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Abstract

High-order optimality conditions for convexly-constrained nonlinear optimization prob-
lems are analyzed. A corresponding (expensive) measure of criticality for arbitrary order
is proposed and extended to define high-order ǫ-approximate critical points. This new
measure is then used within a conceptual trust-region algorithm to show that, if deriva-
tives of the objective function up to order q ≥ 1 can be evaluated and are Lipschitz
continuous, then this algorithm applied to the convexly constrained problem needs at
most O(ǫ−(q+1)) evaluations of f and its derivatives to compute an ǫ-approximate q-th
order critical point. This provides the first evaluation complexity result for critical points
of arbitrary order in nonlinear optimization. An example is discussed showing that the
obtained evaluation complexity bounds are essentially sharp.

Keywords: nonlinear optimization, high-order optimality conditions, complexity theory, machine

learning.

1 Introduction

Recent years have seen a growing interest in the analysis of the worst-case evaluation com-
plexity of nonlinear (possibly nonconvex) smooth optimization (for the nonconvex case only,
see [1–7, 10–13, 15–19, 21–30, 34–36, 39, 43–47] among others). In general terms, this analysis
aims at giving (sometimes sharp) bounds on the number of evaluations of a minimization
problem’s functions (objective and constraints, if relevant) and their derivatives that are, in
the worst case, necessary for certain algorithms to find an approximate critical point for the
unconstrained, convexly-constrained or general nonlinear optimization problem. It is not un-
common that such algorithms may involve possibly extremely costly internal computations,
provided the number of calls to the problem functions is kept as low as possible.
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Most of the research to date focusses on finding first, second and, in one case, third-order
critical points. Evaluation complexity for first-order critical point was first investigated, for
the unconstrained case, by Nesterov in [38] and for first- and second-order Nesterov and
Polyak [39] and by Cartis, Gould and Toint in [12]. Third-order critical points were studied
in [1], motivated by highly-nonlinear problems in machine learning. However, the analysis of
evaluation complexity for orders higher than three is missing both concepts and results.

The purpose of the present paper is to improve on this situation in two ways. The first is to
review optimality conditions of arbitrary orders q ≥ 1 for convexly-constrained minimization
problems, and the second is to describe a theoretical algorithm whose behaviour provides,
for this class of problems, the first evaluation complexity bounds for such arbitrary orders of
optimality.

The paper is organized as follows. After the present introduction, Section 2 discusses some
preliminary results on tensor norms, a generalized Cauchy-Schwarz inequality and high-order
error bounds from Taylor series. Section 3 investigates optimality conditions for convexly-
constrained optimization, while Section 4 proposes a trust-region based minimization algo-
rithm for solving this class of problems and analyzes its evaluation complexity. An example
is introduced in Section 5 to show that the new evaluation complexity bounds are essentially
sharp. A final discussion is presented in Section 6.

2 Preliminaries

2.1 Basic notations

In what follows, yTx denotes the Euclidean inner product of the vectors x and y of IRn and
‖x‖ = (xTx)1/2 is the associated Euclidean norm. If T1 and T2 are tensors, T1 ⊗ T2 is their
tensor product. B(x,∆), the ball of radius ∆ centered at x. If X is a closed set, ∂X denotes
its boundary and X 0 denotes its interior. The vectors {ei}

n
i=1 are the coordinate vectors in

IRn. The notation λmin[M ] stands for the leftmost eigenvalue of the symmetric matrix M . If
{ak} and {bk} are two infinite sequences of non-negative scalars converging to zero, we say
that ak = o(bk) if and only if limk→∞ ak/bk = 0. The normal cone to a general convex set C
at x ∈ C is defined by

NC(x)
def
= {s ∈ IRn | sT (z − x) ≤ 0 for all z ∈ C}

and its polar, the tangent cone to F at x, by

TC(x) = N ∗
C (x)

def
= {s ∈ IRn | sT v ≤ 0 for all v ∈ NC}.

Note that C ⊆ TC(x) for all x ∈ C. We also define PC [·] be the orthogonal projection onto C
and use the Moreau decomposition [37] which states that, for every x ∈ C and every y ∈ IRn

y = PTC(x)[y] + PNC(x)[y] and (PTC(x)[y]− x)T (PNC(x)[y]− x) = 0. (2.1)

(See [20, Section 3.5] for a brief introduction of the relevant properties of convex sets and
cones, or to [32, Chapter 3] or [42, Part I] for an in-depth treatment.)
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2.2 Tensor norms and generalized Cauchy-Schwartz inequality

We will make substantial use of tensors and their norms in what follows, and thus start by
establishing some concepts and notation. If the notation T [v1, . . . , vj ] stands for the tensor of
order q− j resulting from the application of the q-th order tensor T to the vectors v1, . . . , vj ,
the (recursively induced(1)) Euclidean norm ‖ · ‖q on the space of q-th order tensors is the
given by

‖T‖q
def
= max

‖v1‖=···=‖vq‖=1
T [v1, . . . , vq]. (2.2)

(Observe that this value is always non-negative since we can flip the sign of T [v1, . . . , vq] by
flipping that of one of the vectors vi.)

Note that the definition (2.2) implies that

‖T [v1, . . . , vj ]‖q−j = max
‖w1‖=···=‖wq−j‖=1

T [v1, . . . , vj ][w1, . . . , wq−j ]

=

(

max
‖w1‖=···=‖wq−j‖=1

T

[
v1
‖v1‖

, . . . ,
vj
‖vj‖

, w1, . . . , wq−j

])( j
∏

i=1

‖vi‖

)

≤

(

max
‖w1‖=···=‖wq‖=1

T [w1, . . . , wq]

)( j
∏

i=1

‖vi‖

)

= ‖T‖q .

j
∏

i=1

‖vi‖,

(2.3)
a simple generalization of the standard Cauchy-Schwartz inequality for order-1 tensors (vec-
tors) and of ‖Mv‖ ≤ ‖M‖ ‖v‖ which is valid for induced norms of matrices (order-2 tensors).
Observe also that perturbation theory (see [33, Th. 7]) implies that ‖T‖q is continuous as a
function of T .

If T is a symmetric tensor of order q, define the q-kernel of the multilinear q-form

T [v]q
def
= T [ v, . . . , v

︸ ︷︷ ︸

q times

]

as
kerq[T ]

def
= {v ∈ IRn | T [v]q = 0}

(see [8, 9]). Note that, in general, kerq[T ] is a union of cones. Interestingly, the q-kernels are
not only unions of cones but also subspaces for q = 1. However this is not true for general
q-kernels, since both (0, 1)T and (1, 0)T belong to the 2-kernel of the symmetric 2-form x1x2
on IR2, but not their sum.

We also note that, for symmetric tensors of odd order, T [v]q = −T [−v]q and thus that

− min
‖d‖≤1

T [d]q = − min
‖d‖≤1

(−T [−d]q) = − min
‖d‖≤1

(−T [d]q) = max
‖d‖≤1

T [d]q, (2.4)

where we used the symmetry of the unit ball with respect to the origin to deduce the second
equality.

(1)That it is the recursively norm induced by the standard Euclidean norm results from the observation that

max
‖v1‖=···=‖vq‖=1

T [v1, . . . , vq] = max
‖vq‖=1

[

max
‖v1‖=···=‖vq−1‖=1

T [v1, . . . , vq−1]

]

[vq].
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2.3 High-order error bounds from Taylor series

The tensors considered in what follows are symmetric and arise as high-order derivatives of
the objective function f . For the p-th derivative of a function f : IRn → IR to be Lipschitz
continuous on the set S ⊆ IRn, we require that there exists a constant Lf,p ≥ 0 such that, for
all x, y ∈ S,

‖∇p
xf(x)−∇p

xf(y)‖p ≤ Lf,p‖x− y‖ (2.5)

where ∇p
xh(x) is the p-th order symmetric derivative tensor of h at x.

