‖gk‖2(1− η2)

κumh

.

Therefore, using Lemma 4.2, iteration (k, 0) is very successful, the trial point y+k,0 is accepted, yielding

yk,0 6= yk,1
def
= y+k,0 ∈ Y, and yk,1 passes the Acceptance Test 1 because ρk,0 ≥ η2 ≥ κδ∆. Thus, Al-

gorithm 4.1 produces a trial point x+
k . As our assumptions also imply those of Corollary 4.1, x+

k also
satisfies Assumption 7. 2

Algorithm 2.1 is therefore well-defined and, in view of Section 3, converges to first-order critical
points, as desired.

Our choice of inner solver is to use the filter-trust-region method for bound constrained optimization
described in [31]. This method has to advantage that it can be made to conform to our requirements
(Assumption 8) and provides excellent reliability and efficiency.

5 Numerical results

In this section we test the practical behaviour of Algorithm 2.1 (with parameter values as specified after
the algorithm’s statement, in particular with εend = 10−6). The algorithm is implemented in Matlab and
its implementation is called EFNES(2) in the following. For a comparison with existing algorithms, we

(2)solver for Expensive Function based Nonlinear Equation Systems
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apply EFNES to the set of 54 test problems described in [20]. These test problems are originally a subset
of the CUTEr collection [14] and are modified to simulate inequality constraints and the existence of one
or more nonlinear expensive functions. Since many engineering applications only have a small number
of variables (often called design variables) and a small number of outcomes of the expensive function,
the test set contains mainly problems with less than 10 variables, but also problems up to 100 variables
are included. These problems are fully described in [20].

5.1 Using available information

The nested function formulation of the feasibility problems (ES) provides considerable freedom and gives
the possibility of incorporating as much as possible of the problem description in the (cheap) outer
functions instead of within the expensive function for which derivatives are unavailable, leading in turn
to improved performance compared with pure derivative-free techniques. This ability is often useful in
practical applications, for example, in optimization involving numerical simulations where only a part
of the problem is actually simulated. The following example shows the effect of varying the part of the
problem description that is considered as expensive and for which derivatives are unavailable. Let us
consider the test problem ARGAUSS from the CUTEr collection, which is the following nonlinear system
of equations (without any expensive function):

ci
def
= x1e

x2
2
(αi−x3)

2 − βi = 0

for i = 1, . . . , 15, where αi = 4 − i
2 and βi ∈ IR are small constants, see [20]. For this system, we

artificially define expensive functions ei, i = 1, . . . , 15, and gradually expand the part of the functions
ci that is defined to be expensive. The corresponding number of expensive function evaluations and the
runtime of EFNES (excluding the time for the evaluation of the expensive function) are given in Table
5.1. The drawbacks of augmenting the expensive/non-derivative part in the problem description appear
clearly.

ei = (α− x3)
2 ei =

x2

2 (αi − x3)
2 ei = e

x2
2
(αi−x3)

2

ei = x1e
x2
2
(αi−x3)

2 − βi

CPU time (s) 0.44 1.48 1.89 2.41
evaluations 5 20 22 26

Table 5.1: Effect of different definitions of expensive functions in problem ARGAUSS

5.2 Comparison with other methods

We now compare our method to four other solvers for nonlinear feasibility problems. As EFNES is
primarily based on the filter trust-region method FILTRANE [17], we have chosen FILTRANE as part of
the GALAHAD package [15] for comparison, although it primary aims at large scale problems. Moreover,
we consider TRESNEI [28], which is another trust-region method, as well as fmincon and the derivative
free function patternsearch from the optimization and direct search toolbox in Matlab, respectively.
All tests mentioned in this section were run on a workstation with a 2.8 GHz dual-core processor and
1GB of memory, openSUSE 11.1, Fortran compiler g95 0.91 and Matlab 7.

All algorithms are compared in terms of the number of evaluations of the expensive function and
the required computation time, the latter being measured using the tools provided by Matlab (or by
the operation system in case of FILTRANE) to obtain comparable results. The required number of
function evaluations of fmincon and patternsearch are part of their output. TRESNEI also provides
information about the number of evaluations, but without consideration of the additional function evalu-
ations necessary for building the Jacobian. We therefore added these to obtain the final total number of
expensive function evaluations. We ran FILTRANE using forward differentiation to obtain derivatives,
in order to simulate the lack of derivative information assumed for expensive function.

We stop EFNES, FILTRANE, TRESNEI and fmincon, if the norm of the gradient of f is smaller
than 10−6, and patternsearch if the grid width is smaller than 10−6.
Figure 5.2 presents a performance profile [8] comparing all codes in terms of number of evaluations of the
expensive function. For every s ≥ 1, a performance profile shows the fraction p(ln(s)) of test problems,
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Figure 5.2: Performance profile for the number of expensive function evaluation

on which the considered algorithm has solved the problem within time or expensive function evaluation,
respectively, given by a factor s of the best. For a better visualization, the s−axis is chosen to be
logarithmic.