Let Tf,p(x, s) denote(2) the p-th order Taylor-series approximation to f(x + s) at some
x ∈ IRn given by

Tf,p(x, s)
def
= f(x) +

p
∑

j=1

1

j!
∇j

xf(x)[s]
j (2.6)

and consider the Taylor identity

φ(1)− tk(1) =
1

(k − 1)!

∫ 1

0
(1− ξ)k−1[φ(k)(ξ)− φ(k)(0)] dξ (2.7)

involving a given univariate Ck function φ(α) and its k-th order Taylor approximation tk(α) =∑k
i=0 φ

(i)(0)αi/i! expressed in terms of the ith derivatives φi, i = 1, . . . , k. Let x, s ∈ IRn.
Then, picking φ(α) = f(x+ αs) and k = q, it follows immediately from the fact that tp(1) =
Tf,p(x, s), the identity

∫ 1

0
(1− ξ)p−1 dξ =

1

p
, (2.8)

(2.3), (2.5), (2.6) and (2.7) imply that, for all x, s ∈ IRn,

f(x+ s) ≤ Tf,p(x, s) +
1

(p− 1)!

∫ 1

0
(1− ξ)p−1|∇p

xf(x+ ξs)[s]p −∇p
xf(x)[s]

p| dξ

≤ Tf,p(x, s) +

[∫ 1

0

(1− ξ)p−1

(p− 1)!
dξ

]

max
ξ∈[0,1]

|∇p
xf(x+ ξs)[s]p −∇p

xf(x)[s]
p|

≤ Tf,p(x, s) +
1
p!

‖s‖p max
ξ∈[0,1]

‖∇p
xf(x+ ξ)−∇p

xf(x)‖p

= Tf,p(x, s) +
Lf,p

p!
‖s‖p+1.

(2.9)

Similarly,

f(x+s) ≥ Tf,p(x, s)−
1

p!
‖s‖p max

ξ∈[0,1]
‖∇p

xf(x+ξ)−∇p
xf(x)‖p ≥ Tf,p(x, s)−

Lf,p

p!
‖s‖p+1. (2.10)

Inequalities (2.9) and (2.10) will be useful in our developements below, but immediately note
that they in fact depend only on the weaker requirement that

max
ξ∈[0,1]

‖∇p
xf(x+ ξs)−∇p

xf(x)‖p ≤ Lf,p‖s‖, (2.11)

for all x and s of interest, rather than relying on (2.5).

(2)Unfortunately, double indices are necessary for most of our notation, as we need to distinguish both the
function to which the relevant quantity is associated (the first index) and its order (the second index).
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3 Unconstrained and convexly constrained problems

The problem we wish to solve is formally described as

min
x∈F

f(x) (3.1)

where we assume that f : IRn −→ IR is q-times continuously differentiable and bounded from
below, and that f has Lipschitz continuous derivatives of orders 1 to q. We also assume
that the feasible set F is closed, convex and non-empty. Note that this formulation covers
unconstrained optimization (F = IRn), as well as standard inequality (and linear equality)
constrained optimization in its different forms: the set F may be defined by simple bounds,
and/or by polyhedral or more general convex constraints. We are tacitly assuming here that
the cost of evaluating values and derivatives of the constraint functions possibly involved in
the definition of F is negligible.

3.1 High-order optimality conditions

Given that our ambition is to work with high-order model, it seems natural to aim at finding
high-order local minimizers. As is standard, we say that x∗ is a local minimizer of f if and
only if there exists a (sufficiently small) neighbourhood B∗ of x∗ such that

f(x) ≥ f(x∗) for all x ∈ B∗ ∩ F . (3.2)

However, we must immediately remember important intrinsic limitations. These are exam-
plified by the smooth two-dimensional problem

min
x∈IR2

f(x) =

{

x2

(

x2 − e−1/x2
1

)

if x1 6= 0,

x22 if x1 = 0,
(3.3)

which is a simplified version of a problem stated by Hancock nearly a century ago [31, p. 36],
itself a variation of a famous problem stated even earlier by Peano [41, Nos. 133-136]. The
contour lines of its objective function are shown in Figure 3.1 on the following page.

The first conclusion which can be drawn by examining this example is that, in general,
assessing that a given point x (the origin in this case) is a local minimizer needs more that
verifying that every direction from this point is an ascent direction. Indeed, this latter prop-
erty holds in the example, but the origin is not a local minimizer (it is a saddle point).
This is caused by the fact that objective function decrease may occur along specific curves
starting from the point under consideration, and these curves need not be lines (such as
x(α) = 0 + αe2 + 1

2
e−1/2α2

e1 for α ≥ 0 in the example).
The second conclusion is that the characterization of a local minimizer cannot always be

translated into a set of conditions only involving the Taylor expansion of f at x∗. In our
example, the difficulty arises because the coefficients of the Taylor’s expansion of e−1/x2

1 at
x all vanish as x1 approaches the origin, and therefore that the (non-)minimizing nature of
this point cannot be determined from the values of these coefficients. Thus the gap between
necessary and sufficient optimality conditions cannot be closed if one restricts one’s attention
to using derivatives of the objective function at a putative solution of problem (3.1).
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Figure 3.1: The contour lines of the objective function in (3.3)

Note that worse situations may also occur, for instance if we consider the following vari-
ation on Hancock simplified example (3.3):

min
x∈IR2

f(x) =

{

x2

(

x2 − sin(1/x)e−1/x2
1

)

if x1 6= 0,

x22 if x1 = 0,
(3.4)

for which no continuous descent path exists in a neighbourhood of the origin despite the origin
not being a local minimizer.

3.1.1 Necessary conditions for convexly constrained problems

The above examples show that fully characterizing a local minimizer in terms of general
continuous descent paths is in general impossible. However, the fact that no such path exists
remains a necessary condition for such points, even if Hancock’s example shows that these
paths may not be amenable to a characterization using path derivatives. In what follows, we
therefore propose derivative-based necessary optimality conditions by focussing on a specific
(yet reasonably general) class of descent paths x(α) of the form

x(α) = x∗ +

q
∑

i=1

αisi + o(αq) (3.5)

where α > 0. Define the q-th order descriptor set of F at x∗ by

Dq
F (x)

def
=
⋃

ς>0

{

(s1, . . . , sq) ∈ IRn×q | x+

q
∑

i=1

αisi ∈ F for all α ≤ ς

}

(3.6)

Note that D1
F (x) = TF (x), the standard tangent cone to F at x. We say that a feasible

curve(3) x(α) is tangent to Dq
F (x) if (3.5) holds for some (s1, . . . , sQ) ∈ Dq

F (x).

(3)Or arc, or path.
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Note that the definition (3.6) implies that

si ∈ TF (x∗) for i ∈ {1, . . . , u} (3.7)

where su is the first nonzero sℓ.
We now consider some conditions that preclude the existence of feasible descent paths of

the form (3.5). These conditions involve the index sets P(j, k) defined, for k ≤ j, by

P(j, k)
def
= {(ℓ1, . . . , ℓk) ∈ {1, . . . , j}k |

k∑

i=1

ℓi = j}. (3.8)

For k ≤ j ≤ 4, these are given by Table 3.2.

j ↓ k →
1 2 3 4

1 {(1)}
2 {(2)} {(1,1)}
3 {(3)} {(1,2),(2,1)} {(1,1,1)}
4 {(4)} {(1,3),(2,2),(3,1))} {(1,1,2),(1,2,1),(2,1,1)} {(1,1,1,1)}

Table 3.2: The sets P(j, k) for k ≤ j ≤ 4

We now state necessary conditions for x∗ to be a local minimizer.

Theorem 3.1 Suppose that f is q times continuously differentiable in an open neigh-
bourhood of x∗ and that x∗ is a local minimizer for problem (3.1). If x∗ ∈ ∂F , suppose
furthermore that a constraint qualification holds in the sense that every feasible arc (3.5)
starting from x∗ is tangent to Dq

F (x∗). Then, for j ∈ {1, . . . , q}, the inequality

j
∑

k=1

1

k!




∑

(ℓ1,...,ℓk)∈P(j,k)

∇k
xf(x∗)[sℓ1 , . . . , sℓk ]



 ≥ 0 (3.9)

holds for all (s1, . . . , sj) ∈ Dj
F (x∗) such that, for i ∈ {1, . . . , j − 1},

i∑

k=1

1

k!




∑

(ℓ1,...,ℓk)∈P(i,k)

∇k
xf(x∗)[sℓ1 , . . . , sℓk ]



 = 0. (3.10)

Proof. Consider feasible paths of the form (3.5). Substituting this relation in the
expression f(x(α)) ≥ f(x∗) (given by (3.2)) and collecting terms of equal degree in α, we
obtain that, for sufficiently small α,

0 ≤ f(x(α))−f(x∗) =

q
∑

j=1

αj
j
∑

k=1

1

k!

(
∑

(ℓ1,...,ℓk)∈P(j,k)

∇k
xf(x∗)[sℓ1 , . . . , sℓk ]

)

+o(αq) (3.11)
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where P(i, k) is defined in (3.8). For this to be true, we need each coefficient of αj to
be non-negative on the zero set of the coefficients 1, . . . , j − 1, subject to the requirement
that the arc (3.5) must be feasible for α sufficiently small. Assume now that s1 ∈ T∗ and
that (3.10) holds for i = 1. This latter condition request s1 to be in the zero set of the
coefficient in α in (3.11), that is

s1 ∈ T∗ ∩ ker1[∇1
xf(x∗)].

Then the coefficient of α2 in (3.11) must be non-negative, which yields, using P(2, 1) =
{(2)}, P(2, 2) = {(1)} (see Table 3.2), that

∇1
xf(x∗)[s2] +

1
2
∇2

xf(x∗)[s1]
2 ≥ 0. (3.12)

which is (3.9) for q = 2.

We may then proceed in the same manner for all coefficients up from order 3 to q, each
time considering them in the zero set of the previous coefficients (that is (3.10)) and verify
that (3.11) directly implies (3.9). ✷

Following a long tradition, we say that x∗ is a q-th order critical point for problem (3.1) if
the conclusions of this theorem hold for j ∈ {1, . . . , q}. Of course, a q-th order critical point
need not be a local minimizer, but every local minimizer is a q-th order critical point.

Note that the constraint qualification assumption automatically holds if F is defined by
a set of explicit polynomial inequalities and/or linear equations. Also note that, as the order
j grows, (3.9) may be interpreted as imposing a condition on sj (via ∇1

xf(x∗)[sj ]), given the

directions {si}
j−1
i=1 satisfying (3.10).

In more general situations, the fact that conditions (3.9) and (3.10) not only depends
on the behaviour of the objective function in some well-chosen subspace, but involves the
geometry of the all possible feasible arcs makes the second-order condition (3.12) difficult to
use, particular in the case where F ⊂ IRn. In what follows we discuss, as far as we currently
can, two resulting questions of interest.

1. Are they cases where these conditions reduce to checking homogeneous polynomials
involving the objective function’s derivatives on a subspace?

2. If that is not the case, are they circumstances in which not only the complete left-hand
side of (3.10) vanishes, but also each term of this left-hand side?

We start by deriving useful consequences of Theorem 3.1.

Corollary 3.2 Suppose that the assumptions of Theorem 3.1 hold and let N∗ be the
normal cone to F at x∗ and T∗ the corresponding tangent cone. Then

−∇1
xf(x∗) ∈ N∗ (3.13)

and
s1 ∈ T∗ ∩ span

{
∇1

xf(x∗)
}⊥

⊆ ∂T∗ and s2 ∈ T∗.

Moreover
∇1

xf(x∗)[si] ≥ 0 (i = 1, 2). (3.14)
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Proof. First observe that (3.9) for j = 1 reduces to ∇1
xf(x∗)[s1] = 0 for all s1 ∈ T∗.

Thus (3.13) holds. Also note that (3.9)-(3.10) impose that

s1 ∈ T∗ ∩ ker1[∇1
xf(x∗)] = T∗ ∩ span

{
∇1

xf(x∗)
}⊥

, (3.15)

which, because of (3.13) and the polarity of N∗ and T∗, yields that s1 belongs to ∂T∗.
Assume now that s2 6∈ T∗. Then, for all α sufficiently small, αs1+α2s2 does not belong to
T∗ and thus x(α) = x∗+αs1 +α2s2+ o(α2) cannot belong to F , which is a contradiction.
Hence s2 ∈ T∗ and (3.14) follows for i = 2, while it follows from s1 ∈ T∗ and (3.13) for
i = 1. ✷

The first-order necessary condition (3.13) is well-known for general first-order minimizers
(see [40, Th. 12.9, p. 353] for instance).

Consider now the second-order conditions (3.12). If F = IRn (or if the convex constraints
are inactive at x∗), then ∇1

xf(x∗) = 0 because of (3.13) and (3.12) is nothing but the familiar
condition that the Hessian of the objective function must be positive semi-definite. If x∗
happens to lie on the boundary of F and ∇1

xf(x∗) 6= 0, (3.12) indicates that the effect of
the curvature of the boundary of F may be represented by the term ∇1

xf(x∗)[s2], which is
non-negative because of (3.14). Consider, for example, the problem

min
x∈F⊂IR2

x1 where F = {x ∈ IRn | x1 ≥ 1
2
x22 },

whose global solution is at the origin. In this case it is easy to check that −∇1
xf(0) = −e1 ∈

N∗ = span {−e1}, that ∇2
xf(0) = 0, and that second-order feasible arcs of the form (3.5)

with x(0) = 0 may be chosen with s1 = ±e2 and s2 = βe1 where β ≥ 1
2
. This imposes

∇2
xf(0)[s1]

2 ≥ −1, which (unsurprisingly) holds.
Interestingly, there are cases where the geometry of the set of locally feasible arcs is simple

and manageable. In particular, suppose that the boundary of F is locally polyhedral. Then,

given ∇1
xf(x∗), either T∗ ∩ span

{
∇1

xf(x∗)
}⊥

= ∅, in which case conditions (3.9) and (3.10)
are void, or there exists d 6= 0 in that subspace. It then possible to define a locally feasible
arc with s1 = d and s2 = · · · = sq = 0. As a consequence, the smallest possible value
of ∇1

xf(x∗)[s2] for feasible arcs starting from x∗ is identically zero and this term therefore
vanishes from (3.9)-(3.10). Morever, because of the definition of P(k, j) (see Table 3.2), all
terms but that in ∇j

xf(x∗)[s1]
j also vanish from these conditions, which then simplify to

∇j
xf(x∗)[s1]

j ≥ 0 for all s1 ∈ T∗ ∩

(
j−1
⋂

i=1

keri[∇i
xf(x∗)]

)

(3.16)

for j = 2, . . . , q, which is a condition only involving subspaces and (for i ≥ 2) cones (for
i ≥ 3).

3.1.2 Necessary conditions for unconstrained problems

Consider now the case where x∗ belongs to F0, which is obviously the case if the problem
is unconstrained. Then we have that the path (3.5) is unrestricted, Dq

F (x∗) = IRn, and one
is then free to choose the vectors {si}

q
i=1 (and their sign) arbitrarily. Note first that, since

N∗ = {0}, (3.13) implies that, unsurprisingly,

∇1
xf(x∗) = 0.
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For the second-order condition, we obtain from (3.9), again unsurprisingly, that, because
ker1[∇1

xf(x∗] = IRn,
∇2

xf(x∗) is positive semi-definite on IRn.