The numerical results show a considerable decrease in the number of expensive function evaluations
by EFNES on this set of test problems. It is also notable that EFNES is almost as reliable as the other
trust-region methods. The problems on which the algorithms fail are listed in the appendix.
Figure 5.3 shows the performance profile in terms of computation time. Obviously, the pure computation
time of EFNES is, in general, significantly larger than that of the best solver because in every iteration,
the complete nonlinear feasibility problem (CSk) has to be solved at every iteration. Taking into account
in addition the evaluation time of the expensive function, the total runtime is completely different due
to the smaller number of expensive function evaluations in EFNES. On our set of testproblems, EFNES
would be faster than FILTRANE if the evaluation of an expensive function needed more than 0.61
seconds (respectively 0.17 seconds if only those problems that are solved by both algorithms are taken
into account). Compared to TRESNEI, EFNES would be faster if an evaluation needed more than
37.69 (respectively 9.56) seconds(3). Our new method is therefore extremely competitive in the frequent
practical case where simulation time dominates total execution.

6 Conclusion

We have introduced a new algorithm for solving feasibility problems that involve expensive function eval-
uations whose derivatives are unavailable, a situation which is common in simulation-based optimization.
This algorithm combines the trust-region ideas with the filter techniques of Fletcher and Leyffer [12] to
achieve feasibility. It applies conditional models for the expensive function to keep, on average, the
number of evaluations of such functions low. Moreover, a nested approach for the problem formula-
tion provides considerable flexibility and allows exploiting the cheap part of the problem and available
derivative information to a very large extent, thereby increasing optimization efficiency.

(3)The fact that, in average, the pure computation time of FILTRANE is longer compared to TRESNEI might come from
the fact that FILTRANE is designed for large scale problems, which causes significant numerical overhead for the small
scale problems we have used.
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Figure 5.3: Performance profile comparing the computation time

We prove convergence of the new algorithm to a first-order critical point of a least-squares refor-
mulation of the feasibility problem from an arbitrary starting point under very standard assumptions.
Numerical results on a set of 54 test problems show a considerable reduction of expensive function eval-
uations for the new method when compared to four other algorithms for feasibility problems. If the
functions are expensive in terms of evaluation time, our algorithm turns out to be more effective on
average if a single function evaluation takes longer than a few seconds. The competitive advantage is
therefore extremely significant in practical settings where simulation may take up to several hours to
produce a function value.

It is clearly interesting to apply this approach in the context of constrained optimization problems,
an approach which is currently under investigation.
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[1] Benôıt Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear Bilevel
Programming. PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium, 2003.

[2] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Global convergence of a class of
trust region algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis,
25(2):433–460, 1988.

[3] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Testing a class of methods for
solving minimization problems with simple bounds on the variables. Mathematics of Computation,
50(182):399–430, 1988.

[4] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. MPS-SIAM
Series on Optimization. Society for Industrial Mathematics, 2000.



M. Kaiser, K. Klamroth, A. Thekale, Ph. L. Toint: Structured nonlinear feasibility problems 17
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Appendix

The problems from our test set for which the algorithms in Section 5 fail are listed below. The problem
names refer to the expensive reformulations of the corresponding problems from the CUTEr collection
[14] presented in [20].

EFNES: ARGLCLE, CHRSBNE, EIGENC, PFIT4, POWELLBS, POWELLSQ

FILTRANE: ARGLCLE, EIGENB, HIMMELBD, PFIT2, SEMICON1

TRESNEI: ARGLBLE, EIGENC, HATFLDF, POWELLBS

fmincon: ARGAUSS, ARGLBLE, ARGLCLE, BRATU2DT, BROYDNBD, CHEMRCTA, CHNRSBNE, EIGENA, EIGENB,
EIGENB, GROWTH, HATFLDF, HATFLDG, HIMMELBD, MSQRTB, PFIT1, PFIT2, PFIT3, PFIT4, POWELLBS, POWELLSQ,
SEMICON1

patternsearch: ARGAUSS, ARGLALE, ARGLBLE, ARGLCLE, BRATU2DT, BROWNALE, CHANDHEQ, CHEMRCTA,
COOLHANS, DECONVNE, EIGENA, EIGENB, EIGENB, GOTTFR, GROWTH, HATFLDF, HATFLDG, HIMMELBD, PFIT2,
PFIT3, PFIT4, POWELLBS, POWELLSQ, SEMICON1, SEMICON2, SINVALNE