Hence, if there exists a vector s1 ∈ ker2[∇2
xf(x∗)], we have that ‖[∇2

xf(x∗)]
1
2 s1‖ = 0 and

therefore that ∇2
xf(x∗)[s1, s2] = 0 for all s2 ∈ IRn. Thus the term for k = 1 vanishes from

(3.9), as well as all terms involving ∇2
xf(x∗) applied to a vector s1 ∈ ker2[∇2

xf(x∗)]. This
implies in particular that the third-order condition may now be written as

∇3
xf(x∗)[s1]

3 = 0 for all s1 ∈ ker2[∇2
xf(x∗)], (3.17)

where the equality is obtained by considering both s1 and −s1.
Unfortunately, complications arise with fourth-order conditions, even when the objective

function is a polynomial. Consider the following variant of Peano’s [41] problem:

min
x∈IR2

f(x) = x22 − κ1x
2
1x2 + κ2x

4
1, (3.18)

where κ1 and κ2 are parameters. Then one can verify that

∇1
xf(0) = 0, ∇2

xf(0) =

(
0 0
0 2

)

[∇3
xf(0)]ijk =

{
−2κ1 for (i, j, k) ∈ {(1, 2, 1), (1, 1, 2), (2, 1, 1)}
0 otherwise,

and

[∇4
xf(0)]ijkℓ =

{
24κ2 for (i, j, k, ℓ) = (1, 1, 1, 1)
0 otherwise.

Hence

ker1[∇1
xf(0)] = IR2, ker2[∇2

xf(0)] = span {e1} , and ker3[∇3
xf(0)] = span {e1}∪span {e2} .

The necessary condition (3.9) then state that, if the origin is a minimizer, then, using the arc
defined by s1 = e1 and s2 = 1

2
κ1e2,

1
2
∇2

xf(0)[s2]
2 + 1

2
∇3

xf(0)[s1, s1, s2] +
1
24
∇4

xf(0)[s1]
4 = 1

4
κ21 −

1
2
κ21 + κ2 = − 1

4
κ21 + κ2 ≥ 0.

This shows that the condition ∇4
xf(x∗)[s1]

4 ≥ 0 on ∩3
i=1 ker

i[∇i
xf(x∗)], although necessary, is

arbitrarily far away from the weaker necessary condition

1
2
∇2

xf(0)[s2]
2 + 1

2
∇3

xf(0)[s1, s1, s2] +
1
24
∇4

xf(0)[s1]
4 ≥ 0 (3.19)

when κ1 grows. As was already the case for problem (3.3), the example for κ1 = 1 and κ2 = 2,
say, shows that a function may admit a saddle point (x∗ = 0) which is a maximum (x∗ = 0)
along a curve (x2 = 3

2
x21 in this case) while at the same time be minimal along every line

passing through x∗. Figure 3.2 shows the contour lines of the objective function of (3.18) for
increasing values of κ2, keeping κ1 = 3.

One may attribute the problem that not every term in (3.9) vanishes to the fact that
switching signs of s1 or s2 does imply that any of the terms in (3.19) is zero (as we have
verified) because of the terms ∇2

xf(0)[s2]
2 and ∇4

xf(0)[s1]
4. Is this a feature of even orders
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Figure 3.2: The contour lines of (3.18) for κ1 = 3 and κ2 = 2 (left), κ2 = 2.25 (center) and
κ2 = 2.5 (right)

only? Unfortunately, this not the case for q = 7. Indeed is it not difficult to verify that
the terms whose multi-index (ℓ1, . . . , ℓk) is a permutation of (1, 2, 2, 2) belong to P(7, 4) and
those whose multi-index is a permutation of (1, 1, 1, 1, 1, 2) belong to P(7, 6). Moreover, the
contribution of these terms to the sum (3.9) cannot be distinguished by varying s1 or s2, for
instance by switching their signs as this technique yields only one equality in two unknowns. In
general, we may therefore conclude that (3.9) must involve a mixture of terms with derivative
tensors of various degrees.

3.1.3 A sufficient condition

Despite the limitations we have seen when considering the simplified Hancock example, we
may still derive a sufficient condition for x∗ to be an isolated minimizer, which is inspired by
the standard second-order case (see Theorem 2.4 in Nocedal and Wright [40] for instance).

Theorem 3.3 Suppose that f is q times continuously differentiable in an open neigh-
bourhood of x∗ ∈ F . If x∗ ∈ ∂F , suppose also that a constraint qualification holds in
the sense that every feasible arc starting from x∗ is tangent to Dp

F (x∗). Let T∗ be the
tangent cone to F at x∗. If there exists an q ∈ [1, p− 1] such that, for all s ∈ T∗,

∇i
xf(x∗)[s]

i = 0 (i = 1, . . . , q) and ∇q+1
x f(x∗)[s]

q+1 > 0, (3.20)

then x∗ is an isolated minimizer for problem (3.1).

Proof. The second part of condition (3.20) and the continuity of the (q+1)-th derivative
imply that

∇q+1
x f(z)[s]q+1 > 0 (3.21)

for all s ∈ T∗ and all z is a sufficiently small feasible neighbourhood of x∗. Now, using
Taylor’s expansion, we obtain that, for all s ∈ T∗ and all τ ∈ (0, 1),

f(x∗ + τs)− f(x∗) =

q
∑

i=1

τ i

i!
∇i

xf(x∗)[s]
i +

τ q+1

(q + 1)!
∇q+1

x f(z)[s]q+1
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for some z ∈ [x∗, x∗ + τs]. If τ is sufficiently small, then this equality, the first part (3.20)
and (3.21) ensure that f(x∗ + τs) > f(x∗). Since this strict inequality holds for all s ∈ T∗
and all τ sufficiently small, x∗ must be a feasible isolated minimizer. ✷

Observe that, in Peano’s example (see (3.18) with κ1 = 3 and κ2 = 2), we have that the
curvature of the objective function is positive along every line passing through the origin, but
that the order of the curvature varies with s (second order along s = e2 and fourth order
along s = e1), which precludes applying Theorem 3.3.

3.1.4 An approach using Taylor models

As already noted, the conditions expressed in Theorem 3.1 may, in general, be very compli-
cated to verify in an algorithm, due to their dependence on the geometry of the set of feasible
paths. To avoid this difficulty, we now explore a different approach. Let us now define, for
some ∆ ∈ (0, 1] and some j ∈ {1, . . . , p},

φ∆
f,j(x)

def
= f(x)− globmin

x+d∈F
‖d‖≤∆

Tf,j(x, d), (3.22)

the smallest value of the j-th order Taylor model Tf,j(x, s) achievable by a feasible point at
distance at most ∆ from x. Note that φ∆

f,j(x) is a continuous function of x and ∆ for given
F and f (see [33, Th. 7]). The introduction of this quantity is in part motivated by the
following theorem.

Theorem 3.4 Suppose that f is q times continuously differentiable in an open neigh-
bourhood of x. If x ∈ ∂F , suppose furthermore that a constraint qualification holds in
the sense that every feasible arc starting from x is tangent to Dq

F (x). Define

Zf,j
F (x)

def
= {(s1, . . . , sj) ∈ Dj

F (x) | (s1, . . . , si) satisfy (3.10) (at x) for i ∈ {1, . . . , j − 1} }.

Then

lim
∆→0

φ∆
f,j(x)

∆j
= 0 implies that (3.9) holds (at x) for all (s1, . . . , sj) ∈ Zf,j

F (x).

Proof. We start by rewriting the power series (3.11) for degree j, for any given arc
x(α) tangent to Dj

F (x) in the form

f(x(α))− f(x) =

j
∑

i=1

ciα
i + o(αj) = Tf,j(x, s(α))− f(x) (3.23)

where s(α)
def
= x(α)− x and

ci
def
=

i∑

k=1

1

k!

∑

(ℓ1,...,ℓk)∈P(i,k)

∇k
xf(x)[sℓ1 , . . . , sℓk ],
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and where the last equality in (3.23) holds because f and Tf,j share the first j derivatives
at x. This reformulation allows us to write that, for i ∈ {1, . . . , j},

ci =
1

i!

di

dαi

[
Tf,j(x, s(α))− f(x)

]
∣
∣
∣
∣
α=0

. (3.24)

Assume now there exists an (s1, . . . , sj) ∈ Zf,j
F (x) such that (3.9) does not hold. In the

notation just introduced, this means that, for this particular (s1, . . . , sj),

ci = 0 for i ∈ {1, . . . , j − 1} and cj < 0.

Then, from (3.24),

di

dαi

[
Tf,j(x, s(α))− f(x)

]
∣
∣
∣
∣
α=0

= 0 for i ∈ {1, . . . , j − 1}, (3.25)

and thus the first (j − 1) coefficients of the polynomial Tf,j(x, s(α))− f(x) vanish. Thus,
using (3.23),

dj

dαj

[
Tf,j(x, s(α))− f(x)

]
∣
∣
∣
∣
α=0

= j! lim
α→0

Tf,j(x, s(α))− f(x)

αj
. (3.26)

Now let i0 be the index of the first nonzero si. Note that i0 ∈ {1, . . . , j} since otherwise
the structure of the sets P(i, k) implies that cj = 0. Observe also that we may redefine
the α parameter to α‖si0‖

1/i0 so that we may assume, without loss of generality that
‖si0‖ = 1. As a consequence, we obtain that, for sufficiently small α,

‖s(α)‖ ≤ 3
2
αi0 ≤ 3

2
α. (3.27)

Hence, successively using the facts that cj < 0, that (3.24) and (3.26) hold for all arcs
x(α) tangent to Dq

F (x), and that (3.27) and (3.22) hold, we may deduce that

0 < |cj | ≤ j!
j!

lim
α→0

f(x)− Tf,j(x, s(α))

αj

≤ ( 3
2
)j lim

α→0

f(x)− Tf,j(x, s(α))

‖s(α)‖j

= ( 3
2
)j lim

‖s(α)‖→0

f(x)− Tf,j(x, s(α))

‖s(α)‖j

≤ ( 3
2
)j lim

∆→0

φ∆
f,j(x)

∆j
.

The conclusion of the theorem immediately follows since lim∆→∞
φ∆
f,j(x)

∆j = 0. ✷

This theorem has a useful consequence.
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Corollary 3.5 Suppose that f is q times continuously differentiable in an open neigh-
bourhood of x. If x ∈ ∂F , suppose furthermore that a constraint qualification holds in
the sense that every feasible arc starting from x is tangent to Dq

F (x). Then x is a q-th
order critical point for problem (3.1) if

lim
∆→0

φ∆
f,j(x)

∆j
= 0 for j ∈ {1, . . . , q}. (3.28)

Proof. We successively apply Theorem 3.4 q times and deduce that x is a j-th order
critical point for j = 1, . . . , q. ✷

This last result says that we may avoid the difficulty of dealing the the possibly complicated
geometry of Dq

F (x) if we are ready to perform the global optimization occurring in (3.22)
exactly and find a way to compute or overestimate the limit in (3.28). Although this is a
positive conclusion, these two remaining challenges remain daunting. However, it worthwhile
noting that the standard approach to computing first- second- and third-order criticality
measures for unconstrained problems follows the exact same approach. In the first-order
case, it is easy to verify that

‖∇1
xf(x)‖ =

1

∆

[

− min
‖d‖≤∆

∇1
xf(x)[d]

]

=
1

∆

[

f(x)− globmin
‖d‖≤∆

(

f(x) +∇1
xf(x)[d]

)
]

where the first equality is justified by the convexity of ∇1
xf(x)[d] as a function of d. Because

the left-hand side of the above relation is independent of ∆, the computation of the limit
(3.28) for ∆ tending to zero is trivial when j = 1 and the limiting value is ‖∇xf(x)‖. For the
second-order case, assuming ‖∇1

xf(x)‖ = 0,

∣
∣
∣min

[

0, λmin[∇
2
xf(x)]

]∣
∣
∣ = 1

2∆2

[

− globmin‖d‖≤∆∇2
xf(x)[d]

2
)]

= 1
∆2

[

f(x)− globmin
‖d‖≤∆

(

f(x) +∇1
xf(x)[d] +

1
2
∇2

xf(x)[d]
2
)
]

,

(3.29)
the first global optimization problem being easily solvable by a trust-region-type calculation
[20, Section 7.3] or directly by an equivalent eigenvalue analysis. As for the first-order case,
the left-hand side of the equation is independent of ∆ and obtaining the limit for ∆ tending
to zero is trivial.

Finally, if M(x)
def
= ker[∇1

xf(x)]∩ker[∇
2
xf(x)] and PM(x) is the orthogonal projection onto

that subspace,

‖PM(x)(∇
3
xf(x))‖ = 1

6∆3

[
−min‖d‖≤∆∇1

xf(x)[d]
]

= 1
∆3

[

f(x)− globmin‖d‖≤∆

(

f(x) +∇1
xf(x)[d] +

1
2
∇2

xf(x)[d]
2 + 1

6
∇3

xf(x)[d]
3
)]

(3.30)
where the first equality results from (2.2). In this case, the global optimization in the subspace
M(x) is potentially harder to solve exactly (a randomization argument is used in [1] to derive
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a upper bound on its value), although it still involves a subpace(4).
While we are unaware of a technique for making the global minimization in (3.22) easy in

the even more complicated general case, we may think of approximating the limit in (3.28)
by choosing a (user-supplied) value of ∆ > 0 small enough(5) and consider the size of the
quantity

1

∆j
φ∆
f,j(x). (3.31)

Unfortunately, it is easy to see that, if ∆ is fixed at some positive value, a zero value of
φ∆
f,j(x) alone is not a necessary condition for x being a local minimizer. Indeed consider the

univariate problem of minimizing f(x) = x2(1 − αx) for α > 0. One verifies that, for any
∆ > 0, the choice α = 2/∆ yields that

φ∆
f,1(0) = 0, φ∆

f,2(0) = 0 but φ∆
f,3(0) =

4

α2
> 0, (3.32)

despite 0 being a local (but not global) minimizer. As a matter of fact, φ∆
f,j(x) gives more

information than the mere potential proximity of a j-th order critical point: it is able to
see beyond an infinitesimal neighbourhood of x and provides information on possible further
descent beyond such a neighbourhood. Rather than a true criticality measure, it can be
considered, for fixed ∆, as an indicator of further progress, but its use for terminating at a
local minimizer is clearly imperfect.

Despite this drawback, the above arguments would suggest that it is reasonable to consider
a (conceptual) minimization algorithm whose objective is to find a point xǫ such that

φ∆
f,j(xǫ) ≤ ǫ∆j for j = 1, . . . , q (3.33)

for some ∆ ∈ (0, 1] sufficiently small and some q ∈ {1, . . . , p}. This condition implies an
approximate minimizing property which we make more precise by the following result.

Theorem 3.6 Suppose that f is q times continuously differentiable and that ∇q
xf is

Lipschitz continous with constant Lf,q (in the sense of (2.5)) in an open neighbourhood
of xǫ of radius larger than ∆. Suppose also (3.33) holds for j = q. Then

f(xǫ + d) ≥ f(xǫ)− 2ǫ∆q for all xǫ + d ∈ F such that ‖d‖ ≤ min

(
p! ǫ∆q

Lf,p

) 1
q+1

.

(3.34)

Proof. Consider x+ d ∈ F . Using the triangle inequality, we have that

f(xǫ + d) = f(xǫ + d)− Tf,q(xǫ, d) + Tf,q(xǫ, d)

≥ −|f(xǫ + d)− Tf,q(xǫ, d)|+ Tf,q(xǫ, d).
(3.35)

Now, condition (3.33) for j = q, implies that, if ‖d‖ ≤ ∆,

Tf,q(xǫ, d) ≥ Tf,q(xǫ, 0)− ǫ∆q = f(xǫ)− ǫ∆q. (3.36)

(4)We saw in Section 3.1.2 that q = 3 is the highest order for which this is possible.
(5)Note that a small ∆ has the advantage of limiting the global optimization effort.
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Hence, substituting (2.10) and (3.36) into (3.35) and using again that ‖d‖ ≤ ∆ < 1, we
deduce that

f(xǫ + d) ≥ f(xǫ)−
Lf,p

p!
‖d‖q+1 − ǫ∆q,

and the desired result follows. ✷

The size of the neighbourhood of xǫ where f is “locally smallest” — in that the first part
(3.34) holds — therefore increases with the criticality order q, a feature potentially useful in
various contexts such as global optimization.

Before turning to more algorithmic aspects, we briefly compare the results of Theorem 3.6
which what can be deduced on the local behaviour of the Taylor series Tf,q(x∗, s) if, instead
of requiring the exact necessary condition (3.9) to hold exactly, this condition is relaxed to

j
∑

k=1

1

k!




∑

(ℓ1,...,ℓk)∈P(j,k)

∇k
xf(x∗)[sℓ1 , . . . , sℓk ]



 ≥ −ǫ (3.37)

while insisting that (3.10) should hold exactly. If j = q = 1, it is easy to verify that (3.37)
for s1 ∈ T∗ is equivalent to the condition that

‖PT∗ [∇
1
xf(x∗)]‖ ≤ ǫ, (3.38)

from which we deduce, using the Cauchy-Schwarz inequality, that

Tf,1(x∗, s) ≥ Tf,1(x∗, 0)− ǫ∆ (3.39)

for all s ∈ T∗ with ‖d‖ ≤ ∆, that is (3.33) for j = 1. Thus, by Theorem 3.6, we obtain that
(3.34) holds for j = 1.

4 A trust-region minimization algorithm

Aware of the optimality conditions and their limitations, we may now consider an algorithm to
achieve (3.33). This objective naturally suggests a trust-region(6) formulation with adaptative
model degree, in which the user specifies a desired criticality order q, assuming that derivatives
of order 1, . . . , q are available when needed. We made this idea explicit in Algorithm 4.1 on
the next page.

We first state a useful property of Algorithm 4.1, which ensures that a fixed fraction of
the iterations 1, 2, . . . , k must be either successful or very successful. Indeed, if we define

Sk
def
= {ℓ ∈ {1, . . . , k} | ρℓ ≥ η1},

the following bound holds.

(6)A detailed account and a comprehensive bibliography on trust-region methods can be found in [20].
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Algorithm 4.1: Trust-region algorithm using adaptive order models for
convexly-contrained problems (TRq)

Step 0: Initialization. A criticality order q, an accuracy threshold ǫ ∈ (0, 1], a starting
point x0 and an initial trust-region radius ∆1 ∈ [ǫ, 1] are given, as well as algorith-
mic parameters ∆max ∈ [∆1, 1], γ1 ≤ γ2 < 1 ≤ γ3 and 0 < η1 ≤ η2 < 1. Compute
x1 = PF [x0], evaluate f(x1) and set k = 1.

Step 1: Step computation. For j = 1, . . . , q,

1. Evaluate ∇jf(xk) and compute φ∆k
f,j (xk) from (3.22).

2. If φ∆k
f,j (xk) > ǫ∆j

k, go to Step 3 with sk = d, where d is the argument of the

global minimum in the computation of φ∆k
f,j (xk).

Step 2: Termination. Terminate with xǫ = xk and ∆ǫ = ∆k.

Step 3: Accept the new iterate. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

Tf,j(xk, 0)− Tf,j(xk, sk)
. (4.1)

If ρk ≥ η1, set xk+1 = xk + sk. Otherwise set xk+1 = xk.

Step 4: Update the trust-region radius. Set

∆k+1 ∈







[γ1∆k, γ2∆k] if ρk < η1,
[γ2∆k,∆k] if ρk ∈ [η1, η2),
[∆k,min(∆max, γ3∆k)] if ρk ≥ η2,

(4.2)

increment k by one and go to Step 1.
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Lemma 4.1 Assume that ∆k ≥ ∆min for some ∆min > 0 independent of k. Then
Algorithm 4.1 ensures that, whenever Sk 6= ∅,

k ≤ κu|Sk|, where κu
def
=

(

1 +
log γ3
| log γ2|

)

+
1

| log γ2|
log

(
∆1

∆min

)

. (4.3)

Proof. The trust-region update (4.2) ensures that

∆k ≤ ∆1γ
|Uk|
2 γ

|Sk|
3 ,

where Uk = {1, . . . , k} \ Sk. This inequality then yields (4.3) by taking logarithms and
using that |Sk| ≥ 1 and k = |Sk|+ |Uk|. ✷

4.1 Evaluation complexity for Algorithm 4.1

We start our worst-case analysis by formalizing our assumptions. Let

Lf
def
= {x+ z ∈ IRn | x ∈ F , f(x) ≤ f(x1) and ‖z‖ ≤ ∆max}.

AS.1 The feasible set F is closed, convex and non-empty.

AS.2 The objective function f is q times continuously differentiable on an open set
containing Lf .

AS.3 For j ∈ {1, . . . , q}, the j-th derivative of f is Lipschitz continuous on Lf (in
the sense of (2.5)) with Lipschitz constant Lf,j ≥ 1.

For simplicity of notation, define Lf
def
= maxj∈{1,...,q} Lf,j .

Algorithm 4.1 is required to start from a feasible x1 ∈ F , which, together with the fact
that the subproblem solution in Step 2 involves minimization over F , leads to AS.1. Note
that AS.3 automatically holds if f is q+1 times continuously differentiable and F is bounded.
It is also important to note that we could replace AS.3 by the condition that (2.11) holds
on the path of iterates ∪k≥1[xk, xk+1] without altering any of the proofs below. While this
weaker formulation may be useful, we prefer to use AS.3 in the sequel of this paper because
it is independent of the sequence of iterates and may be easier to verify a priori, given the
problem (3.1).

Lemma 4.2 Suppose that AS.2 and AS.3 hold. Then, for all ℓ ∈ {1, . . . , k},

∆ℓ ≥ κ∆ǫ (4.4)

where

κ∆
def
= min

[

1,
γ1(1− η2)

Lf

]

. (4.5)
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Proof. Assume that, for some ℓ ∈ {1, . . . , k}

∆ℓ ≤
1− η2
Lf

ǫ. (4.6)

From (4.1), we obtain that, for some j ∈ {1, . . . , q},

|1− ρℓ| =
f(xℓ + sℓ)− Tf,j(xℓ, sℓ)

Tf,j(xℓ, 0)− Tf,j(xℓ, sℓ)
<

Lf‖sℓ‖
j+1

j! ǫ∆j
ℓ

≤
Lf∆ℓ

j! ǫ
≤ (1− η2),

where we used (2.9) and the fact that φ∆ℓ
f,j(xℓ) > ǫ∆j

ℓ to deduce the first inequality, the
bound ‖sℓ‖ ≤ ∆ℓ to deduce the second, and (4.6) with j ≥ 1 to deduce the third. Thus
ρℓ ≥ η2 and ∆ℓ+1 ≥ ∆ℓ. The mechanism of the algorithm and the inequality ∆1 ≥ ǫ then
ensures that, for all ℓ ∈ k,

∆ℓ ≥ min

[

∆1,
γ1(1− η2)ǫ

Lf

]

≥ κ∆ǫ.

✷

We now derive a simple lower bound on the objective function decrease at successful
iterations.

Lemma 4.3 Suppose that AS.1–AS.3 hold. Then, if k is the index of a successful
iteration before termination,

f(xk)− f(xk+1) ≥ η1κ∆ǫ
q+1. (4.7)

Proof. We have, using (4.1), the fact that φ∆k
f,j (xk) > ǫ∆j

k for some j ∈ {1, . . . , q} and
(4.4) successively, that

f(xk)− f(xk+1) ≥ η1[Tf,j(xk, 0)− Tf,j(xk, sk) ] = η1φ
∆k
f,j (xk) > η1κ∆ǫ

j+1 ≥ η1κ∆ǫ
q+1.

✷

Our worst-case evaluation complexity results can now be proved by summing the decreases
guaranteed by this last lemma.
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Theorem 4.4 Suppose that AS.1–AS.3 hold. Let flow be a lower bound on f within F .
Then, given ǫ ∈ (0, 1], Algorithm 4.1 applied to problem (3.1) needs at most

⌊

κfS
f(x0)− flow

ǫq+1

⌋

(4.8)

successful iterations (each possibly involving one evaluation of f and its q first derivatives)
and at most ⌊

κuκ
f
S

f(x0)− flow
ǫq+1

⌋

+ 1 (4.9)

iterations in total to terminate with an iterate xǫ such that (3.33) holds, where

κfS =
1

η1
max

[

1,
Lf

γ1(1− η2)

]

, (4.10)

and κu is given by (4.3). Moreover, if ∆ǫ is the value of ∆k at termination,

f(xǫ + d) ≥ f(xǫ)− 2ǫ∆q
ǫ (4.11)

for all d such that

xǫ + d ∈ F and ‖d‖ ≤ (ǫ∆q
ǫ)

1
q+1

(
Lf

q!

)− 1
q+1

. (4.12)

Observe that, because of (4.2) and (4.4), ∆ǫ ∈ [κδǫ,∆max].

Proof. Let k be the index of an arbitrary iteration before termination. Using the
definition of flow, the nature of successful iterations, (4.10) and Lemma 4.3, we deduce
that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑

i∈Sk

[f(xi)− f(xi+1)] ≥ |Sk| [κ
f
S ]

−1 ǫq+1 (4.13)

which proves (4.8).

We next call upon Lemma 4.1 to compute the upper bound on the total number of
iterations before termination (obviously, there must be a least one successful iteration
unless termination occurs for k = 1) and add one for the evaluation at termination.
Finally, (4.11)-(4.12) result from Theorem 3.6, AS.3 and the fact that φ∆k

f,q (xǫ) ≤ ǫ∆q
kǫ

at
termination. ✷

Theorem 4.4 generalizes the known bounds for the cases where F = IR and q = 1 [38],
q = 2 [12, 39] and q = 3 [1]. The results for q = 2 with F ⊂ IRn and for q > 3 appear to be
new. The latter provide the first evaluation complexity bounds for general criticality order q.
Note that, if q = 1, bounds of the type O(ǫ(p+1)/p) exist if one is ready to minimize models
of degree p > q (see [6]). Whether similar improvements can be obtained for q > 1 remains
an open question at this stage.
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We also observe that the above theory remains valid if the termination rule

φ∆k
k,j (xk) ≤ ǫ∆j

k for j ∈ {1, . . . , q} (4.14)

used in Step 1 is replaced by a more flexible one, involving other acceptable termination
circumstances, such as if (4.14) hold or some other condition holds. We conclude this section
by noting that the global optimization effort involved in the computation of φ∆k

j,j (xk) (j ∈
{1, . . . , q}) in Algorithm 4.1 might be limited by choosing ∆max small enough.

5 Sharpness

It is interesting that an example was presented in [14] showing that the bound in O(ǫ−3) eval-
uations for q = 2 is essentially sharp for both the trust-region and a regularization algorithm.
This is significant, because requiring φ∆

f,2(x) ≤ ǫ∆2 is slightly stronger, for small ∆, than the
standard condition

‖∇1
xf(x)‖ ≤ ǫ and min

[

0, λmin[∇
2
xf(x)]

]

≥ −ǫ (5.1)

(used in [39] and [12] for instance). Indeed, for one-dimensional problems and assuming
∇2

xf(x) ≤ 0, the former condition amounts to requiring that

1

2

(

−∇2
xf(x) + 2

|∇1
x(f(x)|

∆

)

≤ ǫ (5.2)

where the absolute value reflects the fact that s = ±∆ depending on the sign of g. In the
remainder of this section, we show that the example proposed in [14] can be extended to
arbitrary order q, and thus that the complexity bounds (4.8)-(4.9) are esentially sharp for our
trust-region algorithm.

The idea of our generalized example is to apply Algorithm 4.1 to a unidimensional objec-
tive function f for some fixed q ≥ 1 and F = IR+ (hence guaranteeing AS.1), generating a
sequence of iterates {xk}k≥0 starting from the origin, i.e. x0 = x1 = 0. We first choose the
sequences of derivatives values up to order q to be, for all k ≥ 1,

∇j
xf(xk) = 0 for j ∈ {1, . . . , q − 1} and ∇q

xf(xk) = −q!

(
1

k + 1

) 1
q+1

+δ

(5.3)

where δ ∈ (0, 1) is a (small) positive constant. This means that, at iterate xk, the q-th order
Taylor model is given by

Tf,q(xk, s) = f(xk)−

(
1

k + 1

) 1
q+1

+δ

sq

where the value of f(xk) remains unspecified for now. The step is then obtained by minimizing
this model in a trust-region of radius

∆k =

(
1

k + 1

) 1
q+1

+δ

,
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yielding that

sk = ∆k =

(
1

k + 1

) 1
q+1

+δ

∈ (0, 1). (5.4)

As a consequence, the model decrease is given by

Tf,q(xk, 0)− Tf,q(xk, sk) = −
1

q!
∇q

xf(xk)s
q
k =

(
1

k + 1

)1+(q+1)δ

. (5.5)

For our example, we the define the objective function decrease at iteration k to be

∆fk
def
= f(xk)− f(xk + sk) = 1

2
(η1 + η2)[Tf,q(xk, 0)− Tf,q(xk, sk)], (5.6)

thereby ensuring that ρk ∈ [η1, η2) and xk+1 = xk + sk for each k. Summing up function
decreases, we may then specify the objective function’s values at the iterates by

f(x0) =
η1 + η2

2
ζ(1 + (q + 1)δ) and f(xk+1) = f(xk)−

η1 + η2
2

(
1

k + 1

)1+(q+1)δ

. (5.7)

where ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann zeta function. This function is finite for all t > 1

(and thus also for t = 1 + (q + 1)δ), thereby ensuring that f(xk) ≥ 0 for all k ≥ 0. We also
verify that

∆k+1

∆k
=

(
k + 1

k + 2

) 1
q+1

+δ

∈ [γ2, 1]

in accordance with (4.2), provided γ2 ≤ ( 2
3
)

1
q+1

+δ
. Observe also that (5.3) and (5.5) ensure

that, for each k ≥ 1,
φ∆k
f,j (xk) = 0 for j ∈ {1, . . . , q − 1} (5.8)

and

φ∆k
f,q (xk) =

(
1

k + 1

)1+(q+1)δ

=

(
1

k + 1

) 1
q+1

+δ

∆q
k. (5.9)

We now use Hermite interpolation to construct the objective function f on the successive
intervals [xk, xk+1], and define

f(x) = pk(x− xk) + f(xk) for x ∈ [xk, xk+1] and k ≥ 1, (5.10)

where pk is the polynomial

pk(s) =

2q+1
∑

i=0

ci,ks
i, (5.11)

with coefficients defined by the interpolation conditions

pk(0) = f(xk)− f(xk+1), pk(sk) = 0;

∇j
spk(0) = 0 = ∇j

spk(sk) for j ∈ {1, . . . , q − 1},

∇q
spk(0) = ∇q

xf(xk), ∇q
spk(sk) = ∇q

xf(xk+1).

(5.12)
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These conditions ensure that f(x) is q times continuously differentiable on IR+ and thus that
AS.2 holds. They also impose the following values for the first q + 1 coefficients

c0,k = f(xk)− f(xk+1), cj,k = 0 (j ∈ {1, . . . , q − 1}), cq,k = −∇q
xf(xk); (5.13)

and the remaining q + 1 coefficients are solutions of the linear system









sq+1
k sq+2

k . . . s2q+1
k

(q + 1)sqk (q + 2)sq+1
k . . . (2q + 1)s2qk

...
...

...
(q+1)!

1! sk
(q+2)!

2! s2k . . . (2q+1)!
(q+1)! s

q+1
k
















cq+1,k

cq+2,k
...

c2q+1,k








= rk, (5.14)

where the right-hand side is given by

rk =











−∆fk −
1
q!∇

q
xf(xk)s

q
k

− 1
(q−1)!∇

q
xf(xk)s

q−1
k

...
−∇p

xf(xk)sk
∇q

xf(xk+1)−∇q
xf(xk)











. (5.15)

Observe now that the coefficient matrix of this linear system may be written as








sq+1
k

sqk
. . .

sk








Mq








1
sk

. . .

sqk








where

Mq
def
=








1 1 . . . 1
q + 1 q + 2 . . . 2q + 1
...

...
...

(q+1)!
1!

(q+2)!
2! . . . (2q+1)!

(q+1)!








(5.16)

is an invertible matrix independent of k (see Appendix). Hence








cq+1,k

cq+2,k
...

c2q+1,k








=








1

s−1
k

. . .

s−q
k








M−1
q








s
−(q+1)
k

s−q
k

. . .

s−1
k








rk (5.17)

Observe now that, because of (5.4), (5.6), (5.5) and (5.3),

|∆fk| = O(sq+1
k ), |∇q

xf(xk)s
q−j
k | = O(sq+1−j

k ) (j ∈ {0, . . . , q − 1})

and, since ∇q
xf(xk) < ∇q

xf(xk+1) < 0,

|∇q
xf(xk+1)−∇q

xf(xk)| ≤ |∇q
xf(xk)| ≤ q! sk.
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These bounds and (5.15) imply that [rk]i, the i-th component of rk, satisfies

|[rk]i| = O(sq+2−i
k ) for i ∈ {1, . . . , q + 1}.

Hence, using (5.17) and the non-singularity of Mq, we obtain that there exists a constant
κq ≥ 1 independent of k such that

|ci,k|s
i−q−1
k ≤ κq for i ∈ {q + 1, . . . , 2q + 1}, (5.18)

and thus that

|∇q+1
s pk(s)| ≤

2q+1
∑

i=q+1

i! |ci,k|s
i−q−1
k ≤





2q+1
∑

i=q+1

i!



 κq

Moreover, using successively (5.11), the triangle inequality, (5.13), (5.3), (5.4), (5.18) and
κq ≥ 1, we obtain that, for j ∈ {1, . . . , q},

|∇j
spk(s)| ≤

2q+1
∑

i=j

i!

(i− j)!
|ci,k|s

i−j

=
q!

(q − j)!
|cq,k|s

q−j +

2q+1
∑

i=q+1

i!

(i− j)!
|ci,k|s

i−q−1sq+1−j

≤ q!
(q − j)!

+

2q+1
∑

i=q+1

i!

(i− j)!
|ci,k|s

i−q−1

≤





2q+1
∑

i=q

i!

(i− j)!



 κq

and thus all derivatives of order one up to q remain bounded on [0, sk]. Because of (5.10),
we therefore obtain that AS.3 holds. Moreover (5.13), (5.18), the inequalities |∇q

xf(xk)| ≤ q!
and f(xk) ≥ 0, (5.10) and (5.4) also ensure that f(x) is bounded below.

We have therefore shown that the bounds of Theorem 4.4 are essentially sharp, in that, for
every δ > 0, Algorithm 4.1 applied to the problem of minimizing the lower-bounded objective
function f just constructed and satisfying AS.1-AS.3 will take, because of (5.8) and (5.9),

⌈

1

ǫ
q+1

1+(q+1)δ

⌉

iterations and evaluation of f and its q first derivatives to find an iterate xk such that con-
dition (4.14) holds. Moreover, it is clear that, in the example presented, the global rate of
convergence is driven by the term of degree q in the Taylor series.

6 Discussion

We have analyzed the optimality conditions of order 2 and above, and proposed a measure of
criticality for arbitrary order for convexly constrained nonlinear optimization problems. As
this measure can be extended to define ǫ-approximate critical points of high-order, we have
then used it in a conceptual trust-region algorithm to show that, if derivatives of the objective
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function up to order q ≥ 1 can be evaluated and are Lipschitz continuous, then this algorithm
applied to the convexly constrained problem (3.1) needs at most O(ǫ−(q+1)) evaluations of f
and its derivatives to compute an ǫ-approximate q-order critical point. Moreover, we have
shown by an example that this bound is essentially sharp.

In the purely unconstrained case, this result recovers known results for q = 1 (first-
order criticality for Lipschitz gradients) [38], q = 2 (second-order criticality(7) with Lipschitz
Hessians) [14, 39] and q = 3 (third-order criticality(8) with Lipschitz continuous third deriva-
tive) [1], but extends them to arbitrary order. The results for the convexly constrained
case appear to be new and provide in particular the first complexity bound for second- and
third-order criticality for such inequality constrained problems.

Because the condition (4.14) measure different orders of criticality, we could choose to use
a different ǫ for every order (as in [14]), complicating the expression of the bound accordingly.
However, as shown by our example, the worst-case behaviour of Algorithm 4.1 is dominated
by that of ∇q

xf , which makes the distinction of the various ǫ-s less crucial.
Because of the global optimization occurring in the definition of the criticality measure

φ∆
f,j(x), the algorithm discussed in the present paper remains, in general, of a theoretical

nature. However there may be cases where this computation is tractable for small enough
∆, for instance if the derivative tensors of the objective function are strongly structured.
Such approaches may hopefully be of use for small dimensional or structured highly nonlinear
problems, such as those occurring in machine learning using deep learning techniques (see [1]).

The present framework for handling convex constraints is not free of limitations, resulting
from our choice to transfer difficulties associated with the original problem to the subproblem
solution, thereby sparing precious evaluations of f and its derivatives. In particular, the cost
of evaluating any constraint function/derivative possibly defining the convex feasible set F is
neglected by the present approach, which must therefore be seen as a suitable framework to
handle “cheap inequality constraint” such as simple bounds.

It is known that the complexity of obtaining ǫ-approximate first-order criticalty for uncon-
strained and convexly-constrained problem can be reduced to O(ǫ−(p+1)/p) if one is ready to
define the step by using a regularization model of order p ≥ 1. In the unconstrained case, this
was shown for p = 2 in [12,39] and for general p ≥ 1 in [6], while the convexly constrained case
was analyzed (for p = 2) in [13]. Whether this methodology and the associated improvements
in evaluation complexity bounds can be extended to order above one is the subject of ongoing
research.
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[32] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Part 1: Funda-
mentals. Springer Verlag, Heidelberg, Berlin, New York, 1993.

[33] W. Hogan. Point-to-set maps in mathematical programming. SIAM Review, 15(3):591–603, 1973.

[34] F. Jarre. On Nesterov’s smooth Chebyshev-Rosenbrock function. Optimization Methods and Software,
28(3):478–500, 2013.

[35] S. Lu, Z. Wei, and L. Li. A trust-region algorithm with adaptive cubic regularization methods for
nonsmooth convex minimization. Computational Optimization and Applications, 51:551–573, 2012.

[36] J. M. Mart́ınez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region method
for unconstrained minimization. Technical report, Department of Mathematics, IMECC-UNICAMP,
University of Campinas, Campinas, Brazil, November 2015.
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Appendix: Non-singularity of Mq

We prove the non-singularity of the matrix Mq introduced in (5.16). Assume, for the purpose
of a contradiction that there exists a nonzero vector v = (cq+1,k, . . . , c2q+1,k)

T ∈ IRq+1 such
that Mqv = 0. From the argument of Section 5, this amounts to saying that there exists a
polynomial of the form (5.11) with one of the coefficients cq+1,k, . . . , c2q+1,k being nonzero and
which satisfies the interpolation conditions (5.12) (i.e. (5.13) and (5.14)) with the restriction
that rk given by (5.15) is identically zero. Since sk > 0, the fact that components 2 to q of
rk are zero implies that ∇q

xf(xk) = q! cq,k = 0, and hence (from the first component) that
∆fk = 0. The interpolation conditions thus specify that

pk(0) = ∆fk = 0, pk(sk) = 0;

∇j
spk(0) = 0 = ∇j

spk(sk) for j ∈ {1, . . . , q − 1},

∇q
spk(0) = cq,k = 0, ∇q

spk(sk) = 0,

where the last equality results from the fact that the last component of rk is zero. Because
pk(s) is nonzero, this implies that pk(s) must be of the form Asq+1(s − sk)

q+1p1(s) where
A is a constant and p1(s) is a polynomial in s. But, since pk(s) is of degree (2q + 1) and
sq+1(s− sk)

q+1 of degree 2q + 2, one must have that p1(s) = 0 = pk(s), which is impossible.
Hence Mq is non-singular.


